201
|
Foyer CH, Wilson MH, Wright MH. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med 2018; 122:137-149. [PMID: 29605447 PMCID: PMC6146653 DOI: 10.1016/j.freeradbiomed.2018.03.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/16/2023]
Abstract
Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael H Wilson
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Megan H Wright
- The Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
202
|
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel) 2018; 7:E66. [PMID: 29758013 PMCID: PMC5981252 DOI: 10.3390/antiox7050066] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins' genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Isidoros Seremelis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Nikolaos Kontopoulos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
203
|
Abstract
Changes in the intracellular thiol-disulfide balance are considered major determinants in the redox status/signaling of the cell. Cellular signaling is very sensitive to both exogenous and intracellular redox status and respond to many exogenous pro-oxidative or oxidative stresses. Redox status has dual effects on upstream signaling systems and downstream transcription factors. Redox signaling pathways use reactive oxygen species (ROS) to transfer signals from different sources to the nucleus to regulate such functions as growth, differentiation, proliferation, and apoptosis. Mitogen-activated protein kinases are activated by numerous cellular stresses and ligand-receptor bindings. An imbalance in the oxidant/antioxidant system, either resulting from excessive ROS/reactive nitrogen species production and/or antioxidant system impairment, leads to oxidative stress. Glutathione (GSH) is known to play a critical role in the cellular defense against unregulated oxidative stress in mammalian cells and involvement of large molecular antioxidants include classical antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity, and apoptotic effects depending on the dose, route, and duration of exposure. This review examines the signaling pathways and mechanisms of activation of transcription factors by Cd-induced oxidative stress thus representing an important basis for understanding the mechanisms of Cd effect on the cells.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria
| |
Collapse
|
204
|
|
205
|
Zheng Y, Liu W, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-directed gold nanoclusters: a suitable fluorescent probe for intracellular glutathione imaging and selective cancer cell identification. J Mater Chem B 2018; 6:3650-3654. [DOI: 10.1039/c8tb00791h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we demonstrate a novel, facile, and suitable strategy for imaging GSH based on mercaptopyrimidine-directed gold nanoclusters (Au NCs).
Collapse
Affiliation(s)
- Youkun Zheng
- State Key Laboratory of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Yun Chen
- State Key Laboratory of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Hui Jiang
- State Key Laboratory of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| |
Collapse
|
206
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
207
|
Saleem N, Prasad A, Goswami SK. Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem 2017; 445:79-88. [PMID: 29256115 DOI: 10.1007/s11010-017-3253-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of a plethora of cardiovascular diseases including interstitial fibrosis, contractile dysfunction, ischemia-reperfusion injury, and cardiac remodeling. However, antioxidant therapies targeting oxidative stress in the progression of those diseases have largely been unsuccessful. The current study evaluated the effects of a NADPH oxidase inhibitor, apocynin (Apo), on the production of reactive oxygen species and the development of pathological cardiac hypertrophy under sustained β-adrenergic stimulation in male Wistar rats. As evident from the HW/BW ratio, HW/TL ratio, echocardiography, and histopathology, hypertrophic responses induced by isoproterenol (Iso; 5 mg/Kg body weight, subcutaneous) were blocked by Apo (10 mg/Kg body weight, intraperitoneal). Iso treatment increased the transcript levels of cybb and p22-phox, the two subunits of Nox. Iso treatment also caused a decrease in reduced glutathione level that was restored by Apo. Increase in mRNA levels of a number of markers of hypertrophy, viz., ANP, BNP, β-MHC, and ACTA-1 by Iso was either partially or completely prevented by Apo. Activation of key signaling kinases such as PKA, Erk, and Akt by Iso was also prevented by Apo treatment. Our study thus provided hemodynamic, biochemical, and molecular evidences supporting the therapeutic value of Apo in ameliorating adrenergic stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
208
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
209
|
Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M. Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 2017; 591:3625-3636. [PMID: 28940407 PMCID: PMC5698759 DOI: 10.1002/1873-3468.12852] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023]
Abstract
The evolutionarily highly conserved SNF1‐related protein kinase (SnRK1) protein kinase is a metabolic master regulator in plants, balancing the critical energy consumption between growth‐ and stress response‐related metabolic pathways. While the regulation of the mammalian [AMP‐activated protein kinase (AMPK)] and yeast (SNF1) orthologues of SnRK1 is well‐characterised, the regulation of SnRK1 kinase activity in plants is still an open question. Here we report that the activity and T‐loop phosphorylation of AKIN10, the kinase subunit of the SnRK1 complex, is regulated by the redox status. Although this regulation is dependent on a conserved cysteine residue, the underlying mechanism is different to the redox regulation of animal AMPK and has functional implications for the regulation of the kinase complex in plants under stress conditions.
Collapse
Affiliation(s)
- Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Katrin Fischer-Schrader
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Ella Nukarinen
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| |
Collapse
|
210
|
Hanana H, Turcotte P, André C, Gagnon C, Gagné F. Comparative study of the effects of gadolinium chloride and gadolinium - based magnetic resonance imaging contrast agent on freshwater mussel, Dreissena polymorpha. CHEMOSPHERE 2017; 181:197-207. [PMID: 28437745 DOI: 10.1016/j.chemosphere.2017.04.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Gadolinium (Gd), a metal of the lanthanide series used in various industrial and medical purposes is released into the aquatic environment. However, there are few aquatic toxicological studies addressing environmental effects of Gd which remains unknown in aquatic animals. Therefore, this study aimed to compare the effects of GdCl3 and a gadolinium-based MRI contrast agent (Omniscan), in zebra mussels after 28 days through a multibiomarker approach. Data revealed that after GdCl3 exposure, the mRNA level of metallothionein (MT) was modulated, those of cytochrome c oxidase (CO1) and superoxide dismutase (SOD) were increased, while gene expressions of catalase (CAT) and glutathione-S-transferase (GST) were downregulated. Furthermore, neither lipoperoxidation (LPO) nor genotoxicity were detected but only a decrease in the cyclooxygenase (COX) activity was observed. In addition, a significant correlation was found between biomarkers and bioaccumulated Gd, suggesting that mitochondrial and anti-inflammatory pathways were triggered with GdCl3. By opposition, the contrasting agent formulation induced downregulation of SOD, CAT, GST and CO1, a decrease in the level of LPO and an increase in the GST and COX activities. This suggests that the chelated form of Gd did not promote reactive oxygen species (ROS) production and exhibits antioxidant and proinflammatory effects in mussels. Therefore, this study revealed that ionic and the chelated form of Gd influence different cellular pathways to initiate cellular changes.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada.
| | - Patrice Turcotte
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - Chantale André
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - Christian Gagnon
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada.
| |
Collapse
|
211
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
212
|
Bjornson M, Balcke GU, Xiao Y, de Souza A, Wang JZ, Zhabinskaya D, Tagkopoulos I, Tissier A, Dehesh K. Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:70-84. [PMID: 28370892 PMCID: PMC5488868 DOI: 10.1111/tpj.13547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 05/19/2023]
Abstract
To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.
Collapse
Affiliation(s)
- Marta Bjornson
- Dept. of Plant Biology, University of California, Davis, CA 95616
- Dept. of Plant Sciences, University of California, Davis, CA 95616
| | | | - Yanmei Xiao
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Amancio de Souza
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Jin-Zheng Wang
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Dina Zhabinskaya
- Dept. of Computer Science, University of California, Davis, CA 95616
| | - Ilias Tagkopoulos
- Dept. of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Dept. of Physics, University of California, Davis, CA 95616
| | - Katayoon Dehesh
- Dept. of Plant Biology, University of California, Davis, CA 95616
| |
Collapse
|
213
|
Mandal C, Halder D, Jung KH, Chai YG. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus. Int J Mol Sci 2017; 18:ijms18071386. [PMID: 28657590 PMCID: PMC5535879 DOI: 10.3390/ijms18071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Institute of Natural Science and Technology, Hanyang University, 15588 Ansan, Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Department of Bionanotechnology, Hanyang University, 04763 Seoul, Korea.
| |
Collapse
|
214
|
Gerna D, Roach T, Stöggl W, Wagner J, Vaccino P, Limonta M, Kranner I. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth. Free Radic Res 2017; 51:568-581. [PMID: 28580817 DOI: 10.1080/10715762.2017.1338344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15 h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48 h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.
Collapse
Affiliation(s)
- Davide Gerna
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Thomas Roach
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Wolfgang Stöggl
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Johanna Wagner
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Patrizia Vaccino
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria , Research Unit for Cereal Selection in Continental Areas, S . Angelo Lodigiano , Italy
| | - Margherita Limonta
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria , Research Unit for Cereal Selection in Continental Areas, S . Angelo Lodigiano , Italy
| | - Ilse Kranner
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
215
|
Benis N, Kar SK, Martins Dos Santos VAP, Smits MA, Schokker D, Suarez-Diez M. Multi-Level Integration of Environmentally Perturbed Internal Phenotypes Reveals Key Points of Connectivity between Them. Front Physiol 2017; 8:388. [PMID: 28659815 PMCID: PMC5467433 DOI: 10.3389/fphys.2017.00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
The genotype and external phenotype of organisms are linked by so-called internal phenotypes which are influenced by environmental conditions. In this study, we used five existing -omics datasets representing five different layers of internal phenotypes, which were simultaneously measured in dietarily perturbed mice. We performed 10 pair-wise correlation analyses verified with a null model built from randomized data. Subsequently, the inferred networks were merged and literature mined for co-occurrences of identified linked nodes. Densely connected internal phenotypes emerged. Forty-five nodes have links with all other data-types and we denote them “connectivity hubs.” In literature, we found proof of 6% of the 577 connections, suggesting a biological meaning for the observed correlations. The observed connectivities between metabolite and cytokines hubs showed higher numbers of literature hits as compared to the number of literature hits on the connectivities between the microbiota and gene expression internal phenotypes. We conclude that multi-level integrated networks may help to generate hypotheses and to design experiments aiming to further close the gap between genotype and phenotype. We describe and/or hypothesize on the biological relevance of four identified multi-level connectivity hubs.
Collapse
Affiliation(s)
- Nirupama Benis
- Host Microbe Interactomics, Wageningen University & ResearchWageningen, Netherlands
| | - Soumya K Kar
- Host Microbe Interactomics, Wageningen University & ResearchWageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & ResearchWageningen, Netherlands.,Lifeglimmer GmbHBerlin, Germany
| | - Mari A Smits
- Wageningen Livestock Research, Wageningen University & ResearchWageningen, Netherlands.,Wageningen Bioveterinary Research, Wageningen University & ResearchWageningen, Netherlands
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University & ResearchWageningen, Netherlands
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
216
|
Lee YJ, Lee D, Shin SM, Lee JS, Chun HS, Quan FS, Shin JH, Lee GJ. Potential protective effects of fermented garlic extract on myocardial ischemia-reperfusion injury utilizing in vitro and ex vivo models. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
217
|
Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol 2017; 23:2841-2853. [PMID: 28522903 PMCID: PMC5413780 DOI: 10.3748/wjg.v23.i16.2841] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The disequilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione (GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.
Collapse
|
218
|
Sadhu SS, Wang S, Dachineni R, Averineni RK, Yang Y, Yin H, Bhat GJ, Guan X. In Vitro and In Vivo Tumor Growth Inhibition by Glutathione Disulfide Liposomes. CANCER GROWTH AND METASTASIS 2017; 10:1179064417696070. [PMID: 28469472 PMCID: PMC5392016 DOI: 10.1177/1179064417696070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023]
Abstract
Glutathione disulfide (GSSG) is an endogenous peptide and the oxidized form of glutathione. The impacts of GSSG on cell function/dysfunction remain largely unexplored due to a lack of method to specifically increase intracellular GSSG. We recently developed GSSG liposomes that can specifically increase intracellular GSSG. The increase affected 3 of the 4 essential steps (cell detachment, migration, invasion, and adhesion) of cancer metastasis in vitro and, accordingly, produced a significant inhibition of cancer metastasis in vivo. In this investigation, the effect of GSSG liposomes on cancer growth was investigated with B16-F10 and NCI-H226 cells in vitro and with B16-F10 cells in C57BL/6 mice in vivo. Experiments were conducted to elucidate the effect on cell death through promotion of apoptosis and the effect on the cell cycle. The in vivo results with C57BL/6 mice implanted subcutaneously with B16-F10 cells showed that GSSG liposomes retarded tumor proliferation more effectively than that of dacarbazine, a chemotherapeutic drug for the treatment of melanoma. The GSSG liposomes by intravenous injection (GLS IV) and GSSG liposomes by intratumoral injection (GLS IT) showed a tumor proliferation retardation of 85% ± 5.7% and 90% ± 3.9%, respectively, compared with the phosphate-buffered saline (PBS) control group. The median survival rates for mice treated with PBS, blank liposomes, aqueous GSSG, dacarbazine, GLS IV, and GLS IT were 7, 7, 7.5, 7.75, 11.5, and 16.5 days, respectively. The effective antimetastatic and antigrowth activities warrant further investigation of the GSSG liposomes as a potentially effective therapeutic treatment for cancer.
Collapse
Affiliation(s)
- Satya S Sadhu
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Shenggang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Rakesh Dachineni
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | | | - Yang Yang
- CMC Analytical Department, Frontage Lab Inc, Exton, PA
| | - Huihui Yin
- Research and Development center for Novel Veterinary Pharmaceuticals, Guangxi Veterinary Research Institute, Nanning, P.R. China
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
219
|
Lu C, Zou Y, Liu Y, Niu Y. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system. Toxicol Appl Pharmacol 2017; 318:69-78. [PMID: 28115189 DOI: 10.1016/j.taap.2017.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 01/18/2023]
Abstract
Recently, oxidative stress is involved in hepatofibrogenesis. Matrix metalloproteinase-2 (MMP-2) is required for activation of hepatic stellate cells (HSCs) in response to reactive oxygen species (ROS). This study was designed to explore the hypothesis that the inhibitory effect of rosmarinic acid (RA) on HSCs activation might mainly result from its antioxidant capability by increasing the synthesis of glutathione (GSH) involved in nuclear factor kappa B (NF-κB)-dependent inhibition of MMP-2 activity. Here, we demonstrate that RA reverses activated HSCs to quiescent cells. Concomitantly, RA inhibits MMP-2 activity. RNA interference-imposed knockdown of NF-κB abolished down-regulation of MMP-2 by RA. RA-mediated inactivation of NF-κB could be blocked by the diphenyleneiodonium chloride (DPI; a ROS inhibitor). Conversely, transfection of dominant-negative (DN) mutant of extracellular signal-regulated kinases 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1), or p38α kinase had no such effect. Simultaneously, RA suppresses ROS generation and lipid peroxidation (LPO) whereas increases cellular GSH in HSC-T6 cells. Furthermore, RA significantly increased antioxidant response element (ARE)-mediated luciferase activity, nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunits from glutamate cysteine ligase (GCLc) expression, but not modulatory subunits from GCL (GCLm). RA-mediated up-regulation of GClc is inhibited by the shRNA-induced Nrf2 knockdown. The knocking down of Nrf2 or buthionine sulfoximine (a GCL inhibitor) abolished RA-mediated inhibition of ROS. Collectively, these results provide novel insights into the mechanisms of RA as an antifibrogenic candidate in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Changfang Lu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zou
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuzhang Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
220
|
Sumegi K, Fekete K, Antus C, Debreceni B, Hocsak E, Gallyas F, Sumegi B, Szabo A. BGP-15 Protects against Oxidative Stress- or Lipopolysaccharide-Induced Mitochondrial Destabilization and Reduces Mitochondrial Production of Reactive Oxygen Species. PLoS One 2017; 12:e0169372. [PMID: 28046125 PMCID: PMC5207682 DOI: 10.1371/journal.pone.0169372] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in the progression of mitochondria-related diseases. A novel insulin sensitizer drug candidate, BGP-15, has been shown to have protective effects in several oxidative stress-related diseases in animal and human studies. In this study, we investigated whether the protective effects of BGP-15 are predominantly via preserving mitochondrial integrity and reducing mitochondrial ROS production. BGP-15 was found to accumulate in the mitochondria, protect against ROS-induced mitochondrial depolarization and attenuate ROS-induced mitochondrial ROS production in a cell culture model, and also reduced ROS production predominantly at the complex I-III system in isolated mitochondria. At physiologically relevant concentrations, BGP-15 protected against hydrogen peroxide-induced cell death by reducing both apoptosis and necrosis. Additionally, it attenuated bacterial lipopolysaccharide (LPS)-induced collapse of mitochondrial membrane potential and ROS production in LPS-sensitive U-251 glioma cells, suggesting that BGP-15 may have a protective role in inflammatory diseases. However, BGP-15 did not have any antioxidant effects as shown by in vitro chemical and cell culture systems. These data suggest that BGP-15 could be a novel mitochondrial drug candidate for the prevention of ROS-related and inflammatory disease progression.
Collapse
Affiliation(s)
- Katalin Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Csenge Antus
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Debreceni
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Eniko Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, University of Pécs Medical School, Pécs, Hungary
- Szentagothai Research Centre, Pécs, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, University of Pécs Medical School, Pécs, Hungary
- Szentagothai Research Centre, Pécs, Hungary
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
- * E-mail:
| |
Collapse
|
221
|
A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem 2016; 8:2263-2286. [DOI: 10.4155/fmc-2016-0153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal complexes have been the subject of numerous investigations in oncology but, despite the plethora of newly synthesized compounds, their precise mechanisms of action remain generally unknown or, for the best, incompletely determined. The continuous development of efficient and sensitive techniques in analytical chemistry and molecular biology gives scientists new tools to gather information on how metal complexes can be effective toward cancer. This review focuses on recent findings about the anticancer mechanism of action of metal complexes and how the ligands can be used to tune their pharmacological and physicochemical properties.
Collapse
|
222
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
223
|
Medeiros RCA, Girardi KDCDV, Cardoso FKL, Mietto BDS, Pinto TGDT, Gomez LS, Rodrigues LS, Gandini M, Amaral JJ, Antunes SLG, Corte-Real S, Rosa PS, Pessolani MCV, Nery JADC, Sarno EN, Batista-Silva LR, Sola-Penna M, Oliveira MF, Moraes MO, Lara FA. Subversion of Schwann Cell Glucose Metabolism by Mycobacterium leprae. J Biol Chem 2016; 291:21375-21387. [PMID: 27555322 PMCID: PMC5076808 DOI: 10.1074/jbc.m116.725283] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/11/2016] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcus Fernandes Oliveira
- the Laboratório de Bioquímica de Resposta ao Estresse, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
224
|
Kumari N, Gupta MK, Singh RK. Open encapsulation-vitrification for cryopreservation of algae. Cryobiology 2016; 73:232-239. [PMID: 27394679 DOI: 10.1016/j.cryobiol.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Vitrification offers a cost-effective solution for the preservation and management of genetic resources with, low-cost international movement of selected genetic materials and for long-term maintenance of stable stocks of a wide variety of microorganisms. However, its success is limited by the wide range of algal species. Here, we report a simple open encapsulation-vitrification protocol of cryopreservation. Results showed that ∼58% and ∼27% of Oocystis sp. survived vitrification-warming after the open and closed system of vitrification respectively when compared to non-cryopreserved controls. The improved success in an open system of vitrification was also observed in Anabaena sp. Furthermore, with the addition of 2-mercaptoethanol or glutathione the post-warming viability of vitrified algae in both open and closed system of vitrification was significantly improved (p < 0.05). The present case study aimed to develop a vitrification-based cryopreservation protocol and confirms an improvement in survival percentage over conventional encapsulation-vitrification method.
Collapse
Affiliation(s)
- Namrata Kumari
- Department of Chemical Engineering, Rourkela, Odisha, India.
| | - Mukesh Kumar Gupta
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | | |
Collapse
|
225
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
226
|
Chen Y, Xu Y, Zheng H, Fu J, Hou Y, Wang H, Zhang Q, Yamamoto M, Pi J. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study. Biochem Biophys Res Commun 2016; 478:87-92. [DOI: 10.1016/j.bbrc.2016.07.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
227
|
Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, Prokić L, Veljović Jovanović S. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:669-680. [PMID: 26712503 DOI: 10.1111/plb.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.
Collapse
Affiliation(s)
- M Vidović
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - F Morina
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - S Milić-Komić
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - A Vuleta
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - B Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Lj Prokić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - S Veljović Jovanović
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
228
|
Li X, Xun Z, Yang Y. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer. Biochem Biophys Res Commun 2016; 477:633-639. [PMID: 27349874 DOI: 10.1016/j.bbrc.2016.06.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023]
Abstract
Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed to 5-FU acquire metabolic remodeling, resulting in increased glucose flux for PSPH-mediated serine synthesis. Then serine is converted into GSH, which promotes cell survival through the detoxification of 5-FU-induced reactive oxygen species (ROS). Consequently, repression of PSPH by the use of shRNAs for PSPH impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to 5-FU. The importance of the PSPH in supporting tumor growth during 5-FU treatment was also demonstrated in an in vivo tumor model of CRC. These findings indicate that the PSPH could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with CRC.
Collapse
Affiliation(s)
- Xin Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Zhe Xun
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Yong Yang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
229
|
Popov AL, Popova NR, Selezneva II, Akkizov AY, Ivanov VK. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:406-413. [PMID: 27524035 DOI: 10.1016/j.msec.2016.05.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022]
Abstract
The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing.
Collapse
Affiliation(s)
- Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - Nelly R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Irina I Selezneva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia; Pushchino State Institute of Natural sciences, Pushchino, Moscow region, Russia
| | | | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
230
|
Leite JSM, Raizel R, Hypólito TM, Rosa TDS, Cruzat VF, Tirapegui J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Appl Physiol Nutr Metab 2016; 41:842-849. [PMID: 27447686 DOI: 10.1139/apnm-2016-0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Raquel Raizel
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thaís Menezes Hypólito
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thiago Dos Santos Rosa
- b Graduate Program of Physical Education and Health, Catholic University of Brasília, Brasília, CEP 71966-700, Brazil
| | - Vinicius Fernandes Cruzat
- c Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, CEP 05508-000, Brazil
| | - Julio Tirapegui
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
231
|
Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:121-8. [PMID: 26799134 DOI: 10.1016/j.pbi.2015.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and associated reduction/oxidation (redox) controls involving glutathione, glutaredoxins and thioredoxins play key roles in the regulation of plant growth and development. While many questions remain concerning redox functions in the shoot apical meristem (SAM), accumulating evidence suggests that redox master switches integrate major hormone signals and transcriptional networks in the SAM, and so regulate organ growth, polarity and floral development. Auxin-induced activation of plasma-membrane located NADPH-oxidases and mitochondrial respiratory bioenergetics are likely regulators of the ROS bursts that drive the cell cycle in proliferating regions, with other hormones such as jasmonic acid playing propagating or antagonistic roles in gene regulation. Moreover, the activation of oxygen production by photosynthesis and oxygen-dependent N-end rule controls are linked to the transition from cell proliferation to cell expansion and differentiation. While much remains to be understood, the nexus of available redox controls provides a key underpinning mechanism linking hormonal controls, energy metabolism and bioenergetics to plant growth and development.
Collapse
Affiliation(s)
- Jos Hm Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|