201
|
Wang S, Wei J. Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. Int J Cancer 2022; 151:1654-1662. [PMID: 35633046 DOI: 10.1002/ijc.34139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Oncolytic viruses (OVs) represent a class of cancer immunotherapies that rely on hijacking the host cell factory for replicative oncolysis and eliciting immune responses for tumor clearance. An increasing evidence suggests that the metabolic state of tumor cells and immune cells is a putative determinant of the efficacy of cancer immunotherapy. However, how therapeutic intervention with OVs affects metabolic fluxes within the tumor microenvironment (TME) remains poorly understood. Herein, we review the complexities of metabolic reprogramming involving the effects of viruses and their consequences on tumor cells and immune cells. We highlight the inherent drawback of oncolytic virotherapy, namely that treatment with OVs inevitably further exacerbates the depletion of nutrients and the accumulation of metabolic wastes in the TME, leading to a metabolic barrier to antitumor immune responses. We also describe targeted metabolic strategies that can be used to unlock the therapeutic potential of OVs.
Collapse
Affiliation(s)
- Shiqun Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
202
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
203
|
Herrada AA, Olate-Briones A, Lazo-Amador R, Liu C, Hernández-Rojas B, Riadi G, Escobedo N. Lymph Leakage Promotes Immunosuppression by Enhancing Anti-Inflammatory Macrophage Polarization. Front Immunol 2022; 13:841641. [PMID: 35663931 PMCID: PMC9160822 DOI: 10.3389/fimmu.2022.841641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphatic vasculature is a network of capillaries and vessels capable of draining extracellular fluid back to blood circulation and to facilitate immune cell migration. Although the role of the lymphatic vasculature as coordinator of fluid homeostasis has been extensively studied, the consequences of abnormal lymphatic vasculature function and impaired lymph drainage have been mostly unexplored. Here, by using the Prox1+/- mice with defective lymphatic vasculature and lymphatic leakage, we provide evidence showing that lymph leakage induces an immunosuppressive environment by promoting anti-inflammatory M2 macrophage polarization in different inflammatory conditions. In fact, by using a mouse model of tail lymphedema where lymphatic vessels are thermal ablated leading to lymph accumulation, an increasing number of anti-inflammatory M2 macrophages are found in the lymphedematous tissue. Moreover, RNA-seq analysis from different human tumors shows that reduced lymphatic signature, a hallmark of lymphatic dysfunction, is associated with increased M2 and reduced M1 macrophage signatures, impacting the survival of the patients. In summary, we show that lymphatic vascular leakage promotes an immunosuppressive environment by enhancing anti-inflammatory macrophage differentiation, with relevance in clinical conditions such as inflammatory bowel diseases or cancer.
Collapse
Affiliation(s)
- Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Rodrigo Lazo-Amador
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Talca, Chile
| | - Gonzalo Riadi
- Agencia Nacional de Investigación y Desarrollo (ANID) – Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
204
|
DDR1 promotes LoVo cell proliferation by regulating energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2022; 54:615-624. [PMID: 35593476 PMCID: PMC9828011 DOI: 10.3724/abbs.2022038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cellular energy metabolism dysregulation is associated with colorectal cancer (CRC) development and progression. Discoidin domain receptor 1a (DDR1a), one of the five DDR1 isoforms, is closely related to cell proliferation, invasion, and apoptosis in various tumors. Whether it participates in cellular metabolic reprogramming and regulates CRC initiation and progression remains unclear. In this study, we compared the expression of DDR1 in CRC tissues and adjacent tissues from 126 postoperative CRC samples. Moreover, lentivirus-mediated DDR1a overexpression and knockdown were performed in LoVo cells, and cell viability and proliferation were determined by CCK-8 and BrdU assays, respectively. Oxygen consumption rate, extracellular acidification rate, and lactate production were used to determine the effect of DDR1a on metabolic reprogramming. Clinically, CRC patients with high DDR1 expression had poor differentiation and were at an advanced TNM stage. DDR1a promoted LoVo cell proliferation, mitochondrial function, and extracellular acidification. Moreover, DDR1a knockdown inhibited intracellular lactic acid production in LoVo cells, while a pyruvate kinase inhibitor (diamide, 200 μM) significantly reversed this progression. Taken together, our results reveal that DDR1 plays a crucial role in maintaining intracellular environment homeostasis through metabolic reprogramming.
Collapse
|
205
|
Wang S, Wang Y, Li S, Nian S, Xu W, Liang F. Far upstream element -binding protein 1 (FUBP1) participates in the malignant process and glycolysis of colon cancer cells by combining with c-Myc. Bioengineered 2022; 13:12115-12126. [PMID: 35546072 PMCID: PMC9276009 DOI: 10.1080/21655979.2022.2073115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Human distal upstream element (Fuse) binding protein 1 (FUBP1) is a transcriptional regulator of c-Myc and represents an important prognostic marker in many cancers. Therefore, the present study aimed to investigate whether FUBP1 could combine with c-Myc to participate in the progression of colon cancer. Detection of FUBP1 expression was done through reverse transcription-quantitative PCR (RT-qPCR), and the combination of FUBP1 and c-Myc was detected by immunoprecipitation assay. Cell counting kit (CCK)-8, colony formation, transwell and wound healing were applied for assessing the ability of cells to proliferate, migrate, and invade; glycolysis and lactic acid detection kits were used to detect glucose uptake and lactic acid content, while western blotting was adopted to detect the protein expression of glycolysis-related genes. FUBP1 expression was elevated in HCT116 cells relative to other colon cancer cell lines, and silencing FUBP1 could inhibit the ability of HCT116 cells to proliferate, migrate, invade and glycolysis, and enhance its apoptosis. In addition, the results of immunoprecipitation experiments showed that FUBP1 could bind to c-Myc. c-Myc overexpression reversed the inhibitory effects of FUBP1 knockdown on the ability of HCT116 cells to proliferate, migrate, invade and glycolysis. The results indicated that FUBP1 could participate in the deterioration process of colon cancer cells by combining with c-Myc, and it has clinical significance for understanding the key role of FUBP1 in tumor genesis.
Collapse
Affiliation(s)
- Shanwei Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Sheng Li
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Shen Nian
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Wenjing Xu
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Fenli Liang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| |
Collapse
|
206
|
Wiggs A, Molina S, Sumner SJ, Rushing BR. A Review of Metabolic Targets of Anticancer Nutrients and Nutraceuticals in Pre-Clinical Models of Triple-Negative Breast Cancer. Nutrients 2022; 14:1990. [PMID: 35631131 PMCID: PMC9146055 DOI: 10.3390/nu14101990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is notoriously aggressive and has poorer outcomes as compared with other breast cancer subtypes. Due to a lack of targeted therapies, TNBC is often treated with chemotherapeutics as opposed to hormone therapy or other targeted therapies available to individuals with estrogen receptor positive (ER+) breast cancers. Because of the lack of treatment options for TNBC, other therapeutic avenues are being explored. Metabolic reprogramming, a hallmark of cancer, provides potential opportunities to target cancer cells more specifically, increasing efficacy and reducing side effects. Nutrients serve a significant role in metabolic processes involved in DNA transcription, protein folding, and function as co-factors in enzyme activity, and may provide novel strategies to target cancer cell metabolism in TNBC. This article reviews studies that have investigated how nutrients/nutraceuticals target metabolic processes in TNBC cells alone or in combination with existing drugs to exert anticancer effects. These agents have been shown to cause perturbations in many metabolic processes related to glucose metabolism, fatty acid metabolism, as well as autophagy and oxidative stress-related metabolism. With this information, we present the potential of nutrients as metabolism-directed anticancer agents and the potential for using these agents alone or in cocktails as a new direction for TNBC therapy.
Collapse
Affiliation(s)
- Alleigh Wiggs
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Susan J. Sumner
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Blake R. Rushing
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| |
Collapse
|
207
|
Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature. J Transl Med 2022; 20:186. [PMID: 35468826 PMCID: PMC9036805 DOI: 10.1186/s12967-022-03393-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic reprogramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interactions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potential associations with the immune microenvironment. Methods Gene expression and clinical data on DLBCL patients were obtained from the GEO database. Metabolism-associated molecular subtypes were identified by consensus clustering. A prognostic risk model containing 14 MAGs was established using Lasso-Cox regression in the GEO training cohort. It was then validated in the GEO internal testing cohort and TCGA external validation cohort. GO, KEGG and GSVA were used to explore the differences in enriched pathways between high- and low-risk groups. ESTIMATE, CIBERSORT, and ssGSEA analyses were used to assess the immune microenvironment. Finally, WGCNA analysis was used to identify two hub genes among the 14 model MAGs, and they were preliminarily verified in our tissue microarray (TMA) using multiple fluorescence immunohistochemistry (mIHC). Results Consensus clustering divided DLBCL patients into two metabolic subtypes with significant differences in prognosis and the immune microenvironment. Poor prognosis was associated with an immunosuppressive microenvironment. A prognostic risk model was constructed based on 14 MAGs and it was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment characterized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression of immune checkpoints. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an independent prognostic factor and had a better prognostic value than the International Prognostic Index (IPI) score. The risk model underwent multiple validations and the verification of the two hub genes in TMA indicated consistent results with the bioinformatics analyses. Conclusions The molecular subtypes and a risk model based on MAGs proposed in our study are both promising prognostic classifications in DLBCL, which may provide novel insights for developing accurate targeted cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03393-9.
Collapse
|
208
|
Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opin Biol Ther 2022; 22:627-641. [PMID: 35414331 DOI: 10.1080/14712598.2022.2064711] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a highly personalized type of cancer immunotherapy. TIL-based ACT exploits naturally occurring TILs, derived from the patients' tumor. This treatment has shown consistent clinical responses in melanoma, and recent results point toward a potential use in multiple cancer diagnoses. However, several limitations have restricted the clinical development and adaptation of TIL-based ACT. AREAS COVERED In this review, we present the principles of TIL-based ACT and discuss the most significant limitations for therapeutic efficacy and its widespread application. The topics of therapeutic resistance (both innate and acquired), treatment-related toxicity, and the novel research topic of metabolic barriers in the tumor microenvironment (TME) are covered. EXPERT OPINION There are many ongoing areas of research focusing on improving clinical efficacy and optimizing TIL-based ACT. Many strategies have shown great potential, particularly strategies advancing TIL efficacy (such as increasing and harnessing ex vivo the sub-population of tumor-reactive TILs) and manufacturing processes. Novel approaches can help overcome current limitations and potentially result in TIL-based ACT entering the mainstream of cancer therapy across tumor types.
Collapse
Affiliation(s)
- Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Agnete Witness Præst Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
209
|
Tan C, Wang X, Wang X, Weng W, Ni SJ, Zhang M, Jiang H, Wang L, Huang D, Sheng W, Xu MD. Molecular signatures of tumor progression in pancreatic adenocarcinoma identified by energy metabolism characteristics. BMC Cancer 2022; 22:404. [PMID: 35418066 PMCID: PMC9006543 DOI: 10.1186/s12885-022-09487-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/04/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND In this study, we performed a molecular evaluation of primary pancreatic adenocarcinoma (PAAD) based on the comprehensive analysis of energy metabolism-related gene (EMRG) expression profiles. METHODS Molecular subtypes were identified by nonnegative matrix clustering of 565 EMRGs. An overall survival (OS) predictive gene signature was developed and internally and externally validated based on three online PAAD datasets. Hub genes were identified in molecular subtypes by weighted gene correlation network analysis (WGCNA) coexpression algorithm analysis and considered as prognostic genes. LASSO cox regression was conducted to establish a robust prognostic gene model, a four-gene signature, which performed better in survival prediction than four previously reported models. In addition, a novel nomogram constructed by combining clinical features and the 4-gene signature showed high-confidence clinical utility. According to gene set enrichment analysis (GSEA), gene sets related to the high-risk group participate in the neuroactive ligand receptor interaction pathway. CONCLUSIONS In summary, EMRG-based molecular subtypes and prognostic gene models may provide a novel research direction for patient stratification and trials of targeted therapies.
Collapse
Affiliation(s)
- Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Shu-Juan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Hesheng Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| | - Mi-Die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
210
|
Wang Y, Zheng XD, Zhu GQ, Li N, Zhou CW, Yang C, Zeng MS. Crosstalk Between Metabolism and Immune Activity Reveals Four Subtypes With Therapeutic Implications in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:861328. [PMID: 35479084 PMCID: PMC9035905 DOI: 10.3389/fimmu.2022.861328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by metabolic dysregulation and distinct immunological signatures. The interplay between metabolic and immune processes in the tumor microenvironment (TME) causes the complexity and heterogeneity of immunotherapy responses observed during ccRCC treatment. Herein, we initially identified two distinct metabolic subtypes (C1 and C2 subtypes) and immune subtypes (I1 and I2 subtypes) based on the occurrence of differentially expressed metabolism-related prognostic genes and immune-related components. Notably, we observed that immune regulators with upregulated expression actively participated in multiple metabolic pathways. Therefore, we further delineated four immunometabolism-based ccRCC subtypes (M1, M2, M3, and M4 subtypes) according to the results of the above classification. Generally, we found that high metabolic activity could suppress immune infiltration. Immunometabolism subtype classification was associated with immunotherapy response, with patients possessing the immune-inflamed, metabolic-desert subtype (M3 subtype) that benefits the most from immunotherapy. Moreover, differences in the shifts in the immunometabolism subtype after immunotherapy were observed in the responder and non-responder groups, with patients from the responder group transferring to subtypes with immune-inflamed characteristics and less active metabolic activity (M3 or M4 subtype). Immunometabolism subtypes could also serve as biomarkers for predicting immunotherapy response. To decipher the genomic and epigenomic features of the four subtypes, we analyzed multiomics data, including miRNA expression, DNA methylation status, copy number variations occurrence, and somatic mutation profiles. Patients with the M2 subtype possessed the highest VHL gene mutation rates and were more likely to be sensitive to sunitinib therapy. Moreover, we developed non-invasive radiomic models to reveal the status of immune activity and metabolism. In addition, we constructed a radiomic prognostic score (PRS) for predicting ccRCC survival based on the seven radiomic features. PRS was further demonstrated to be closely linked to immunometabolism subtype classification, immune score, and tumor mutation burden. The prognostic value of the PRS and the association of the PRS with immune activity and metabolism were validated in our cohort. Overall, our study established four immunometabolism subtypes, thereby revealing the crosstalk between immune and metabolic activities and providing new insights into personal therapy selection.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-De Zheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gui-Qi Zhu
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-Wu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Meng-Su Zeng, ; Chun Yang,
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Meng-Su Zeng, ; Chun Yang,
| |
Collapse
|
211
|
Zheng Y, Wu R, Wang X, Yin C. Identification of a Four-Gene Metabolic Signature to Evaluate the Prognosis of Colon Adenocarcinoma Patients. Front Public Health 2022; 10:860381. [PMID: 35462848 PMCID: PMC9021388 DOI: 10.3389/fpubh.2022.860381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is a highly heterogeneous disease, thus making prognostic predictions uniquely challenging. Metabolic reprogramming is emerging as a novel cancer hallmark that may serve as the basis for more effective prognosis strategies. Methods The mRNA expression profiles and relevant clinical information of COAD patients were downloaded from public resources. The least absolute shrinkage and selection operator (LASSO) Cox regression model was exploited to establish a prognostic model, which was performed to gain risk scores for multiple genes in The Cancer Genome Atlas (TCGA) COAD patients and validated in GSE39582 cohort. A forest plot and nomogram were constructed to visualize the data. The clinical nomogram was calibrated using a calibration curve coupled with decision curve analysis (DCA). The association between the model genes' expression and six types of infiltrating immunocytes was evaluated. Apoptosis, cell cycle assays and cell transfection experiments were performed. Results Univariate Cox regression analysis results indicated that ten differentially expressed genes (DEGs) were related with disease-free survival (DFS) (P-value< 0.01). A four-gene signature was developed to classify patients into high- and low-risk groups. And patients with high-risk exhibited obviously lower DFS in the training and validation cohorts (P < 0.05). The risk score was an independent parameter of the multivariate Cox regression analyses of DFS in the training cohort (HR > 1, P-value< 0.001). The same findings for overall survival (OS) were obtained GO enrichment analysis revealed several metabolic pathways with significant DEGs enrichment, G1/S transition of mitotic cell cycle, CD8+ T-cells and B-cells may be significantly associated with COAD in DFS and OS. These findings demonstrate that si-FUT1 inhibited cell migration and facilitated apoptosis in COAD. Conclusion This research reveals that a novel metabolic gene signature could be used to evaluate the prognosis of COAD, and targeting metabolic pathways may serve as a therapeutic alternative.
Collapse
Affiliation(s)
- Yang Zheng
- Graduate School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Rilige Wu
- College of Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
- Tianjin Haihe Hospital, Tianjin, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
212
|
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel) 2022; 14:cancers14081865. [PMID: 35454774 PMCID: PMC9032679 DOI: 10.3390/cancers14081865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Abstract Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
Collapse
|
213
|
Impact of Lipid Metabolism on Antitumor Immune Response. Cancers (Basel) 2022; 14:cancers14071850. [PMID: 35406621 PMCID: PMC8997602 DOI: 10.3390/cancers14071850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary One of the causes of failure of anticancer therapies is the reprogramming of lipid metabolism. Cells of innate and adaptive immunity present in the tumor microenvironment can be affected by this metabolic switch and thus present changes in their anti- or protumor phenotype. In this review, modifications induced by lipid metabolism will be described for innate immune cells, such as macrophages, dendritic cells and MDSCs, and also for adaptive immune cells, such as CD4+ and CD8+ T cells and B cells. Finally, antitumor therapeutic strategies targeting lipid metabolism will be presented. Abstract Over the past decade, metabolic reprogramming has been defined as a hallmark of cancer. More recently, a large number of studies have demonstrated that metabolic reprogramming can modulate the differentiation and functions of immune cells, and thus modify the antitumor response. Increasing evidence suggests that modified energy metabolism could be responsible for the failure of antitumor immunity. Indeed, tumor-infiltrating immune cells play a key role in cancer, and metabolic switching in these cells has been shown to help determine their phenotype: tumor suppressive or immune suppressive. Recent studies in the field of immunometabolism focus on metabolic reprogramming in the tumor microenvironment (TME) by targeting innate and adaptive immune cells and their associated anti- or protumor phenotypes. In this review, we discuss the lipid metabolism of immune cells in the TME as well as the effects of lipids; finally, we expose the link between therapies and lipid metabolism.
Collapse
|
214
|
Ning WR, Jiang D, Liu XC, Huang YF, Peng ZP, Jiang ZZ, Kang T, Zhuang SM, Wu Y, Zheng L. Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma. J Clin Invest 2022; 132:153110. [PMID: 35362480 PMCID: PMC8970669 DOI: 10.1172/jci153110] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Macrophages constitute a major immune component in tumor tissues, but how these cells adapt to and survive in the nutrient-depleted and lactic acid–induced acidic tumor microenvironments is not yet fully understood. Here, we found that levels of carbonic anhydrase XII (CA12) expression were significantly and selectively upregulated on macrophages in human hepatocellular carcinoma (HCC). Transient glycolytic activation of peritumoral monocytes induced sustained expression of CA12 on tumor-infiltrating macrophages via autocrine cytokines and HIF1α pathways. On the one hand, CA12 mediated the survival of macrophages in relatively acidic tumor microenvironments, while on the other hand, it induced macrophage production of large amounts of C-C motif chemokine ligand 8 (CCL8), which enhanced cancer cell epithelial-mesenchymal transition (EMT) and facilitated tumor metastasis. Consistently, the accumulation of CA12+ macrophages in tumor tissues was associated with increased tumor metastatic potential and reduced survival of patients with HCC. Selective targeting of tumor-infiltrating macrophages with a CA12 inhibitor reduced tumor growth in mice and was sufficient to synergistically enhance the therapeutic efficacy of immune-checkpoint blockade. We suggest that CA12 activity is a previously unappreciated mechanism regulating the accumulation and functions of macrophages in tumor microenvironments and therefore represents a selective vulnerability that could be exploited in future designs for antitumor immunotherapeutic strategies.
Collapse
Affiliation(s)
- Wan-Ru Ning
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Fan Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Peng Peng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Zhou Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Mei Zhuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
215
|
Gao S, Dai Z, Xu H, Lai L. Pinpointing Cancer Sub-Type Specific Metabolic Tasks Facilitates Identification of Anti-cancer Targets. Front Med (Lausanne) 2022; 9:872024. [PMID: 35402442 PMCID: PMC8984102 DOI: 10.3389/fmed.2022.872024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumorigenesis. Understanding the metabolic changes in cancer cells may provide attractive therapeutic targets and new strategies for cancer therapy. The metabolic states are not the same in different cancer types or subtypes, even within the same sample of solid tumors. In order to understand the heterogeneity of cancer cells, we used the Pareto tasks inference method to analyze the metabolic tasks of different cancers, including breast cancer, lung cancer, digestive organ cancer, digestive tract cancer, and reproductive cancer. We found that cancer subtypes haves different propensities toward metabolic tasks, and the biological significance of these metabolic tasks also varies greatly. Normal cells treat metabolic tasks uniformly, while different cancer cells focus on different pathways. We then integrated the metabolic tasks into the multi-objective genome-scale metabolic network model, which shows higher accuracy in the in silico prediction of cell states after gene knockout than the conventional biomass maximization model. The predicted potential single drug targets could potentially turn into biomarkers or drug design targets. We further implemented the multi-objective genome-scale metabolic network model to predict synthetic lethal target pairs of the Basal and Luminal B subtypes of breast cancer. By analyzing the predicted synthetic lethal targets, we found that mitochondrial enzymes are potential targets for drug combinations. Our study quantitatively analyzes the metabolic tasks of cancer and establishes cancer type-specific metabolic models, which opens a new window for the development of specific anti-cancer drugs and provides promising treatment plans for specific cancer subtypes.
Collapse
Affiliation(s)
- Shuaishi Gao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hanyu Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luhua Lai,
| |
Collapse
|
216
|
Munansangu BSM, Kenyon C, Walzl G, Loxton AG, Kotze LA, du Plessis N. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Mycobacterium tuberculosis Infection and Insights from Tumor Biology. Int J Mol Sci 2022; 23:3512. [PMID: 35408873 PMCID: PMC8998693 DOI: 10.3390/ijms23073512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (B.S.M.M.); (C.K.); (G.W.); (A.G.L.); (L.A.K.)
| |
Collapse
|
217
|
Jiang ZZ, Peng ZP, Liu XC, Guo HF, Zhou MM, Jiang D, Ning WR, Huang YF, Zheng L, Wu Y. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells. Oncoimmunology 2022; 11:2052418. [PMID: 35309732 PMCID: PMC8928819 DOI: 10.1080/2162402x.2022.2052418] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutrophils constitute a major component in human hepatocellular carcinoma (HCC) and can facilitate disease progression via poorly understood mechanisms. Here, we show that neutrophil extracellular traps (NETs) formation was increased in human HCC tumor tissues than in paired non-tumor liver tissues. Mechanism study revealed that tumor-induced metabolic switch toward glycolysis and pentose phosphate pathway in tumor infiltrating neutrophils promoted NETs formation in a reactive oxygen species dependent-manner. NETs subsequently induced the migration of cancer cells and down-regulation of tight junction molecules on adjacent endothelial cells, thus facilitating tumor intravasation and metastasis. Accordingly, NETs depletion could inhibit tumor metastasis in mice in vivo, and the infiltration levels of NETs-releasing neutrophils were negatively associated with patient survival and positively correlated with tumor metastasis potential of HCC patients. Our results unveiled a pro-metastatic role of NETs in the milieu of human HCC, and pointed to the importance of metabolic reprogramming in shaping their characteristics, thus providing an applicable efficient target for anti-cancer therapies.
Collapse
Affiliation(s)
- Ze-Zhou Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhi-Peng Peng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao-Fan Guo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Meng-Meng Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wan-Ru Ning
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu-Fan Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Moe Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
218
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
219
|
Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep 2022; 38:110451. [PMID: 35263597 DOI: 10.1016/j.celrep.2022.110451] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.
Collapse
|
220
|
Xie S, Pan J, Xu J, Zhu W, Qin L. The critical function of metabolic reprogramming in cancer metastasis. AGING AND CANCER 2022; 3:20-43. [DOI: 10.1002/aac2.12044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2025]
Abstract
AbstractCancer metastasis is the leading cause of cancer‐related death. It is a complex, inefficient, and multistep process related to poor prognosis and high mortality of patients. Increasing evidence has shown that metabolic programming is a recognized hallmarker of cancer, plays a critical role in cancer metastasis. Metabolism alterations of glucose, lipid, and amino acid provide cancer cells with energy and substances for biosynthesis, maintain biofunctions and significantly affect proliferation, invasion, and metastasis of cancer cells. Tumor microenvironment (TME) is a complex system formed by varieties of cellular and noncellular elements. Nontumor cells in TME also undergo metabolic reprogramming or respond to metabolites to promote migration and invasion of cancer cells. A comprehensive understanding of the regulatory mechanism in metastasis from the metabolic reprogramming aspect is required to develop new therapeutic strategies combatting cancer metastasis. This review illustrates the metabolic reprogramming and interaction of cancer cells and nontumor cells in the TME, and the development of treatment strategies targeting metabolism alterations.
Collapse
Affiliation(s)
- Sun‐Zhe Xie
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jun‐Jie Pan
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jian‐Feng Xu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Wen‐wei Zhu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Lun‐Xiu Qin
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| |
Collapse
|
221
|
Lin R, Xu Y, Xie S, Zhang Y, Wang H, Yi GZ, Huang G, Ni B, Song H, Wang Z, Qi ST, Liu Y. Recycling of SLC38A1 to the plasma membrane by DSCR3 promotes acquired temozolomide resistance in glioblastoma. J Neurooncol 2022; 157:15-26. [PMID: 35187626 DOI: 10.1007/s11060-022-03964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.
Collapse
Affiliation(s)
- Rui Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bowen Ni
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haimin Song
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ziyu Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
222
|
da Silva TP, Geraldelli D, Martins KO, Braga AJL, Rosa AP, Ferneda JMDA, Bomfim GF, Barbosa-Dekker ADM, Dekker RFH, Dias MC, Paim NP, Sinhorin VDG, de Queiroz EAIF. Antioxidant, anti-inflammatory and beneficial metabolic effects of botryosphaeran [(1→3)(1→6)-β-d-glucan] are responsible for its anti-tumour activity in experimental non-obese and obese rats bearing Walker-256 tumours. Cell Biochem Funct 2022; 40:213-227. [PMID: 35229356 DOI: 10.1002/cbf.3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Botryosphaeran, a (1→3)(1→6)-β-d-glucan, presents several beneficial activities, such as antiproliferative, hypoglycemic and antitumoural activities. This study evaluated the effects of botryosphaeran on oxidative stress, inflammation and metabolic activities in Walker-256 tumour-bearing non-obese and obese rats. Wistars rats were divided into four groups: control tumour (CT); control tumour + botryosphaeran (CTB); obese tumour (OT), and obese tumour + botryosphaeran (OTB). In ninth week, obese and non-obese rats were inoculated with 1 × 107 Walker-256 tumour cells and treated with botryosphaeran (30 mg/kg/d for 15 days). In 11th week, the following parameters were evaluated glycogen, glucose and lactate levels, pro-oxidant (TBARS) and antioxidant markers (superoxide dismutase [SOD]; catalase [CAT]; glutathione-S-transferase [GST]; reduced glutathione [GSH]; vitamin C) and cytokines. Obesity presented oxidative stress and inflammation, as demonstrated by high levels of TBARS, SOD and TNF-α, and lower levels of CAT, GSH and interleukin-10 (IL-10). Botryosphaeran significantly decreased TBARS and TNF-α and increased GST, GSH, vitamin C and IL-10 in the liver; increased SOD and vitamin C in tumour tissue; decreased TBARS in adipose tissue, and notably decreased the levels of glycogen and lactate in the tumour of CTB rats. Botryosphaeran promoted significant antioxidant, anti-inflammatory, and beneficial metabolic effects in Walker-256 tumour-bearing non-obese and obese rats, which contributed to its antitumour activity.
Collapse
Affiliation(s)
- Thais Pereira da Silva
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Danielli Geraldelli
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Kamila Ortega Martins
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Ana Júlia Lopes Braga
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Andrielli Pompermayer Rosa
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | | | - Gisele Facholi Bomfim
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Aneli de Melo Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Londrina, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Londrina, Brazil
| | - Marcos Correa Dias
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Neiva Pereira Paim
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Eveline Aparecida Isquierdo Fonseca de Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| |
Collapse
|
223
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
224
|
Kabiraj P, Grund EM, Clarkson BDS, Johnson RK, LaFrance-Corey RG, Lucchinetti CF, Howe CL. Teriflunomide shifts the astrocytic bioenergetic profile from oxidative metabolism to glycolysis and attenuates TNFα-induced inflammatory responses. Sci Rep 2022; 12:3049. [PMID: 35197552 PMCID: PMC8866412 DOI: 10.1038/s41598-022-07024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 μM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.
Collapse
Affiliation(s)
- Parijat Kabiraj
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ethan M Grund
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Graduate School Neuroscience PhD Program and Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Benjamin D S Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Renee K Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Reghann G LaFrance-Corey
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
225
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
226
|
Liu J, Gao M, Yang Z, Zhao Y, Guo K, Sun B, Gao Z, Wang L. Macrophages and Metabolic Reprograming in the Tumor Microenvironment. Front Oncol 2022; 12:795159. [PMID: 35242705 PMCID: PMC8885627 DOI: 10.3389/fonc.2022.795159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the emergence of traditional drug resistance in tumor treatment, the anti-cancer therapies are facing multiple challenges. Immunotherapy, as a new and universal treatment, has been gradually concerned. The macrophages, as an important part of the immune system, play an important role in it. Many studies have shown that immune state is essential in cancer progression and prognosis, rebuilding the architecture and functional orientation of the tumor region. Most tumors are complex ecosystems that change temporally and spatially under the pressure of proliferation, apoptosis, and extension of every cell in the microenvironment. Here, we review how macrophages states can be dynamically altered in different metabolic states and we also focus on the formation of immune exhaustion. Finally, we look forward to the explorations of clinical treatment for immune metabolism process.
Collapse
Affiliation(s)
- Jin Liu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhou Yang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
| | - Yidan Zhao
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Kun Guo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
227
|
Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022; 11:cells11030554. [PMID: 35159363 PMCID: PMC8834417 DOI: 10.3390/cells11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor metabolism plays a crucial role in sustaining tumorigenesis. There have been increasing reports regarding the role of tumor metabolism in the control of immune cell functions, generating a potent immunosuppressive contexture that can lead to immune escape. The metabolic reprogramming of tumor cells and the immune escape are two major hallmarks of cancer, with several instances of crosstalk between them. In this paper, we review the effects of tumor metabolism on immune cells, focusing on myeloid cells due to their important role in tumorigenesis and immunosuppression from the early stages of the disease. We also discuss ways to target this specific crosstalk in cancer patients.
Collapse
Affiliation(s)
- Thomas Boyer
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Céline Blaye
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
- Department of Medical Oncology, Hôpital Saint-André, 1 rue Jean Burguet, University Hospital Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
228
|
Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability. Acta Pharm Sin B 2022; 12:759-773. [PMID: 35256945 PMCID: PMC8897199 DOI: 10.1016/j.apsb.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have unique metabolic programming that is biologically distinct from that of corresponding normal cells. Resetting tumor metabolic programming is a promising strategy to ameliorate drug resistance and improve the tumor microenvironment. Here, we show that carboxyamidotriazole (CAI), an anticancer drug, can function as a metabolic modulator that decreases glucose and lipid metabolism and increases the dependency of colon cancer cells on glutamine metabolism. CAI suppressed glucose and lipid metabolism utilization, causing inhibition of mitochondrial respiratory chain complex I, thus producing reactive oxygen species (ROS). In parallel, activation of the aryl hydrocarbon receptor (AhR) increased glutamine uptake via the transporter SLC1A5, which could activate the ROS-scavenging enzyme glutathione peroxidase. As a result, combined use of inhibitors of GLS/GDH1, CAI could effectively restrict colorectal cancer (CRC) energy metabolism. These data illuminate a new antitumor mechanism of CAI, suggesting a new strategy for CRC metabolic reprogramming treatment.
Collapse
Key Words
- 2-NBDG, glucalogue 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose
- ATP, adenosine triphosphate
- AhR
- AhR, aryl hydrocarbon receptor
- CAI
- CAI, carboxyamidotriazole
- CHIP, chromatin immunoprecipitation
- CRC, colorectal cancer
- Colorectal cancer metabolism
- DMF, 3′,4′-dimethoxyflavone
- DNA, deoxyribonucleic acid
- ECAR, extracellular acidification rate
- FACS, flow cytometry
- GDH1, glutamate dehydrogenase 1
- GLS, glutaminase
- GPx, glutathione peroxidase
- GSH, glutathione
- GSSG, oxidized glutathione
- Glutamine metabolism
- Glutaminolysis
- Kyn, kynurenine
- MT, mito-TEMPO
- Metabolic reprogramming
- Mito-Q, mitoquinone mesylate
- Mitochondrial oxidative stress
- OCR, oxygen consumption rate
- Redox homeostasis
- TCA, tricarboxylic acid
- α-KG, α-ketoglutarate
Collapse
|
229
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
230
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
231
|
Yu Y, Sun X, Chen F, Liu M. Genetic Alteration, Prognostic and Immunological Role of Acyl-CoA Synthetase Long-Chain Family Member 4 in a Pan-Cancer Analysis. Front Genet 2022; 13:812674. [PMID: 35126480 PMCID: PMC8811308 DOI: 10.3389/fgene.2022.812674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Acyl-CoA Synthetase long-chain family member 4 (ACSL4) is a member of acyl-CoA synthetase protein long-chain family, which is associated with amino acid synthesis, lipid synthesis and lipid peroxidation dependent iron death. However, the role of ACSL4 in generalized carcinoma remains unclear. We aim to analyze the expression and prognostic value of ACSL4 in pan-cancer, and further explore the correlation between ACSL4 and immune infiltration. Through ONCOMINE, TIMER (Tumor Immune Estimation Resource), GEPIA (Gene expression Profiling Interactive), UALCAN and HPA, ACSL4 expression patterns of in pan-cancer were analyzed. The prognostic value of ACSL4 was analyzed using PrognoScan and Kaplan-Meier Plotter databases. Furthermore, gene variation and epigenetic modification of ACSL4 were analyzed by cBioPortal and GSCA databases. Meanwhile, GEPIA and TIMER databases applied to evaluate the relationship between ACSL4 expression and immune infiltration. These results indicate that ACSL4 expression is down-regulated and associated with prognosis in most tumors. In general, lower ACSL4 expression shows more beneficial prognosis. The most common genetic alteration of ACSL4 is point mutation. ACSL4 is negatively correlated with DNA methylation levels in most cancers. ACSL4 mutations or hypomethylation are associated with poor prognosis. In addition, ACSL4 is positively correlated with immune infiltration in cancers. ACSL4 and immune infiltration are strongly associated with prognosis in BRCA (Breast invasive carcinoma) and SKCM (Skin Cutaneous Melanoma). ACSL4 mutation caused significant changes of immune infiltration in UCEC (Uterine Corpus Endometrial Carcinoma) and SARC (Sarcoma). ACSL4 may be a promising prognostic biomarker for pan-cancer and is closely associated with immune infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuepu Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei Chen
- Department of General Surgery, Linyi Traditional Chinese Medicine Hospital, Linyi, China
| | - Miao Liu
- Department of Pathology, Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Miao Liu,
| |
Collapse
|
232
|
Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Commun Biol 2022; 5:35. [PMID: 35017668 PMCID: PMC8752825 DOI: 10.1038/s42003-021-02984-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
New research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/-;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.
Collapse
|
233
|
Shen L, Xiao Y, Tian J, Lu Z. Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Lett 2022; 529:139-152. [PMID: 35007698 DOI: 10.1016/j.canlet.2022.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
The dramatic success of adoptive transfer of engineered T cells expressing chimeric antigen receptor (CAR-T) has been achieved with effective responses in some relapsed or refractory hematologic malignancies, which is not yet met in solid tumors. The efficacy of CAR-T therapy is associated with its fate determination and their interaction with cancer cells in tumor microenvironment (TME), which is closely correlated with T cell metabolism fitness. Indeed, modulating T cell metabolism reprogramming has been proven crucial for their survival and reinvigorating antitumor immunity, and thus is considered as a promising strategy to improve the clinical performance of CAR-T cell therapy in difficult-to-treat cancers. This review briefly summarizes the T cell metabolic profiles and key metabolic challenges it faces in TME such as nutrient depletion, hypoxia, and toxic metabolites, then emphatically discusses the potential strategies to modulate metabolic properties of CAR-T cells including improving CARs construct design, optimizing manufacture process via addition of exogenous cytokines or targeting specific signaling pathway, manipulating ROS levels balance or relieve the unfavorable metabolic TME including adaptation to hypoxia and relieving inhibitory effect of toxic metabolites, eventually strengthening the anti-tumor response.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yefei Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
234
|
Tong Y, Yu Y, Zheng H, Wang Y, Xie S, Chen C, Lu R, Guo L. Differentially Expressed Genes in Clear Cell Renal Cell Carcinoma as a Potential Marker for Prognostic and Immune Signatures. Front Oncol 2022; 11:776824. [PMID: 34976818 PMCID: PMC8716543 DOI: 10.3389/fonc.2021.776824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the inactivation of the von Hippel–Lindau (VHL) gene. Of note, no other gene is mutated as frequently as VHL in ccRCC, turning out that patients with inactivated VHL constitute the majority of ccRCC-related character. Thus, differentially expressed genes (DEGs) and their molecular networks caused by VHL mutation were considered as important factors for influencing the prognosis of ccRCC. Here, we first screened out six DEGs (GSTA1, GSTA2, NAT8, FABP7, SLC17A3, and SLC17A4) which downregulated in ccRCC patients with VHL non-mutation than with the mutation. Generally, most DEGs with high expression were associated with a favorable prognosis and low-risk score. Meanwhile, we spotted transcription factors and their kinases as hubs of DEGs. Finally, we clustered ccRCC patients into three subgroups according to the expression of hub proteins, and analyzed these subgroups with clinical profile, outcome, immune infiltration, and potential Immune checkpoint blockade (ICB) response. Herein, DEGs might be a promising biomarker panel for immunotherapy and prognosis in ccRCC. Moreover, the ccRCC subtype associated with high expression of hubs fit better for ICB therapy.
Collapse
Affiliation(s)
- Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwen Yu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
235
|
Jaree P, Boonchuen P, Thawonsuwan J, Kondo H, Hirono I, Somboonwiwat K. Transcriptome profiling reveals the novel immunometabolism-related genes against WSSV infection from Fenneropenaeus merguiensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:31-44. [PMID: 34758397 DOI: 10.1016/j.fsi.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The white spot syndrome virus (WSSV) has been considered a serious threat to shrimp aquaculture. Besides, the activation of cell metabolism as an immune reaction to the virus is now recognized as a piece of the pivotal puzzle of the antiviral responses. Hence, this study explores the relationship between metabolic gene expression and antiviral responses in shrimp using transcriptome analysis. The RNA-seq libraries of Fenneropenaeus merguensis hemocytes after WSSV challenge at early (6 hpi) and late (24 hpi) stages of infection were analyzed to identify differentially expressed genes (DEGs) that the WSSV subverted the expression. One-hundred-thirty-three DEGs that were expressed in response to WSSV infection at both stages were identified. Based on the GO annotation, they were related to innate immunity and metabolic pathway. The expression correlation between "full term" (NGS) and qRT-PCR of 16 representative DEGs is shown. Noticeably, the expression profiles of all the selected metabolic genes involved in glucose metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism showed a specific correlation between NGS and qRT-PCR upon WSSV infection. Of these, we further characterized the function related to the WSSV response of glutamine: fructose-6-phosphate aminotransferase (FmGFAT), the rate-limiting enzyme of the hexosamine biosynthesis pathway, which was found to be up-regulated at the late stage of WSSV infection. Suppression of FmGFAT by RNA interference resulted in postponing the death of WSSV-infected shrimp and reduction of viral copy number. These results suggested that the FmGFAT is linked between metabolic change and WSSV responses in shrimp, where the virus-induced metabolic rewiring hijack biological compounds and/or energy sources to benefit the viral replication process.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research Center, Department of Fisheries, Songkhla, Thailand
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
236
|
Rathod S, Aggarwal V, Upadhyay A, Choudhari R. Timing of the Major Metabolic Switches in Immune Cell Activation and Differentiation During Cancer Development. IMMUNO-ONCOLOGY CROSSTALK AND METABOLISM 2022:187-218. [DOI: 10.1007/978-981-16-6226-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
237
|
Li F, Huang C, Qiu L, Li P, Shi J, Zhang G. Comprehensive Analysis of Immune-Related Metabolic Genes in Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:894754. [PMID: 35898471 PMCID: PMC9309246 DOI: 10.3389/fendo.2022.894754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The immunotherapy of lung adenocarcinoma (LUAD) has received much attention in recent years and metabolic reprogramming is linked to immune infiltration in the tumor microenvironment. Therefore, it is indispensable to dissect the role of immune-related metabolic genes in lung adenocarcinoma. METHODS In this study, we screened immune-related genes by Pearson correlation. The function of these genes was explored by gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. The differently expressed immune-related genes were analyzed by Limma. Furthermore, the LUAD patients were clustered based on immune-related genes through consensus clustering. The Unicox was used to identify survival-immune-related metabolic genes. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was used to optimize the gene sets. A prediction model was constructed and tested. The potential therapeutic target was selected based on two criteria, these immune-related metabolic genes that were highly expressed in tumor tissues and negatively correlated with the survival of patients in LUAD. Quantitative real-time PCR (qRT-PCR) was used for in vitro experimental validations. RESULTS We identified 346 immune-related genes, mainly involved in arachidonic acid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling. Moreover, a total of 141 immune-related genes were dysregulated between tumor and normal tissues. We clustered three subtypes of LUAD based on immune-related metabolic genes and these subtypes exhibited different survival and immune status. We found Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) as a potential therapeutic target, which is positively correlated with the cyclin-dependent kinase family of genes. CONCLUSION We comprehensively analyzed the immune-related metabolic genes in LUAD. RRM2 was determined as a promising metabolic checkpoint for lung adenocarcinoma.
Collapse
|
238
|
Aggarwal V, Rathod S, Vashishth K, Upadhyay A. Immune Cell Metabolites as Fuel for Cancer Cells. IMMUNO-ONCOLOGY CROSSTALK AND METABOLISM 2022:153-186. [DOI: 10.1007/978-981-16-6226-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
239
|
Alves RW, da Silva EM, Doretto-Silva L, Andrade-Oliveira V. Metabolic Pathways in Immune Cells Commitment and Fate. ESSENTIAL ASPECTS OF IMMUNOMETABOLISM IN HEALTH AND DISEASE 2022:53-82. [DOI: 10.1007/978-3-030-86684-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
240
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
241
|
Ruan Y, Fang X, Guo T, Liu Y, Hu Y, Wang X, Hu Y, Gao L, Li Y, Pi J, Xu Y. Metabolic reprogramming in the arsenic carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113098. [PMID: 34952379 DOI: 10.1016/j.ecoenv.2021.113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to arsenic has been associated with a variety of cancers with the mechanisms undefined. Arsenic exposure causes alterations in metabolites in bio-samples. Recent research progress on cancer biology suggests that metabolic reprogramming contributes to tumorigenesis. Therefore, metabolic reprogramming provides a new clue for the mechanisms of arsenic carcinogenesis. In the present manuscript, we review the latest findings in reprogramming of glucose, lipids, and amino acids in response to arsenic exposure. Most studies focused on glucose reprogramming and found that arsenic exposure enhanced glycolysis. However, in vivo studies observed "reverse Warburg effect" in some cases due to the complexity of the disease evolution and microenvironment. Arsenic exposure has been reported to disturb lipid deposition by inhibiting lipolysis, and induce serine-glycine one-carbon pathway. As a dominant mechanism for arsenic toxicity, oxidative stress is considered to link with metabolism reprogramming. Few studies analyzed the causal relationship between metabolic reprogramming and arsenic-induced cancers. Metabolic alterations may vary with exposure doses and periods. Identifying metabolic alterations common among humans and experiment models with human-relevant exposure characteristics may guide future investigations.
Collapse
Affiliation(s)
- Yihui Ruan
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xin Fang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Tingyue Guo
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yiting Liu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yu Hu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xuening Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Lanyue Gao
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China; Program of Environmental Toxicology, School of Public Health, China Medical University, P.R. China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China.
| |
Collapse
|
242
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
243
|
Zlacká J, Zeman M. Glycolysis under Circadian Control. Int J Mol Sci 2021; 22:ijms222413666. [PMID: 34948470 PMCID: PMC8703893 DOI: 10.3390/ijms222413666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
Glycolysis is considered a main metabolic pathway in highly proliferative cells, including endothelial, epithelial, immune, and cancer cells. Although oxidative phosphorylation (OXPHOS) is more efficient in ATP production per mole of glucose, proliferative cells rely predominantly on aerobic glycolysis, which generates ATP faster compared to OXPHOS and provides anabolic substrates to support cell proliferation and migration. Cellular metabolism, including glucose metabolism, is under strong circadian control. Circadian clocks control a wide array of metabolic processes, including glycolysis, which exhibits a distinct circadian pattern. In this review, we discuss circadian regulations during metabolic reprogramming and key steps of glycolysis in activated, highly proliferative cells. We suggest that the inhibition of metabolic reprogramming in the circadian manner can provide some advantages in the inhibition of oxidative glycolysis and a chronopharmacological approach is a promising way to treat diseases associated with up-regulated glycolysis.
Collapse
|
244
|
Cai H, Chen SM, Ke ZB, Chen H, Zhu JM, Lin TT, Huang F, Wei Y, Zheng QS, Xue XY, Sun XL, Xu N. Development and Validation of Hub Genes for Adrenal Aldosterone-Producing Adenoma by Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:10003-10013. [PMID: 34984024 PMCID: PMC8702988 DOI: 10.2147/ijgm.s330956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To develop and validate hub genes involving in the development and progression of primary aldosteronism (PA) and adrenal aldosterone-producing adenoma (APA). MATERIALS AND METHODS A total of four datasets of gene expression profiles related to APA were downloaded from GEO datasets. GSE60042 and GSE8514 were used to identify DEGs. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network module analysis were conducted. GO and KEGG enrichment analysis was performed. GSE10927 and GSE33371 were used for further external validation. RESULTS We identified a total of 892 DEGs from GSE60042 and 1167 DEGs from GSE8514. WGCNA analysis demonstrated that the blue module (255 genes) and turquoise module (303 genes) were significantly correlated with APA. PPI networks were then constructed. GO term enrichment analysis suggested that cellular divalent inorganic cation homeostasis, calcium ion homeostasis, collagen-containing extracellular matrix, transport vesicle and metal ion transmembrane transporter activity were the vital annotations. KEGG pathway analysis found that these genes were significantly enriched in neuroactive ligand-receptor interaction, calcium signaling pathway. Finally, we identified a total of 11 candidate genes involving in the development and progression of APA and PA. Besides, two independent datasets (GSE10927 and GSE33371) were used for external validation, and there were seven hub genes successfully verified, including C3, GRM3, AVPR1A, WFS1, PTGFR, NTSR2, and JUN. CONCLUSION These newly identified genes could contribute to the understanding of potential mechanism in APA and PA and might be promising targets for the treatment of APA and PA.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Ting-Ting Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Fei Huang
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|
245
|
Shen DS, Yan C, Chen KH, Li L, Qu S, Zhu XD. A Nomogram Based on Circulating CD4 + T Lymphocytes and Lactate Dehydrogenase to Predict Distant Metastasis in Patients with Nasopharyngeal Carcinoma. J Inflamm Res 2021; 14:6707-6718. [PMID: 34916820 PMCID: PMC8668247 DOI: 10.2147/jir.s341897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Distant metastasis is the main pattern of treatment failure in nasopharyngeal carcinoma (NPC) in the era of intensity-modulated radiotherapy (IMRT). We aimed to establish and validate a prognostic nomogram to identify patients with a high risk of distant metastasis. Patients and Methods A total of 503 patients with nonmetastatic NPC were included in this retrospective study. We established a prognostic nomogram for distant metastasis-free survival (DMFS) based on the Cox proportional hazards model. The predictive discriminative ability and accuracy of the nomogram were assessed with the concordance index (C-index), receiver operating characteristic (ROC) curve, and calibration curve. The nomogram’s clinical utility was also evaluated using decision curve analysis (DCA) and Kaplan–Meier method. The predictive ability of the nomogram was validated in an independent cohort. Results The multivariate analysis showed that circulating CD4+ T lymphocytes, lactate dehydrogenase (LDH), serum ferritin (SF), and N stage were independent prognostic factors for DMFS. Then, we constructed the nomogram based on these factors. The C-indexes of the nomogram for distant metastasis were 0.763 (95% CI: 0.685–0.841) and 0.760 (95% CI: 0.643–0.877) in the training cohort and validation cohort, respectively, which was higher than the 8th TNM staging system (0.672 and 0.677). The calibration curve showed that the prediction results of the nomogram were in high agreement with the actual observation. The ROC curve indicated that the nomogram had a better predictive ability than TNM staging. The DCA also demonstrated that the nomogram was clinically beneficial. In addition, the patients were classified into two different risk groups (high-risk, low-risk) by the nomogram. Conclusion As a supplement to TNM staging, our nomogram could provide a more effective and accurate prognostic prediction of distant metastasis in NPC patients. It has the potential to guide the individualized treatment of patients to improve their survival.
Collapse
Affiliation(s)
- De-Song Shen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Chang Yan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China.,Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, People's Republic of China
| |
Collapse
|
246
|
Wu T, Ke Y, Tang H, Liao C, Li J, Wang L. Fidarestat induces glycolysis of NK cells through decreasing AKR1B10 expression to inhibit hepatocellular carcinoma. Mol Ther Oncolytics 2021; 23:420-431. [PMID: 34853813 PMCID: PMC8605295 DOI: 10.1016/j.omto.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aldose reductase inhibitor Fidarestat has been noted to have efficacy in treating a variety of tumors. To define its role in hepatocellular carcinoma (HCC), we induced a HCC xenograft model in mice, which were treated with different doses of Fidarestat. The amounts of natural killer (NK) cells and related inflammatory factors were detected in the serum of the mice. Fidarestat inhibited HCC tumor growth and lung metastasis in vivo and increased NK cell number as well as levels of NK cell-related inflammatory factors in mouse serum. NK cells were then co-cultured with the HCC cell line in vitro to detect effects on HCC cell progression after Fidarestat administration. The glycolysis activity of the NK cells was evaluated by extracellular acidification rate, while aldo-keto reductase family 1 member B10 (AKR1B10) expression was detected by western blot analysis. Administration of Fidarestat downregulated the expression of AKR1B10 in NK cells and promoted NK cell glycolysis to enhance their killing activity against HCC cells. However, depletion of NK cells or upregulation of AKR1B10 attenuated the anticancer activity of Fidarestat. Taken together, Fidarestat downregulated AKR1B10 expression in NK cells to promote NK cell glycolysis, thereby alleviating HCC progression.
Collapse
Affiliation(s)
- Tiangen Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Haoran Tang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chen Liao
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jinze Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| |
Collapse
|
247
|
Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, Iovino M, Partini B, Erreni M, Ponzetta A, Magrini E, Colombo P, Elefante G, Colombo FS, den Haan JM, Peano C, Cibella J, Termanini A, Kunderfranco P, Brummelman J, Chung MWH, Lazzeri M, Hurle R, Casale P, Lugli E, DePinho RA, Mukhopadhyay S, Gordon S, Di Mitri D. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med 2021; 219:212922. [PMID: 34919143 PMCID: PMC8932635 DOI: 10.1084/jem.20210564] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell–derived IL-1β enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.
Collapse
Affiliation(s)
- Michela Masetti
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federica Portale
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia Marelli
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Morina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marta Pandini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marta Iovino
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Erreni
- Unit of Advanced Optical Microscopy, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Ponzetta
- Experimental Immunopathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elena Magrini
- Experimental Immunopathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Grazia Elefante
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Joke M.M. den Haan
- Department of Molecular and Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Clelia Peano
- Human Technopole, Milan, Italy
- Genomics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
- Division of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy
| | - Javier Cibella
- Genomics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Termanini
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matthew Wai Heng Chung
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Massimo Lazzeri
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rodolfo Hurle
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Casale
- Urology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Subhankar Mukhopadhyay
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, Oxford, UK
| | - Diletta Di Mitri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Tumor Microenvironment Unit, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
248
|
Xie J, Ruan S, Zhu Z, Wang M, Cao Y, Ou M, Yu P, Shi J. Database mining analysis revealed the role of the putative H +/sugar transporter solute carrier family 45 in skin cutaneous melanoma. Channels (Austin) 2021; 15:496-506. [PMID: 34334114 PMCID: PMC8331014 DOI: 10.1080/19336950.2021.1956226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is common in various cancers. Targeting metabolism to treat tumors is a hot research topic at present. Among them, changes in glucose metabolism in cancer have been widely studied. The Warburg effect maintains a high metabolic level in the tumor, accompanied by changes in glucose transporters. The transmembrane transport of sugar was previously thought to be mediated by SGLT and GLUT. Recently, the Solute Carrier Family(SLC) 45 family may be the third sugar transporter. But the role and value of the SLC45 family in melanoma, a highly malignant skin tumor, is unclear. Our study found that the four members of the SLC45 family, SLC45A1-SLC45A4, were differentially expressed in melanoma, but only SLC45A2 and SLC45A3 had prognostic guiding values. Further analysis revealed that the co-expression patterns of SLC45A2 and SLC45A3 were enriched in multiple metabolic pathways, suggesting their potential role in melanoma. In addition, SLC45A2 and SLC45A3 are also associated with immune cell infiltration. In conclusion, SLC45A2 and SLC45A3 are good prognostic indicators for melanoma and have guiding value for the treatment of melanoma in the future.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shujie Ruan
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhechen Zhu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengmeng Ou
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
249
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
250
|
Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma. DISEASE MARKERS 2021; 2021:6144476. [PMID: 34840632 PMCID: PMC8612796 DOI: 10.1155/2021/6144476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Background With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P < 0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P < 0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P < 0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P < 0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P < 0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P < 0.05). Conclusion We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients.
Collapse
|