201
|
Proteins oxidation and autoantibodies' reactivity against hydrogen peroxide and malondialdehyde -oxidized thyroid antigens in patients' plasmas with Graves' disease and Hashimoto Thyroiditis. Chem Biol Interact 2017; 272:145-152. [DOI: 10.1016/j.cbi.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/26/2017] [Accepted: 04/15/2017] [Indexed: 01/25/2023]
|
202
|
Haider C, Ferk F, Bojaxhi E, Martano G, Stutz H, Bresgen N, Knasmüller S, Alija A, Eckl PM. Effects of β-Carotene and Its Cleavage Products in Primary Pneumocyte Type II Cells. Antioxidants (Basel) 2017; 6:antiox6020037. [PMID: 28531132 PMCID: PMC5488017 DOI: 10.3390/antiox6020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
β-Carotene has been shown to increase the risk of developing lung cancer in smokers and asbestos workers in two large scale trails, the Beta-Carotene and Retinol Efficacy Trial (CARET) and the Alpha-Tocopherol Beta-carotene Cancer Prevention Trial (ATBC). Based on this observation, it was proposed that genotoxic oxidative breakdown products may cause this effect. In support of this assumption, increased levels of sister chromatid exchanges, micronuclei, and chromosomal aberrations were found in primary hepatocyte cultures treated with a mixture of cleavage products (CPs) and the major product apo-8′carotenal. However, because these findings cannot directly be transferred to the lung due to the exceptional biotransformation capacity of the liver, potential genotoxic and cytotoxic effects of β-carotene under oxidative stress and its CPs were investigated in primary pneumocyte type II cells. The results indicate that increased concentrations of β-carotene in the presence of the redox cycling quinone dimethoxynaphthoquinone (DMNQ) exhibit a cytotoxic potential, as evidenced by an increase of apoptotic cells and loss of cell density at concentrations > 10 µM. On the other hand, the analysis of micronucleated cells gave no clear picture due to the cytotoxicity related reduction of mitotic cells. Last, although CPs induced significant levels of DNA strand breaks even at concentrations ≥ 1 µM and 5 µM, respectively, β-carotene in the presence of DMNQ did not cause DNA damage. Instead, β-carotene appeared to act as an antioxidant. These findings are in contrast with what was demonstrated for primary hepatocytes and may reflect different sensitivities to and different metabolism of β-carotene in the two cell types.
Collapse
Affiliation(s)
- Cornelia Haider
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, Salzburg A-A-5020, Austria.
| | - Franziska Ferk
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Borschkegasse 8a, Vienna A-1090, Austria.
| | - Ekramije Bojaxhi
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, Salzburg A-A-5020, Austria.
| | - Giuseppe Martano
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, Salzburg 5020, Austria.
| | - Hanno Stutz
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, Salzburg 5020, Austria.
| | - Nikolaus Bresgen
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, Salzburg A-A-5020, Austria.
| | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Borschkegasse 8a, Vienna A-1090, Austria.
| | - Avdulla Alija
- Department of Biology, University of Prishtina, Xhorxh Bush, n.n., Prishtina 10000, Kosova.
| | - Peter M Eckl
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, Salzburg A-A-5020, Austria.
| |
Collapse
|
203
|
Benavides J, Barrias P, Piro N, Arenas A, Orrego A, Pino E, Villegas L, Dorta E, Aspée A, López-Alarcón C. Reaction of tetracycline with biologically relevant chloramines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:171-180. [PMID: 28187315 DOI: 10.1016/j.saa.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Helicobacter pylori (H. pylori) infection triggers inflammatory processes with the consequent production of hypochlorous acid (HOCl), monochloramine (NH2Cl), and protein-derived chloramines. As the therapy for eradicating H. pylori is partially based on the use of tetracycline, we studied the kinetic of its consumption elicited by HOCl, NH2Cl, N-chloro-n-butylamine (NHCl-But, used as a lysine-derived chloramine model), and lysozyme-derived chloramines. In the micromolar concentration range, tetracycline reacted rapidly with HOCl, generating in the first few seconds intermediates of short half-life. In contrast, a slow tetracycline consumption was observed in the presence of high NH2Cl and NHCl-But concentrations (millimolar range). Similar chlorinated products of tetracycline were identified by mass spectrometry, in the presence of HOCl and NH2Cl. These results evidenced that tautomers of tetracycline are pivotal intermediates in all reactions. In spite of the low reactivity of chloramines towards tetracycline, it is evident that, in the concentration range where they are produced in a H. pylori infection (millimolar range), the reactions lead to oxidation and/or chlorination of tetracycline. This kind of reactions, which were also observed triggered by lysozyme-derived chloramines, could limit the efficiency of the tetracycline-based therapy.
Collapse
Affiliation(s)
- J Benavides
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - P Barrias
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - N Piro
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Arenas
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Orrego
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - E Pino
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - L Villegas
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - E Dorta
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| | - C López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile.
| |
Collapse
|
204
|
Siddique YH, Ali F. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2017; 269:59-66. [DOI: 10.1016/j.cbi.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
|
205
|
Carroll L, Pattison DI, Fu S, Schiesser CH, Davies MJ, Hawkins CL. Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biol 2017; 12:872-882. [PMID: 28458184 PMCID: PMC5408155 DOI: 10.1016/j.redox.2017.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023] Open
Abstract
Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,4-anhydro-5-seleno-D-talitol (SeTal), react rapidly with different MPO-derived oxidants to form the respective selenoxides (SeMetO and SeTalO). This study investigates the susceptibility of these selenoxides to undergo reduction back to the parent compounds by intracellular reducing systems, including glutathione (GSH) and the glutathione reductase and thioredoxin reductase systems. GSH is shown to reduce SeMetO and SeTalO, with consequent formation of GSSG with apparent second order rate constants, k2, in the range 103–104 M−1 s−1. Glutathione reductase reduces both SeMetO and SeTalO at the expense of NADPH via formation of GSSG, whereas thioredoxin reductase acts only on SeMetO. The presence of SeMet and SeTal also increased the rate at which NADPH was consumed by the glutathione reductase system in the presence of N-chloramines. In contrast, the presence of SeMet and SeTal reduced the rate of NADPH consumption by the thioredoxin reductase system after addition of N-chloramines, consistent with the rapid formation of selenoxides, but only slow reduction by thioredoxin reductase. These results support a potential role of seleno compounds to act as catalytic scavengers of MPO-derived oxidants, particularly in the presence of glutathione reductase and NADPH, assuming that sufficient plasma levels of the parent selenoether can be achieved in vivo following supplementation. Selenoxides react with thiols including GSH by a two-step mechanism. The reaction is proposed to occur via a selenosulfide intermediate. The thioredoxin reductase system recycles selenomethionine selenoxide. The glutathione reductase system reduces both N-chloramines and selenoxides. Selenoxides can increase the reduction of N-chloramines by antioxidant systems.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - David I Pattison
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Shanlin Fu
- University of Technology Sydney, Centre for Forensic Science, Ultimo, NSW 2007, Australia
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
206
|
Elloumi N, Ben Mansour R, Marzouk S, Mseddi M, Fakhfakh R, Gargouri B, Masmoudi H, Lassoued S. Differential reactive oxygen species production of neutrophils and their oxidative damage in patients with active and inactive systemic lupus erythematosus. Immunol Lett 2017; 184:1-6. [PMID: 28163154 DOI: 10.1016/j.imlet.2017.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/07/2022]
Abstract
OBJECTIVE Increasing interest is given to the involvement of the innate immunity and especially Polymorphonuclear neutrophils (PMN) in the physiopathological process of inflammatory diseases such as systemic lupus erythematosus (SLE). Here, we investigated the oxidative burst and damages in SLE patients neutrophils, considering the two phases of the disease, the active and the remission/inactive states. METHODS This study was conducted on 30 SLE patients and 23 healthy controls. The oxidative burst in neutrophils of SLE patients and controls was triggered by fMLP and TPA, while reactive oxygen species (ROS) production was evaluated using a chemiluminescence assay. Oxidative damages in neutrophils were assessed by measuring Free thiol groups level and carbonyl groups, as protein oxidative markers. The malondialdehyde (MDA) level informed about the lipid peroxidation (LPO) and the catalase activity indicated the antioxidant enzymatic activity. RESULT Compared to controls, SLE patients exhibited a significantly increased level of ROS production concomitantly to a decreased response time. Their Neutrophils were characterized by a decreased level of MDA and high levels of protein oxidation as evidenced by increased carbonyl groups and decreased SH levels. The catalase activity was higher in SLE patients' neutrophils compared to controls. When patients were clustered according to the disease activity, PMN of patients in active phase showed, paradoxically, a lower ROS production and exhibited higher oxidative damages than the inactive group. CONCLUSION Our results highlight an altered behavior of LES patients derived PMN particularly in the active phase of the disease. The evaluation of the redox status including the rate of ROS production could be a biological marker to follow the activity of the disease.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Riadh Ben Mansour
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Tunisia,.
| | - Malek Mseddi
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Raouia Fakhfakh
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Bochra Gargouri
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Hatem Masmoudi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Saloua Lassoued
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| |
Collapse
|
207
|
Khanam S, Fatima A, Jyoti RS, Ali F, Naz F, Shakya B, Siddique YH. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Chin J Nat Med 2017; 15:271-280. [DOI: 10.1016/s1875-5364(17)30044-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/28/2022]
|
208
|
Klein RD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A. Antioxidant defense system and oxidative status in Antarctic fishes: The sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii. J Therm Biol 2017; 68:119-127. [PMID: 28689713 DOI: 10.1016/j.jtherbio.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
Adaptive responses of antioxidant defense systems (ADS) to changes in increased levels of activity are critical, especially in Antarctic fishes. The benthopelagic marbled notothen (Notothenia rossii) shows higher spontaneous activity than the benthonic and sluggish rockcod (N. coriiceps). Therefore, we hypothesize that species-related responses of ADS would occur to counteract different rates of reactive oxygen species formation in these two Antarctic fish. Here we evaluated ADS and oxidative damage in tissues (brain, gills, liver and white muscle) of the two Antarctic fish. Despite no significant differences in lipid and protein oxidative damage were observed, we actually found species- and tissue-specific differences in ADS. Gill metallothionein-like proteins (MTLP) and liver reduced glutathione (GSH) concentrations were higher in N. coriiceps than in N. rossii. Brain and gill antioxidant capacity against peroxyl radicals (ACAP); gill enzyme [glutamate-cysteine ligase (GSL), superoxide dismutase (SOD) and catalase (CAT)] activity; liver GCL and SOD activity; and white muscle CAT activity were higher in N. rossii than in N. coriiceps. Therefore, the more active fish (N. rossii) maintains higher activities of enzymes involved in superoxide ions (O2.-) detoxification and GSH production in peripheral tissues (gills, liver and white muscle). This allows the more active fish (N. rossii) to keep levels of lipid and protein oxidative damage similar to those observed in the sluggish fish (N. coriiceps). It is worth noting that the more active fish also shows a higher brain antioxidant capacity, which could involve other non-enzymatic antioxidants like vitamins C and E. In contrast, N. coriiceps shows lower consumption of non-enzymatic antioxidants in peripheral tissues than N. coriiceps. As hypothesized, our results indicate that differences in ADS profiles between fish species are likely related to their habits and metabolic rates. This would imply in different fish abilities to deal with oxidative stress associated with increasing seawater temperature.
Collapse
Affiliation(s)
- Roberta Daniele Klein
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Elton Pinto Colares
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário s/n, 96010-900 Pelotas, RS, Brazil
| | - Pablo Elias Martinez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
209
|
Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4721352. [PMID: 28168010 PMCID: PMC5266866 DOI: 10.1155/2017/4721352] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx). Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular) and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.
Collapse
|
210
|
Islam S, Mir AR, Raghav A, Khan F, Alam K, Ali A, Uddin M. Neo-Epitopes Generated on Hydroxyl Radical Modified GlycatedIgG Have Role in Immunopathology of Diabetes Type 2. PLoS One 2017; 12:e0169099. [PMID: 28046123 PMCID: PMC5207762 DOI: 10.1371/journal.pone.0169099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/11/2016] [Indexed: 02/02/2023] Open
Abstract
Glycoxidation plays a crucial role in diabetes and its associated complications. Among the glycoxidation agents, methylglyoxal (MG) is known to have very highglycationpotential witha concomitant generation of reactive oxygen species (ROS) during its synthesis and degradation. The presentstudy probes the MG and ROSinduced structural damage to immunoglobulin G (IgG) and alterations in its immunogenicity in diabetes type 2 patients (T2DM). Human IgG was first glycated with MG followed by hydroxyl radical (OH•) modification. Glycoxidation mediated effects on IgG were evaluated by various physicochemical techniques likeultraviolet (UV) and fluorescence spectroscopy, 8-anilinonaphthalene-1-sulfonic acid (ANS) binding studies, carbonyl andfree sulfhydryl groups assay, matrix assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF), red blood cell (RBC) haemolysis assay, Congored (CR) staining analysis and scanning electron microscopy (SEM). The results revealed hyperchromicityin UV, advanced glycation end product (AGE)specific and ANS fluorescence, quenching in tyrosine and tryptophan fluorescence intensity,enhanced carbonyl content,reduction in free sulfhydryl groups,pronounced shift in m/z value of IgGand decrease in antioxidant activity in RBC induced haemolysis assayupon glycoxidation. SEM and CRstaining assay showed highly altered surface morphology in glycoxidised sample as compared to the native. Enzyme linked immunosorbent assay (ELISA) and band shift assay were performed to assess the changes in immunogenicity of IgG upon glyoxidation and its role in T2DM. The serum antibodies derived from T2DM patients demonstrated strong affinity towards OH• treated MG glycatedIgG (OH•-MG-IgG) when compared to native IgG (N-IgG) or IgGs treated with MG alone (MG-IgG) or OH• alone (OH•-IgG). This study shows the cumulating effect of OH• on the glycation potential of MG. The results point towards the modification of IgG in diabetes patients under the effect of glycoxidative stress, leading to the generation of neo-epitopes on theIgG molecule and rendering it immunogenic.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biotechnology, Government Degree College Baramulla, University of Kashmir, Jammu and Kashmir, India
| | - Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farzana Khan
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail: ,
| |
Collapse
|
211
|
Chapple ILC, Griffiths HR, Milward MR, Ling MR, Grant MM. Antioxidant Micronutrients and Oxidative Stress Biomarkers. Methods Mol Biol 2017; 1537:61-77. [PMID: 27924588 DOI: 10.1007/978-1-4939-6685-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chronic inflammatory diseases are the major causes of mortality in humans and recent research has improved our understanding of the major impact of life-style factors upon inflammatory diseases and conditions. One of the most influential of these is nutrition, which may drive both pro-inflammatory as well as anti-inflammatory cascades at molecular and cellular levels. There are a variety of model systems that may be employed to investigate the impact of micronutrients and macronutrients upon inflammatory pathways, many of which operate through oxidative stress, either at the level of controlling the redox state of the cell and downstream redox-regulated gene transcription factors, and other acting as free radical generating or scavenging agents. This chapter focuses upon biological sample preparation prior to assay and details methods for analyzing certain antioxidant micronutrients and biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Iain L C Chapple
- School of Dentistry, Institute of Clinical Sciences, Collegeof Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - Helen R Griffiths
- School of Dentisty, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Mike R Milward
- School of Dentistry, Institute of Clinical Sciences, Collegeof Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Martin R Ling
- School of Dentistry, Institute of Clinical Sciences, Collegeof Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Sciences, Collegeof Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| |
Collapse
|
212
|
Ismael FO, Barrett TJ, Sheipouri D, Brown BE, Davies MJ, Hawkins CL. Role of Myeloperoxidase Oxidants in the Modulation of Cellular Lysosomal Enzyme Function: A Contributing Factor to Macrophage Dysfunction in Atherosclerosis? PLoS One 2016; 11:e0168844. [PMID: 27997605 PMCID: PMC5173366 DOI: 10.1371/journal.pone.0168844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
Low-density lipoprotein (LDL) is the major source of lipid within atherosclerotic lesions. Myeloperoxidase (MPO) is present in lesions and forms the reactive oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). These oxidants modify LDL and have been strongly linked with the development of atherosclerosis. In this study, we examined the effect of HOCl, HOSCN and LDL pre-treated with these oxidants on the function of lysosomal enzymes responsible for protein catabolism and lipid hydrolysis in murine macrophage-like J774A.1 cells. In each case, the cells were exposed to HOCl or HOSCN or LDL pre-treated with these oxidants. Lysosomal cathepsin (B, L and D) and acid lipase activities were quantified, with cathepsin and LAMP-1 protein levels determined by Western blotting. Exposure of J774A.1 cells to HOCl or HOSCN resulted in a significant decrease in the activity of the Cys-dependent cathepsins B and L, but not the Asp-dependent cathepsin D. Cathepsins B and L were also inhibited in macrophages exposed to HOSCN-modified, and to a lesser extent, HOCl-modified LDL. No change was seen in cathepsin D activity or the expression of the cathepsin proteins or lysosomal marker protein LAMP-1. The activity of lysosomal acid lipase was also decreased on treatment of macrophages with each modified LDL. Taken together, these results suggest that HOCl, HOSCN and LDL modified by these oxidants could contribute to lysosomal dysfunction and thus perturb the cellular processing of LDL, which could be important during the development of atherosclerosis.
Collapse
Affiliation(s)
- Fahd O. Ismael
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tessa J. Barrett
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Diba Sheipouri
- The Heart Research Institute, Sydney, New South Wales, Australia
| | - Bronwyn E. Brown
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael J. Davies
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clare L. Hawkins
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
213
|
Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Arch Biochem Biophys 2016; 612:103-114. [PMID: 27789204 DOI: 10.1016/j.abb.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
214
|
Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA. Magnesium deficiency and oxidative stress: an update. Biomedicine (Taipei) 2016; 6:20. [PMID: 27854048 PMCID: PMC5112180 DOI: 10.7603/s40681-016-0020-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/23/2016] [Indexed: 02/03/2023] Open
Abstract
Magnesium deficiency (MgD) has been shown to impact numerous biological processes at the cellular and molecular levels. In the present review, we discuss the relationship between MgD and oxidative stress (OS). MgD is accompanied by increased levels of OS markers such as lipid, protein and DNA oxidative modification products. Additionally, a relationship was detected between MgD and a weakened antioxidant defence. Different mechanisms associated with MgD are involved in the development and maintenance of OS. These mechanisms include systemic reactions such as inflammation and endothelial dysfunction, as well as changes at the cellular level, such as mitochondrial dysfunction and excessive fatty acid production.
Collapse
Affiliation(s)
- Anastasia A Zheltova
- Department of Pharmacology, Volgograd State Medical University, Pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia.,Department of Immunology and Allergology, Volgograd State Medical University, Pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia
| | - Maria V Kharitonova
- Department of Pharmacology, Volgograd State Medical University, Pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia.,Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82/III, A-6020, Innsbruck, Austria
| | - Igor N Iezhitsa
- Department of Pharmacology, Volgograd State Medical University, Pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia. .,Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor Darul Ehsan, Malaysia. .,RIG "Molecular Pharmacology and Advanced Therapeutics", Pharmaceutical & Life Sciences (PLS) Communities of Research (CoRe),, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia. .,Faculty of Medicine, Sungai Buloh Campus, Jalan Hospital, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor Darul Ehsan, Malaysia.
| | - Alexander A Spasov
- Department of Pharmacology, Volgograd State Medical University, Pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia
| |
Collapse
|
215
|
Terrill JR, Duong MN, Turner R, Le Guiner C, Boyatzis A, Kettle AJ, Grounds MD, Arthur PG. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy. Redox Biol 2016; 9:276-286. [PMID: 27611888 PMCID: PMC5018082 DOI: 10.1016/j.redox.2016.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/29/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | - Marisa N Duong
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR1089, Nantes, France; Genethon, Evry, France
| | - Amber Boyatzis
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
216
|
Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H, Wagner KH. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS One 2016; 11:e0162082. [PMID: 27598300 PMCID: PMC5012603 DOI: 10.1371/journal.pone.0162082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. METHODS Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. RESULTS No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. CONCLUSION BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria.
Collapse
Affiliation(s)
- Annemarie Grindel
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Bianca Guggenberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Lukas Eichberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Christina Pöppelmeyer
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Michaela Gschaider
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - George Mare
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Helmut Brath
- Diabetes Outpatient Clinic, Health Centre South, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| |
Collapse
|
217
|
Hansen T, Galougahi KK, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacol Ther 2016; 165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
218
|
Salama SA, Arab HH, Maghrabi IA, Hassan MH, AlSaeed MS. Gamma-Glutamyl Cysteine Attenuates Tissue Damage and Enhances Tissue Regeneration in a rat Model of Lead-Induced Nephrotoxicity. Biol Trace Elem Res 2016; 173:96-107. [PMID: 26767370 DOI: 10.1007/s12011-016-0624-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
Lead is a biohazardous metal that is commonly involved in human illness including renal injury. Although it is a non-redox reactive metal, lead-induced renal injury is largely based on oxidative stress. The current work aimed at exploring the possible protective effect of γ-glutamyl cysteine (γGC) against lead-induced renal injury. Rats were allocated to normal and γGC control groups, lead-treated group, and lead and γGC-treated group. γGC alleviated lead-induced renal injury as evidenced by attenuation of histopathological aberration, amelioration of oxidative injury as demonstrated by significant reduction in lipid and protein oxidation, elevation of total antioxidant capacity, and glutathione level. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was significantly elevated. γGC significantly decreased levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β and the activity of the apoptotic marker caspase-3. In addition, γGC reduced kidney lead content, enhanced weight gain, and improved renal function as demonstrated by reduced serum levels of urea and creatinine. Importantly, γGC upregulated proliferating cell nuclear antigen (PCNA) expression, denoting enhanced renal regenerative capacity. Together, our findings highlight evidence for alleviating effects of γGC against lead-induced renal injury that is potentially mediated through diminution of oxidative tissue injury, reduction of inflammatory response, attenuation of apoptosis, and enhancement of renal regenerative capacity.
Collapse
Affiliation(s)
- Samir A Salama
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
- Divsion of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia.
| | - Hany H Arab
- Divsion of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif, 21974, Saudi Arabia
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mohammed S AlSaeed
- Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif, 21974, Saudi Arabia
| |
Collapse
|
219
|
Ramiro-Cortijo D, Herrera T, Rodríguez-Rodríguez P, López De Pablo ÁL, De La Calle M, López-Giménez MR, Mora-Urda AI, Gutiérrez-Arzapalo PY, Gómez-Rioja R, Aguilera Y, Martín-Cabrejas MA, Condezo-Hoyos L, González MC, Montero P, Moreno-Jiménez B, Arribas SM. Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications. Placenta 2016; 47:37-45. [PMID: 27780538 DOI: 10.1016/j.placenta.2016.08.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Oxidative stress is present in pregnancy complications. However, it is unknown if early maternal antioxidant status could influence later development of complications. The use of assisted reproduction techniques (ART) is rising due to the delay of first pregnancy and there is scarce information on its influence on oxidative balance. OBJECTIVE To assess the possible relationship between maternal plasma antioxidant status in first trimester of gestation with later development of pregnancy complications, evaluating the influence of ART and nutrition. METHODS Plasma from 98 healthy pregnant women was obtained at week 10, nutrition questionnaires filled and women were followed until delivery. We evaluated biomarkers of oxidative damage (carbonyls, malondialdehyde-MDA), antioxidants (thiols, reduced glutathione, phenolic compounds, catalase and superoxide dismutase activities) by spectrophotometry/fluorimetry and melatonin (ELISA). Antioxidant status score (Antiox-S) was calculated as the computation of antioxidants. Diet-antioxidants relationship was evaluated through multiple correspondence analysis. RESULTS Melatonin and carbonyls exhibited a negative correlation. No difference in oxidative damage was found between groups, but Antiox-S was significantly lower in women who developed complications. No differences in oxidative damage or Antiox-S were found between ART and no-ART pregnancies. High consumption of foods of vegetable origin cluster with high plasma levels of phenolic compounds and with high Antiox-S. CONCLUSIONS In early normal gestation, low plasma antioxidant status, assessed through a global score, associates with later development of pregnancy complications. Larger population studies could help to determine the value of Antiox-S as predictive tool and the relevance of nutrition on maternal antioxidant status.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Teresa Herrera
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | | | | | - María De La Calle
- Obstetrics and Gynecology Service, La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - María R López-Giménez
- Department of Preventive Medicine, Public Health & Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Ana I Mora-Urda
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | | | - Rubén Gómez-Rioja
- Laboratory Medicine Service, La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - Luis Condezo-Hoyos
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - M Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Pilar Montero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - Bernardo Moreno-Jiménez
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
220
|
Chen HJC, Yang YF, Lai PY, Chen PF. Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2016; 88:9276-84. [PMID: 27541571 DOI: 10.1021/acs.analchem.6b02663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The post-translational modification (PTM) of proteins by endogenous reactive chlorine, nitrogen, and oxygen species is implicated in certain pathological conditions, including diabetes mellitus. Evidence showed that the extents of modifications on a number of proteins are elevated in diabetic patients. Measuring modification on hemoglobin has been used to monitor the extent of exposure. This study develops an assay for simultaneous quantification of the extent of chlorination, nitration, and oxidation in human hemoglobin and to examine whether the level of any of these modifications is higher in poorly controlled type 2 diabetic mellitus patients. This mass spectrometry-based assay used the bottom-up proteomic strategy. Due to the low amount of endogenous modification, we first characterized the sites of chlorination at tyrosine in hypochlorous acid-treated hemoglobin by an accurate mass spectrometer. The extents of chlorination, nitration, and oxidation of a total of 12 sites and types of modifications in hemoglobin were measured by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry under the selected reaction monitoring mode. Relative quantification of these PTMs in hemoglobin extracted from blood samples shows that the extents of chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in diabetic patients (n = 19) than in nondiabetic individuals (n = 18). After excluding the factor of smoking, chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in the nonsmoking diabetic patients (n = 12) than in normal nonsmoking subjects (n = 11). Multiple regression analysis performed on the combined effect of age, body-mass index (BMI), and HbA1c showed that the diabetes factor HbA1c contributes significantly to the extent of chlorination at α-Tyr-24 in nonsmokers. In addition, age contributes to oxidation at α-Met-32 significantly in all subjects and in nonsmokers. These results suggest the potential of using chlorination at α-Tyr-24-containing peptide to evaluate protein damage in nonsmoking type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Ya-Fen Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pang-Yen Lai
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Dalin, Chia-Yi 62247, Taiwan
| |
Collapse
|
221
|
Rotimi SO, Bankole GE, Adelani IB, Rotimi OA. Hesperidin prevents lipopolysaccharide-induced endotoxicity in rats. Immunopharmacol Immunotoxicol 2016; 38:364-71. [PMID: 27427274 DOI: 10.1080/08923973.2016.1214142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONTEXT Lipopolysaccharide (LPS) is a major trigger of septic shock resulting in multiple organ damage through excessive stimulation of the host's immune cells resulting in the release of cytokines. Previous studies have shown that hesperidin has several beneficial properties against inflammation and oxidative stress. OBJECTIVE The influence of hesperidin on endotoxemia, endothelial dysfunction, inflammation, and oxidative stress was investigated using a murine model of sepsis. MATERIALS AND METHODS Rats were pretreated for 15 d with three doses (50 mg/kg, 100 mg/kg, and 200 mg/kg) of hesperidin prior to LPS administration. Afterwards, the levels of biomarkers of endotoxemia, endothelial dysfunction, and oxidative stress were assessed. Reverse transcriptase PCR technique was used to assess the expression of hepatic proinflammatory cytokines. RESULTS Hesperidin pretreatment significantly (p < 0.05) reduced circulating endotoxin, as well as the levels of bactericidal permeability increasing protein and procalcitonin, and the associated endothelial dysfunction by reducing the levels of plasma soluble intercellular adhesion molecules 1 and inducible nitric oxide (iNO) synthase. There was also down-regulation of the expression of gene for interleukin 1α, interleukin 1β, interleukin 1 receptor, interleukin 6, and tumor necrosis factor α (TNFα) in the liver of rats treated with LPS as a result of hesperidin pretreatment. Hesperidin also showed anti-oxidative properties through the significant (p < 0.05) reduction of NO, hydroperoxides, and thiobarbituric acid reactive substances and increase of glutathione, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase in the organs. CONCLUSION Different doses of hesperidin can prevent endotoxemia-induced oxidative stress as well as inflammatory and endothelial perturbation in rats when administered for as few as 15 d before exposure to endotoxin.
Collapse
Affiliation(s)
- Solomon Oladapo Rotimi
- a Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences , Covenant University , Ota , Ogun State , Nigeria
| | - Goodness Esther Bankole
- a Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences , Covenant University , Ota , Ogun State , Nigeria
| | - Isaacson Bababode Adelani
- a Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences , Covenant University , Ota , Ogun State , Nigeria
| | - Oluwakemi Anuoluwapo Rotimi
- a Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences , Covenant University , Ota , Ogun State , Nigeria
| |
Collapse
|
222
|
Degendorfer G, Chuang CY, Kawasaki H, Hammer A, Malle E, Yamakura F, Davies MJ. Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radic Biol Med 2016; 97:602-615. [PMID: 27396946 DOI: 10.1016/j.freeradbiomed.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/13/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Fibronectin is a large dimeric glycoprotein present in both human plasma and in basement membranes. The latter are specialized extracellular matrices underlying endothelial cells in the artery wall. Peroxynitrous acid (ONOOH) a potent oxidizing and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals by stimulated macrophages and other cells. Considerable evidence supports ONOOH involvement in human atherosclerotic lesion development and rupture, possibly via extracellular matrix damage. Here we demonstrate that Tyr and Trp residues on human plasma fibronectin are highly sensitive to ONOOH with this resulting in the formation of 3-nitrotyrosine, 6-nitrotryptophan and dityrosine as well as protein aggregation and fragmentation. This occurs with equimolar or greater levels of oxidant, and in a dose-dependent manner. Modification of Tyr was quantitatively more significant than Trp (9.1% versus 1.5% conversion with 500μM ONOOH) after accounting for parent amino acid abundance, but only accounts for a small percentage of the total oxidant added. LC-MS studies identified 28 nitration sites (24 Tyr, 4 Trp) with many of these present within domains critical to protein function, including the cell-binding and anastellin domains. Human coronary artery endothelial cells showed decreased adherence and cell-spreading on ONOOH-modified fibronectin compared to control, consistent with cellular dysfunction induced by the modified matrix. Studies on human atherosclerotic lesions have provided evidence for co-localization of 3-nitrotyrosine and fibronectin. ONOOH-mediated fibronectin modification and compromised cell-matrix interactions, may contribute to endothelial cell dysfunction, a weakening of the fibrous cap of atherosclerotic lesions, and an increased propensity to rupture.
Collapse
Affiliation(s)
- Georg Degendorfer
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Hiroaki Kawasaki
- Department of Chemistry, Juntendo University School of Health Care and Nursing, 1-1 Hiragagakuendai, Inzai, Chiba 270-1606, Japan
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fumiyuki Yamakura
- Department of Chemistry, Juntendo University School of Health Care and Nursing, 1-1 Hiragagakuendai, Inzai, Chiba 270-1606, Japan
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
223
|
Krämer AC, Thulstrup PW, Lund MN, Davies MJ. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin. Free Radic Biol Med 2016; 97:544-555. [PMID: 27430598 DOI: 10.1016/j.freeradbiomed.2016.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Oxidation results in protein deterioration in mammals, plants, foodstuffs and pharmaceuticals, via changes in amino acid composition, fragmentation, aggregation, solubility, hydrophobicity, conformation, function and susceptibility to digestion. This study investigated whether and how individual or combined treatment with heat, a commonly encountered factor in industrial processing, and H2O2 alters the structure and composition of the major whey protein β-lactoglobulin. Thermal treatment induced reducible cross-links, with this being enhanced by low H2O2 concentrations, but decreased by high concentrations, where fragmentation was detected. Cross-linking was prevented when the single free Cys121 residue was blocked with iodoacetamide. Low concentrations of H2O2 added before heating depleted thiols, with H2O2 alone, or H2O2 added after heating, having lesser effects. A similar pattern was detected for methionine loss and methionine sulfoxide formation. Tryptophan loss was only detected with high levels of H2O2, and no other amino acid was affected, indicating that sulfur-centered amino acids are critical targets. No protection against aggregation was provided by high concentrations of the radical scavenger 5, 5-dimethyl-1-pyrroline N-oxide (DMPO), consistent with molecular oxidation, rather than radical reactions, being the major process. Sulfenic acid formation was detected by Western blotting and LC-MS/MS peptide mass-mapping of dimedone-treated protein, consistent with these species being significant intermediates in heat-induced cross-linking, especially in the presence of H2O2. Studies using circular dichroism and intrinsic fluorescence indicate that H2O2 increases unfolding during heating. These mechanistic insights provide potential strategies for modulating the extent of modification of proteins exposed to thermal and oxidant treatment.
Collapse
Affiliation(s)
- Anna C Krämer
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Marianne N Lund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark; Department of Food Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
224
|
Faustino-Rocha AI, Rodrigues D, da Costa RG, Diniz C, Aragão S, Talhada D, Botelho M, Colaço A, Pires MJ, Peixoto F, Oliveira PA. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse. ENVIRONMENTAL TOXICOLOGY 2016; 31:1009-1016. [PMID: 25640707 DOI: 10.1002/tox.22110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p < 0.05) as compared with controls. Histological analysis confirmed the presence of vacuolar degenerescence and a multifocal necrotizing hepatitis in 33% of animals (n = 2). Mitochondrial analysis showed that THMs reduced mitochondrial bioenergetic activity (succinate dehydrogenase (SQR), cytochrome c oxidase (COX), and ATP synthase) and increased oxidative stress (glutathione S-transferase (GST)) in hepatic tissues (p < 0.05). These results add detail to the current understanding of the mechanisms underlying THM-induced toxicity, supporting the role of mitochondrial dysfunction and oxidative stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016.
Collapse
Affiliation(s)
- Ana I Faustino-Rocha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - D Rodrigues
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - R Gil da Costa
- Faculty of Engineering, Laboratory for Process, Environment and Energy Engineering (LEPAE), University of Porto, UP, 4099-002, Porto, Portugal
| | - C Diniz
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - S Aragão
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - D Talhada
- Faculty of Health Sciences, Health Sciences Research Centre, University of Beira Interior, 6201-001, Covilhã, Portugal
| | - M Botelho
- Department of Health Promotion, National Institute of Health (INSA), 4000-055, Porto, Portugal
| | - A Colaço
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - M J Pires
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - F Peixoto
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| | - P A Oliveira
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal
| |
Collapse
|
225
|
Nadhman A, Khan MI, Nazir S, Khan M, Shahnaz G, Raza A, Shams DF, Yasinzai M. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int J Nanomedicine 2016; 11:2451-2461. [PMID: 27330288 PMCID: PMC4898416 DOI: 10.2147/ijn.s105195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lipid and protein oxidation are well-known manifestations of free radical activity and oxidative stress. The current study investigated extermination of Leishmania tropica promastigotes induced by lipid and protein oxidation with reactive oxygen species produced by PEGylated metal-based nanoparticles. The synthesized photodynamic therapy-based doped and nondoped zinc oxide nanoparticles were activated in daylight that produced reactive oxygen species in the immediate environment. Lipid and protein oxidation did not occur in dark. The major lipid peroxidation derivatives comprised of conjugated dienes, lipid hydroperoxides, and malondialdehyde whereas water, ethane, methanol, and ethanol were found as the end products. Proteins were oxidized to carbonyls, hydroperoxides, and thiol degrading products. Interestingly, lipid hydroperoxides were produced by more than twofold of the protein hydroperoxides, indicating higher degradation of lipids compared to proteins. The in vitro evidence represented a significant contribution of the involvement of both lipid and protein oxidation in the annihilated antipromastigote effect of nanoparticles.
Collapse
Affiliation(s)
- Akhtar Nadhman
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Nuclear Medicine Oncology and Radiotherapy Institute, International Islamic University, Islamabad, Pakistan
- Centre for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Malik Ihsanullah Khan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Nuclear Medicine Oncology and Radiotherapy Institute, International Islamic University, Islamabad, Pakistan
| | - Samina Nazir
- Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Momin Khan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Microbiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abida Raza
- Nuclear Medicine Oncology and Radiotherapy Institute, International Islamic University, Islamabad, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Masoom Yasinzai
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Centre for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| |
Collapse
|
226
|
Jyoti, Mir AR, Habib S, Siddiqui SS, Ali A, Moinuddin. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes. Int J Biol Macromol 2016; 86:799-809. [PMID: 26861824 DOI: 10.1016/j.ijbiomac.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications.
Collapse
Affiliation(s)
- Jyoti
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biotechnology, Government Degree College, Baramulla, Jammu and Kashmir, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sheelu Shafiq Siddiqui
- Rajeev Gandhi Centre for Diabetes, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
227
|
Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic Biol Med 2016; 94:88-98. [PMID: 26898502 DOI: 10.1016/j.freeradbiomed.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) released at sites of inflammation catalyzes the formation of the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from H2O2 and halide and pseudo-halide ions. HOCl, a major oxidant produced under physiological conditions reacts rapidly with many biological molecules, and is strongly linked with tissue damage during inflammatory disease. The role of HOSCN in disease is less clear, though it can initiate cellular damage by pathways involving the selective oxidation of thiol-containing proteins. Utilizing a thiol-specific proteomic approach, we explored the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (≤25µM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation after the initial treatment period, which may be relevant for the propagation of inflammatory disease in smokers, who have elevated plasma levels of the HOSCN precursor, thiocyanate.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Tessa J Barrett
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie Y White
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
228
|
Siddique YH, Naz F, Jyoti S, Ali F, Fatima A, Khanam S. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson's disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:225-231. [PMID: 27026137 DOI: 10.1016/j.etap.2016.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
The role of Geraniol was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. Geraniol at final concentration of 10, 20 and 40μM were mixed in the diet and the flies were allowed to feed on it for 24 days. The effect of geraniol was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl, glutathione, dopamine content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of PD model flies to 10, 20 and 40μM of geraniol results in a significant delay in the loss of climbing ability (p<0.05), improved activity pattern reduced the oxidative stress (p<0.05) in the brains of transgenic Drosophila as compared to unexposed PD model flies. The results suggest that geraniol is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
229
|
Ali F, Rahul, Jyoti S, Fatima A, Khanam S, Naz F, Siddique YH. Protective Role of Curcumin against N-Nitrosodiethylamine (NDEA)-Induced Toxicity in Rats. Sci Pharm 2016; 84:361-77. [PMID: 27222610 PMCID: PMC4871187 DOI: 10.3797/scipharm.1506-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/26/2015] [Indexed: 11/22/2022] Open
Abstract
The present investigation was aimed at studying the possible role of curcumin against N-nitrosodiethylamine (NDEA)-induced toxicity in albino rats. Administration of NDEA to rats at a concentration of 0.1 mg/ml in drinking water ad libitum for 21 days produced toxicity in them, which was evident from histopathological changes in the rat livers, and increased levels of blood serum enzyme markers, i.e. aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase. In addition, the levels of oxidative stress markers like lipid peroxidation (LPO), protein carbonyl (PCC), and glutathione-S-transferase (GST) activity were elevated and the total glutathione (GSH) content was reduced in the livers. The administration of curcumin to rats at concentrations of 10, 20, and 40 mg/ml in drinking water along with 0.1 mg/ml of NDEA for 21 days effectively suppressed NDEA-induced toxicity and also resulted in a dose-dependent reduction in the levels of blood serum enzyme markers (AST, ALT, ALP, and LDH). Moreover, LPO, PCC, and GST activity were reduced and the GSH level was increased upon the administration of curcumin along with NDEA. The results obtained for the comet assay in rat hepatocytes and blood lymphocytes showed a significant dose-dependent decrease in the mean tail length. The micronucleus assay performed on rat hepatocytes also showed a dose-dependent reduction in the frequency of micronucleated cells along with curcumin administration. These results suggest that curcumin has a protective role against NDEA-induced toxicity in albino rats.
Collapse
Affiliation(s)
- Fahad Ali
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rahul
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
230
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
231
|
Development of albuminuria and enhancement of oxidative stress during chronic renin-angiotensin system suppression. J Hypertens 2016; 32:2082-91; discussion 2091. [PMID: 25033166 DOI: 10.1097/hjh.0000000000000292] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Albuminuria has been recently described in hypertensive patients under chronic renin-angiotensin system (RAS) suppression. We investigated whether this fact could be related to an increase in oxidative stress. METHODS We examined normoalbuminuric and albuminuric patients in stage 2 chronic kidney disease, both with more than 2 years of RAS blockade. The relationship between albuminuria and circulating biomarkers for both oxidative damage, that is carbonyl and malondialdehyde, as well as antioxidant defense, that is reduced glutathione, thiol groups, uric acid, bilirubin, or catalase, and superoxide scavenging activity, was assessed. RESULTS We found that only patients with albuminuria showed an important increase in carbonyls (P < 0.001) and malondialdehyde (P < 0.05) compared to normoalbuminuric patients. This increase in oxidative damage was also accompanied by a rise in catalase activity (P < 0.05) and low-molecular-weight antioxidants only when they were measured as total antioxidant capacity (P < 0.01). In order to establish the specific oxidative status of each group, new indexes of oxidative damage and antioxidant defense were calculated with all these markers following a mathematical and statistical approach. Although both pro-oxidant and antioxidant indexes were significantly increased in patients with albuminuria, only the oxidative damage index positively correlated with the increase of albumin/creatinine ratio (P = 0.0024). CONCLUSIONS We conclude that albuminuria is accompanied by an amplified oxidative damage in patients in early stages of chronic kidney disease. These results indicate that chronic RAS protection must be directed to avoid development of albuminuria and oxidative damage.
Collapse
|
232
|
Siddique YH, Ali F. Protective effect of epigallocatechin gallate against N-nitrosodiethylamine (NDEA) induced toxicity in rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1141451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yasir Hasan Siddique
- Section of Genetics, Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Fahad Ali
- Section of Genetics, Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
233
|
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1046-1070. [PMID: 26689748 DOI: 10.1021/acs.jafc.5b04744] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Özyürek
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Kubilay Güçlü
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
234
|
Vajrala SG, Murhammer DW. Effect of
CO
2
on uninfected
S
f‐9 cell growth and metabolism. Biotechnol Prog 2016; 32:465-9. [DOI: 10.1002/btpr.2229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Sucheta G. Vajrala
- Department of Chemical and Biochemical Engineering4133 Seamans Center, The University of IowaIowa City IA52242
| | - David W. Murhammer
- Department of Chemical and Biochemical Engineering4133 Seamans Center, The University of IowaIowa City IA52242
| |
Collapse
|
235
|
Talib J, Davies MJ. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells. J Biol Inorg Chem 2016; 21:305-17. [DOI: 10.1007/s00775-016-1340-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
|
236
|
Vargová V, Giménez RE, Černocká H, Trujillo DC, Tulli F, Zanini VIP, Paleček E, Borsarelli CD, Ostatná V. Label-free electrochemical detection of singlet oxygen protein damage. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
237
|
Cook NL, Moeke CH, Fantoni LI, Pattison DI, Davies MJ. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues. Free Radic Biol Med 2016; 90:195-205. [PMID: 26616646 DOI: 10.1016/j.freeradbiomed.2015.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN(-)) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 µM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species, can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation.
Collapse
Affiliation(s)
- Naomi L Cook
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | - Cassidy H Moeke
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Luca I Fantoni
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | - David I Pattison
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael J Davies
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Building 4.5, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
238
|
Helander L, Sharma A, Krokan HE, Plaetzer K, Krammer B, Tortik N, Gederaas OA, Slupphaug G, Hagen L. Photodynamic treatment with hexyl-aminolevulinate mediates reversible thiol oxidation in core oxidative stress signaling proteins. MOLECULAR BIOSYSTEMS 2016; 12:796-805. [DOI: 10.1039/c5mb00744e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HAL-PDT mediates reversible cysteine oxidation in core proteins involved in oxidative stress and apoptotic signalling.
Collapse
Affiliation(s)
- Linda Helander
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| | - Hans E. Krokan
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms
- Department of Materials Science and Physics
- University of Salzburg
- Austria
| | - Barbara Krammer
- Division of Molecular Tumor Biology
- Department of Molecular Biology
- University of Salzburg
- Austria
| | - Nicole Tortik
- Laboratory of Photodynamic Inactivation of Microorganisms
- Department of Materials Science and Physics
- University of Salzburg
- Austria
| | - Odrun A. Gederaas
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| | - Lars Hagen
- Department of Cancer Research and Molecular Medicine
- Norwegian University of Science and Technology
- Norway
- PROMEC Core Facility for Proteomics and Metabolomics
- Norwegian University of Science and Technology
| |
Collapse
|
239
|
da Silva CC, Klein RD, Barcarolli IF, Bianchini A. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:42-51. [PMID: 26615366 DOI: 10.1016/j.aquatox.2015.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 05/14/2023]
Abstract
Environmental contaminants have been suggested as a possible cause of fibropapillomatosis (FP) in green sea turtles. In turn, a reduced concentration of serum cholesterol has been indicated as a reliable biomarker of malignancy in vertebrates, including marine turtles. In the present study, metal (Ag, Cd, Cu, Fe, Ni, Pb and Zn) concentrations, oxidative stress parameters [antioxidant capacity against peroxyl radicals (ACAP), protein carbonyls (PC), lipid peroxidation (LPO), frequency of micronucleated cells (FMC)], water content, cholesterol concentration and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity were analyzed in the blood/serum of juvenile (29.3-59.5cm) female green sea turtles (Chelonia mydas) with FP (n=14) and without FP (n=13) sampled at Ubatuba coast (São Paulo State, southeastern Brazil). Green sea turtles were grouped and analyzed according to the severity of tumors. Individuals heavily afflicted with FP showed significantly higher blood Cu, Pb and Fe concentrations, blood LPO levels, as well as significantly lower serum cholesterol concentrations and HMGR activity than turtles without FP. Significant and positive correlations were observed between HMGR activity and cholesterol concentrations, as well as LPO levels and Fe and Pb concentrations. In turn, Cu and Pb concentrations were significantly and negatively correlated with HMGR activity and cholesterol concentration. Furthermore, Cu, Fe and Pb were positively correlated with each other. Therefore, the reduced concentration of serum cholesterol observed in green sea turtles heavily afflicted with FP is related to a Cu- and Pb-induced inhibition of HMGR activity paralleled by a higher LPO rate induced by increased Fe and Pb concentrations. As oxidative stress is implicated in the pathogenesis of viral infections, our findings support the idea that metal contamination, especially by Cu, Fe and Pb, may be implicated in the etiology of FP in green sea turtles through oxidative stress generation.
Collapse
Affiliation(s)
- Cinthia Carneiro da Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Roberta Daniele Klein
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Indianara Fernanda Barcarolli
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
240
|
Rodríguez-Rodríguez P, de Pablo ALL, Condezo-Hoyos L, Martín-Cabrejas MA, Aguilera Y, Ruiz-Hurtado G, Gutierrez-Arzapalo PY, Ramiro-Cortijo D, Fernández-Alfonso MS, González MDC, Arribas SM. Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. J Nutr Biochem 2015; 26:1650-9. [DOI: 10.1016/j.jnutbio.2015.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
241
|
Danish M, Fatima A, Khanam S, Jyoti S, Ali F, Naz F, Siddique YH. Evaluation of the toxic potential of calcium carbide in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). CHEMOSPHERE 2015; 139:469-478. [PMID: 26298668 DOI: 10.1016/j.chemosphere.2015.07.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
In the present study the toxic potential of calcium carbide (CaC2) was studied on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). The third instar larvae were exposed to 2, 4, 8, 16 and 32×10(-3)g/ml of CaC2 in diet for 24h. The results reveal that the dose 2×10(-3)g/ml was not toxic but the remaining doses showed a dose dependent significant increase in the hsp70 expression, β-galactosidase activity, tissue damage, oxidative stress markers (lipid peroxidation and protein carbonyl content), glutathione-S-transferase activity, expression of Caspase 3 and 9, apoptotic index and DNA damage (midgut cells). A significant reduction as compared to control group in total protein, glutathione content and acetylcholinesterase activity was also observed. The Inductively Coupled Plasma Atomic Emission Spectroscopy analysis (ICPAES) reveals the presence of copper, iron, sodium, aluminium, manganese, calcium, nickel and mercury. The toxic effects of CaC2 in the present study may be attributed to the impurities present in it.
Collapse
Affiliation(s)
- Mohd Danish
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
242
|
Boon AC, Lam AK, Gopalan V, Benzie IF, Briskey D, Coombes JS, Fassett RG, Bulmer AC. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure. Sci Rep 2015; 5:15482. [PMID: 26498893 PMCID: PMC4620450 DOI: 10.1038/srep15482] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022] Open
Abstract
Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin's antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations.
Collapse
Affiliation(s)
- Ai-Ching Boon
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred K Lam
- School of Medicine and Cancer Molecular Pathology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Pathology Queensland, Gold Coast University Hospital, Gold Coast, Australia
| | - Vinod Gopalan
- School of Medicine and Cancer Molecular Pathology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Iris F Benzie
- Department of Health Technology &Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Australia
| | - Robert G Fassett
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Australia
| | - Andrew C Bulmer
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
243
|
Mseddi M, Ben Mansour R, Mnif F, Gargouri B, Abid M, Guermazi F, Attia H, Lassoued S. Lipid peroxidation, proteins modifications, anti-oxidant enzymes activities and selenium deficiency in the plasma of hashitoxicosis patients. Ther Adv Endocrinol Metab 2015; 6:181-8. [PMID: 26445640 PMCID: PMC4579411 DOI: 10.1177/2042018815589057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of this study was to explore the oxidative stress profile in hashitoxicosis (HTX) and to compare it with that of healthy subjects. PATIENTS AND METHODS Spectrophotometric methods were used to evaluate the oxidative stress markers. The selenium level was investigated by atomic absorption. RESULTS High levels of thiobarbituric acid reactive species (TBARS) and conjugated dienes were found in HTX patients (p = 0.034 and p = 0.043, respectively) compared with healthy controls. For antioxidant enzymes, superoxide dismutase (SOD) and catalase activities increased, whereas that of glutathione peroxidase (GPx) decreased (p = 0.000, p = 0.014, p = 0.000, respectively) compared with controls. A reduction in the level of selenium (p = 0.029) and thiol groups (p = 0.008) were shown in patients; however, levels of carbonyl group and malondialdehyde (MDA) protein adducts decreased (p = 0.000) compared with controls. Positive correlation was shown between levels of free thyroxine (FT4) and TBARS (r = 0.711, p = 0.048) and between FT4 level and SOD activity (r = 0.713, p = 0.047). Conversely, GPx activity presented a negative correlation with FT4 and free triiodothyronine (FT3) levels (r = -0.934, p = 0.001; r = -0.993, p = 0.000, respectively). In addition, GPx activity showed positive correlation with selenium level (r = 0.981, p = 0.019) and the FT3 level correlated negatively with the level of thiol groups (r = -0.892, p = 0.017). CONCLUSIONS This study shows the presence of an oxidative stress and selenium deficiency in HTX patients and suggests that the hyperthyroid state is strongly implicated in the establishment of this disturbed oxidative profile.
Collapse
Affiliation(s)
| | | | - Fatma Mnif
- Department of Endocrinology and Diabetes Hedi Chaker, Sfax, Tunisia
| | | | - Mohamed Abid
- Department of Endocrinology and Diabetes Hedi Chaker, Sfax, Tunisia
| | - Fadhel Guermazi
- Department of Nuclear Medicine, Habib Bourguiba, Sfax, Tunisia
| | - Hamadi Attia
- National School of Engineers of Sfax, Sfax, Tunisia
| | | |
Collapse
|
244
|
Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, Agostinis P, De Vleeschouwer S, Van Gool SW. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology 2015; 5:e1083669. [PMID: 27057467 PMCID: PMC4801426 DOI: 10.1080/2162402x.2015.1083669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines.
Collapse
Affiliation(s)
- Lien Vandenberk
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Abhishek D Garg
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Tina Verschuere
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Carolien Koks
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Jochen Belmans
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Monique Beullens
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Biosignaling and Therapeutics , Leuven, Belgium
| | - Patrizia Agostinis
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Steven De Vleeschouwer
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy , Leuven, Belgium
| | - Stefaan W Van Gool
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| |
Collapse
|
245
|
Boon AC, Hawkins CL, Coombes JS, Wagner KH, Bulmer AC. Bilirubin scavenges chloramines and inhibits myeloperoxidase-induced protein/lipid oxidation in physiologically relevant hyperbilirubinemic serum. Free Radic Biol Med 2015; 86:259-68. [PMID: 26057938 DOI: 10.1016/j.freeradbiomed.2015.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022]
Abstract
Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl(-) oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl(-) to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl(-)-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9-125µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.
Collapse
Affiliation(s)
- A C Boon
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.
| | - C L Hawkins
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - J S Coombes
- School of Human Movement Studies, University of Queensland, St Lucia, QLD 4072, Australia
| | - K H Wagner
- Department of Nutritional Science, University of Vienna, Vienna 1090, Austria
| | - A C Bulmer
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
246
|
Mir AR, Uddin M, Khan F, Alam K, Ali A. Dicarbonyl Induced Structural Perturbations Make Histone H1 Highly Immunogenic and Generate an Auto-Immune Response in Cancer. PLoS One 2015; 10:e0136197. [PMID: 26317779 PMCID: PMC4552624 DOI: 10.1371/journal.pone.0136197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/31/2015] [Indexed: 12/28/2022] Open
Abstract
Increased oxidative stress under hyperglycemic conditions, through the interaction of AGEs with RAGE receptors and via activation of interleukin mediated transcription signalling, has been reported in cancer. Proteins modifications are being explored for their roles in the development and progression of cancer and autoantibody response against them is gaining interest as a probe for early detection of the disease. This study has analysed the changes in histone H1 upon modification by methylglyoxal (MG) and its implications in auto-immunopathogenesis of cancer. Modified histone showed modifications in the aromatic residues, changed tyrosine microenvironment, intermolecular cross linking and generation of AGEs. It showed masking of hydrophobic patches and a hypsochromic shift in the in ANS specific fluorescence. MG aggressively oxidized histone H1 leading to the accumulation of reactive carbonyls. Far UV CD measurements showed di-carbonyl induced enhancement of the alpha structure and the induction of beta sheet conformation; and thermal denaturation (Tm) studies confirmed the thermal stability of the modified histone. FTIR analysis showed amide I band shift, generation of a carboxyethyl group and N-Cα vibrations in the modified histone. LCMS analysis confirmed the formation of Nε-(carboxyethyl)lysine and electron microscopic studies revealed the amorphous aggregate formation. The modified histone showed altered cooperative binding with DNA. Modified H1 induced high titre antibodies in rabbits and the IgG isolated form sera of rabbits immunized with modified H1 exhibited specific binding with its immunogen in Western Blot analysis. IgG isolated from the sera of patients with lung cancer, prostate cancer, breast cancer and cancer of head and neck region showed better recognition for neo-epitopes on the modified histone, reflecting the presence of circulating autoantibodies in cancer. Since reports suggest a link between AGE-RAGE axis and carcinogenesis, glycoxidation of histone H1 and its immunogenicity paves ways for understanding role of glycoxidatively damaged nuclear proteins in cancer.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| | - Farzana Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
247
|
Glutamyl cysteine dipeptide suppresses ferritin expression and alleviates liver injury in iron-overload rat model. Biochimie 2015; 115:203-11. [DOI: 10.1016/j.biochi.2015.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
248
|
Ellervik C, Vaught J. Preanalytical Variables Affecting the Integrity of Human Biospecimens in Biobanking. Clin Chem 2015; 61:914-34. [DOI: 10.1373/clinchem.2014.228783] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Abstract
BACKGROUND
Most errors in a clinical chemistry laboratory are due to preanalytical errors. Preanalytical variability of biospecimens can have significant effects on downstream analyses, and controlling such variables is therefore fundamental for the future use of biospecimens in personalized medicine for diagnostic or prognostic purposes.
CONTENT
The focus of this review is to examine the preanalytical variables that affect human biospecimen integrity in biobanking, with a special focus on blood, saliva, and urine. Cost efficiency is discussed in relation to these issues.
SUMMARY
The quality of a study will depend on the integrity of the biospecimens. Preanalytical preparations should be planned with consideration of the effect on downstream analyses. Currently such preanalytical variables are not routinely documented in the biospecimen research literature. Future studies using biobanked biospecimens should describe in detail the preanalytical handling of biospecimens and analyze and interpret the results with regard to the effects of these variables.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Research, Nykoebing Falster Hospital, Nykoebing Falster, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
| | - Jim Vaught
- International Society for Biological and Environmental Repositories, Vancouver, Canada
- Editor-in-Chief, Biopreservation and Biobanking, Vancouver, Canada
| |
Collapse
|
249
|
Carroll L, Pattison DI, Fu S, Schiesser CH, Davies MJ, Hawkins CL. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage. Free Radic Biol Med 2015; 84:279-288. [PMID: 25841785 DOI: 10.1016/j.freeradbiomed.2015.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
Abstract
Hypochlorous acid (HOCl) and N-chloramines are produced by myeloperoxidase (MPO) as part of the immune response to destroy invading pathogens. However, MPO also plays a detrimental role in inflammatory pathologies, including atherosclerosis, as inappropriate production of oxidants, including HOCl and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8-3.4×10(3)M(-1) s(-1)) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1-6.8×10(2)M(-1) s(-1)) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications for preventing cellular damage in vivo, particularly under chronic inflammatory conditions.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David I Pattison
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
250
|
Kalász J, Pásztor ET, Fagyas M, Balogh Á, Tóth A, Csató V, Édes I, Papp Z, Borbély A. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes. Free Radic Biol Med 2015; 84:116-127. [PMID: 25770662 DOI: 10.1016/j.freeradbiomed.2015.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
Abstract
We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.
Collapse
Affiliation(s)
- Judit Kalász
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Balogh
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Viktória Csató
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Borbély
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|