201
|
Abstract
The chemical modification of ribonucleotides plays an integral role in the biology of diverse viruses and their eukaryotic host cells. Mapping the precise identity, location, and abundance of modified ribonucleotides remains a key goal of many studies aimed at characterizing the function and importance of a given modification. While mapping of specific RNA modifications through short-read sequencing approaches has powered a wealth of new discoveries in the past decade, this approach is limited by inherent biases and an absence of linkage information. Moreover, in viral contexts, the challenge is increased due to the compact nature of viral genomes giving rise to many overlapping transcript isoforms that cannot be adequately resolved using short-read sequencing approaches. The recent emergence of nanopore sequencing, specifically the ability to directly sequence native RNAs from virus-infected host cells, provides not just a new methodology for mapping modified ribonucleotides but also a new conceptual framework for what can be derived from the resulting sequencing data. In this minireview, we provide a detailed overview of how nanopore direct RNA sequencing works, the computational approaches applied to identify modified ribonucleotides, and the core concepts underlying both. We further highlight recent studies that have applied this approach to interrogating viral biology and finish by discussing key experimental considerations and how we predict that these methodologies will continue to evolve.
Collapse
Affiliation(s)
- Jonathan S. Abebe
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Ruth Verstraten
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
202
|
An Effective Deep Learning-Based Architecture for Prediction of N7-Methylguanosine Sites in Health Systems. ELECTRONICS 2022. [DOI: 10.3390/electronics11121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N7-methylguanosine (m7G) is one of the most important epigenetic modifications found in rRNA, mRNA, and tRNA, and performs a promising role in gene expression regulation. Owing to its significance, well-equipped traditional laboratory-based techniques have been performed for the identification of N7-methylguanosine (m7G). Consequently, these approaches were found to be time-consuming and cost-ineffective. To move on from these traditional approaches to predict N7-methylguanosine sites with high precision, the concept of artificial intelligence has been adopted. In this study, an intelligent computational model called N7-methylguanosine-Long short-term memory (m7G-LSTM) is introduced for the prediction of N7-methylguanosine sites. One-hot encoding and word2vec feature schemes are used to express the biological sequences while the LSTM and CNN algorithms have been employed for classification. The proposed “m7G-LSTM” model obtained an accuracy value of 95.95%, a specificity value of 95.94%, a sensitivity value of 95.97%, and Matthew’s correlation coefficient (MCC) value of 0.919. The proposed predictive m7G-LSTM model has significantly achieved better outcomes than previous models in terms of all evaluation parameters. The proposed m7G-LSTM computational system aims to support the drug industry and help researchers in the fields of bioinformatics to enhance innovation for the prediction of the behavior of N7-methylguanosine sites.
Collapse
|
203
|
Zhou K, Yang J, Li X, Xiong W, Zhang P, Zhang X. N7-Methylguanosine Regulatory Genes Profoundly Affect the Prognosis, Progression, and Antitumor Immune Response of Hepatocellular Carcinoma. Front Surg 2022; 9:893977. [PMID: 35784919 PMCID: PMC9246272 DOI: 10.3389/fsurg.2022.893977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common abdominal cancer with poor survival outcomes. Although there is growing evidence that N7-methylguanosine (m7G) is closely associated with tumor prognosis, development, and immune response, few studies focus on this topic. Methods The novel m7G risk signature was constructed through the Lasso regression analysis. Its prognostic value was evaluated through a series of survival analyses and was tested in ICGC-LIRI, GSE14520, and GSE116174 cohorts. CIBERSORT, ssGSEA, and ESTIMATE methods were applied to explore the effects of the m7G risk score on tumor immune microenvironment (TIM). The GSEA method was used to evaluate the impacts of the m7G risk score on glycolysis, ferroptosis, and pyroptosis. The human protein atlas (HPA) database was used to clarify the histological expression levels of five m7G signature genes. The biofunctions of NCBP2 in hepatocellular cancer (HC) cells were confirmed through qPCR, CCK8, and transwell assays. Results Five m7G regulatory genes comprised the novel risk signature. The m7G risk score was identified as an independent prognostic factor of HCC and could increase the decision-making benefit of traditional prognostic models. Besides, we established a nomogram containing the clinical stage and m7G risk score to predict the survival rates of HCC patients. The prognostic value of the m7G model was successfully validated in ICGC and GSE116174 cohorts. Moreover, high m7G risk led to a decreased infiltration level of CD8+ T cells, whereas it increased the infiltration levels of Tregs and macrophages. The glycolysis and pyroptosis processes were found to be enriched in the HCC patients with high m7G risk. Finally, overexpression of NCBP2 could promote the proliferation, migration, and invasion of HC cells. Conclusions The m7G risk score was closely related to the prognosis, antitumor immune process, glycolysis, and malignant progression of HCC. NCBP2 has pro-oncogenic abilities, showing promise as a novel treatment target.
Collapse
Affiliation(s)
- Kexiang Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
- ChongQing Medical University, Chongqing, China
| | - Jiaqun Yang
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Xiaoyan Li
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Wei Xiong
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Pengbin Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Xuqing Zhang
- ChongQing Medical University, Chongqing, China
- Department of Infectious Diseases, The Third Affiliated Hospital of ChongQing Medical University, China
- Correspondence: Xuqing Zhang
| |
Collapse
|
204
|
Lu F, Gao J, Hou Y, Cao K, Xia Y, Chen Z, Yu H, Chang L, Li W. Construction of a Novel Prognostic Model in Lung Adenocarcinoma Based on 7-Methylguanosine-Related Gene Signatures. Front Oncol 2022; 12:876360. [PMID: 35785179 PMCID: PMC9243265 DOI: 10.3389/fonc.2022.876360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has implicated the modification of 7-methylguanosine (m7G), a type of RNA modification, in tumor progression. However, no comprehensive analysis to date has summarized the predicted role of m7G-related gene signatures in lung adenocarcinoma (LUAD). Herein, we aimed to develop a novel prognostic model in LUAD based on m7G-related gene signatures. The LUAD transcriptome profiling data and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus datasets. After screening, we first obtained 29 m7G-related genes, most of which were upregulated in tumor tissues and negatively associated with overall survival (OS). According to the expression similarity of m7G-related genes, the combined samples from the TCGA-LUAD and GSE68465 datasets were further classified as two clusters that exhibit distinct OS rates and genetic heterogeneity. Then, we constructed a novel prognostic model involving four genes by using 130 differentially expressed genes among the two clusters. The combined samples were randomly divided into a training cohort and an internal validation cohort in a 1:1 ratio, and the GSE72094 dataset was used as an external validation cohort. The samples were divided into high- and low-risk groups. We demonstrated that a higher risk score was an independent negative prognostic factor and predicted poor OS. A nomogram was further constructed to better predict the survival of LUAD patients. Functional enrichment analyses indicated that cell cycle and DNA replication-related biological processes and pathways were enriched in the high-risk group. More importantly, the low-risk group had greater infiltration and enrichment of most immune cells, as well as higher ESTIMATE, immune, and stromal scores. In addition, the high-risk group had a lower TIDE score and higher expressions of most immune checkpoint-related genes. We finally noticed that patients in the high-risk group were more sensitive to chemotherapeutic agents commonly used in LUAD. In conclusion, we herein summarized for the first time the alterations and prognostic role of m7G-related genes in LUAD and then constructed a prognostic model based on m7G-related gene signatures that could accurately and stably predict survival and guide individualized treatment decision-making in LUAD patients.
Collapse
Affiliation(s)
- Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- Department of Oncology and Hematology, Southern Central Hospital of Yunnan Province, The First People’s Hospital of Honghe State, Mengzi, China
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Zhengting Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Hui Yu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| |
Collapse
|
205
|
Melzer ME, Sweedler JV, Clark KD. Rapid Determination of RNA Modifications in Consensus Motifs by Nuclease Protection with Ion-Tagged Oligonucleotide Probes and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Genes (Basel) 2022; 13:1008. [PMID: 35741770 PMCID: PMC9222981 DOI: 10.3390/genes13061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
The reversible and substoichiometric modification of RNA has recently emerged as an additional layer of translational regulation in normal biological function and disease. Modifications are often enzymatically deposited in and removed from short (~5 nt) consensus motif sequences to carefully control the translational output of the cell. Although characterization of modification occupancy at consensus motifs can be accomplished using RNA sequencing methods, these approaches are generally time-consuming and do not directly detect post-transcriptional modifications. Here, we present a nuclease protection assay coupled with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to rapidly characterize modifications in consensus motifs, such as GGACU, which frequently harbor N6-methyladenosine (m6A). While conventional nuclease protection methods rely on long (~30 nt) oligonucleotide probes that preclude the global assessment of consensus motif modification stoichiometry, we investigated a series of ion-tagged oligonucleotide (ITO) probes and found that a benzylimidazolium-functionalized ITO (ABzIM-ITO) conferred significantly improved nuclease resistance for GGACU targets. After optimizing the conditions of the nuclease protection assay, we applied the ITO and MALDI-MS-based method for determining the stoichiometry of GG(m6A)CU and GGACU in RNA mixtures. Overall, the ITO-based nuclease protection and MALDI-MS method constitutes a rapid and promising approach for determining modification stoichiometries of consensus motifs.
Collapse
Affiliation(s)
- Madeline E. Melzer
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (M.E.M.); (J.V.S.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (M.E.M.); (J.V.S.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin D. Clark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
206
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
207
|
Chen Q, Liu Z, Tan Y, Pan S, An W, Xu H. Characterization of RNA modifications in gastric cancer to identify prognosis-relevant gene signatures. Cancer Med 2022; 12:879-897. [PMID: 35635121 PMCID: PMC9844604 DOI: 10.1002/cam4.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most human genes have diverse transcript isoforms, which mainly arise from alternative cleavage and polyadenylation (APA) at 3' ends. N7-methylguanosine (m7 G) is also an essential epigenetic modification at the 5' end. However, the contribution of these two RNA modifications to the development, prognosis, regulation mechanisms, and drug sensitivity of gastric cancer (GC) is unclear. METHODS The expression data of 2412 patients were extracted from 12 cohorts and the RNA modification patterns of 20 marker genes were systematically identified into phenotypic clusters using the unsupervised clustering approach. Following that, we developed an RNA modification model (RMscore) to quantify each GC patient's RNA modification index. Finally, we examined the correlation between RMscore and clinical features such as survival outcomes, molecular subtypes identified by the Asian Cancer Research Group (ACRG), posttranscriptional regulation, and chemotherapeutic sensitivity in GC. RESULTS The samples were categorized into two groups on the basis of their RMscore: high and low. The group with a low RMscore had a bad prognosis. Moreover, the low RMscore was associated with KRAS, Hedgehog, EMT, and TGF-β signaling, whereas a high RMscore was related to abnormal cell cycle signaling pathway activation. The findings also revealed that the RMscore contributes to the regulation of the miRNA-mRNA network. Drug sensitivity analysis revealed that RMscore is associated with the response to some anticancer drugs. CONCLUSIONS The RMscore model has the potential to be a useful tool for prognosis prediction in patients with GC. A comprehensive investigation of APA-RNA and m7 G-RNA modifications may reveal novel insights into the epigenetics of GC and aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Qingchuan Chen
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhouyang Liu
- Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuen Tan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Siwei Pan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wen An
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Huimian Xu
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
208
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
209
|
The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23115922. [PMID: 35682599 PMCID: PMC9180340 DOI: 10.3390/ijms23115922] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Epitranscriptomic modifications can affect every aspect of RNA biology, including stability, transport, splicing, and translation, participate in global intracellular mRNA metabolism, and regulate gene expression and a variety of biological processes. N6-methyladenosine (m6A) as the most prevalent modification contributes to normal embryonic brain development and memory formation. However, changes in the level of m6A modification and the expression of its related proteins cause abnormal nervous system functions, including brain tissue development retardation, axon regeneration disorders, memory changes, and neural stem cell renewal and differentiation disorders. Recent studies have revealed that m6A modification and its related proteins play key roles in the development of various neuropsychiatric disorders, such as depression, Alzheimer’s disease, and Parkinson’s disease. In this review, we summarize the research progresses of the m6A modification regulation mechanism in the central nervous system and discuss the effects of gene expression regulation mediated by m6A modification on the biological functions of the neuropsychiatric disorders, thereby providing some insight into new research targets and treatment directions for human diseases.
Collapse
|
210
|
Dong K, Gu D, Shi J, Bao Y, Fu Z, Fang Y, Qu L, Zhu W, Jiang A, Wang L. Identification and Verification of m 7G Modification Patterns and Characterization of Tumor Microenvironment Infiltration via Multi-Omics Analysis in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:874792. [PMID: 35592316 PMCID: PMC9113293 DOI: 10.3389/fimmu.2022.874792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The epigenetic modification of tumorigenesis and progression in neoplasm has been demonstrated in recent studies. Nevertheless, the underlying association of N7-methylguanosine (m7G) regulation with molecular heterogeneity and tumor microenvironment (TME) in clear cell renal cell carcinoma (ccRCC) remains unknown. We explored the expression profiles and genetic variation features of m7G regulators and identified their correlations with patient outcomes in pan-cancer. Three distinct m7G modification patterns, including MGCS1, MGCS2, and MGCS3, were further determined and systematically characterized via multi-omics data in ccRCC. Compared with the other two subtypes, patients in MGCS3 exhibited a lower clinical stage/grade and better prognosis. MGCS1 showed the lowest enrichment of metabolic activities. MGCS2 was characterized by the suppression of immunity. We then established and validated a scoring tool named m7Sig, which could predict the prognosis of ccRCC patients. This study revealed that m7G modification played a vital role in the formation of the tumor microenvironment in ccRCC. Evaluating the m7G modification landscape helps us to raise awareness and strengthen the understanding of ccRCC’s characterization and, furthermore, to guide future clinical decision making.
Collapse
Affiliation(s)
- Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Di Gu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiazi Shi
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yewei Bao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Fu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wentong Zhu
- School of Chinese Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
211
|
Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N 7-methylguanosine (m7G) in cancer. J Hematol Oncol 2022; 15:63. [PMID: 35590385 PMCID: PMC9118743 DOI: 10.1186/s13045-022-01285-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
N7-methylguanosine (m7G), one of the most prevalent RNA modifications, has recently attracted significant attention. The m7G modification actively participates in biological and pathological functions by affecting the metabolism of various RNA molecules, including messenger RNA, ribosomal RNA, microRNA, and transfer RNA. Increasing evidence indicates a critical role for m7G in human disease development, especially cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of m7G modification in cancer are not comprehensively understood. Here, we review the current knowledge regarding the potential function of m7G modifications in cancer and discuss future m7G-related diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Zi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
212
|
Liu HY, Du PF. i5hmCVec: Identifying 5-Hydroxymethylcytosine Sites of Drosophila RNA Using Sequence Feature Embeddings. Front Genet 2022; 13:896925. [PMID: 35591855 PMCID: PMC9110757 DOI: 10.3389/fgene.2022.896925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
5-Hydroxymethylcytosine (5hmC), one of the most important RNA modifications, plays an important role in many biological processes. Accurately identifying RNA modification sites helps understand the function of RNA modification. In this work, we propose a computational method for identifying 5hmC-modified regions using machine learning algorithms. We applied a sequence feature embedding method based on the dna2vec algorithm to represent the RNA sequence. The results showed that the performance of our model is better that of than state-of-art methods. All dataset and source codes used in this study are available at: https://github.com/liu-h-y/5hmC_model.
Collapse
|
213
|
Zhou H, Mao L, Xu H, Wang S, Tian J. The functional roles of m 6A modification in T lymphocyte responses and autoimmune diseases. Cytokine Growth Factor Rev 2022; 65:51-60. [PMID: 35490098 DOI: 10.1016/j.cytogfr.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
RNA N6-methyladenosine (m6A) modification is abundant in eukaryotes, bacteria and archaea. It is an RNA modification mainly existing in messenger RNA (mRNAs) and has a significant effect on the metabolism and function of mRNAs. m6A modification is controlled by three types of proteins, namely methyltransferase as the "writers", demethylase as the "erasers", and specific m6A recognized protein (YTHDF1-3) as the "readers". Recent studies have shown that m6A modification plays an important role in cancer, viral infection and autoimmune diseases. In this review, we will elaborate on the m6A modifications in the homeostasis and differentiation of T cells. Then we will further summarize the effects of m6A modification on the T cell responses and T cell-mediated autoimmune diseases. This will advance T cell epigenetics research and provide potential biomarkers and therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
214
|
Gao Z, Xu J, Zhang Z, Fan Y, Xue H, Guo X, Deng L, Wang S, Zhao R, Zhang P, Li G. A Comprehensive Analysis of METTL1 to Immunity and Stemness in Pan-Cancer. Front Immunol 2022; 13:795240. [PMID: 35432338 PMCID: PMC9008260 DOI: 10.3389/fimmu.2022.795240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Background Previous studies have reported the effect of N7-methylguanosine (m7G) regulator methyltransferase like-1 protein (METTL1) in tumor initiation, metastasis, and chemosensitivity. However, the relationship between METTL1 and cancer immune infiltration is not validated and the prognostic significance of METTL1 in pan-cancer remains unclear. Methods Clinical parameters, including gender, age, lifetime, stage, and treatment response were analyzed to evaluate the prognostic significance of METTL1. To evaluate protein level of METTL1, the METTL1 activity was generated by single sample gene set enrichment analysis. The one-class logistic regression algorithm was used to calculate the stemness indices based on transcriptomics and methylation data of pan-cancer and pluripotent stem cells. The relationship between METTL1 expression or activity and tumor immune infiltration were analyzed to explore the significance of METTL1 in tumor immunotherapy. Meanwhile, the correlation between three immunotherapeutic biomarkers and METTL1 was investigated. Finally, to calculate the association between drug sensitivity and METTL1 expression, spearman correlation analysis was performed. Results METTL1 was not intimately related to gender, age, tumor stage, or treatment outcome of the various cancers, but it displayed potential prognostic significance for evaluating patient survival. High METTL1 expression was related to tumor progression-relevant pathways. Moreover, METTL1 exhibited a distinct correlation with tumor immune microenvironment infiltration and stemness indices. In the anti-PD-L1 cohort, patients in treatment response group exhibited significantly higher METTL1 expression than those in the no/limited response group. Further analysis showed that tumor cell lines with higher METTL1 expression were more sensitive to drugs targeting chromatin histone methylation, ERK-MAPK and WNT signaling pathways. Conclusion This study provides insight into the correlation of METTL1 with tumor immune infiltration and stemness in pan-cancer, revealing the significance of METTL1 for cancer progression and guiding more effective and generalized therapy strategies.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
215
|
Song D, Shyh-Chang N. An RNA methylation code to regulate protein translation and cell fate. Cell Prolif 2022; 55:e13224. [PMID: 35355346 PMCID: PMC9136488 DOI: 10.1111/cpr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dan Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
216
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
217
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
218
|
N 7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun 2022; 13:1478. [PMID: 35304469 PMCID: PMC8933395 DOI: 10.1038/s41467-022-29125-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mis-regulated RNA modifications promote the processing and translation of oncogenic mRNAs to facilitate cancer progression, while the molecular mechanisms remain unclear. Here we reveal that tRNA m7G methyltransferase complex proteins METTL1 and WDR4 are significantly up-regulated in esophageal squamous cell carcinoma (ESCC) tissues and associated with poor ESCC prognosis. In addition, METTL1 and WDR4 promote ESCC progression via the tRNA m7G methyltransferase activity in vitro and in vivo. Mechanistically, METTL1 or WDR4 knockdown leads to decreased expression of m7G-modified tRNAs and reduces the translation of a subset of oncogenic transcripts enriched in RPTOR/ULK1/autophagy pathway. Furthermore, ESCC models using Mettl1 conditional knockout and knockin mice uncover the essential function of METTL1 in promoting ESCC tumorigenesis in vivo. Our study demonstrates the important oncogenic function of mis-regulated tRNA m7G modification in ESCC, and suggest that targeting METTL1 and its downstream signaling axis could be a promising therapeutic target for ESCC treatment. Deregulation of METTL1-mediated N7- methylguanosine tRNA modification can promote oncogenesis. Here, the authors report that this modification regulates the translation of proteins in both the mTOR and negative regulators of autophagy pathways, resulting in the progression of esophageal squamous cell carcinoma.
Collapse
|
219
|
Xu J, Gao Z, Liu K, Fan Y, Zhang Z, Xue H, Guo X, Zhang P, Deng L, Wang S, Wang H, Wang Q, Zhao R, Li G. The Non-N 6-Methyladenosine Epitranscriptome Patterns and Characteristics of Tumor Microenvironment Infiltration and Mesenchymal Transition in Glioblastoma. Front Immunol 2022; 12:809808. [PMID: 35154083 PMCID: PMC8825368 DOI: 10.3389/fimmu.2021.809808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background An increasing number of RNA modification types other than N6-methyladenosine (m6A) modification have been detected. Nonetheless, the probable functions of RNA modifications beyond m6A in the tumor microenvironment (TME), mesenchymal (MES) transition, immunotherapy, and drug sensitivity remain unclear. Methods We analyzed the characteristics of 32 non-m6A RNA modification regulators in 539 glioblastoma (GBM) patients and the TME cell infiltration and MES transition patterns. Using principal component analysis, a non-m6A epitranscriptome regulator score (RM score) model was established. We estimated the association between RM score and clinical characteristics, TME status, GBM subtypes, and drug and immunotherapy response. Results Three definite non-m6A RNA modification patterns associated with diverse biological pathways and clinical characteristics were identified. The high RM score group was characterized by a poor prognosis, enhanced immune infiltration, and MES subtype. Further analysis indicated that the high RM score group had a lower tumor mutation burden as well as a weaker response to immunotherapy. The higher RM score group may benefit more from drugs targeting the EGFR and WNT signaling pathways. Conclusion Our study exposed the potential relationship of non-m6A RNA modification regulators with clinical features, TME status, and GBM subtype and clarified its therapeutic value.
Collapse
Affiliation(s)
- Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Kaining Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
220
|
Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox. Cell 2022; 185:764-776. [PMID: 35245480 DOI: 10.1016/j.cell.2022.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
In the last decade, the notion that mRNA modifications are involved in regulation of gene expression was demonstrated in thousands of studies. To date, new technologies and methods allow accurate identification, transcriptome-wide mapping, and functional characterization of a growing number of RNA modifications, providing important insights into the biology of these marks. Most of the methods and approaches were developed for studying m6A, the most prevalent internal mRNA modification. However, unique properties of other RNA modifications stimulated the development of additional approaches. In this technical primer, we will discuss the available tools and approaches for detecting and studying different RNA modifications.
Collapse
Affiliation(s)
- Sharon Moshitch-Moshkovitz
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
221
|
Shoombuatong W, Basith S, Pitti T, Lee G, Manavalan B. THRONE: a new approach for accurate prediction of human RNA N7-methylguanosine sites. J Mol Biol 2022; 434:167549. [DOI: 10.1016/j.jmb.2022.167549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
|
222
|
Li W, Li X, Ma X, Xiao W, Zhang J. Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 2022; 23:105. [PMID: 35135476 PMCID: PMC8822802 DOI: 10.1186/s12864-022-08350-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epigenetic modifications play important regulatory roles in tissue development, maintenance of physiological functions and pathological process. RNA methylations, including newly identified m1A, m5C, m6A and m7G, are important epigenetic modifications. However, how these modifications are distributed in the transcriptome of vertebrate brains and whether their abundance is altered under pathological conditions are still poorly understood. In this study, we chose the model animal of zebrafish to conduct a systematic study to investigate the mRNA methylation atlas in the brain. RESULTS By performing unbiased analyses of the m1A, m5C, m6A and m7G methylation of mRNA, we found that within the whole brain transcriptome, with the increase of the gene expression levels, the overall level of each of these four modifications on the related genes was also progressively increased. Further bioinformatics analysis indicated that the zebrafish brain has an abundance of m1A modifications. In the hypoxia-treated zebrafish brains, the proportion of m1A is decreased, affecting the RNA splicing and zebrafish endogenous retroviruses. CONCLUSIONS Our study presents the first comprehensive atlas of m1A, m5C, m6A and m7G in the epitranscriptome of the zebrafish brain and reveals the distribution of these modifications in mRNA under hypoxic conditions. These data provide an invaluable resource for further research on the involvement of m1A, m5C, m6A and m7G in the regulation of miRNA and repeat elements in vertebrates, and provide new thoughts to study the brain hypoxic injury on the aspect of epitranscriptome.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xunjie Ma
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
223
|
Wang Y, Chen Z, Zhang X, Weng X, Deng J, Yang W, Wu F, Han S, Xia C, Zhou Y, Chen Y, Zhou X. Single-Base Resolution Mapping Reveals Distinct 5-Formylcytidine in Saccharomyces cerevisiae mRNAs. ACS Chem Biol 2022; 17:77-84. [PMID: 34846122 DOI: 10.1021/acschembio.1c00633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
5-Formylcytidine (f5C) is one type of post-transcriptional RNA modification, which is known at the wobble position of tRNA in mitochondria and essential for mitochondrial protein synthesis. Here, we show a method to detect f5C modifications in RNA and a transcriptome-wide f5C mapping technique, named f5C-seq. It is developed based on the treatment of pyridine borane, which can reduce f5C to 5,6-dihydrouracil, thus inducing C-to-T transition in f5C sites during PCR to achieve single-base resolution detection. More than 1000 f5C sites were identified after mapping in Saccharomyces cerevisiae by f5C-seq. Moreover, codon composition demonstrated a preference for f5C within wobble sites in mRNA, suggesting the potential role in regulation of translation. These findings expand the scope of the understanding of cytosine modifications in mRNA.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zonggui Chen
- The Institute of Advanced Studies, College of Life Science, Wuhan University, Wuhan 430072, China
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jikai Deng
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chao Xia
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yu Zhou
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Yu Chen
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
224
|
Sepich-Poore C, Zheng Z, Schmitt E, Wen K, Zhang ZS, Cui XL, Dai Q, Zhu AC, Zhang L, Sanchez Castillo A, Tan H, Peng J, Zhuang X, He C, Nachtergaele S. The METTL5-TRMT112 N 6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J Biol Chem 2022; 298:101590. [PMID: 35033535 PMCID: PMC8857481 DOI: 10.1016/j.jbc.2022.101590] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.
Collapse
Affiliation(s)
- Caraline Sepich-Poore
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; University of Chicago Medical Scientist Training Program, Chicago, Illinois, USA
| | - Zhong Zheng
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Emily Schmitt
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Kailong Wen
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Zijie Scott Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Xiao-Long Cui
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Qing Dai
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Allen C Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; University of Chicago Medical Scientist Training Program, Chicago, Illinois, USA
| | - Linda Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Arantxa Sanchez Castillo
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA.
| | - Sigrid Nachtergaele
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
225
|
Wang H, Chen RB, Zhang SN, Zhang RF. N7-methylguanosine modification of lncRNAs in a rat model of hypoxic pulmonary hypertension: a comprehensive analysis. BMC Genomics 2022; 23:33. [PMID: 34996349 PMCID: PMC8740322 DOI: 10.1186/s12864-021-08188-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play a critical role in the pathogenesis of hypoxic pulmonary hypertension (HPH). The role of N7-methylguanosine (m7G) modification in lncRNAs has received increased attentions in recent years. However, the m7G-methylation of lncRNA in HPH has yet to be determined. We have therefore performed a transcriptome-wide analysis of m7G lncRNAs in HPH. Results Differentially-expressed m7Gs were detected in HPH, and m7G lncRNAs were significantly upregulated compared with non-m7G lncRNAs in HPH. Importantly, this was the first time that the upregulated m7G lncXR_591973 and m7G lncXR_592398 were identified in HPH. Conclusion This study provides the first m7G transcriptome-wide analysis of HPH. Importantly, two HPH-associated m7G lncRNAs were identified, although their clinical significance requires further validation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08188-8.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Ren Biao Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Si Ni Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Rui Feng Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
226
|
Choubey P, Kaur H, Bansal K. Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Subcell Biochem 2022; 100:201-237. [PMID: 36301496 DOI: 10.1007/978-3-031-07634-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleic acid methylation is a fundamental epigenetic mechanism that impinges upon several cellular attributes, including metabolism and energy production. The dysregulation of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) methylation can lead to metabolic rewiring in the cell, which in turn facilitates tumor development. Here, we review the current knowledge on the interplay between DNA/RNA methylation and metabolic programs in cancer cells. We also discuss the mechanistic role of these pathways in tumor development and progression.
Collapse
Affiliation(s)
- Pallawi Choubey
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Harshdeep Kaur
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India.
| |
Collapse
|
227
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
228
|
Wang Y, Zhang X, Liu H, Zhou X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem Soc Rev 2021; 50:13481-13497. [PMID: 34792050 DOI: 10.1039/d1cs00920f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA modification, like other epigenetic modifications such as DNA modification and histone modification, is an emerging player in the field of the posttranscriptional regulation of gene expression. More than 160 kinds of RNA modifications have been identified, and they are widely distributed in different types of RNA. Recently, researchers have increasingly used advanced technologies to study modified nucleic acids in order to elucidate their biological functions and expand the understanding of the central laws of epigenetics. In this tutorial review, we comprehensively outline current advanced techniques for decoding RNA modifications, highlighting some of the bottlenecks in existing approaches as well as new opportunities that may lead to innovations. With this review, we expect to provide chemistry and biology students and researchers with ideas for solving some challenging problems, such as how to simultaneously detect multiple types of modifications within the same system. Moreover, some low-coverage modifications that may act as 'candidates' in important transcriptional processes need to be further explored. These novel approaches have the potential to lay a foundation for understanding the nuanced complexities of the biological functions of RNA modification.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
229
|
Schöller E, Marks J, Marchand V, Bruckmann A, Powell CA, Reichold M, Mutti CD, Dettmer K, Feederle R, Hüttelmaier S, Helm M, Oefner P, Minczuk M, Motorin Y, Hafner M, Meister G. Balancing of mitochondrial translation through METTL8-mediated m 3C modification of mitochondrial tRNAs. Mol Cell 2021; 81:4810-4825.e12. [PMID: 34774131 PMCID: PMC11214777 DOI: 10.1016/j.molcel.2021.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Eva Schöller
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - James Marks
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, 54000 Nancy, France
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Daniel Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, 54000 Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, 54000 Nancy, France
| | - Markus Hafner
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
230
|
Chen Z, Zhu W, Zhu S, Sun K, Liao J, Liu H, Dai Z, Han H, Ren X, Yang Q, Zheng S, Peng B, Peng S, Kuang M, Lin S. METTL1 promotes hepatocarcinogenesis via m 7 G tRNA modification-dependent translation control. Clin Transl Med 2021; 11:e661. [PMID: 34898034 PMCID: PMC8666584 DOI: 10.1002/ctm2.661] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND N7 -methylguanosine (m7 G) modification is one of the most common transfer RNA (tRNA) modifications in humans. The precise function and molecular mechanism of m7 G tRNA modification in hepatocellular carcinoma (HCC) remain poorly understood. METHODS The prognostic value and expression level of m7 G tRNA methyltransferase complex components methyltransferase-like protein-1 (METTL1) and WD repeat domain 4 (WDR4) in HCC were evaluated using clinical samples and TCGA data. The biological functions and mechanisms of m7 G tRNA modification in HCC progression were studied in vitro and in vivo using cell culture, xenograft model, knockin and knockout mouse models. The m7 G reduction and cleavage sequencing (TRAC-seq), polysome profiling and polyribosome-associated mRNA sequencing methods were used to study the levels of m7 G tRNA modification, tRNA expression and mRNA translation efficiency. RESULTS The levels of METTL1 and WDR4 are elevated in HCC and associated with advanced tumour stages and poor patient survival. Functionally, silencing METTL1 or WDR4 inhibits HCC cell proliferation, migration and invasion, while forced expression of wild-type METTL1 but not its catalytic dead mutant promotes HCC progression. Knockdown of METTL1 reduces m7 G tRNA modification and decreases m7 G-modified tRNA expression in HCC cells. Mechanistically, METTL1-mediated tRNA m7 G modification promotes the translation of target mRNAs with higher frequencies of m7 G-related codons. Furthermore, in vivo studies with Mettl1 knockin and conditional knockout mice reveal the essential physiological function of Mettl1 in hepatocarcinogenesis using hydrodynamics transfection HCC model. CONCLUSIONS Our work reveals new insights into the role of the misregulated tRNA modifications in liver cancer and provides molecular basis for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wanjie Zhu
- Department of Gastroenterology and HepatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shenghua Zhu
- Department of Gastroenterology and HepatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Kaiyu Sun
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junbin Liao
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Haining Liu
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zihao Dai
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hui Han
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xuxin Ren
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qingxia Yang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Siyi Zheng
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Baogang Peng
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sui Peng
- Department of Gastroenterology and HepatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ming Kuang
- Department of Liver SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuibin Lin
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
231
|
Ying X, Liu B, Yuan Z, Huang Y, Chen C, Jiang X, Zhang H, Qi D, Yang S, Lin S, Luo J, Ji W. METTL1-m 7 G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med 2021; 11:e675. [PMID: 34936728 PMCID: PMC8694502 DOI: 10.1002/ctm2.675] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The posttranscriptional modifications of transfer RNA (tRNA) are critical for all aspects of the tRNA function and have been implicated in the tumourigenesis and progression of many human cancers. By contrast, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7 G tRNA modification in bladder cancer (BC) remain obscure. RESULTS In this research, we show that METTL1 was highly expressed in BC, and its level was correlated with poor patient prognosis. Silencing METTL1 suppresses the proliferation, migration and invasion of BC cells in vitro and in vivo. Multi-omics analysis reveals that METTL1-mediated m7 G tRNA modification altered expression of certain target genes, including EGFR/EFEMP1. Mechanistically, METTL1 regulates the translation of EGFR/EFEMP1 via modifying certain tRNAs. Furthermore, forced expression of EGFR/EFEMP1 partially rescues the effect of METTL1 deletion on BC cells. CONCLUSIONS Our findings demonstrate the oncogenic role of METTL1 and the pathological significance of the METTL1-m7 G-EGFR/EFEMP1 axis in the BC development, thus providing potential therapeutic targets for the BC treatment.
Collapse
Affiliation(s)
- Xiaoling Ying
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Bixia Liu
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Zusen Yuan
- Department of UrologyMinimally Invasive Surgery centerGuangdong Key Laboratory of UrologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510230China
| | - Yapeng Huang
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of UrologyMinimally Invasive Surgery centerGuangdong Key Laboratory of UrologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510230China
| | - Cong Chen
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Xu Jiang
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Haiqing Zhang
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Defeng Qi
- Department of UrologyMinimally Invasive Surgery centerGuangdong Key Laboratory of UrologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510230China
| | - Shulan Yang
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Shuibin Lin
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Junhang Luo
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Weidong Ji
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
232
|
Li X, Peng J, Yi C. The epitranscriptome of small non-coding RNAs. Noncoding RNA Res 2021; 6:167-173. [PMID: 34820590 PMCID: PMC8581453 DOI: 10.1016/j.ncrna.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs are short RNA molecules and involved in many biological processes, including cell proliferation and differentiation, immune response, cell death, epigenetic regulation, metabolic control. A diversity of RNA modifications have been identified in these small non-coding RNAs, including transfer RNAs (tRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), and tRNA-derived small RNAs (tsRNAs). These post-transcriptional modifications are involved in the biogenesis and function of these small non-coding RNAs. In this review, we will summarize the existence of RNA modifications in the small non-coding RNAs and the emerging roles of these epitranscriptomic marks.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
233
|
Huang G, Ding Q, Xie D, Cai Z, Zhao Z. Technical challenges in defining RNA modifications. Semin Cell Dev Biol 2021; 127:155-165. [PMID: 34838434 DOI: 10.1016/j.semcdb.2021.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
It is well established that DNA base modifications play a key role in gene regulation during development and in response to environmental stress. This type of epigenetic control of development and environmental responses has been intensively studied over the past few decades. Similar to DNA, various RNA species also undergo modifications that play important roles in, for example, RNA splicing, protein translation, and the avoidance of immune surveillance by host. More than 160 different types of RNA modifications have been identified. In addition to base modifications, RNA modification also involves splicing of pre-mRNAs, leading to as many as tens of transcript isoforms from a single pre-RNA, especially in higher organisms. However, the function, prevalence and distribution of RNA modifications are poorly understood. The lack of a suitable method for the reliable identification of RNA modifications constitutes a significant challenge to studying their functions. This review focuses on the technologies that enable de novo identification of RNA base modifications and the alternatively spliced mRNA transcripts.
Collapse
Affiliation(s)
- Gefei Huang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
234
|
Cayir A. RNA modifications as emerging therapeutic targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1702. [PMID: 34816607 DOI: 10.1002/wrna.1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The field of epitranscriptome, posttranscriptional modifications to RNAs, is still growing up and has presented substantial evidences for the role of RNA modifications in diseases. In terms of new drug development, RNA modifications have a great promise for therapy. For example, more than 170 type of modifications exist in various types of RNAs. Regulatory genes and their roles in critical biological process have been identified and they are associated with several diseases. Current data, for example, identification of inhibitors targeting RNA modifications regulatory genes, strongly support the idea that RNA modifications have potential as emerging therapeutic targets. Therefore, in this review, RNA modifications and regulatory genes were comprehensively documented in terms of drug development by summarizing the findings from previous studies. It was discussed how RNA modifications or regulatory genes can be targeted by altering molecular mechanisms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| |
Collapse
|
235
|
Li F, Deng Q, Pang X, Huang S, Zhang J, Zhu X, Chen H, Liu X. m 5C Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Papillary Thyroid Carcinoma. Front Oncol 2021; 11:729887. [PMID: 34804923 PMCID: PMC8597900 DOI: 10.3389/fonc.2021.729887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, immune response modulation at the epigenetic level is illustrated in studies, but the possible function of RNA 5-methylcytosine (m5C) modification in cell infiltration within the tumor microenvironment (TME) is still unclear. Three different m5C modification patterns were identified, and high differentiation degree was observed in the cell infiltration features within TME under the above three identified patterns. A low m5C-score, which was reflected in the activated immunity, predicted the relatively favorable prognostic outcome. A small amount of effective immune infiltration was seen in the high m5C-score subtype, indicating the dismal patient survival. Our study constructed a diagnostic model using the 10 signature genes highly related to the m5C-score, discovered that the model exhibited high diagnostic accuracy for PTC, and screened out five potential drugs for PTC based on this m5C-score model. m5C modification exerts an important part in forming the TME complexity and diversity. It is valuable to evaluate the m5C modification patterns in single tumors, so as to enhance our understanding towards the infiltration characterization in TME.
Collapse
Affiliation(s)
- Fei Li
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Qingmei Deng
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Xiaoxi Pang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shan Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jingmiao Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaxia Zhu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Hong Chen
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiuxia Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
236
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
237
|
Georgeson J, Schwartz S. The ribosome epitranscriptome: inert-or a platform for functional plasticity? RNA (NEW YORK, N.Y.) 2021; 27:1293-1301. [PMID: 34312287 PMCID: PMC8522695 DOI: 10.1261/rna.078859.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.
Collapse
Affiliation(s)
- Joseph Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
238
|
Zhu LR, Ni WJ, Cai M, Dai WT, Zhou H. Advances in RNA Epigenetic Modifications in Hepatocellular Carcinoma and Potential Targeted Intervention Strategies. Front Cell Dev Biol 2021; 9:777007. [PMID: 34778277 PMCID: PMC8586511 DOI: 10.3389/fcell.2021.777007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
The current interventions for hepatocellular carcinoma (HCC) are not satisfactory, and more precise targets and promising strategies need to be explored. Recent research has demonstrated the non-negligible roles of RNA epigenetic modifications such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in various cancers, including HCC. However, the specific targeting mechanisms are not well elucidated. In this review, we focus on the occurrence and detailed physiopathological roles of multiple RNA modifications on diverse RNAs closely related to the HCC process. In particular, we highlight fresh insights into the impact mechanisms of these posttranscriptional modifications on the whole progression of HCC. Furthermore, we analyzed the possibilities and significance of these modifications and regulators as potential therapeutic targets in HCC treatment, which provides the foundation for exploring targeted intervention strategies. This review will propel the identification of promising therapeutic targets and novel strategies that can be translated into clinical applications for HCC treatment.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Provincial Children’s Hospital, Anhui Institute of Pediatric Research, Hefei, China
| | - Wei-Jian Ni
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Ministry of Education, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Tao Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
239
|
Zou H, Yang F, Yin Z. Identifying N7-methylguanosine sites by integrating multiple features. Biopolymers 2021; 113:e23480. [PMID: 34709657 DOI: 10.1002/bip.23480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022]
Abstract
Recent studies reported that N7-methylguanosine (m7G) plays a vital role in gene expression regulation. As a consequence, determining the distribution of m7G is a crucial step towards further understanding its biological functions. Although biological experimental approaches are capable of accurately locating m7G sites, they are labor-intensive, costly, and time-consuming. Therefore, it is necessary to develop more effective and robust computational methods to replace, or at least complement current experimental methods. In this study, we developed a novel sequence-based computational tool to identify RNA m7G sites. In this model, 22 kinds of dinucleotide physicochemical (PC) properties were employed to encode the RNA sequence. Three types of descriptors, including auto-covariance, cross-covariance, and discrete wavelet transform were adopted to extract effective features from the PC matrix. The least absolute shrinkage and selection operator (LASSO) algorithm was utilized to reduce the influence of irrelevant or redundant features. Finally, these selected features were fed into a support vector machine (SVM) for distinguishing m7G from non-m7G sites. The proposed method significantly outperforms existing predictors across all evaluation metrics. It indicates that the approach is effective in identifying RNA m7G sites.
Collapse
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhijian Yin
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
240
|
Kaiser S, Byrne SR, Ammann G, Asadi Atoi P, Borland K, Brecheisen R, DeMott MS, Gehrke T, Hagelskamp F, Heiss M, Yoluç Y, Liu L, Zhang Q, Dedon PC, Cao B, Kellner S. Strategien zur Vermeidung von Artefakten in der massenspektrometrischen Epitranskriptomanalytik. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steffen Kaiser
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
- Institut für Pharmazeutische Chemie Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Deutschland
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gregor Ammann
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Paria Asadi Atoi
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Kayla Borland
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | | | - Michael S. DeMott
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Tim Gehrke
- Ella Biotech GmbH 82152 München Deutschland
| | - Felix Hagelskamp
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Matthias Heiss
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Yasemin Yoluç
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Lili Liu
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Qinghua Zhang
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group Singapore-Massachusetts Institute of Technology Alliance for Research and Technology 138602 Singapore Singapur
| | - Bo Cao
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Stefanie Kellner
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
- Institut für Pharmazeutische Chemie Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Deutschland
| |
Collapse
|
241
|
Kaiser S, Byrne SR, Ammann G, Asadi Atoi P, Borland K, Brecheisen R, DeMott MS, Gehrke T, Hagelskamp F, Heiss M, Yoluç Y, Liu L, Zhang Q, Dedon PC, Cao B, Kellner S. Strategies to Avoid Artifacts in Mass Spectrometry-Based Epitranscriptome Analyses. Angew Chem Int Ed Engl 2021; 60:23885-23893. [PMID: 34339593 PMCID: PMC8597057 DOI: 10.1002/anie.202106215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 11/05/2022]
Abstract
In this report, we perform structure validation of recently reported RNA phosphorothioate (PT) modifications, a new set of epitranscriptome marks found in bacteria and eukaryotes including humans. By comparing synthetic PT-containing diribonucleotides with native species in RNA hydrolysates by high-resolution mass spectrometry (MS), metabolic stable isotope labeling, and PT-specific iodine-desulfurization, we disprove the existence of PTs in RNA from E. coli, S. cerevisiae, human cell lines, and mouse brain. Furthermore, we discuss how an MS artifact led to the initial misidentification of 2'-O-methylated diribonucleotides as RNA phosphorothioates. To aid structure validation of new nucleic acid modifications, we present a detailed guideline for MS analysis of RNA hydrolysates, emphasizing how the chosen RNA hydrolysis protocol can be a decisive factor in discovering and quantifying RNA modifications in biological samples.
Collapse
Affiliation(s)
- Steffen Kaiser
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gregor Ammann
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Paria Asadi Atoi
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Kayla Borland
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | | | - Michael S. DeMott
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | | | - Felix Hagelskamp
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Matthias Heiss
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Yasemin Yoluç
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Lili Liu
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Qinghua Zhang
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore-Massachusetts Institute of Technology Alliance for Research and Technology138602SingaporeSingapore
| | - Bo Cao
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Stefanie Kellner
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
242
|
Tsao N, Brickner JR, Rodell R, Ganguly A, Wood M, Oyeniran C, Ahmad T, Sun H, Bacolla A, Zhang L, Lukinović V, Soll JM, Townley BA, Casanova AG, Tainer JA, He C, Vindigni A, Reynoird N, Mosammaparast N. Aberrant RNA methylation triggers recruitment of an alkylation repair complex. Mol Cell 2021; 81:4228-4242.e8. [PMID: 34686315 DOI: 10.1016/j.molcel.2021.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Rodell
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adit Ganguly
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clement Oyeniran
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Hua Sun
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisheng Zhang
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA
| | - Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Jennifer M Soll
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago IL 60637, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
243
|
Jiang H, Gao Y, Zhang L, Chen D, Gan J, Murchie AIH. The identification and characterization of a selected SAM-dependent methyltransferase ribozyme that is present in natural sequences. Nat Catal 2021. [DOI: 10.1038/s41929-021-00685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
244
|
Gameiro PA, Encheva V, Dos Santos MS, MacRae JI, Ule J. Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling. J Biol Chem 2021; 297:101294. [PMID: 34634303 PMCID: PMC8567201 DOI: 10.1016/j.jbc.2021.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.
Collapse
Affiliation(s)
- Paulo A Gameiro
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | | | - James I MacRae
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | - Jernej Ule
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
245
|
Moroz‐Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, Rzeczkowski MD, Li Y, Wiedmer L, Caflisch A. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem 2021; 16:3035-3043. [PMID: 34237194 PMCID: PMC8518639 DOI: 10.1002/cmdc.202100291] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Indexed: 12/31/2022]
Abstract
The methylase METTL3 is the writer enzyme of the N6 -methyladenosine (m6 A) modification of RNA. Using a structure-based drug discovery approach, we identified a METTL3 inhibitor with potency in a biochemical assay of 280 nM, while its enantiomer is 100 times less active. We observed a dose-dependent reduction in the m6 A methylation level of mRNA in several cell lines treated with the inhibitor already after 16 h of treatment, which lasted for at least 6 days. Importantly, the prolonged incubation (up to 6 days) with the METTL3 inhibitor did not alter levels of other RNA modifications (i. e., m1 A, m6 Am , m7 G), suggesting selectivity of the developed compound towards other RNA methyltransferases.
Collapse
Affiliation(s)
- Elena V. Moroz‐Omori
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Danzhi Huang
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Rajiv Kumar Bedi
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | | | - Elena Bochenkova
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Aymeric Dolbois
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Maciej D. Rzeczkowski
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Yaozong Li
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Lars Wiedmer
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
246
|
El Allali A, Elhamraoui Z, Daoud R. Machine learning applications in RNA modification sites prediction. Comput Struct Biotechnol J 2021; 19:5510-5524. [PMID: 34712397 PMCID: PMC8517552 DOI: 10.1016/j.csbj.2021.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Ribonucleic acid (RNA) modifications are post-transcriptional chemical composition changes that have a fundamental role in regulating the main aspect of RNA function. Recently, large datasets have become available thanks to the recent development in deep sequencing and large-scale profiling. This availability of transcriptomic datasets has led to increased use of machine learning based approaches in epitranscriptomics, particularly in identifying RNA modifications. In this review, we comprehensively explore machine learning based approaches used for the prediction of 11 RNA modification types, namely,m 1 A ,m 6 A ,m 5 C , 5 hmC , ψ , 2 ' - O - Me , ac 4 C ,m 7 G , A - to - I ,m 2 G , and D . This review covers the life cycle of machine learning methods to predict RNA modification sites including available benchmark datasets, feature extraction, and classification algorithms. We compare available methods in terms of datasets, target species, approach, and accuracy for each RNA modification type. Finally, we discuss the advantages and limitations of the reviewed approaches and suggest future perspectives.
Collapse
Affiliation(s)
- A. El Allali
- African Genome Center, University Mohamed VI Polytechnic, Morocco
| | - Zahra Elhamraoui
- African Genome Center, University Mohamed VI Polytechnic, Morocco
| | - Rachid Daoud
- African Genome Center, University Mohamed VI Polytechnic, Morocco
| |
Collapse
|
247
|
Helm M, Schmidt-Dengler MC, Weber M, Motorin Y. General Principles for the Detection of Modified Nucleotides in RNA by Specific Reagents. Adv Biol (Weinh) 2021; 5:e2100866. [PMID: 34535986 DOI: 10.1002/adbi.202100866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Epitranscriptomics heavily rely on chemical reagents for the detection, quantification, and localization of modified nucleotides in transcriptomes. Recent years have seen a surge in mapping methods that use innovative and rediscovered organic chemistry in high throughput approaches. While this has brought about a leap of progress in this young field, it has also become clear that the different chemistries feature variegated specificity and selectivity. The associated error rates, e.g., in terms of false positives and false negatives, are in large part inherent to the chemistry employed. This means that even assuming technically perfect execution, the interpretation of mapping results issuing from the application of such chemistries are limited by intrinsic features of chemical reactivity. An important but often ignored fact is that the huge stochiometric excess of unmodified over-modified nucleotides is not inert to any of the reagents employed. Consequently, any reaction aimed at chemical discrimination of modified versus unmodified nucleotides has optimal conditions for selectivity that are ultimately anchored in relative reaction rates, whose ratio imposes intrinsic limits to selectivity. Here chemical reactivities of canonical and modified ribonucleosides are revisited as a basis for an understanding of the limits of selectivity achievable with chemical methods.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Martina C Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, F-54000, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, F-54000, France
| |
Collapse
|
248
|
Dolbois A, Bedi RK, Bochenkova E, Müller A, Moroz-Omori EV, Huang D, Caflisch A. 1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. J Med Chem 2021; 64:12738-12760. [PMID: 34431664 DOI: 10.1021/acs.jmedchem.1c00773] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is the most frequent of the 160 RNA modifications reported so far. Accumulating evidence suggests that the METTL3/METTL14 protein complex, part of the m6A regulation machinery, is a key player in a variety of diseases including several types of cancer, type 2 diabetes, and viral infections. Here we report on a protein crystallography-based medicinal chemistry optimization of a METTL3 hit compound that has resulted in a 1400-fold potency improvement (IC50 of 5 nM for the lead compound 22 (UZH2) in a time-resolved Förster resonance energy transfer (TR-FRET) assay). The series has favorable ADME properties as physicochemical characteristics were taken into account during hit optimization. UZH2 shows target engagement in cells and is able to reduce the m6A/A level of polyadenylated RNA in MOLM-13 (acute myeloid leukemia) and PC-3 (prostate cancer) cell lines.
Collapse
Affiliation(s)
- Aymeric Dolbois
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Rajiv K Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena Bochenkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Anna Müller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena V Moroz-Omori
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Danzhi Huang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
249
|
BERT-m7G: A Transformer Architecture Based on BERT and Stacking Ensemble to Identify RNA N7-Methylguanosine Sites from Sequence Information. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7764764. [PMID: 34484416 PMCID: PMC8413034 DOI: 10.1155/2021/7764764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 01/19/2023]
Abstract
As one of the most prevalent posttranscriptional modifications of RNA, N7-methylguanosine (m7G) plays an essential role in the regulation of gene expression. Accurate identification of m7G sites in the transcriptome is invaluable for better revealing their potential functional mechanisms. Although high-throughput experimental methods can locate m7G sites precisely, they are overpriced and time-consuming. Hence, it is imperative to design an efficient computational method that can accurately identify the m7G sites. In this study, we propose a novel method via incorporating BERT-based multilingual model in bioinformatics to represent the information of RNA sequences. Firstly, we treat RNA sequences as natural sentences and then employ bidirectional encoder representations from transformers (BERT) model to transform them into fixed-length numerical matrices. Secondly, a feature selection scheme based on the elastic net method is constructed to eliminate redundant features and retain important features. Finally, the selected feature subset is input into a stacking ensemble classifier to predict m7G sites, and the hyperparameters of the classifier are tuned with tree-structured Parzen estimator (TPE) approach. By 10-fold cross-validation, the performance of BERT-m7G is measured with an ACC of 95.48% and an MCC of 0.9100. The experimental results indicate that the proposed method significantly outperforms state-of-the-art prediction methods in the identification of m7G modifications.
Collapse
|
250
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|