201
|
Gpd1 Regulates the Activity of Tcp-1 and Heat Shock Response in Yeast Cells: Effect on Aggregation of Mutant Huntingtin. Mol Neurobiol 2015; 53:3900-3913. [PMID: 26164272 DOI: 10.1007/s12035-015-9329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/27/2023]
Abstract
A significant correlation has been observed between the length of the polyglutamine tract in huntingtin, its aggregation and the progression of Huntington's disease (HD). The chaperonin TRiC is a potent antagonist of aggregation of mutant huntingtin. Using the well-validated Saccharomyces cerevisiae model of HD, we have investigated the role of age-related post-translational modifications of this heterooligomeric chaperonin on its ability to inhibit aggregation of the mutant protein. We show that the glycerol synthetic enzyme Gpd1 is involved in the post-translational modification of Tcp-1 (subunit of TRiC) by acetylation and glycation through the NAD(+)/NADH shuttle and the triose phosphate intermediate dihydroxyacetone phosphate, respectively. The extent of modification of Tcp-1 shows a negative correlation with the solubility of mutant huntingtin. The absence of Gpd1 also induces heat shock response in yeast cells, further inhibiting aggregation of the mutant protein. Thus, Gpd1 acts as a major regulator of the protein folding machinery in the yeast model of HD. Modification and inactivation of cellular chaperonin are accelerated in an aging cell, which has further deleterious effects for a cell harbouring misfolded/aggregated protein(s).
Collapse
|
202
|
He B, Hu J, Zhang X, Lin H. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org Biomol Chem 2015; 12:7498-502. [PMID: 25163004 DOI: 10.1039/c4ob00860j] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sirtuins regulate a variety of biological pathways and inhibitors of sirtuins have been actively pursued as tool compounds to study sirtuin biology and as potential therapeutics. Here we demonstrate that thiomyristoyl peptides are potent and cell-permeable inhibitors of Sirt6, one of the seven human sirtuins, and will serve as the starting point for the development of more specific Sirt6 inhibitors.
Collapse
Affiliation(s)
- Bin He
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
203
|
Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling. Oncotarget 2015; 5:4732-45. [PMID: 25051362 PMCID: PMC4148095 DOI: 10.18632/oncotarget.1963] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adiponectin is an adipocyte-secreted adipokine with pleiotropic actions. Clinical evidence has shown that serum adiponectin levels are increased and that adiponectin can protect pancreatic beta cells against apoptosis, which suggests that adiponectin may play an anti-apoptotic role in pancreatic cancer (PC). Here, we investigated the effects of adiponectin on PC development and elucidated the underlying molecular mechanisms. Adiponectin deficiency markedly attenuated pancreatic tumorigenesis in vivo. We found that adiponectin significantly inhibited the apoptosis of both human and mouse pancreatic cancer cells via adipoR1, but not adipoR2. Furthermore, adiponectin can increase AMP-activated protein kinase (AMPK) phosphorylation and NAD-dependent deacetylase sirtuin-1 (Sirt1) of PC cells. Knockdown of AMPK or Sirt1 can increase the apoptosis in PC cells. AMPK up-regulated Sirt1, and Sirt1 can inversely phosphorylate AMPK. Further studies have shown that Sirt1 can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which can increase the expression levels of mitochondrial genes. Thus, adiponectin exerts potent anti-apoptotic effects on PC cells via the activation of AMPK/Sirt1/PGC1α signaling. Finally, adiponectin can elevate β-catenin levels. Taken together, these novel findings reveal an unconventional role of adiponectin in promoting pancreatic cancers, and suggest that the effects of adiponectin on tumorigenesis are highly tissue-dependent.
Collapse
|
204
|
Riepsamen A, Wu L, Lau L, Listijono D, Ledger W, Sinclair D, Homer H. Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes. PLoS One 2015; 10:e0126194. [PMID: 25938585 PMCID: PMC4418673 DOI: 10.1371/journal.pone.0126194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Abstract
Following exit from meiosis I, mammalian oocytes immediately enter meiosis II without an intervening interphase, accompanied by rapid reassembly of a bipolar spindle that maintains condensed chromosomes in a metaphase configuration (metaphase II arrest). Here we study the effect of nicotinamide (NAM), a non-competitive pan-sirtuin inhibitor, during meiotic maturation in mouse oocytes. Sirtuins are a family of seven NAD+-dependent deacetylases (Sirt1-7), which are involved in multiple cellular processes and are emerging as important regulators in oocytes and embryos. We found that NAM significantly delayed entry into meiosis I associated with delayed accumulation of the Cdk1 co-activator, cyclin B1. GVBD was also inhibited by the Sirt2-specific inhibitor, AGK2, and in a very similar pattern to NAM, supporting the notion that as in somatic cells, NAM inhibits sirtuins in oocytes. NAM did not affect subsequent spindle assembly, chromosome alignment or the timing of first polar body extrusion (PBE). Unexpectedly, however, in the majority of oocytes with a polar body, chromatin was decondensed and a nuclear structure was present. An identical phenotype was observed when flavopiridol was used to induce Cdk1 inactivation during late meiosis I prior to PBE, but not if Cdk1 was inactivated after PBE when metaphase II arrest was already established, altogether indicating that NAM impaired establishment rather than maintenance of metaphase II arrest. During meiosis I exit in NAM-treated medium, we found that cyclin B1 levels were lower and inhibitory Cdk1 phosphorylation was increased compared with controls. Although activation of the anaphase-promoting complex-Cdc20 (APC-Cdc20) occurred on-time in NAM-treated oocytes, Cdc20 levels were higher in very late meiosis I, pointing to exaggerated APC-Cdc20-mediated proteolysis as a reason for lower cyclin B1 levels. Collectively, therefore, our data indicate that by disrupting Cdk1 regulation, NAM impairs entry into meiosis I and the establishment of metaphase II arrest.
Collapse
Affiliation(s)
- Angelique Riepsamen
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Lindsay Wu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Laurin Lau
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dave Listijono
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - William Ledger
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David Sinclair
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hayden Homer
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
205
|
Abstract
During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia.
Collapse
|
206
|
Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 2015; 146-148:28-41. [PMID: 25824609 DOI: 10.1016/j.mad.2015.03.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
Aging is an inevitable and multifactorial biological process. Free radicals have been implicated in aging processes; it is hypothesized that they cause cumulative oxidative damage to crucial macromolecules and are responsible for failure of multiple physiological mechanisms. However, recent investigations have also suggested that free radicals can act as modulators of several signaling pathways such as those related to sirtuins. Caloric restriction is a non-genetic manipulation that extends lifespan of several species and improves healthspan; the belief that many of these benefits are due to the induction of sirtuins has led to the search for sirtuin activators, especially sirtuin 1, the most studied. Resveratrol, a polyphenol found in red grapes, was first known for its antioxidant and antifungal properties, and subsequently has been reported several biological effects, including the activation of sirtuins. Endogenously-produced melatonin, a powerful free radical scavenger, declines with age and its loss contributes to degenerative conditions of aging. Recently, it was reported that melatonin also activates sirtuins, in addition to other functions, such as regulator of circadian rhythms or anti-inflammatory properties. The fact that melatonin and resveratrol are present in various foods, exhibiting possible synergistic effects, suggests the use of dietary ingredients to promote health and longevity.
Collapse
Affiliation(s)
- Margarita R Ramis
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Susana Esteban
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Antonio Miralles
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
207
|
Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M, Zhao S, Yang Y, Ling ZQ, Guan KL, Xiong Y, Ye D. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J 2015; 34:1110-25. [PMID: 25755250 DOI: 10.15252/embj.201591041] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Lisha Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Yuzheng Zhao
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Huaipeng Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Mengli Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Yi Yang
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, China
| | - Kun-Liang Guan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yue Xiong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
208
|
Karaman B, Sippl W. Docking and binding free energy calculations of sirtuin inhibitors. Eur J Med Chem 2015; 93:584-98. [PMID: 25748123 DOI: 10.1016/j.ejmech.2015.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/25/2015] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Sirtuins form a unique and highly conserved class of NAD(+)-dependent lysine deacylases. Among these the human subtypes Sirt1-3 has been implicated in the pathogenesis of numerous diseases such as cancer, metabolic syndromes, viral diseases and neurological disorders. Most of the sirtuin inhibitors that have been identified so far show limited potency and/or isoform selectivity. Here, we introduce a promising method to generate protein-inhibitor complexes of human Sirt1, Sirt2 and Sirt3 by means of ligand docking and molecular dynamics simulations. This method highly reduces the complexity of such applications and can be applied to other protein targets beside sirtuins. To the best of our knowledge, we present the first binding free energy method developed by using a validated data set of sirtuin inhibitors, where both a fair number of compounds (33 thieno[3,2-d]pyrimidine-6-carboxamide derivatives) was developed and tested in the same laboratory and also crystal structures in complex with the enzyme have been reported. A significant correlation between binding free energies derived from MM-GBSA calculations and in vitro data was found for all three sirtuin subtypes. The developed MM-GBSA protocol is computationally inexpensive and can be applied as a post-docking filter in virtual screening to find novel Sirt1-3 inhibitors as well as to prioritize compounds with similar chemical structures for further biological characterization.
Collapse
Affiliation(s)
- Berin Karaman
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Saale, Germany.
| |
Collapse
|
209
|
Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun 2015; 6:6263. [PMID: 25672491 PMCID: PMC4339887 DOI: 10.1038/ncomms7263] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are a highly conserved class of NAD+-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology. The involvement of the sirtuin family of lysine deacylases in disease, metabolism and ageing makes them promising pharmaceutical targets. Rumpf et al. present structures of human Sirt2 in complex with two highly selective drug-like inhibitors, and show that they act by rearranging the enzyme’s active site.
Collapse
|
210
|
Weiser BP, Eckenhoff RG. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. J Biol Chem 2015; 290:8559-68. [PMID: 25666612 DOI: 10.1074/jbc.m114.620732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [(3)H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr(139), Phe(190), and Met(206)) that are located in a single allosteric protein site, and propofol inhibited [(3)H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [(3)H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [(3)H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD(+) during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.
Collapse
Affiliation(s)
- Brian P Weiser
- From the Departments of Anesthesiology and Critical Care and Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
211
|
Ringel AE, Roman C, Wolberger C. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Sci 2014; 23:1686-97. [PMID: 25200501 PMCID: PMC4253809 DOI: 10.1002/pro.2546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/03/2014] [Indexed: 01/07/2023]
Abstract
Sirtuins were originally shown to regulate a wide array of biological processes such as transcription, genomic stability, and metabolism by catalyzing the NAD(+) -dependent deacetylation of lysine residues. Recent proteomic studies have revealed a much wider array of lysine acyl modifications in vivo than was previously known, which has prompted a reevaluation of sirtuin substrate specificity. Several sirtuins have now been shown to preferentially remove propionyl, succinyl, and long-chain fatty acyl groups from lysines, which has changed our understanding of sirtuin biology. In light of these developments, we revisited the acyl specificity of several well-studied archaeal and bacterial sirtuins. We find that the Archaeoglobus fulgidus sirtuins, Sir2Af1 and Sir2Af2, preferentially remove succinyl and myristoyl groups, respectively. Crystal structures of Sir2Af1 bound to a succinylated peptide and Sir2Af2 bound to a myristoylated peptide show how the active site of each enzyme accommodates a noncanonical acyl chain. As compared to its structure in complex with an acetylated peptide, Sir2Af2 undergoes a conformational change that expands the active site to accommodate the myristoyl group. These findings point to both structural and biochemical plasticity in sirtuin active sites and provide further evidence that sirtuins from all three domains of life catalyze noncanonical deacylation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185
| | - Christina Roman
- The Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185,The Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185,
*Correspondence to: Cynthia Wolberger, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205. E-mail:
| |
Collapse
|
212
|
Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K, Reynolds CR, Schmidtkunz K, Jung M, Chapman KL, Steegborn C, Dexter DT, Sternberg MJE, Lam EWF, Fuchter MJ. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. ChemMedChem 2014; 10:69-82. [PMID: 25395356 DOI: 10.1002/cmdc.201402431] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 02/03/2023]
Abstract
Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3-((2-methoxynaphthalen-1-yl)methyl)-7-((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2 inhibitor with a Ki value of 0.62 ± 0.15 μM and more than 50-fold selectivity against SIRT1, 3 and 5. Treatment of MCF-7 breast cancer cells with ICL-SIRT078 results in hyperacetylation of α-tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF-7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson's disease, we find that compound ICL-SIRT078 has a significant neuroprotective effect in a lactacystin-induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL-SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- Department of Chemistry, Imperial College London, St. Kensington Campus, London SW7 2AZ, (UK)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Castonguay Z, Auger C, Thomas SC, Chahma M, Appanna VD. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem Biophys Res Commun 2014; 454:172-7. [PMID: 25450376 DOI: 10.1016/j.bbrc.2014.10.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/26/2022]
Abstract
It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD(+)), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD(+) generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD(+) reveals an intricate link between metabolism and the processing of genetic information.
Collapse
Affiliation(s)
- Zachary Castonguay
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Christopher Auger
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - M'hamed Chahma
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
214
|
Cui H, Kamal Z, Ai T, Xu Y, More SS, Wilson DJ, Chen L. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach. J Med Chem 2014; 57:8340-57. [PMID: 25275824 DOI: 10.1021/jm500777s] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.
Collapse
Affiliation(s)
- Huaqing Cui
- Center for Drug Design, Academic Health Center, University of Minnesota , 516 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Ageing is the most significant risk factor for a range of prevalent diseases, including cancer, cardiovascular disease, and diabetes. Accordingly, interventions are needed for delaying or preventing disorders associated with the ageing process, i.e., promotion of healthy ageing. Calorie restriction is the only nongenetic and the most robust approach to slow the process of ageing in evolutionarily divergent species, ranging from yeasts, worms, and flies to mammals. Although it has been known for more than 80 years that calorie restriction increases lifespan, a mechanistic understanding of this phenomenon remains elusive. Yeast silent information regulator 2 (Sir2), the founding member of the sirtuin family of protein deacetylases, and its mammalian homologue Sir2-like protein 1 (SIRT1), have been suggested to promote survival and longevity of organisms. SIRT1 exerts protective effects against a number of age-associated disorders. Caloric restriction increases both Sir2 and SIRT1 activity. This review focuses on the mechanistic insights between caloric restriction and Sir2/SIRT1 activation. A number of molecular links, including nicotinamide adenine dinucleotide, nicotinamide, biotin, and related metabolites, are suggested to be the most important conduits mediating caloric restriction-induced Sir2/SIRT1 activation and lifespan extension.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
216
|
Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci 2014; 71:3885-901. [PMID: 24898083 PMCID: PMC4414051 DOI: 10.1007/s00018-014-1656-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
217
|
The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014; 15:536-50. [PMID: 25053359 DOI: 10.1038/nrm3841] [Citation(s) in RCA: 1028] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
Collapse
|
218
|
Guan X, Lin P, Knoll E, Chakrabarti R. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. PLoS One 2014; 9:e107729. [PMID: 25221980 PMCID: PMC4164625 DOI: 10.1371/journal.pone.0107729] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are key regulators of many cellular functions including cell growth, apoptosis, metabolism, and genetic control of age-related diseases. Sirtuins are themselves regulated by their cofactor nicotinamide adenine dinucleotide (NAD+) as well as their reaction product nicotinamide (NAM), the physiological concentrations of which vary during the process of aging. Nicotinamide inhibits sirtuins through the so-called base exchange pathway, wherein rebinding of the reaction product to the enzyme accelerates the reverse reaction. We investigated the mechanism of nicotinamide inhibition of human SIRT3, the major mitochondrial sirtuin deacetylase, in vitro and in silico using experimental kinetic analysis and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB(GB)SA) binding affinity calculations with molecular dynamics sampling. Through experimental kinetic studies, we demonstrate that NAM inhibition of SIRT3 involves apparent competition between the inhibitor and the enzyme cofactor NAD+, contrary to the traditional characterization of base exchange as noncompetitive inhibition. We report a model for base exchange inhibition that relates such kinetic properties to physicochemical properties, including the free energies of enzyme-ligand binding, and estimate the latter through the first reported computational binding affinity calculations for SIRT3:NAD+, SIRT3:NAM, and analogous complexes for Sir2. The computational results support our kinetic model, establishing foundations for quantitative modeling of NAD+/NAM regulation of mammalian sirtuins during aging and the computational design of sirtuin activators that operate through alleviation of base exchange inhibition.
Collapse
Affiliation(s)
- Xiangying Guan
- Division of Fundamental Research, PMC Advanced Technology, LLC, Mount Laurel, New Jersey, United States of America
| | - Ping Lin
- Division of Fundamental Research, PMC Advanced Technology, LLC, Mount Laurel, New Jersey, United States of America
| | - Eric Knoll
- Division of Fundamental Research, PMC Advanced Technology, LLC, Mount Laurel, New Jersey, United States of America
| | - Raj Chakrabarti
- Division of Fundamental Research, PMC Advanced Technology, LLC, Mount Laurel, New Jersey, United States of America
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
219
|
Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide. Metabolites 2014; 4:807-30. [PMID: 25222834 PMCID: PMC4192694 DOI: 10.3390/metabo4030807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.
Collapse
|
220
|
Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP, Chan PK, Mohammad T, Mauri M, Tam KT, Leiper J, Piper S, Ramesh A, Parkinson MH, Huson L, Giunti P, Festenstein R. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia: an exploratory, open-label, dose-escalation study. Lancet 2014; 384:504-13. [PMID: 24794816 DOI: 10.1016/s0140-6736(14)60382-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Friedreich's ataxia is a progressive degenerative disorder caused by deficiency of the frataxin protein. Expanded GAA repeats within intron 1 of the frataxin (FXN) gene lead to its heterochromatinisation and transcriptional silencing. Preclinical studies have shown that the histone deacetylase inhibitor nicotinamide (vitamin B3) can remodel the pathological heterochromatin and upregulate expression of FXN. We aimed to assess the epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia. METHODS In this exploratory, open-label, dose-escalation study in the UK, male and female patients (aged 18 years or older) with Friedreich's ataxia were given single doses (phase 1) and repeated daily doses of 2-8 g oral nicotinamide for 5 days (phase 2) and 8 weeks (phase 3). Doses were gradually escalated during phases 1 and 2, with individual maximum tolerated doses used in phase 3. The primary outcome was the upregulation of frataxin expression. We also assessed the safety and tolerability of nicotinamide, used chromatin immunoprecipitation to investigate changes in chromatin structure at the FXN gene locus, and assessed the effect of nicotinamide treatment on clinical scales for ataxia. This study is registered with ClinicalTrials.gov, number NCT01589809. FINDINGS Nicotinamide was generally well tolerated; the main adverse event was nausea, which in most cases was mild, dose-related, and resolved spontaneously or after dose reduction, use of antinausea drugs, or both. Phase 1 showed a dose-response relation for proportional change in frataxin protein concentration from baseline to 8 h post-dose, which increased with increasing dose (p=0·0004). Bayesian analysis predicted that 3·8 g would result in a 1·5-times increase and 7·5 g in a doubling of frataxin protein concentration. Phases 2 and 3 showed that daily dosing at 3·5-6 g resulted in a sustained and significant (p<0·0001) upregulation of frataxin expression, which was accompanied by a reduction in heterochromatin modifications at the FXN locus. Clinical measures showed no significant changes. INTERPRETATION Nicotinamide was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. Further investigation of the long-term clinical benefits of nicotinamide and its ability to ameliorate frataxin deficiency in Friedreich's ataxia is warranted. FUNDING Ataxia UK, Ataxia Ireland, Association Suisse de l'Ataxie de Friedreich, Associazione Italiana per le Sindromi Atassiche, UK National Institute for Health Research, European Friedreich's Ataxia Consortium for Translational Studies, and Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Vincenzo Libri
- Leonard Wolfson Experimental Neurology Centre, University College London, London, UK; National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Cihangir Yandim
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Stavros Athanasopoulos
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Naomi Loyse
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Theona Natisvili
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Tariq Mohammad
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Marta Mauri
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Kin Tung Tam
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - James Leiper
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Sophie Piper
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Aravind Ramesh
- Intensive Care Department, Christchurch Hospital, Christchurch, New Zealand
| | - Michael H Parkinson
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Les Huson
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
221
|
Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9923-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
222
|
Wu J, Li J, Xu MH, Liu D. Structure–activity relationship and interaction studies of new SIRT1 inhibitors with the scaffold of 3-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole. Bioorg Med Chem Lett 2014; 24:3050-6. [DOI: 10.1016/j.bmcl.2014.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/28/2014] [Accepted: 05/10/2014] [Indexed: 11/16/2022]
|
223
|
Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX, Guan KL, Lei QY, Xiong Y. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 2014; 74:3630-42. [PMID: 24786789 PMCID: PMC4303242 DOI: 10.1158/0008-5472.can-13-3615] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacteria, to yeast, plant, and mammals. K100 acetylation is detected in fly, mouse, and human cells and in multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 (SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species stimulate PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Yanping Xu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Fulong Li
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Lei Lv
- Authors' Affiliations: Ministry of Education Key Laboratory of Molecular Medicine, and Department of Biochemistry and Molecular Biology, Shanghai Medical College, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences
| | - Tingting Li
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Xin Zhou
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Kun-Liang Guan
- Authors' Affiliations: Ministry of Education Key Laboratory of Molecular Medicine, and Department of Biochemistry and Molecular Biology, Shanghai Medical College, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California; and
| | - Qun-Ying Lei
- Authors' Affiliations: Ministry of Education Key Laboratory of Molecular Medicine, and Department of Biochemistry and Molecular Biology, Shanghai Medical College, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences,
| | - Yue Xiong
- Authors' Affiliations: Ministry of Education Key Laboratory of Molecular Medicine, and Department of Biochemistry and Molecular Biology, Shanghai Medical College, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
224
|
Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Rio AD, Nencioni A. Discovery of Novel and Selective SIRT6 Inhibitors. J Med Chem 2014; 57:4796-804. [DOI: 10.1021/jm500487d] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Daniele Parenti
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alessia Grozio
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Inga Bauer
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Lauretta Galeno
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Patrizia Damonte
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Enrico Millo
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Giovanna Sociali
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Claudio Franceschi
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alberto Ballestrero
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Alberto Del Rio
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessio Nencioni
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
225
|
Hong S, Zhao B, Lombard DB, Fingar DC, Inoki K. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 2014; 289:13132-41. [PMID: 24652283 PMCID: PMC4036325 DOI: 10.1074/jbc.m113.520734] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.
Collapse
Affiliation(s)
| | - Bin Zhao
- the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | - Ken Inoki
- From the Life Sciences Institute, ,Department of Molecular and Integrative Physiology, and ,Internal Medicine, The University of Michigan, Ann Arbor, Michigan 48109 and , To whom correspondence should be addressed: 210 Washtenaw Ave., Ann Arbor, MI 48109-2216. Fax: 734-647-9702; E-mail:
| |
Collapse
|
226
|
Arora A, Dey CS. SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1372-8. [PMID: 24793418 DOI: 10.1016/j.bbadis.2014.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
SIRT2 is primarily a cytoplasmic protein deacetylase and is abundantly expressed in metabolically active tissues like adipocytes and brain. However, its role, if any, in regulating insulin signaling in skeletal muscle cells, is not known. We have examined the role of SIRT2 in insulin-mediated glucose disposal in normal and insulin resistant C2C12 skeletal muscle cells in vitro. SIRT2 was over expressed in insulin resistant skeletal muscle cells. Pharmacological inhibition of SIRT2 increased insulin-stimulated glucose uptake and improved phosphorylation of Akt and GSK3β in insulin resistant cells. Knockdown of endogenous SIRT2 and over expression of catalytically-inactive SIRT2 mutant under insulin-resistant condition showed similar amelioration of insulin sensitivity. Our results suggest that down-regulation of SIRT2 improved insulin sensitivity in skeletal muscle cells under insulin-resistant condition. Previously it has been reported that down-regulation of SIRT1 and SIRT3 in C2C12 cells results in impairment of insulin signaling and induces insulin resistance. However, we have observed an altogether different role of SIRT2 in skeletal muscle. This implicates a differential regulation of insulin resistance by sirtuins which otherwise share a conserved catalytic domain. The study significantly directs towards future approaches in targeting inhibition of SIRT2 for therapeutic treatment of insulin resistance which is the major risk factor in Type 2 diabetes.
Collapse
Affiliation(s)
- Amita Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
227
|
Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 2014; 33:1304-20. [PMID: 24769394 DOI: 10.1002/embj.201387224] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Li-Sha Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Yu-Zheng Zhao
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Shi-Wen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Li-Xia Liu
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, China
| | - Fu-Jun Hu
- Department of Radiotherapy, Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, China
| | - Yi-Ping Sun
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Jing-Ye Zhang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dan Ye
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| |
Collapse
|
228
|
Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 2014; 123:2116-26. [DOI: 10.1182/blood-2013-02-484956] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Key PointsWe demonstrate that PT promotes ECFCs dysfunction by inducing stress-induced premature senescence. Our data reveal that SIRT1 deficiency drives PT-ECFC senescence, and acts as a critical determinant of the PT-ECFC angiogenic defect.
Collapse
|
229
|
Sacconnay L, Smirlis D, Queiroz EF, Wolfender JL, Soares MBP, Carrupt PA, Nurisso A. Structural insights of SIR2rp3 proteins as promising biotargets to fight against Chagas disease and leishmaniasis. MOLECULAR BIOSYSTEMS 2014; 9:2223-30. [PMID: 23799611 DOI: 10.1039/c3mb70180h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypanosoma cruzi and Leishmania spp. are protozoan pathogens responsible for Chagas disease and leishmaniasis, respectively. Current therapies rely only on a very small number of drugs, most of them are inadequate because of their severe host toxicity or drug-resistance phenomena. In order to find therapeutic alternatives, the identification of new biotargets is highly desired. In this study, homology modelling, docking and molecular dynamics simulations have been used to generate robust 3D models of NAD(+)-dependent deacetylases from Trypanosoma and Leishmania spp., known as SIR2rp3, whose structures have never been described before. Molecular docking of known inhibitors revealed strong analogies with the mitochondrial human SIRT5 in terms of binding mode and interaction strength. On the other hand, by extending the analysis to the channel rims, regions of difference between host and parasitic targets, useful for future selective drug design projects, were pointed out.
Collapse
Affiliation(s)
- Lionel Sacconnay
- Pharmacochemistry and Phytochemistry & Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
230
|
Fessler EB, Chibane FL, Wang Z, Chuang DM. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des 2014; 19:5105-20. [PMID: 23448466 DOI: 10.2174/1381612811319280009] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with few available treatment options. The pathophysiology of cerebral ischemia involves both early phase tissue damage, characterized by neuronal death, inflammation, and blood-brain barrier breakdown, followed by late phase neurovascular recovery. It is becoming clear that any promising treatment strategy must target multiple points in the evolution of ischemic injury to provide substantial therapeutic benefit. Histone deacetylase (HDAC) inhibitors are a class of drugs that increase the acetylation of histone and non-histone proteins to activate transcription, enhance gene expression, and modify the function of target proteins. Acetylation homeostasis is often disrupted in neurological conditions, and accumulating evidence suggests that HDAC inhibitors have robust protective properties in many preclinical models of these disorders, including ischemic stroke. Specifically, HDAC inhibitors such as trichostatin A, valproic acid, sodium butyrate, sodium 4-phenylbutyrate, and suberoylanilide hydroxamic acid have been shown to provide robust protection against excitotoxicity, oxidative stress, ER stress, apoptosis, inflammation, and bloodbrain barrier breakdown. Concurrently, these agents can also promote angiogenesis, neurogenesis and stem cell migration to dramatically reduce infarct volume and improve functional recovery after experimental cerebral ischemia. In the following review, we discuss the mechanisms by which HDAC inhibitors exert these protective effects and provide evidence for their strong potential to ultimately improve stroke outcome in patients.
Collapse
Affiliation(s)
- Emily B Fessler
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, MSC 1363, Bethesda, MD 20892-1363, USA
| | | | | | | |
Collapse
|
231
|
Hubbard BP, Loh C, Gomes AP, Li J, Lu Q, Doyle TL, Disch JS, Armour SM, Ellis JL, Vlasuk GP, Sinclair DA. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Cell Cycle 2014; 12:2233-40. [PMID: 23892437 DOI: 10.4161/cc.25268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SIRT1 is an NAD (+) -dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.
Collapse
Affiliation(s)
- Basil P Hubbard
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals. PLoS Negl Trop Dis 2014; 8:e2689. [PMID: 24551254 PMCID: PMC3923677 DOI: 10.1371/journal.pntd.0002689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3) could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds. Methods Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group. Results In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins. Conclusions The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages of performing in silico interaction studies on their closed conformations but they also suggested the potential mechanism of action of four phytochemicals known for their anti-trypanosomal activity in vitro. T. cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies rely only on a very small number of drugs, most of which are inadequate because of their severe host toxicity or because of their susceptibility to drug-resistance mechanisms. To determine efficient therapeutic alternatives, the identification of new biotargets and detailed knowledge of their structures are essential. Sirtuins from T. cruzi have been recently considered as promising targets for the development of new treatments for Chagas disease. Inhibition of their activity has been shown to significantly interfere with the life cycle of the parasite. T. cruzi possesses genes encoding two sirtuin-like proteins, TcSIR2rp1 and TcSIR2rp3. The structures of these enzymes were theoretically elucidated in this work, which also focused on the impact of their possible conformational states on computational interaction studies. A small library of phytochemicals that are active against the parasite was built and screened against the most meaningful conformations, identifying a restricted number of scaffolds that potentially interact with the modeled proteins. For these hits, a mechanism of action related to interactions with sirtuins was proposed.
Collapse
|
233
|
Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014; 35:146-54. [PMID: 24439680 DOI: 10.1016/j.tips.2013.12.004] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
Recent studies in mice have identified single molecules that can delay multiple diseases of aging and extend lifespan. In theory, such molecules could prevent dozens of diseases simultaneously, potentially extending healthy years of life. In this review, we discuss recent advances, controversies, opportunities, and challenges surrounding the development of SIRT1 activators, molecules with the potential to delay aging and age-related diseases. Sirtuins comprise a family of NAD⁺-dependent deacylases that are central to the body's response to diet and exercise. New studies indicate that both natural and synthetic sirtuin activating compounds (STACs) work via a common allosteric mechanism to stimulate sirtuin activity, thereby conferring broad health benefits in rodents, primates, and possibly humans. The fact that two-thirds of people in the USA who consume multiple dietary supplements consume resveratrol, a SIRT1 activator, underscores the importance of understanding the biochemical mechanism, physiological effects, and safety of STACs.
Collapse
Affiliation(s)
- Basil P Hubbard
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
234
|
Nguyen GTT, Gertz M, Steegborn C. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism. ACTA ACUST UNITED AC 2013; 20:1375-85. [PMID: 24211137 DOI: 10.1016/j.chembiol.2013.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
Sirtuins are protein deacetylases regulating aging processes and various physiological functions. Resveratrol, a polyphenol found in red wine, activates human Sirt1 and inhibits Sirt3, and it can mimic calorie restriction effects, such as lifespan extension in lower organisms. The mechanism of Sirtuin modulation by resveratrol is not well understood. We used 4'-bromo-resveratrol (5-(2-(4-hydroxyphenyl)vinyl)-1,3-benzenediol) to study Sirt1 and Sirt3 modulation. Despite its similarity to the Sirt1 activator resveratrol, the compound potently inhibited both, Sirt1 and Sirt3. Crystal structures of Sirt3 in complex with a fluorophore-labeled and with a native substrate peptide, respectively, in presence of 4'-bromo-resveratrol reveal two compound binding sites. Biochemical studies identify the internal site and substrate competition as the mechanism for inhibition, providing a drug target site, and homology modeling suggests that the second, allosteric site might indicate the site for Sirt1 activation.
Collapse
|
235
|
Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 2013; 25:66-72. [PMID: 24314867 DOI: 10.1016/j.jnutbio.2013.09.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/09/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Nicotinic acid (NA) and nicotinamide (NAM) are major forms of niacin and exert their physiological functions as precursors of nicotinamide adenine dinucleotide (NAD). Sirtuins, which are NAD-dependent deacetylases, regulate glucose and lipid metabolism and are implicated in the pathophysiology of aging, diabetes, and hepatic steatosis. The aim of this study was to investigate the effects of two NAD donors, NA and NAM, on glucose metabolism and the hepatic NAD-sirtuin pathway. The effects were investigated in OLETF rats, a rodent model of obesity and type 2 diabetes. OLETF rats were divided into five groups: (1) high fat (HF) diet, (2) HF diet and 10 mg NA/kg body weight (BW)/day (NA 10), (3) HF diet and 100 mg NA/kg BW/day (NA 100), (4) HF diet and 10 mg NAM/kg BW/day (NAM 10), and (5) HF diet and 100 mg NAM/kg BW/day (NAM 100). NA and NAM were delivered via drinking water for four weeks. NAM 100 treatment affected glucose control significantly, as shown by lower levels of accumulative area under the curve during oral glucose tolerance test, serum fasting glucose, serum fasting insulin, and homeostasis model assessment of insulin resistance, and higher levels of serum adiponectin. With regard to NAD-sirtuin pathway, intracellular nicotinamide phosphoribosyltransferase, NAD, the NAD/NADH ratio, Sirt1, 2, 3, and 6 mRNA expressions, and Sirt1 activity all increased in livers of NAM 100-treated rats. These alterations were accompanied by the increased levels of proliferator-activated receptor gamma, coactivator 1 alpha and mitochondrial DNA. The effect of NA treatment was less evident than that of NAM 100. These results demonstrate that NAM is more effective than NA on the regulation of glucose metabolism and the NAD-sirtuin pathway, which may relate to the altered mitochondrial biogenesis.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Davenport AM, Huber FM, Hoelz A. Structural and functional analysis of human SIRT1. J Mol Biol 2013; 426:526-41. [PMID: 24120939 DOI: 10.1016/j.jmb.2013.10.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023]
Abstract
SIRT1 is a NAD(+)-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD(+)-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD(+)-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.
Collapse
Affiliation(s)
- Andrew M Davenport
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
237
|
Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013; 18:239-250. [PMID: 23931755 PMCID: PMC3779647 DOI: 10.1016/j.cmet.2013.07.002] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/22/2013] [Accepted: 07/02/2013] [Indexed: 01/04/2023]
Abstract
Mitochondrial respiratory dysfunction is linked to the pathogenesis of multiple diseases, including heart failure, but the specific mechanisms for this link remain largely elusive. We modeled the impairment of mitochondrial respiration by the inactivation of the Ndufs4 gene, a protein critical for complex I assembly, in the mouse heart (cKO). Although complex I-supported respiration decreased by >40%, the cKO mice maintained normal cardiac function in vivo and high-energy phosphate content in isolated perfused hearts. However, the cKO mice developed accelerated heart failure after pressure overload or repeated pregnancy. Decreased NAD(+)/NADH ratio by complex I deficiency inhibited Sirt3 activity, leading to an increase in protein acetylation and sensitization of the permeability transition in mitochondria (mPTP). NAD(+) precursor supplementation to cKO mice partially normalized the NAD(+)/NADH ratio, protein acetylation, and mPTP sensitivity. These findings describe a mechanism connecting mitochondrial dysfunction to the susceptibility to diseases and propose a potential therapeutic target.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Chi Fung Lee
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Lorena Garcia-Menendez
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | | | - Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | | | | | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
238
|
Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci U S A 2013; 110:E2772-81. [PMID: 23840057 DOI: 10.1073/pnas.1303628110] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+), alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.
Collapse
|
239
|
Zhou X, Fan LX, Sweeney WE, Denu JM, Avner ED, Li X. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J Clin Invest 2013; 123:3084-98. [PMID: 23778143 DOI: 10.1172/jci64401] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here, we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide-dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α, which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore, treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys, Pkd1 conditional knockout postnatal kidneys, and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
240
|
Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 2013; 32:2321-35. [PMID: 23771057 PMCID: PMC3770337 DOI: 10.1038/emboj.2013.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/23/2013] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly. The demonstration that H3K14 deacetylation promotes recruitment of the Clr4 histone methyltransferase establishes a new function for the Sir2 deacetylase in de novo heterochromatin formation.
Collapse
|
241
|
Liu J, Wang Y, Li L, Zhou L, Wei H, Zhou Q, Liu J, Wang W, Ji L, Shan P, Wang Y, Yang Y, Jung SY, Zhang P, Wang C, Long W, Zhang B, Li X. Site-specific acetylation of the proteasome activator REGγ directs its heptameric structure and functions. J Biol Chem 2013; 288:16567-16578. [PMID: 23612972 PMCID: PMC3675592 DOI: 10.1074/jbc.m112.437129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/22/2013] [Indexed: 12/22/2022] Open
Abstract
The proteasome activator REGγ has been reported to promote degradation of steroid receptor coactivator-3 and cyclin-dependent kinase inhibitors p21, p16, and p19 in a ubiquitin- and ATP-independent manner. A recent comparative analysis of REGγ expression in mouse and human tissues reveals a unique pattern of REGγ in specific cell types, suggesting undisclosed functions and biological importance of this molecule. Despite the emerging progress made in REGγ-related studies, how REGγ function is regulated remains to be explored. In this study, we report for the first time that REGγ can be acetylated mostly on its lysine 195 (Lys-195) residue by CREB binding protein (CBP), which can be reversed by sirtuin 1 (SIRT1) in mammalian cells. Site-directed mutagenesis abrogated acetylation at Lys-195 and significantly attenuated the capability of REGγ to degrade its target substrates, p21 and hepatitis C virus core protein. Mechanistically, acetylation at Lys-195 is important for the interactions between REGγ monomers and ultimately influences REGγ heptamerization. Biological analysis of cells containing REGγ-WT or REGγ-K195R mutant indicates an impact of acetylation on REGγ-mediated regulation of cell proliferation and cell cycle progression. These findings reveal a previously unknown mechanism in the regulation of REGγ assembly and activity, suggesting a potential venue for the intervention of the ubiquitin-independent REGγ proteasome activity.
Collapse
Affiliation(s)
- Jiang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haibin Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qingxia Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Weicang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Ji
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanyuan Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Pei Zhang
- Department of Pathology, the Second Chengdu Municipal Hospital, Chengdu, Sichuan 610017, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiwen Long
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
242
|
Dölle C, Rack JGM, Ziegler M. NAD and ADP-ribose metabolism in mitochondria. FEBS J 2013; 280:3530-41. [PMID: 23617329 DOI: 10.1111/febs.12304] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolism is intimately connected to the universal coenzyme NAD. In addition to its role in redox reactions of energy transduction, NAD serves as substrate in regulatory reactions that lead to its degradation. Importantly, all types of the known NAD-consuming signalling reactions have been reported to take place in mitochondria. These reactions include the generation of second messengers, as well as post-translational protein modifications such as ADP-ribosylation and protein deacetylation. Therefore, the availability and redox state of NAD emerged as important factors in the regulation of mitochondrial metabolism. Molecular mechanisms and targets of mitochondrial NAD-dependent protein deacetylation and mono-ADP-ribosylation have been established, whereas poly-ADP-ribosylation and NAD-derived messenger generation in the organelles await in-depth characterization. In this review, we highlight the major NAD-dependent reactions occurring within mitochondria and describe their metabolic and regulatory functions. We also discuss the metabolic fates of the NAD-degradation products, nicotinamide and ADP-ribose, and how the mitochondrial NAD pool is restored.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
243
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
244
|
|
245
|
Disch JS, Evindar G, Chiu CH, Blum CA, Dai H, Jin L, Schuman E, Lind KE, Belyanskaya SL, Deng J, Coppo F, Aquilani L, Graybill TL, Cuozzo JW, Lavu S, Mao C, Vlasuk GP, Perni RB. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem 2013; 56:3666-79. [PMID: 23570514 DOI: 10.1021/jm400204k] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sirtuins SIRT1, SIRT2, and SIRT3 are NAD(+) dependent deacetylases that are considered potential targets for metabolic, inflammatory, oncologic, and neurodegenerative disorders. Encoded library technology (ELT) was used to affinity screen a 1.2 million heterocycle enriched library of DNA encoded small molecules, which identified pan-inhibitors of SIRT1/2/3 with nanomolar potency (e.g., 11c: IC50 = 3.6, 2.7, and 4.0 nM for SIRT1, SIRT2, and SIRT3, respectively). Subsequent SAR studies to improve physiochemical properties identified the potent drug like analogues 28 and 31. Crystallographic studies of 11c, 28, and 31 bound in the SIRT3 active site revealed that the common carboxamide binds in the nicotinamide C-pocket and the aliphatic portions of the inhibitors extend through the substrate channel, explaining the observable SAR. These pan SIRT1/2/3 inhibitors, representing a novel chemotype, are significantly more potent than currently available inhibitors, which makes them valuable tools for sirtuin research.
Collapse
Affiliation(s)
- Jeremy S Disch
- Sirtris a GSK Company, Cambridge, Massachusetts, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY, Guan KL. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 2013; 23:464-76. [PMID: 23523103 PMCID: PMC3885615 DOI: 10.1016/j.ccr.2013.02.005] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/07/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Tumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types. Here, we show that LDH-A is acetylated at lysine 5 (K5) and that this acetylation inhibits LDH-A activity. Furthermore, the K5-acetylated LDH-A is recognized by the HSC70 chaperone and delivered to lysosomes for degradation. Replacement of endogenous LDH-A with an acetylation mimetic mutant decreases cell proliferation and migration. Importantly, K5 acetylation of LDH-A is reduced in human pancreatic cancers. Our study reveals a mechanism of LDH-A upregulation in pancreatic cancers.
Collapse
Affiliation(s)
- Di Zhao
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Shao-Wu Zou
- Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People’s Hospital, Tong Ji University, Shanghai 200072, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Zhou
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Mo
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
| | - Ping Wang
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan-Hui Xu
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Bo Dong
- Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People’s Hospital, Tong Ji University, Shanghai 200072, China
| | - Yue Xiong
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| | - Qun-Ying Lei
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| | - Kun-Liang Guan
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037-0695, USA
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| |
Collapse
|
247
|
Lalla R, Donmez G. The role of sirtuins in Alzheimer's disease. Front Aging Neurosci 2013; 5:16. [PMID: 23576985 PMCID: PMC3620486 DOI: 10.3389/fnagi.2013.00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022] Open
Abstract
Sirtuins are highly conserved NAD+-dependent enzymes that were shown to have beneficial effects against age-related diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disorder associated with aging and the effects of sirtuins on AD have been investigated using different mouse and cell culture models. In most of these studies, it has been found that the overexpression of SIRT1 has protective effects against the AD phenotype. Therefore, designing therapeutics based on SIRT1 activity might be important to investigate treatment methods for this disease. In this review, we summarize the recent research regarding the functions of sirtuins and their potential roles in designing therapeutics for AD.
Collapse
Affiliation(s)
- Rakhee Lalla
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
248
|
Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Arch Biochem Biophys 2013; 535:187-96. [PMID: 23562377 DOI: 10.1016/j.abb.2013.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/20/2022]
Abstract
This study was initiated to determine whether the protective effect of nicotinamide (NAM) on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death was due to its role as an anti-oxidant, nicotinamide dinucleotide (NAD+) precursor, or inhibitor of NAD+-consuming enzymes such as poly (ADP-ribose) polymerase (PARP) or sirtuins. All anti-oxidants tested were not protective against HG/PA-induced INS-1 cell death. Direct supplementation of NAD+ or indirect supplementation through NAD+ salvage or de novo pathway did not protect the death. Knockdown of the NAD+ salvage pathway enzymes such as nicotinamide phosphoribosyl transferase (NAMPT) or nicotinamide mononucleotide adenyltransferase (NMNAT) did not augment death. On the other hand, pharmacological inhibition or knockdown of PARP did not affect death. However, sirtinol as an inhibitor of NAD-dependant deacetylase or knockdown of SIRT3 or SIRT4 significantly reduced the HG/PA-induced death. These data suggest that protective effect of NAM on beta cell glucolipotoxicity is attributed to its inhibitory activity on sirtuins.
Collapse
|
249
|
Lee AR, Kishigami S, Amano T, Matsumoto K, Wakayama T, Hosoi Y. Nicotinamide: a class III HDACi delays in vitro aging of mouse oocytes. J Reprod Dev 2013; 59:238-44. [PMID: 23474603 PMCID: PMC3934134 DOI: 10.1262/jrd.2012-171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Postovulatory mammalian oocyte developmental potential decreases with aging in
vivo and in vitro. Aging oocytes typically show cellular
fragmentation and chromosome scattering with an abnormally shaped spindle over time.
Previously, it was shown that histone acetylation in the mouse oocyte increased during
aging and that treatment with trichostatin A (TSA), an inhibitor for class I and II
histone deacetylases (HDACs), enhanced the acetylation, that is, aging. In this study, we
examined the effect of nicotinamide (NAM), an inhibitor for class III HDACs, on in
vitro aging of mouse oocytes as well as TSA. We found that treatment with NAM
significantly inhibited cellular fragmentation, spindle elongation and astral microtubules
up to 48 h of culture. Although presence of TSA partially inhibited cellular fragmentation
and spindle elongation up to 36 h of culture, treatment with TSA induced chromosome
scattering at 24 h of culture and more severe cellular fragmentation at 48 h of culture.
Further, we found that α-tubulin, a nonhistone protein, increased acetylation during
aging, suggesting that not only histone but nonhistone protein acetylation may also
increase with oocyte aging. Thus, these data indicate that protein acetylation is
abnormally regulated in aging oocytes, which are associated with a variety of aging
phenotypes, and that class I/II and class III HDACs may play distinct roles in aging
oocytes.
Collapse
Affiliation(s)
- Ah Reum Lee
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan
| | | | | | | | | | | |
Collapse
|
250
|
Sánchez-Carrón G, García-García MI, Zapata-Pérez R, Takami H, García-Carmona F, Sánchez-Ferrer Á. Biochemical and mutational analysis of a novel nicotinamidase from Oceanobacillus iheyensis HTE831. PLoS One 2013; 8:e56727. [PMID: 23451075 PMCID: PMC3581539 DOI: 10.1371/journal.pone.0056727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/14/2013] [Indexed: 12/30/2022] Open
Abstract
Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia, an important reaction in the NAD(+) salvage pathway. This paper reports a new nicotinamidase from the deep-sea extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831 (OiNIC). The enzyme was active towards nicotinamide and several analogues, including the prodrug pyrazinamide. The enzyme was more nicotinamidase (kcat/Km = 43.5 mM(-1)s(-1)) than pyrazinamidase (kcat/Km = 3.2 mM(-1)s(-1)). Mutational analysis was carried out on seven critical amino acids, confirming for the first time the importance of Cys133 and Phe68 residues for increasing pyrazinamidase activity 2.9- and 2.5-fold, respectively. In addition, the change in the fourth residue involved in the ion metal binding (Glu65) was detrimental to pyrazinamidase activity, decreasing it 6-fold. This residue was also involved in a new distinct structural motif DAHXXXDXXHPE described in this paper for Firmicutes nicotinamidases. Phylogenetic analysis revealed that OiNIC is the first nicotinamidase described for the order Bacillales.
Collapse
Affiliation(s)
- Guiomar Sánchez-Carrón
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
| | - María Inmaculada García-García
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
| | - Hideto Takami
- Microbial Genome Research Group, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Francisco García-Carmona
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|