201
|
Kumar A, Gupta P, Rana M, Chandra T, Dikshit M, Barthwal MK. Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res 2020; 61:351-364. [PMID: 31988148 DOI: 10.1194/jlr.ra119000382] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/22/2020] [Indexed: 01/10/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1-6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Priya Gupta
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
202
|
Gu L, Zhu Y, Lin X, Tan X, Lu B, Li Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene 2020; 39:2437-2449. [PMID: 31974474 DOI: 10.1038/s41388-020-1156-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Metabolic alteration for adaptation of the local environment has been recognized as a hallmark of cancer. GNPAT dysregulation has been implicated in hepatocellular carcinoma (HCC). However, the precise posttranslational regulation of GNPAT is still undiscovered. Here we show that ACAT1 is upregulated in response to extra palmitic acid (PA). ACAT1 acetylates GNPAT at K128, which represses TRIM21-mediated GNPAT ubiquitination and degradation. Conversely, GNPAT deacetylation by SIRT4 antagonizes ACAT1's function. GNPAT represses TRIM21-mediated FASN degradation and promotes lipid metabolism. Furthermore, shRNA-mediated ACAT1 ablation and acetylation deficiency of GNPAT repress lipid metabolism and tumor progression in xenograft and DEN/CCl4-induced HCC. Otherwise, ACAT1 inhibitor combination with sorafenib enormously retards tumor formation in mice. Collectively, we demonstrate that stabilization of FASN by ACAT1-mediated GNPAT acetylation plays a critical role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xingyu Tan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
203
|
van de Wetering C, Aboushousha R, Manuel AM, Chia SB, Erickson C, MacPherson MB, van der Velden JL, Anathy V, Dixon AE, Irvin CG, Poynter ME, van der Vliet A, Wouters EFM, Reynaert NL, Janssen-Heininger YMW. Pyruvate Kinase M2 Promotes Expression of Proinflammatory Mediators in House Dust Mite-Induced Allergic Airways Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:763-774. [PMID: 31924651 DOI: 10.4049/jimmunol.1901086] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls. Although the tetramer form of PKM2 converts phosphoenolpyruvate to pyruvate, the dimeric form of PKM2 has alternative, nonglycolysis functions as a transcriptional coactivator to enhance the transcription of several proinflammatory cytokines. In the current study, we examined the impact of PKM2 on the pathogenesis of house dust mite-induced allergic airways disease in C57BL/6NJ mice. We report, in this study, that activation of PKM2, using the small molecule activator, TEPP46, augmented PKM activity in lung tissues and attenuated airway eosinophils, mucus metaplasia, and subepithelial collagen. TEPP46 attenuated IL-1β-mediated airway inflammation and expression of proinflammatory mediators. Exposure to TEPP46 strongly decreased the IL-1β-mediated increases in thymic stromal lymphopoietin (TSLP) and GM-CSF in primary tracheal epithelial cells isolated from C57BL/6NJ mice. We also demonstrate that IL-1β-mediated increases in nuclear phospho-STAT3 were decreased by TEPP46. Finally, STAT3 inhibition attenuated the IL-1β-induced release of TSLP and GM-CSF, suggesting that the ability of PKM2 to phosphorylate STAT3 contributes to its proinflammatory function. Collectively, these results demonstrate that the glycolysis-inactive form of PKM2 plays a crucial role in the pathogenesis of allergic airways disease by increasing IL-1β-induced proinflammatory signaling, in part, through phosphorylation of STAT3.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405.,Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, the Netherlands; and
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Cuixia Erickson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Maximilian B MacPherson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Jos L van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Anne E Dixon
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Charles G Irvin
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405
| | - Emiel F M Wouters
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, the Netherlands; and
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, the Netherlands; and
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT 05405;
| |
Collapse
|
204
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
205
|
James AD, Richardson DA, Oh IW, Sritangos P, Attard T, Barrett L, Bruce JIE. Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2). Br J Cancer 2020; 122:266-278. [PMID: 31819190 PMCID: PMC7052184 DOI: 10.1038/s41416-019-0675-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has poor survival and treatment options. PDAC cells shift their metabolism towards glycolysis, which fuels the plasma membrane calcium pump (PMCA), thereby preventing Ca2+-dependent cell death. The ATP-generating pyruvate kinase-M2 (PKM2) is oncogenic and overexpressed in PDAC. This study investigated the PKM2-derived ATP supply to the PMCA as a potential therapeutic locus. METHODS PDAC cell growth, migration and death were assessed by using sulforhodamine-B/tetrazolium-based assays, gap closure assay and poly-ADP ribose polymerase (PARP1) cleavage, respectively. Cellular ATP and metabolism were assessed using luciferase/fluorescent-based assays and the Seahorse XFe96 analyzer, respectively. Cell surface biotinylation identified membrane-associated proteins. Fura-2 imaging was used to assess cytosolic Ca2+ overload and in situ Ca2+ clearance. PKM2 knockdown was achieved using siRNA. RESULTS The PKM2 inhibitor (shikonin) reduced PDAC cell proliferation, cell migration and induced cell death. This was due to inhibition of glycolysis, ATP depletion, inhibition of PMCA and cytotoxic Ca2+ overload. PKM2 associates with plasma membrane proteins providing a privileged ATP supply to the PMCA. PKM2 knockdown reduced PMCA activity and reduced the sensitivity of shikonin-induced cell death. CONCLUSIONS Cutting off the PKM2-derived ATP supply to the PMCA represents a novel therapeutic strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Andrew D James
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
- Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Daniel A Richardson
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - In-Whan Oh
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Pishyaporn Sritangos
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Thomas Attard
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Lisa Barrett
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Jason I E Bruce
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| |
Collapse
|
206
|
Arias E, Cuervo AM. Pros and Cons of Chaperone-Mediated Autophagy in Cancer Biology. Trends Endocrinol Metab 2020; 31:53-66. [PMID: 31699565 PMCID: PMC7020649 DOI: 10.1016/j.tem.2019.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Autophagy contributes to cellular quality control and energetics through lysosomal breakdown and recycling of essential cellular components. Chaperone-mediated autophagy (CMA) adds to these autophagic functions the ability to timely and selectively degrade single tagged proteins to terminate their cellular function and, in this way, participate in the regulation of multiple cellular processes. Many cancer cells upregulate CMA for protumorigenic and prosurvival purposes. However, growing evidence supports a physiological role for CMA in limiting malignant transformation. Understanding the mechanisms behind this functional switch of CMA from antioncogenic to pro-oncogenic is fundamental for targeting CMA in cancer treatment. We summarize current understanding of CMA functions in cancer biology and discuss the basis for its context-dependent dual role in oncogenesis.
Collapse
Affiliation(s)
- Esperanza Arias
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ana Maria Cuervo
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
207
|
Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2020; 39:560-573. [PMID: 31501520 PMCID: PMC7107572 DOI: 10.1038/s41388-019-0975-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/12/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023]
Abstract
Cancer cells are known to adopt aerobic glycolysis in order to fuel tumor growth, but the molecular basis of this metabolic shift remains largely undefined. O-GlcNAcase (OGA) is an enzyme harboring O-linked β-N-acetylglucosamine (O-GlcNAc) hydrolase and cryptic lysine acetyltransferase activities. Here, we report that OGA is upregulated in a wide range of human cancers and drives aerobic glycolysis and tumor growth by inhibiting pyruvate kinase M2 (PKM2). PKM2 is dynamically O-GlcNAcylated in response to changes in glucose availability. Under high glucose conditions, PKM2 is a target of OGA-associated acetyltransferase activity, which facilitates O-GlcNAcylation of PKM2 by O-GlcNAc transferase (OGT). O-GlcNAcylation inhibits PKM2 catalytic activity and thereby promotes aerobic glycolysis and tumor growth. These studies define a causative role for OGA in tumor progression and reveal PKM2 O-GlcNAcylation as a metabolic rheostat that mediates exquisite control of aerobic glycolysis.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jeong-Sang Lee
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Jinfeng Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bichen Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Qunxiang Ong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Weiming Ni
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Philip Lee
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Raimund I Herzog
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Susan Kaech
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Weiping Han
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Robert S Sherwin
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
208
|
Autophagy in the Immunosuppressive Perivascular Microenvironment of Glioblastoma. Cancers (Basel) 2019; 12:cancers12010102. [PMID: 31906065 PMCID: PMC7016956 DOI: 10.3390/cancers12010102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) has been shown to up-regulate autophagy with anti- or pro-oncogenic effects. Recently, our group has shown how GB cells aberrantly up-regulate chaperone-mediated autophagy (CMA) in pericytes of peritumoral areas to modulate their immune function through cell-cell interaction and in the tumor’s own benefit. Thus, to understand GB progression, the effect that GB cells could have on autophagy of immune cells that surround the tumor needs to be deeply explored. In this review, we summarize all the latest evidence of several molecular and cellular immunosuppressive mechanisms in the perivascular tumor microenvironment. This immunosuppression has been reported to facilitate GB progression and may be differently modulated by several types of autophagy as a critical point to be considered for therapeutic interventions.
Collapse
|
209
|
Xu D, Liang J, Lin J, Yu C. PKM2: A Potential Regulator of Rheumatoid Arthritis via Glycolytic and Non-Glycolytic Pathways. Front Immunol 2019; 10:2919. [PMID: 31921178 PMCID: PMC6930793 DOI: 10.3389/fimmu.2019.02919] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Immunometabolism provides a new perspective on the pathogenesis of rheumatoid arthritis (RA). In recent years, there have been investigations focusing on the role of intracellular glucose metabolism in the pathogenesis of RA. Previous studies have shown that glycolysis of synovial tissue is increased in RA patients, while glycolysis inhibitors can significantly inhibit synovitis. Pyruvate kinase (PK) is a key enzyme in glycolysis, catalyzing the final rate-limiting step in the process. An isoform of PK, PKM2, provides favorable conditions for the survival of tumor cells via its glycolytic or non-glycolytic functions and has become a potential therapeutic target in tumors. RA synovium has the characteristic of tumor-like growth, and, moreover, increased expression of PKM2 was identified in the synovial tissue of RA patients in recent studies, indicating the underlying role of PKM2 in RA. PKM2 has potential value as a new therapeutic target or biomarker for RA, but its exact role in RA remains unclear. In this review, the properties of PKM2 and existing research concerning PKM2 and RA are thoroughly reviewed and summarized, and the possible role and mechanism of PKM2 in RA are discussed.
Collapse
Affiliation(s)
- Danyi Xu
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Liang
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
210
|
ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett 2019; 471:125-134. [PMID: 31830561 DOI: 10.1016/j.canlet.2019.12.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
ACLY links energy metabolism provided by catabolic pathways to biosynthesis. ACLY, which has been found to be overexpressed in many cancers, converts citrate into acetyl-CoA and OAA. The first of these molecules supports protein acetylation, in particular that of histone, and de novo lipid synthesis, and the last one sustains the production of aspartate (required for nucleotide and polyamine synthesis) and the regeneration of NADPH,H+(consumed in redox reaction and biosynthesis). ACLY transcription is promoted by SREBP1, its activity is stabilized by acetylation and promoted by AKT phosphorylation (stimulated by growth factors and glucose abundance). ACLY plays a pivotal role in cancer metabolism through the potential deprivation of cytosolic citrate, a process promoting glycolysis through the enhancement of the activities of PFK 1 and 2 with concomitant activation of oncogenic drivers such as PI3K/AKT which activate ACLY and the Warburg effect in a feed-back loop. Pending the development of specific inhibitors and tailored methods for identifying which specific metabolism is involved in the development of each tumor, ACLY could be targeted by inhibitors such as hydroxycitrate and bempedoic acid. The administration of citrate at high level mimics a strong inhibition of ACLY and could be tested to strengthen the effects of current therapies.
Collapse
|
211
|
Sousa BC, Ahmed T, Dann WL, Ashman J, Guy A, Durand T, Pitt AR, Spickett CM. Short-chain lipid peroxidation products form covalent adducts with pyruvate kinase and inhibit its activity in vitro and in breast cancer cells. Free Radic Biol Med 2019; 144:223-233. [PMID: 31173844 DOI: 10.1016/j.freeradbiomed.2019.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
Pyruvate kinase catalyses the last step in glycolysis and has been suggested to contribute to the regulation of aerobic glycolysis in cancer cells. It can be inhibited by oxidation of cysteine residues in vitro and in vivo, which is relevant to the more pro-oxidant state in cancer and proliferating tissues. These conditions also favour lipid peroxidation and the formation of electrophilic fragmentation products, including short-chain aldehydes that can covalently modify proteins. However, as yet few studies have investigated their interactions with pyruvate kinase, so we investigated the effects of three different aldehydes, acrolein, malondialdehyde and 4-hydroxy-2(E)-hexenal (HHE), on the structure and activity of the enzyme. Analysis by LC-MS/MS showed unique modification profiles for each aldehyde, but Cys152, Cys423 and Cys474 were the residues most susceptible to electrophilic modification. Analysis of enzymatic activity under these conditions showed that acrolein was the strongest inhibitor, and at incubation times longer than 2 h, pathophysiological concentrations induced significant effects. Treatment of MCF-7 cells with the aldehydes caused similar losses of pyruvate kinase activity to those observed in vitro, and at lower concentrations than those required to cause cell death, with time and dose-dependent effects; acrolein adducts on Cys152 and Cys358 were detected. Cys358 and Cys474 are located at or near the allosteric or active sites, and formation of adducts on these residues probably contributes to loss of activity at low treatment concentrations. This study provides the first detailed analysis of the structure-activity relationship of C3 and C6 aldehydes with pyruvate kinase, and suggests that reactive short-chain aldehydes generated in diseases with an oxidative aetiology or from environmental exposure such as smoking could be involved in the metabolic alterations observed in cancer cells, through alteration of pyruvate kinase activity.
Collapse
Affiliation(s)
- Bebiana C Sousa
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Tanzim Ahmed
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - William L Dann
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Jed Ashman
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK.
| |
Collapse
|
212
|
Li, J, Wang, T, Xia J, Yao W, Huang F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 2019; 33:11640-11654. [PMID: 31370704 PMCID: PMC6902721 DOI: 10.1096/fj.201901175r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Impaired glycolysis has pathologic effects on the occurrence and progression of liver diseases, and it appears that glycolysis is increased to different degrees in different liver diseases. As an important post-translational modification, reversible lysine acetylation regulates almost all cellular processes, including glycolysis. Lysine acetylation can occur enzymatically with acetyltransferases or nonenzymatically with acetyl-coenzyme A. Accompanied by the progression of liver diseases, there seems to be a temporal and spatial variation between enzymatic and nonenzymatic acetylations in the regulation of glycolysis. Here, we summarize the most recent findings on the functions and targets of acetylation in controlling glycolysis in the different stages of liver diseases. In addition, we discuss the differences and causes between enzymatic and nonenzymatic acetylations in regulating glycolysis throughout the progression of liver diseases. Then, we review these new discoveries to provide the potential implications of these findings for therapeutic interventions in liver diseases.-Li, J., Wang, T., Xia, J., Yao, W., Huang, F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases.
Collapse
Affiliation(s)
- Juan Li,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxin Wang,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
213
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
214
|
Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells 2019; 8:E1260. [PMID: 31623164 PMCID: PMC6830112 DOI: 10.3390/cells8101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) ensures the selective degradation of cellular proteins endowed with a KFERQ-like motif by lysosomes. It is estimated that 30% of all cellular proteins can be directed to the lysosome for CMA degradation, but only a few substrates have been formally identified so far. Mechanistically, the KFERQ-like motifs present in substrate proteins are recognized by the molecular chaperone Hsc70c (Heat shock cognate 71 kDa protein cytosolic), also known as HSPA8, and directed to LAMP2A, which acts as the CMA receptor at the lysosomal surface. Following linearization, the protein substrate is next transported to the lumen of the lysosomes, where it is degraded by resident proteases, mainly cathepsins and eventually recycled to sustain cellular homeostasis. CMA is induced by different stress conditions, including energy deprivation that also activates macro-autophagy (MA), that may make it difficult to decipher the relative impact of both pathways on cellular homeostasis. Besides common inducing triggers, CMA and MA might be induced as compensatory mechanisms when either mechanism is altered, as it is the often the case in different pathological settings. Therefore, CMA activation can compensate for alterations of MA and vice versa. In this context, these compensatory mechanisms, when occurring, may be targeted for therapeutic purposes. Both processes have received particular attention from scientists and clinicians, since modulation of MA and CMA may have a profound impact on cellular proteostasis, metabolism, death, differentiation, and survival and, as such, could be targeted for therapeutic intervention in degenerative and immune diseases, as well as in cancer, including hematopoietic malignancies. The role of MA in cancer initiation and progression is now well established, but whether and how CMA is involved in tumorigenesis has been only sparsely explored. In the present review, we encompass the description of the mechanisms involved in CMA, its function in the physiology and pathogenesis of hematopoietic cells, its emerging role in cancer initiation and development, and, finally, the potential therapeutic opportunity to target CMA or CMA-mediated compensatory mechanisms in hematological malignancies.
Collapse
Affiliation(s)
- Guillaume Robert
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| | - Arnaud Jacquel
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France
| | - Patrick Auberger
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| |
Collapse
|
215
|
Ma C, Zu X, Liu K, Bode AM, Dong Z, Liu Z, Kim DJ. Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-kB Activity in Triple-Negative Breast Cancer Cells. Mol Cells 2019; 42:628-636. [PMID: 31564074 PMCID: PMC6776161 DOI: 10.14348/molcells.2019.0038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/01/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Altered genetic features in cancer cells lead to a high rate of aerobic glycolysis and metabolic reprogramming that is essential for increased cancer cell viability and rapid proliferation. Pyruvate kinase muscle (PKM) is a rate-limiting enzyme in the final step of glycolysis. Herein, we report that PKM is a potential therapeutic target in triple-negative breast cancer (TNBC) cells. We found that PKM1 or PKM2 is highly expressed in TNBC tissues or cells. Knockdown of PKM significantly suppressed cell proliferation and migration, and strongly reduced S phase and induced G2 phase cell cycle arrest by reducing phosphorylation of the CDC2 protein in TNBC cells. Additionally, knockdown of PKM significantly suppressed NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity by reducing the phosphorylation of p65 at serine 536, and also decreased the expression of NF-kB target genes. Taken together, PKM is a potential target that may have therapeutic implications for TNBC cells.
Collapse
Affiliation(s)
- Chaobing Ma
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450008,
China
| | - Xueyin Zu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008,
China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450008,
China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008,
China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450008,
China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450008,
China
- International Joint Research Center of Cancer Chemoprevention, Zhengzhou 450008,
China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912,
USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912,
USA
| | - Zhenzhen Liu
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450008,
China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008,
China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450008,
China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450008,
China
| |
Collapse
|
216
|
Shi X, You L, Luo RY. Glycolytic reprogramming in cancer cells: PKM2 dimer predominance induced by pulsatile PFK-1 activity. Phys Biol 2019; 16:066007. [PMID: 31469100 DOI: 10.1088/1478-3975/ab3f5a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glycolytic enzyme pyruvate kinase M2 (PKM2) exists in both catalytically inactive dimeric and active tetrameric forms. In cancer cells, PKM2 dimer predominance contributes to tumor growth by triggering glycolytic reprogramming. However, the mechanism that promotes PKM2 dimer predominance over tetramer in cancer cells remains elusive. Here, we show that pulsatile phosphofructokinase (PFK-1) activity results in PKM2 dimer predominance. Mathematical simulations predict that pulsatile PFK-1 activity prevents the formation of PKM2 tetramer even under high levels of fructose-1,6-bisphosphate (FBP), a PKM2 tetramer-promoting metabolite produced by PFK-1. We experimentally confirm these predictions at the single-molecule level by providing evidence for pulsatile PFK-1 activity-induced synchronized dissociation of PKM2 tetramers and the subsequent accumulation of PKM2 dimers under high levels of FBP in HeLa cells. Moreover, we show that pulsatile PFK-1 activity-induced PKM2 dimer predominance also controls cell proliferation. Thus, our study reveals the significance of pulsatile PFK-1 activity in cancer cell metabolism.
Collapse
Affiliation(s)
- Xiangguang Shi
- State Key Laboratory of Genetic Engineering and Ministry of Education Key, Laboratory of Contemporary Anthropology. School of Life Sciences and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, People's Republic of China
| | | | | |
Collapse
|
217
|
Zhou B, Shen Z, Liu Y, Wang C, Shen QW. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chem 2019; 293:396-407. [DOI: 10.1016/j.foodchem.2019.04.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
|
218
|
Abstract
Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective - a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
219
|
Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging (Albany NY) 2019; 10:1053-1072. [PMID: 29769432 PMCID: PMC5990394 DOI: 10.18632/aging.101447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Diapause in insects is akin to dauer in Caenorhabditis elegans and hibernation in vertebrates. Diapause causes a profound extension of lifespan by low metabolic activity. However, the detailed regulatory mechanisms for low metabolic activity remain unknown. Here, we showed that low pyruvate levels are present in the brains of diapause-destined pupae of the cotton bollworm Helicoverpa armigera, and three enzymes pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and phosphoglycerate mutase (PGAM) are closely correlated with pyruvate homeostasis. Notably, Sirt2 can deacetylate the three enzymes to increase their activity in vitro. Thus, low Sirt2 expression in the brains of diapause individuals decreases PK and PEPCK protein levels as well as PGAM activity, resulting in low pyruvate levels and low tricarboxylic acid cycle activity and eventually inducing diapause initiation by low metabolic activity. These findings suggest that pyruvate is a checkpoint for development or lifespan extension, and Sirt2 is a negative regulator to extend lifespan in insects.
Collapse
|
220
|
Effect of pyruvate kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anticancer Drugs 2019; 29:616-627. [PMID: 29782350 DOI: 10.1097/cad.0000000000000624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aims to explore the effect and mechanism of pyruvate kinase M2 (PKM2) on chemotherapy resistance of estrogen receptor-positive breast cancer (ER BC) by regulating aerobic glycolysis. The expression of PKM2 in ER BC MCF-7 cells, T47D cells and MCF-7/ADR cells (which are subject to adriamycin/ADR induction) were determined by quantitative real-time PCR and western blot. MCF-7/ADR (M/A) cells were grouped into blank group (M/A), negative group (M/A+NC), low expression of PKM2 group (M/A+si-PKM2 group), overexpression of PKM2 group (M/A+PKM2 group) and glycolysis inhibition group (M/A+PKM2+2-DG group). Quantitative real-time PCR and western blot were applied to measure the expressions of PKM2, multidrug resistance, and glutathione-S-transferase π. Glucose and lactic acid kit was used to detect the amount of glucose uptake and lactic production. Cell variability, clone formation ability, and cell apoptosis were respectively measured by MTT, clone formation assay, and flow cytometry. Transwell assay and scratch assay were applied for cell invasion and migration ability. By overexpressing PKM2 in MCF-7 and T47D cells and using 2-DG, the effect on sensitivity of adriamycin amycin was explored. MCF-7/ADR cells have both elevated mRNA and protein expressions of PKM2 when compared with MCF-7 cells (both P<0.05). The cell activity of the M/A+si-PKM2+ADR group was notably lower than that in the M/A+ADR group and M/A+NC+ADR group (both P<0.05). In the M/A+si-PKM2 group, expressions of PKM2, multidrug resistance, and glutathione-S-transferase π, along with the amount of glucose uptake and lactic production, as well as cell variability, clone formation ability, and cell invasion and migration ability were inhibited, whereas cell apoptosis was increased in comparison with the M/A group and M/A+NC group (all P<0.05). On comparing with both the M/A group and the M/A+NC group, the M/A+si-PKM2 group displayed contrary tendency with the M/A+PKM2 group. The M/A+PKM2+2-DG group had elevated PKM2 expression compared with the M/A group and the M/A+NC group (all P<0.05). In MCF-7 and T47D cells with overexpression of PKM2, the sensitivity to adriamycin amycin, and cell apoptosis were suppressed, whereas the clone formation, invasion, and migration ability were enhanced. After 2-DG, the sensitivity on MCF-7 and T47D cells was enhanced while clone formation, invasion, migration and cell apoptosis rate were decreased (all P<0.05). PKM2 enhances chemotherapy resistance on ER BC by promoting aerobic glycolysis.
Collapse
|
221
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
222
|
Jiang S, Liu Y, Shen Z, Zhou B, Shen QW. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J Proteomics 2019; 205:103412. [PMID: 31176012 DOI: 10.1016/j.jprot.2019.103412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Protein lysine acetylation is an post-translational modification that regulates gene expression, metabolism, cell signaling, and diseases, but its implication in the postmortem (PM) meat quality development is basically unclear. In the present study, a quantitative proteomic analysis was conducted to profile acetylome in porcine muscle within 24 h PM. In total 595 acetylation sites assigned to 163 proteins were identified in porcine muscle, of which 460 sites distributing to 110 proteins significantly changed in acetylation levels in the conversion of muscle to meat. The dynamic acetylation/deacetylaion of muscle proteins was closely associated with critical chemical-biophysical changes in PM muscle. Bioinformatic analysis revealed that protein lysine acetylation likely regulated postmortem meat quality development by regulating glycolysis and muscle pH, cell stress reponse and apoptosis, muscle contraction and rigor mortis, calcium signaling and proteolysis, IMP synthesis and meat flavor development, and even the stability of pigment proteins and meat color. This study provided the first overview of protein lysine acetylation in PM muscle and revealed its significance in the conversion of muscle to meat. Future exploration of the exact role of protein lysine acetylation at specific sites will further our understanding regarding the underlying mechanisms and be helpful for meat quality control. SIGNIFICANCE: This is the first analysis of acetylome in farm animal and postmortem muscle. Our data showed that the dynamic acetylation/deacetylation of muscle proteins was closely related to the postmortem changes of muscle that affect the final quality of raw meat. Proteins related to glucose metabolism and muscle contraction were the two largest clusters of acetylproteins identified in postmortem porcine muscle. Networks of acetylproteins involved in apoptosis, calcium signaling and IMP synthesis were identified in postmortem porcine muscle at the same time. Our results revealed that protein lysine acetylation regulated the conversion of muscle to meat. It likely regulated meat quality development by regulating postmortem glycolysis, mitochondrion initiated cell apoptosis, calcium signaling, rigor mortis, meat flavor compound sysnthesis and meat tenderization. Our study broadened our understanding of the biochemistry regulating the postmortem conversion of muscle to meat and final meat quality development, which may be helpful for future meat quality control.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | | | - Bing Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
223
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
224
|
Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol 2019; 17:e3000301. [PMID: 31150375 PMCID: PMC6561683 DOI: 10.1371/journal.pbio.3000301] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/12/2019] [Accepted: 05/15/2019] [Indexed: 01/15/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) contributes to the lysosomal degradation of a selective subset of proteins. Selectivity lies in the chaperone heat shock cognate 71 kDa protein (HSC70) recognizing a pentapeptide motif (KFERQ-like motif) in the protein sequence essential for subsequent targeting and degradation of CMA substrates in lysosomes. Interest in CMA is growing due to its recently identified regulatory roles in metabolism, differentiation, cell cycle, and its malfunctioning in aging and conditions such as cancer, neurodegeneration, or diabetes. Identification of the subset of the proteome amenable to CMA degradation could further expand our understanding of the pathophysiological relevance of this form of autophagy. To that effect, we have performed an in silico screen for KFERQ-like motifs across proteomes of several species. We have found that KFERQ-like motifs are more frequently located in solvent-exposed regions of proteins, and that the position of acidic and hydrophobic residues in the motif plays the most important role in motif construction. Cross-species comparison of proteomes revealed higher motif conservation in CMA-proficient species. The tools developed in this work have also allowed us to analyze the enrichment of motif-containing proteins in biological processes on an unprecedented scale and discover a previously unknown association between the type and combination of KFERQ-like motifs in proteins and their participation in specific biological processes. To facilitate further analysis by the scientific community, we have developed a free web-based resource (KFERQ finder) for direct identification of KFERQ-like motifs in any protein sequence. This resource will contribute to accelerating understanding of the physiological relevance of CMA. Cells use a sophisticated code to sort proteins that must be retained for reuse from those that need to be sent to lysosomes for degradation and recycling. These authors develop tools to identify the selective lysosomal degradation motifs and use them to start breaking this code.
Collapse
|
225
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
226
|
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab 2019; 29:803-826. [PMID: 30943392 PMCID: PMC6450419 DOI: 10.1016/j.cmet.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved lysosome- or vacuole-dependent catabolic pathway in eukaryotes. Autophagy functions basally for cellular quality control and is induced to act as an alternative source of basic metabolites during nutrient deprivation. These functions of autophagy are intimately connected to the regulation of metabolism, and the metabolic status of the cell in turn controls the nature and extent of autophagic induction. Here, we highlight the co-regulation of autophagy and metabolism with a special focus on selective autophagy that, along with bulk autophagy, plays a central role in regulating and rewiring metabolic circuits. We outline the metabolic signals that activate these pathways, the mechanisms involved, and the downstream effects and implications while recognizing yet unanswered questions. We also discuss the role of autophagy in the development and maintenance of adipose tissue, an emerging player in systemic metabolic homeostasis, and describe what is currently known about the complex relationship between autophagy and cancer.
Collapse
|
227
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
228
|
Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy 2019; 15:1558-1571. [PMID: 30821613 PMCID: PMC6693453 DOI: 10.1080/15548627.2019.1586255] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of select soluble proteins. Nearly one-third of the soluble proteins are predicted to be recognized by this pathway, yet only a minor fraction of this proteome has been identified as CMA substrates in cancer cells. Here, we undertook a quantitative multiplex mass spectrometry approach to study the proteome of isolated lysosomes in cancer cells during CMA-activated conditions. By integrating bioinformatics analyses, we identified and categorized proteins of multiple cellular pathways that were specifically targeted by CMA. Beyond verifying metabolic pathways, we show that multiple components involved in select biological processes, including cellular translation, was specifically targeted for degradation by CMA. In particular, several proteins of the translation initiation complex were identified as bona fide CMA substrates in multiple cancer cell lines of distinct origin and we show that CMA suppresses cellular translation. We further show that the identified CMA substrates display high expression in multiple primary cancers compared to their normal counterparts. Combined, these findings uncover cellular processes affected by CMA and reveal a new role for CMA in the control of translation in cancer cells. Abbreviations: 6-AN: 6-aminonicotinamide; ACTB: actin beta; AR7: atypical retinoid 7; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; CTS: cathepsins; DDX3X: DEAD-box helicase 3 X-linked; EEF2: eukaryotic translation elongation factor 2; EIF4A1: eukaryotic translation initiation factor 4A1; EIF4H: eukaryotic translation initiation factor 4H; GEO: Gene Expression Omnibus; GO: Gene Ontology; GSEA: gene set enrichment analysis; HK2: hexokinase 2; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; LAMP: lysosomal-associated membrane protein; LDHA: lactate dehydrogenase A; NES: normalized enrichment score; NFKBIA: NFKB inhibitor alpha; PCA: principle component analysis; PQ: paraquat; S.D.: standard deviation; SUnSET: surface sensing of translation; TMT: tandem mass tags; TOMM40/TOM40: translocase of outer mitochondrial membrane 40.
Collapse
Affiliation(s)
- Yuqing Hao
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Merve Kacal
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Amanda Tomie Ouchida
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Boxi Zhang
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Erik Norberg
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | | |
Collapse
|
229
|
Chen TJ, Wang HJ, Liu JS, Cheng HH, Hsu SC, Wu MC, Lu CH, Wu YF, Wu JW, Liu YY, Kung HJ, Wang WC. Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation. Commun Biol 2019; 2:105. [PMID: 30911680 PMCID: PMC6420622 DOI: 10.1038/s42003-019-0343-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention.
Collapse
Affiliation(s)
- Tsan-Jan Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053 Taiwan
| | - Jai-Shin Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Sheng-Chieh Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053 Taiwan
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Meng-Chen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Chien-Hung Lu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Yu-Fang Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Jing-Wen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Ying-Yuan Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053 Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817 USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
230
|
Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis 2019; 10:170. [PMID: 30787272 PMCID: PMC6382874 DOI: 10.1038/s41419-018-1271-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023]
Abstract
Tumor growth and progression is characteristically associated with the synergistic effects of uncontrolled cellular proliferation and cell survival under stress. Pyruvate kinase M2 (PKM2) contributes to both of these effects. However, the specific mechanism by which PKM2 promotes uncontrolled proliferation or cell survival under stress in different nutritional environments is unclear. We show that succinylation mediated mitochondrial translocation of PKM2 under glucose starvation plays a role in switching the cellular machinery from proliferation to cell survival mode and vice versa. Mitochondrial PKM2 inhibits ubiquitination-mediated degradation of voltage-dependent anion channel 3 (VDAC3) and increases mitochondrial permeability to generate more ATP for cell survival under nutritional depletion. We found there is a positive correlation of upregulation of mitochondrial PKM2 and upregulation of VDAC3 in human colon cancer. This shows the mechanisms identified in this study in fact play a role in neoplastic biology. We therefore developed a small molecule designated compound 8 that blocks mitochondrial translocation of PKM2 and inhibits tumor development. Our data suggest that blocking PKM2 mitochondrial function with a small molecule inhibitor has potential for cancer treatment.
Collapse
|
231
|
Saleme B, Gurtu V, Zhang Y, Kinnaird A, Boukouris AE, Gopal K, Ussher JR, Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Sci Transl Med 2019; 11:eaau8866. [PMID: 30728290 DOI: 10.1126/scitranslmed.aau8866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cardiotoxicity (CIC) is a common clinical problem that compromises effective anticancer therapies. Many chemotherapeutics (including anthracyclines, such as doxorubicin) induce the proapoptotic transcription factor p53 in the tumor and nonspecifically in the heart, promoting heart failure. Although inhibition of p53 shows benefit in preclinical heart failure models, it would not be an attractive adjuvant therapy for CIC, because it would prevent tumor regression. A p53-targeting therapy that would decrease chemotherapy-induced apoptosis in the myocardium and, at the same time, enhance apoptosis in the tumor would be ideal. Here, we propose that differences in oxygen tension between the myocardium and the tumor could provide a platform for redox-dependent tissue-specific therapies. We show by coimmunoprecipitation and mass spectrometry that the redox-regulated pyruvate kinase muscle 2 (PKM2) directly binds with p53 and that the redox status of cysteine-423 of tetrameric (but not monomeric) PKM2 is critical for the differential regulation of p53 transcriptional activity. Tetrameric PKM2 suppresses p53 transcriptional activity and apoptosis in a high oxidation state but enhances them in a low oxidation one. We show that the oxidation state (along with cysteine-423 oxidation) is higher in the heart compared to the tumor of the same animal. Treatment with TEPP-46 (a compound that stabilizes tetrameric PKM2) suppressed doxorubicin-induced cardiomyocyte apoptosis, preventing cardiac dysfunction, but enhanced cancer cell apoptosis and tumor regression in the same animals in lung cancer models. Thus, our work suggests that redox-dependent differences in common proteins expressed in the myocardium and tumor can be exploited therapeutically for tissue selectivity in CIC.
Collapse
Affiliation(s)
- Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Vikram Gurtu
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Adam Kinnaird
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta T6G 1Z1, Canada
| | - Aristeidis E Boukouris
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| |
Collapse
|
232
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
233
|
Zhang S, Hu B, You Y, Yang Z, Liu L, Tang H, Bao W, Guan Y, Shen X. Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21 Cip1/WAF1. Cancer Lett 2019; 419:116-127. [PMID: 29355659 DOI: 10.1016/j.canlet.2018.01.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
Chaperone-mediated autophagy (CMA) characterized by the selective degradation of target proteins has been linked with tumorigenesis in recent years. Here, we explored the function of sorting nexin 10 (SNX10), a protein involved in maintaining endosome/lysosome homeostasis, in mediating CMA activity and its impact on the progression of mouse inflammation-driven colorectal cancer. Our results revealed that SNX10 deficiency increased the activation of CMA by preventing the degradation of lysosomal LAMP-2A. In SNX10 KO cells, we disclosed that p21Cip1/WAF1, a master effector in various tumor suppressor pathways, is a substrate of CMA, and decrease of p21Cip1/WAF1 caused by SNX10-mediated CMA activation contributes to HCT116 cell proliferation and survival. Moreover, we found that SNX10 KO promoted tumorigenesis in the mouse colorectum which could be restored by SNX10 over-expression. Furthermore, SNX10 was remarkably down-regulated in human CRC tissues which showed the increased activity of CMA and decreased expression of p21Cip1/WAF1. These findings suggest that SNX10 acts as a tumor suppressor in the mouse colorectum and drives inflammation-associated colorectal cancer by a chaperone-mediated autophagy mechanism.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Huanhuan Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yunyun Guan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
234
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
235
|
Yang Q, Wang R, Zhu L. Chaperone-Mediated Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:435-452. [DOI: 10.1007/978-981-15-0602-4_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
236
|
Abstract
Autophagy is a lysosome-dependent catabolic process. Both extra- and intra-cellular components are engulfed in autophagic vacuoles and degraded to simple molecules, such as monosaccharides, fatty acids and amino acids. Then, these molecules can be further used to produce ATP through catabolic reactions and/or provide building blocks for the synthesis of essential proteins. Therefore, we consider autophagy a critical and fine-tuned process in maintaining energy homeostasis. The complicated relationships between autophagy and energy metabolism have raised broad interest and have been extensively studied. In this chapter, we summarize the relationships enabling autophagy to control or modulate energy metabolism and allowing metabolic pathways to regulate autophagy. Specifically, we review the correlations between autophagy and energy homeostasis in terms of oxidative phosphorylation, reactive oxygen species in mitochondria, glycolysis, metabolism of glycogen and protein, and so on. An understanding of the role of autophagy in energy homeostasis could help us better appreciate how autophagy determines cell fate under stressful conditions or pathological processes.
Collapse
|
237
|
Wang HJ, Pochampalli M, Wang LY, Zou JX, Li PS, Hsu SC, Wang BJ, Huang SH, Yang P, Yang JC, Chu CY, Hsieh CL, Sung SY, Li CF, Tepper CG, Ann DK, Gao AC, Evans CP, Izumiya Y, Chuu CP, Wang WC, Chen HW, Kung HJ. KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene 2019; 38:17-32. [PMID: 30072740 PMCID: PMC6755995 DOI: 10.1038/s41388-018-0414-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/19/2018] [Accepted: 06/21/2018] [Indexed: 01/05/2023]
Abstract
During the evolution into castration or therapy resistance, prostate cancer cells reprogram the androgen responses to cope with the diminishing level of androgens, and undergo metabolic adaption to the nutritionally deprived and hypoxia conditions. AR (androgen receptor) and PKM2 (pyruvate kinase M2) have key roles in these processes. We report in this study, KDM8/JMJD5, a histone lysine demethylase/dioxygnase, exhibits a novel property as a dual coactivator of AR and PKM2 and as such, it is a potent inducer of castration and therapy resistance. Previously, we showed that KDM8 is involved in the regulation of cell cycle and tumor metabolism in breast cancer cells. Its role in prostate cancer has not been explored. Here, we show that KDM8's oncogenic properties in prostate cancer come from its direct interaction (1) with AR to affect androgen response and (2) with PKM2 to regulate tumor metabolism. The interaction with AR leads to the elevated expression of androgen response genes in androgen-deprived conditions. They include ANCCA/ATAD2 and EZH2, which are directly targeted by KDM8 and involved in sustaining the survival of the cells under hormone-deprived conditions. Notably, in enzalutamide-resistant cells, the expressions of both KDM8 and EZH2 are further elevated, so are neuroendocrine markers. Consequently, EZH2 inhibitors or KDM8 knockdown both resensitize the cells toward enzalutamide. In the cytosol, KDM8 associates with PKM2, the gatekeeper of pyruvate flux and translocates PKM2 into the nucleus, where the KDM8/PKM2 complex serves as a coactivator of HIF-1α to upregulate glycolytic genes. Using shRNA knockdown, we validate KDM8's functions as a regulator for both androgen-responsive and metabolic genes. KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities/physiology
- Active Transport, Cell Nucleus
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Benzamides
- Carrier Proteins/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins/physiology
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/biosynthesis
- Enhancer of Zeste Homolog 2 Protein/genetics
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Glycolysis/genetics
- Heterografts
- Histone Demethylases/biosynthesis
- Histone Demethylases/genetics
- Histone Demethylases/physiology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Membrane Proteins/metabolism
- Mice, Nude
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/therapeutic use
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Interaction Mapping
- RNA, Small Interfering/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Thyroid Hormones/metabolism
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan.
| | - Mamata Pochampalli
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Pei-Shan Li
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Sheng-Chieh Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
- Institute of Biotechnology, National Tsing-Hua University, 30035, Hsinchu, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Han Huang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Ping Yang
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joy C Yang
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Cheng-Ying Chu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Clifford G Tepper
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - David K Ann
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Allen C Gao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Christopher P Evans
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Chi-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA.
- Institute of Biotechnology, National Tsing-Hua University, 30035, Hsinchu, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
238
|
Lamming DW, Bar-Peled L. Lysosome: The metabolic signaling hub. Traffic 2019; 20:27-38. [PMID: 30306667 PMCID: PMC6294686 DOI: 10.1111/tra.12617] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
For the past five decades, the lysosome has been characterized as an unglamorous cellular recycling center. This notion has undergone a radical shift in the last 10 years, with new research revealing that this organelle serves as a major hub for metabolic signaling pathways. The discovery that master growth regulators, including the protein kinase mTOR (mechanistic target of rapamycin), make their home at the lysosomal surface has generated intense interest in the lysosome's key role in nutrient sensing and cellular homeostasis. The transcriptional networks required for lysosomal maintenance and function are just being unraveled and their connection to lysosome-based signaling pathways revealed. The catabolic and anabolic pathways that converge on the lysosome connect this organelle with multiple facets of cellular function; when these pathways are deregulated they underlie multiple human diseases, and promote cellular and organismal aging. Thus, understanding how lysosome-based signaling pathways function will not only illuminate the fascinating biology of this organelle but will also be critical in unlocking its therapeutic potentials.
Collapse
Affiliation(s)
- Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
239
|
Alves A, Mamede A, Alves M, Oliveira P, Rocha S, Botelho M, Maia C. Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment? Curr Cancer Drug Targets 2018; 19:26-40. [DOI: 10.2174/1568009618666180430144441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequently detected primary malignant liver tumor, representing a worldwide public health problem due to its high morbidity and mortality rates. The HCC is commonly detected in advanced stage, precluding the use of treatments with curative intent. For this reason, it is crucial to find effective therapies for HCC. Cancer cells have a high dependence of glycolysis for ATP production, especially under hypoxic environment. Such dependence provides a reliable possible strategy to specifically target cancer cells based on the inhibition of glycolysis. HCC, such as other cancer types, presents a clinically well-known upregulation of several glycolytic key enzymes and proteins, including glucose transporters particularly glucose transporter 1 (GLUT1). Such enzymes and proteins constitute potential targets for therapy. Indeed, for some of these targets, several inhibitors were already reported, such as 2-Deoxyglucose, Imatinib or Flavonoids. Although the inhibition of glycolysis presents a great potential for an anticancer therapy, the development of glycolytic inhibitors as a new class of anticancer agents needs to be more explored. Herein, we propose to summarize, discuss and present an overview on the different approaches to inhibit the glycolytic metabolism in cancer cells, which may be very effective in the treatment of HCC.
Collapse
Affiliation(s)
- A.P. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - A.C. Mamede
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.G. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - P.F. Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - S.M. Rocha
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.F. Botelho
- Biophysics Unit, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C.J. Maia
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| |
Collapse
|
240
|
Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation. mSystems 2018; 3:mSystems00270-18. [PMID: 30505942 PMCID: PMC6247014 DOI: 10.1128/msystems.00270-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen. The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.
Collapse
|
241
|
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2018; 29:71-91. [PMID: 28822229 DOI: 10.1515/revneuro-2017-0032] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by inhibiting HIF-1α prolyl hydroxylation and preventing HIF labeling by the von Hippel-Lindau protein. Increased lactate with acid environment and HIF-1α overexpression induce the vascular endothelial growth factor (VEGF) pathway of vasculogenesis and angiogenesis under normoxic conditions. Hypoxia and acidic pH have no synergistic effect on VEGF transcription.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, 11 Boulevard Marie et Pierre Curie, F-86000 Poitiers, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, F-86000 Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, F-86000 Poitiers, France
| |
Collapse
|
242
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Rev Neurosci 2018; 29:547-555. [PMID: 29303786 DOI: 10.1515/revneuro-2017-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative cells are the sites of numerous metabolic and energetic abnormalities with abnormalities in energy production. Energy is the primary determinant of neuronal viability. In neurodegenerative cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), WNT/β-catenin pathway is upregulated. We focused this review on the hypothesis of aerobic glycolysis stimulated by the upregulation of WNT/β-catenin pathway in ALS and HD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A), and inactivation of pyruvate dehydrogenase complex (PDH). Aerobic glycolysis consists of a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production compared with oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism promotes cell death and disease progression in ALD and HD. Aerobic glycolysis regulation is an attractive mechanism for developing therapeutic interventions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.,CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
243
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
244
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front Genet 2018; 9:427. [PMID: 30356832 PMCID: PMC6190739 DOI: 10.3389/fgene.2018.00427] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Alterations in the epigenome and metabolism affect molecular rewiring of cancer cells facilitating cancer development and progression. Modulation of histone and DNA modification enzymes occurs owing to metabolic reprogramming driven by oncogenes and expression of metabolism-associated genes is, in turn, epigenetically regulated, promoting the well-known metabolic reprogramming of cancer cells and, consequently, altering the metabolome. Thus, several malignant traits are supported by the interplay between metabolomics and epigenetics, promoting neoplastic transformation. In this review we emphasize the importance of tumour metabolites in the activity of most chromatin-modifying enzymes and implication in neoplastic transformation. Furthermore, candidate targets deriving from metabolism of cancer cells and altered epigenetic factors is emphasized, focusing on compounds that counteract the epigenomic-metabolic interplay in cancer.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
245
|
Tang D, Subramanian J, Haley B, Baker J, Luo L, Hsu W, Liu P, Sandoval W, Laird MW, Snedecor B, Shiratori M, Misaghi S. Pyruvate Kinase Muscle‐1 Expression Appears to Drive Lactogenic Behavior in CHO Cell Lines, Triggering Lower Viability and Productivity: A Case Study. Biotechnol J 2018; 14:e1800332. [DOI: 10.1002/biot.201800332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/29/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Danming Tang
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | | | - Benjamin Haley
- Department of Molecular BiologyGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Jordan Baker
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Lucas Luo
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Wendy Hsu
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Peter Liu
- Department of Microchemistry, Proteomics & LipidomicsGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics & LipidomicsGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Michael W. Laird
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Brad Snedecor
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Masaru Shiratori
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Shahram Misaghi
- Cell Culture DepartmentGenentech, Inc.1 DNA WaySouth San FranciscoCA94080USA
| |
Collapse
|
246
|
Wang T, Yao W, Shao Y, Zheng R, Huang F. PCAF fine-tunes hepatic metabolic syndrome, inflammatory disease, and cancer. J Cell Mol Med 2018; 22:5787-5800. [PMID: 30216660 PMCID: PMC6237576 DOI: 10.1111/jcmm.13877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The P300/CBP‐associating factor (PCAF), a histone acetyltransferase, is involved in metabolic and pathogenic diseases, particularly of the liver. The effects of PCAF on fine‐tuning liver diseases are extremely complex and vary according to different pathological conditions. This enzyme has dichotomous functions, depending on differently modified sites, which regulate the activities of various enzymes, metabolic functions, and gene expression. Here, we summarize the most recent findings on the functions and targets of PCAF in various metabolic and immunological processes in the liver and review these new discoveries and models of PCAF biology in three areas: hepatic metabolic syndrome, inflammatory disease, and cancer. Finally, we discuss the potential implications of these findings for therapeutic interventions in liver diseases.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruilong Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
247
|
Campbell P, Morris H, Schapira A. Chaperone-mediated autophagy as a therapeutic target for Parkinson disease. Expert Opin Ther Targets 2018; 22:823-832. [DOI: 10.1080/14728222.2018.1517156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Philip Campbell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
248
|
Zhang N, Gao R, Yang J, Zhu Y, Zhang Z, Xu X, Wang J, Liu X, Li Z, Li Z, Gong D, Li J, Bi J, Kong C. Quantitative Global Proteome and Lysine Succinylome Analyses Reveal the Effects of Energy Metabolism in Renal Cell Carcinoma. Proteomics 2018; 18:e1800001. [PMID: 29882248 DOI: 10.1002/pmic.201800001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/24/2018] [Indexed: 01/19/2023]
Abstract
In light of the increasing incidence of renal cell carcinoma (RCC), its molecular mechanisms have been comprehensively explored in numerous recent studies. However, few studies focus on the influence of multi-factor interactions during the occurrence and development of RCC. This study aims to investigate the quantitative global proteome and the changes in lysine succinylation in related proteins, seeking to facilitate a better understanding of the molecular mechanisms underlying RCC. LC-MS/MS combined with bioinformatics analysis are used to quantitatively detect the perspectives at the global protein level. IP and WB analysis were conducted to further verify the alternations of related proteins and lysine succinylation. A total of 3,217 proteins and 1,238 lysine succinylation sites are quantified in RCC tissues, and 668 differentially expressed proteins and 161 differentially expressed lysine succinylation sites are identified. Besides, expressions of PGK1 and PKM2 at protein and lysine, succinylation levels are significantly altered in RCC tissues. Bioinformatics analysis indicates that the glycolysis pathway is a potential mechanism of RCC progression and lysine succinylation may plays a potential role in energy metabolism. These results can provide a new direction for exploring the molecular mechanism of RCC tumorigenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Ruxu Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianyu Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Xiaolong Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianfeng Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Daxin Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| |
Collapse
|
249
|
Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy. Nat Commun 2018; 9:3492. [PMID: 30154410 PMCID: PMC6113293 DOI: 10.1038/s41467-018-05449-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
The Unc-51 like autophagy activating kinase 1 (ULK1) complex plays a central role in the initiation stage of autophagy. However, the function of ULK1 in the late stage of autophagy is unknown. Here, we report that ULK1, a central kinase of the ULK1 complex involved in autophagy initiation, promotes autophagosome–lysosome fusion. PKCα phosphorylates ULK1 and prevents autolysosome formation. PKCα phosphorylation of ULK1 does not change its kinase activity; however, it decreases autophagosome–lysosome fusion by reducing the affinity of ULK1 for syntaxin 17 (STX17). Unphosphorylated ULK1 recruited STX17 and increased STX17′s affinity towards synaptosomal-associated protein 29 (SNAP29). Additionally, phosphorylation of ULK1 enhances its interaction with heat shock cognate 70 kDa protein (HSC70) and increases its degradation through chaperone-mediated autophagy (CMA). Our study unearths a key mechanism underlying autolysosome formation, a process in which the kinase activity of PKCα plays an instrumental role, and reveals the significance of the mutual regulation of macroautophagy and CMA in maintaining the balance of autophagy. The ULK complex plays a well-known role in initiating autophagy, to recycle cellular components in response to nutritional stress. Here, the authors demonstrate a late role for ULK in auotophagosome–lysosome fusion and provide a direct link between macroautophagy and chaperone mediated autophagy.
Collapse
|
250
|
Wiese EK, Hitosugi T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 2018; 6:79. [PMID: 30087897 PMCID: PMC6066570 DOI: 10.3389/fcell.2018.00079] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
The Warburg Effect, or aerobic glycolysis, is one of the major metabolic alterations observed in cancer. Hypothesized to increase a cell's proliferative capacity via regenerating NAD+, increasing the pool of glycolytic biosynthetic intermediates, and increasing lactate production that affects the tumor microenvironment, the Warburg Effect is important for the growth and proliferation of tumor cells. The mechanisms by which a cell acquires the Warburg Effect phenotype are regulated by the expression of numerous oncogenes, including oncogenic tyrosine kinases. Oncogenic tyrosine kinases play a significant role in phosphorylating and regulating the activity of numerous metabolic enzymes. Tyrosine phosphorylation of glycolytic enzymes increases the activities of a majority of glycolytic enzymes, thus promoting increased glycolytic rate and tumor cell proliferation. Paradoxically however, tyrosine phosphorylation of pyruvate kinase M2 isoform (PKM2) results in decreased PKM2 activity, and this decrease in PKM2 activity promotes the Warburg Effect. Furthermore, recent studies have shown that PKM2 is also able to act as a protein kinase using phosphoenolpyruvate (PEP) as a substrate to promote tumorigenesis. Therefore, numerous recent studies have investigated both the role of the classical and non-canonical activity of PKM2 in promoting the Warburg Effect and tumor growth, which raise further interesting questions. In this review, we will summarize these recent advances revealing the importance of tyrosine kinases in the regulation of the Warburg Effect as well as the role of PKM2 in the promotion of tumor growth.
Collapse
Affiliation(s)
- Elizabeth K Wiese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|