201
|
Amorim IS, Lach G, Gkogkas CG. The Role of the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Neuropsychiatric Disorders. Front Genet 2018; 9:561. [PMID: 30532767 PMCID: PMC6265315 DOI: 10.3389/fgene.2018.00561] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis in eukaryotic cells is a complex, multi-step and tightly regulated process. Translation initiation, the rate limiting step in protein synthesis, is dependent on the activity of eukaryotic translation Initiation Factor 4E (eIF4E). eIF4E is the cap-binding protein which, in synergy with proteins such as the helicase eIF4A and the scaffolding protein eIF4G, binds to mRNA, allowing the recruitment of ribosomes and translation initiation. The function of eIF4E is tightly regulated in cells under normal physiological conditions and can be controlled by post-translational modifications, such as phosphorylation, and by the binding of inhibitory proteins, including eIF4E binding proteins (4E-BPs) and CYFIP1. Recent studies have highlighted the importance of eIF4E in normal or aberrant function of the nervous system. In this mini-review, we will highlight the role of eIF4E function and regulation in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,The Patrick Wild Centre, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
202
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
203
|
Loesch DZ, Trost N, Bui MQ, Hammersley E, Lay ST, Annesley SJ, Sanislav O, Allan CY, Tassone F, Chen ZP, Ngoei KRW, Kemp BE, Francis D, Fisher PR, Storey E. The Spectrum of Neurological and White Matter Changes and Premutation Status Categories of Older Male Carriers of the FMR1 Alleles Are Linked to Genetic (CGG and FMR1 mRNA) and Cellular Stress (AMPK) Markers. Front Genet 2018; 9:531. [PMID: 30483310 PMCID: PMC6241173 DOI: 10.3389/fgene.2018.00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The fragile X premutation (PM) allele contains a CGG expansion of 55-200 repeats in the FMR1 gene's promoter. Male PM carriers have an elevated risk of developing neurological and psychiatric changes, including an approximately 50% risk of the fragile X-associated tremor/ataxia syndrome (FXTAS). The aim of this study was to assess the relationships of regional white matter hyperintensities (wmhs) semi-quantitative scores, clinical status, motor (UPDRS, ICARS, Tremor) scales, and cognitive impairments, with FMR1-specific genetic changes, in a sample of 32 unselected male PM carriers aged 39-81 years. Half of these individuals were affected with FXTAS, while the non-FXTAS group comprised subcategories of non-affected individuals and individuals affected with non-syndromic changes. The dynamics of pathological processes at the cellular level relevant to the clinical status of PM carriers was investigated using the enzyme AMP-activated protein kinase (AMPK), which is a highly sensitive cellular stress-sensing alarm protein. This enzyme, as well as genetic markers - CGG repeat number and the levels of the FMR1 mRNA - were assessed in blood lymphoblasts. The results showed that the repeat distribution for FXTAS individuals peaked at 85-90 CGGs; non-FXTAS carriers were distributed within the lowest end of the PM repeat range, and non-syndromic carriers assumed an intermediate position. The size of the CGG expansion was significantly correlated, across all three categories, with infratentorial and total wmhs and with all motor scores, and the FMR1 mRNA levels with all the wmh scores, whilst AMPK activity showed considerable elevation in the non-FXTAS combined group, decreasing in the FXTAS group, proportionally to increasing severity of the wmhs and tremor/ataxia. We conclude that the size of the CGG expansion relates to the risk for FXTAS, to severity of infratentorial wmhs lesions, and to all three motor scale scores. FMR1 mRNA shows a strong association with the extent of wmhs, which is the most sensitive marker of the pathological process. However, the AMPK activity findings - suggestive of a role of this enzyme in the risk of FXTAS - need to be verified and expanded in future studies using larger samples and longitudinal assessment.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Minh Q. Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Eleanor Hammersley
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Sui T. Lay
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J. Annesley
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Claire Y. Allan
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Flora Tassone
- UC Davis MIND Institute, Sacramento, CA, United States
| | - Zhi-Ping Chen
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Kevin R. W. Ngoei
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Bruce E. Kemp
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - David Francis
- Cytomolecular Diagnostic Research, Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Melbourne, VIC, Australia
| |
Collapse
|
204
|
Wang Y, Hao L, Wang H, Santostefano K, Thapa A, Cleary J, Li H, Guo X, Terada N, Ashizawa T, Xia G. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9. Mol Ther 2018; 26:2617-2630. [PMID: 30274788 PMCID: PMC6225032 DOI: 10.1016/j.ymthe.2018.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.
Collapse
Affiliation(s)
- Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Lei Hao
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Hongcai Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou City, Shandong Province, China; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Katherine Santostefano
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arjun Thapa
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - John Cleary
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Hui Li
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Naohiro Terada
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research Institute, 6670 Bertner Ave. R11-117, Houston, TX, USA
| | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
205
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
206
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
207
|
Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome. Neural Plast 2018; 2018:8423420. [PMID: 30402088 PMCID: PMC6192167 DOI: 10.1155/2018/8423420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by silence of the fmr1 gene and the deficiency of Fragile X mental retardation protein (FMRP). Patients present neuronal alterations that lead to severe intellectual disability and altered sleep rhythms. However, the neural circuit mechanisms underlying FXS remain unclear. Previous studies have suggested that metabolic glutamate and gamma-aminobutyric acid (GABA) receptors/circuits are two counter-balanced factors involved in FXS pathophysiology. More and more studies demonstrated that attenuated GABAergic circuits in the absence of FMRP are critical for abnormal progression of FXS. Here, we reviewed the changes of GABA neural circuits that were attributed to intellectual-deficient FXS, from several aspects including deregulated GABA metabolism, decreased expressions of GABA receptor subunits, and impaired GABAergic neural circuits. Furthermore, the activities of GABA neural circuits are modulated by circadian rhythm of FMRP metabolism and reviewed the abnormal condition of FXS mice or patients.
Collapse
|
208
|
Ayhan F, Perez BA, Shorrock HK, Zu T, Banez-Coronel M, Reid T, Furuya H, Clark HB, Troncoso JC, Ross CA, Subramony SH, Ashizawa T, Wang ET, Yachnis AT, Ranum LP. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 2018; 37:embj.201899023. [PMID: 30206144 DOI: 10.15252/embj.201899023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) is caused by a bidirectionally transcribed CTG·CAG expansion that results in the in vivo accumulation of CUG RNA foci, an ATG-initiated polyGln and a polyAla protein expressed by repeat-associated non-ATG (RAN) translation. Although RAN proteins have been reported in a growing number of diseases, the mechanisms and role of RAN translation in disease are poorly understood. We report a novel toxic SCA8 polySer protein which accumulates in white matter (WM) regions as aggregates that increase with age and disease severity. WM regions with polySer aggregates show demyelination and axonal degeneration in SCA8 human and mouse brains. Additionally, knockdown of the eukaryotic translation initiation factor eIF3F in cells reduces steady-state levels of SCA8 polySer and other RAN proteins. Taken together, these data show polySer and WM abnormalities contribute to SCA8 and identify eIF3F as a novel modulator of RAN protein accumulation.
Collapse
Affiliation(s)
- Fatma Ayhan
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barbara A Perez
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hannah K Shorrock
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tammy Reid
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hirokazu Furuya
- Department of Neurology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Neurology, Neuro-Muscular Center, NHO Omuta Hospital, Fukuoka, Japan
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Juan C Troncoso
- Department of Pathology and Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Huntington's Disease Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S H Subramony
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Eric T Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA .,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
209
|
Klusek J, Porter A, Abbeduto L, Adayev T, Tassone F, Mailick MR, Glicksman A, Tonnsen BL, Roberts JE. Curvilinear Association Between Language Disfluency and FMR1 CGG Repeat Size Across the Normal, Intermediate, and Premutation Range. Front Genet 2018; 9:344. [PMID: 30197656 PMCID: PMC6118037 DOI: 10.3389/fgene.2018.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Historically, investigations of FMR1 have focused almost exclusively on the clinical effects of CGG expansion within the categories of the premutation (55-200 CGG repeats) and fragile X syndrome (>200 CGG repeats). However, emerging evidence suggests that CGG-dependent phenotypes may occur across allele sizes traditionally considered within the "normal" range. This study adopted an individual-differences approach to determine the association between language production ability and CGG repeat length across the full range of normal, intermediate, and premutation alleles. Participants included 61 adult women with CGG repeats within the premutation (n = 37), intermediate (i.e., 41-54 repeats; n = 2), or normal (i.e., 6-40 repeats; n = 22) ranges. All participants were the biological mothers of a child with a developmental disorder, to control for the potential effects of parenting stress. Language samples were collected and the frequency of language disfluencies (i.e., interruptions in the flow of speech) served as an index of language production skills. Verbal inhibition skills, measured with the Hayling Sentence Completion Test, were also measured and examined as a correlate of language disfluency, consistent with theoretical work linking language disfluency with inhibitory deficits (i.e., the Inhibition Deficit Hypothesis). Blood samples were collected to determine FMR1 CGG repeat size. A general linear model tested CGG repeat size of the larger allele (allele-2) as the primary predictor of language disfluency, covarying for education level, IQ, age, and CGG repeats on the other allele. A robust curvilinear association between CGG length and language disfluency was detected, where low-normal (∼ <25 repeats) and mid-premutation alleles (∼90-110 repeats) were linked with higher rates of disfluency. Disfluency was not associated with inhibition deficits, which challenges prior theoretical work and suggests that a primary language deficit could account for elevated language disfluency in FMR1-associated conditions. Findings suggest CGG-dependent variation in language production ability, which was evident across individuals with and without CGG expansions on FMR1.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Anna Porter
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
- MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Flora Tassone
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Anne Glicksman
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Bridgette L. Tonnsen
- Department of Psychological Sciences, Purdue University, Lafayette, IN, United States
| | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
210
|
Al Olaby RR, Tang HT, Durbin-Johnson B, Schneider A, Hessl D, Rivera SM, Tassone F. Assessment of Molecular Measures in Non-FXTAS Male Premutation Carriers. Front Genet 2018; 9:302. [PMID: 30186307 PMCID: PMC6113865 DOI: 10.3389/fgene.2018.00302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022] Open
Abstract
Approximately 30-40% of male and 8-16% of female carriers of the Fragile X premutation will develop a neurodegenerative movement disorder characterized by intentional tremor, gait ataxia, autonomic dysfunction, cognitive decline, and Parkinsonism during their lifetime. At the molecular level, premutation carriers have increased expression levels of the FMR1 and the antisense FMR1 (ASFMR1) mRNAs. Both genes undergo alternative splicing giving rise to a number of different transcripts. Alteration in the alternative splicing process might be associated with FXTAS. In this study, we have investigated the correlation between objective measures of movement (balance and tremor using the CATSYS battery) and the expression of both the FMR1 and the ASFMR1 genes. In addition, we investigated whether their expression level and that of the ASFMR1 131 bp splice isoform could distinguish between premutation carriers with FXTAS and non-FXTAS premutation carriers. Confirming previous findings, the expression levels of transcripts at the FMR1 locus positively correlated with the CGG repeat number and significantly differentiated the premutation carriers from the control groups. Furthermore, premutation carriers with and without FXTAS, showed a significant difference in the expression level of the ASFMR1 131 bp splice isoform when compared to age and gender matched controls. However, there was no significant difference in the ASFMR1 131 bp splice isoform expression level when comparing premutation carriers with and without FXTAS. Finally, our results indicate significant group differences in CATSYS dominant hand reaction time and postural sway with eyes closed in premutation carriers without FXTAS compared to controls. In addition, a significant inverse association between the tremor intensity and the expression level of ASFMR1 131 bp splice isoform in premutation carriers compared to controls, was observed, suggesting a potential role in the pathogenesis of FXTAS.
Collapse
Affiliation(s)
- Reem R. Al Olaby
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
| | - Blythe Durbin-Johnson
- Department of Biostatistics, University of California, Davis, Davis, CA, United States
| | - Andrea Schneider
- Department of Pediatrics, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - David Hessl
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
| | - Susan M. Rivera
- Department of Psychiatry and Behavioral Sciences, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
- Neurocognitive Development Lab, Department of Psychology, UC Davis Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
- Department of Pediatrics, UC Davis Medical Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
211
|
Famula JL, McKenzie F, McLennan YA, Grigsby J, Tassone F, Hessl D, Rivera SM, Martinez-Cerdeno V, Hagerman RJ. Presence of Middle Cerebellar Peduncle Sign in FMR1 Premutation Carriers Without Tremor and Ataxia. Front Neurol 2018; 9:695. [PMID: 30186228 PMCID: PMC6113389 DOI: 10.3389/fneur.2018.00695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
Here we report five cases of male FMR1 premutation carriers who present without clinical symptoms of the fragile X-associated tremor/ataxia syndrome (FXTAS), but who on MRI demonstrate white matter hyperintensities in the middle cerebellar peduncles (MCP sign) and other brain regions, a rare finding. MCP sign is the major radiological feature of FXTAS; it is therefore remarkable to identify five cases in which this MRI finding is present in the absence of tremor and ataxia, the major clinical features of FXTAS. Subjects underwent a detailed neurological evaluation, neuropsychological testing, molecular testing, and MRI evaluation utilizing T2 imaging described here. Additional white matter disease was present in the corpus callosum in four of the five cases. However, all cases were asymptomatic for motor signs of FXTAS.
Collapse
Affiliation(s)
- Jessica L Famula
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Forrest McKenzie
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Yingratana A McLennan
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - James Grigsby
- School of Medicine, University of Colorado, Denver, CO, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Susan M Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychology, University of California Davis, Davis, CA, United States
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
212
|
Paucar M, Nennesmo I, Svenningsson P. Pathological Study of a FMR1 Premutation Carrier With Progressive Supranuclear Palsy. Front Genet 2018; 9:317. [PMID: 30158953 PMCID: PMC6103471 DOI: 10.3389/fgene.2018.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Dual pathology in fragile X mental retardation 1 (FMR1) premutation carriers and fragile X–associated tremor/ataxia syndrome (FXTAS) patients is an emerging phenomenon. Although it includes atypical parkinsonism, neuropathological confirmation is very scarce. Here, we describe neuropathological findings for a female who suffered a severe parkinsonian syndrome with apraxia and supranuclear palsy. She died at the age of 50, six years after the initial diagnosis. Prominent neuronal loss was found in the pallidum, subthalamic nucleus, and tectum, but the loss of Purkinje cells was rather mild. Intranuclear inclusions containing ubiquitin and FMRpolyglycine, a pathological hallmark of FXTAS, were detected in neurons and astrocytes. However, this inclusion pathology was overshadowed by a very prominent four repeat tau accumulation in tufted astrocytes, oligodendroglial coiled bodies, thread structures, and neurons. This is, to best of our knowledge, the first report describing a pathologically confirmed progressive supranuclear palsy – corticobasal syndrome (PSP-CBS) variant case in a FMR1 premutation carrier.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
213
|
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res 2018; 1693:43-54. [PMID: 29453961 PMCID: PMC6010627 DOI: 10.1016/j.brainres.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5'UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity.
Collapse
Affiliation(s)
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran's Affairs Medical Center, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
214
|
Allen EG, Glicksman A, Tortora N, Charen K, He W, Amin A, Hipp H, Shubeck L, Nolin SL, Sherman SL. FXPOI: Pattern of AGG Interruptions Does not Show an Association With Age at Amenorrhea Among Women With a Premutation. Front Genet 2018; 9:292. [PMID: 30123240 PMCID: PMC6086008 DOI: 10.3389/fgene.2018.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) occurs in about 20% of women who carry a premutation allele (55–200 CGG repeats). These women develop hypergonadotropic hypogonadism and have secondary amenorrhea before age 40. A non-linear association with repeat size and risk for FXPOI has been seen in multiple studies women with a premutation: those with a mid-range of repeats are at highest risk (∼70–100 CGG repeats). Importantly, not all carriers with 70–100 repeats experience FXPOI. We investigated whether AGG interruptions, adjusted for repeat size, impacted age at secondary amenorrhea. We have reproductive history information and AGG interruption data on 262 premutation women: 164 had an established age at amenorrhea (AAA) (for some, age at onset of FXPOI) or menopause, 16 had a surgery involving the reproductive system such as a hysterectomy, and 82 women were still cycling at the last interview. Reproductive status was determined using self-report reproductive questionnaires and interviews with a reproductive endocrinologist. For each of these 262 women, FMR1 repeat size and number of AGG interruptions were determined. We confirmed the association of repeat size with AAA or menopause among women with a premutation. As expected, both premutation repeat size and the quadratic form of repeat size (i.e., squared term) were significant in a survival analysis model predicting AAA (p < 0.0001 for both variables). When number of AGG interruptions was added to the model, this variable was not significant (p = 0.59). Finally, we used a regression model based on the 164 women with established AAA to estimate the proportion of variance in AAA explained by repeat size and its squared term. Both terms were again highly significant (p < 0.0001 for both), but together only explained 13% of the variation in AAA. The non-linear association between AAA and FMR1 repeat size has been described in several studies. We have determined that AGG interruption pattern does not contribute to this association. Because only 13% of the variation is described using repeat size, it is clear that further research of FXPOI is needed to identify other factors that affect the risk for FXPOI.
Collapse
Affiliation(s)
- Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Heather Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
215
|
Vittal P, Pandya S, Sharp K, Berry-Kravis E, Zhou L, Ouyang B, Jackson J, Hall DA. ASFMR1 splice variant: A predictor of fragile X-associated tremor/ataxia syndrome. NEUROLOGY-GENETICS 2018; 4:e246. [PMID: 30065951 PMCID: PMC6066363 DOI: 10.1212/nxg.0000000000000246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Objective To explore the association of a splice variant of the antisense fragile X mental retardation 1 (ASFMR1) gene, loss of fragile X mental retardation 1 (FMR1) AGG interspersions and FMR1 CGG repeat size with manifestation, and severity of clinical symptoms of fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Premutation carriers (PMCs) with FXTAS, without FXTAS, and normal controls (NCs) had a neurologic evaluation and collection of skin and blood samples. Expression of ASFMR1 transcript/splice variant 2 (ASFMR1-TV2), nonspliced ASFMR1, total ASFMR1, and FMR1 messenger RNA were quantified and compared using analysis of variance. Least absolute shrinkage and selection operator (LASSO) logistic regression and receiver operating characteristic analyses were performed. Results Premutation men and women both with and without FXTAS had higher ASFMR1-TV2 levels compared with NC men and women (n = 135,135, p < 0.0001), and ASFMR1-TV2 had good discriminating power for FXTAS compared with NCs but not for FXTAS from PMC. After adjusting for age, loss of AGG, larger CGG repeat size (in men), and elevated ASFMR1-TV2 level (in women) were strongly associated with FXTAS compared with NC and PMC (combined). Conclusions This study found elevated levels of ASFMR1-TV2 and loss of AGG interruptions in both men and women with FXTAS. Future studies will be needed to determine whether these variables can provide useful diagnostic or predictive information.
Collapse
Affiliation(s)
- Padmaja Vittal
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Shrikant Pandya
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Kevin Sharp
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Elizabeth Berry-Kravis
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Lili Zhou
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Bichun Ouyang
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Jonathan Jackson
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| | - Deborah A Hall
- Department of Neurosciences (P.V.), Northwestern Medicine Regional Medical Group, Winfield, IL; the Department of Bioengineering (S.P.), University of Illinois at Chicago; the Department of Pediatrics, Neurological Sciences, Biochemistry (K.S., E.B.-K., L.Z., J.J.), and the Department of Neurological Sciences (B.O., D.A.H.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
216
|
Fragile X syndrome and fragile X-associated tremor ataxia syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:377-391. [PMID: 29325626 DOI: 10.1016/b978-0-444-63233-3.00025-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fragile X-associated disorders encompass several conditions, which are caused by expansion mutations in the fragile X mental retardation 1 (FMR1) gene. Fragile X syndrome is the most common inherited etiology of intellectual disability and results from a full mutation or >200 CGG repeats in FMR1. It is associated with developmental delay, autism spectrum disorder, and seizures. Fragile X-associated tremor/ataxia syndrome is a progressive neurodegenerative disease that occurs in premutation carriers of 55-200 CGG repeats in FMR1 and is characterized by kinetic tremor, gait ataxia, parkinsonism, executive dysfunction, and neuropathy. Fragile X-associated primary ovarian insufficiency also occurs in premutation carrier women and manifests with infertility and early menopause. The diseases constituting fragile X-associated disorders differ mechanistically, due to the distinct molecular properties of premutation versus full mutations. Fragile X syndrome occurs when there is a lack of fragile X mental retardation protein (FMRP) due to FMR1 methylation and silencing. In fragile X-associated tremor ataxia syndrome, a toxic gain of function is postulated with the production of excess CGG repeat-containing FMR1 mRNA, abnormal translation of the repeat sequence leading to production of polyglycine, polyalanine, and other polypeptides and to outright deficits in translation leading to reduced FMRP at larger premutation sizes. The changes in underlying brain chemistry due to FMR1 mutations have led to therapeutic studies in these disorders, with some progress being made in fragile X syndrome. This paper also summarizes indications for testing, genetic counseling issues, and what the future holds for these disorders.
Collapse
|
217
|
Lee YB, Baskaran P, Gomez-Deza J, Chen HJ, Nishimura AL, Smith BN, Troakes C, Adachi Y, Stepto A, Petrucelli L, Gallo JM, Hirth F, Rogelj B, Guthrie S, Shaw CE. C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity. Hum Mol Genet 2018; 26:4765-4777. [PMID: 28973350 PMCID: PMC5886201 DOI: 10.1093/hmg/ddx350] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR: poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD.
Collapse
Affiliation(s)
- Youn-Bok Lee
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Pranetha Baskaran
- Department of Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Jorge Gomez-Deza
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Han-Jou Chen
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Agnes L Nishimura
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Claire Troakes
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Yoshitsugu Adachi
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Alan Stepto
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jean-Marc Gallo
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Frank Hirth
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Sarah Guthrie
- Department of Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.,School of Life Sciences, University of Sussex, JMS Building, Falmer Campus, Brighton, BN7 9QG UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK
| |
Collapse
|
218
|
|
219
|
Rudich P, Lamitina T. Models and mechanisms of repeat expansion disorders: a worm's eye view. J Genet 2018; 97:665-677. [PMID: 30027902 PMCID: PMC6482835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inappropriate genetic expansion of various repetitive DNA sequences underlies over 20 distinct inherited diseases. The genetic context of these repeats in exons, introns and untranslated regions has played a major role in thinking about the mechanisms by which various repeat expansions might cause disease. Repeat expansions in exons are thought to give rise to expanded toxic protein repeats (i.e. polyQ). Repeat expansions in introns and UTRs (i.e. FXTAS) are thought to produce aberrant repeat-bearing RNAs that interact with and sequester a wide variety of essential proteins, resulting in cellular toxicity. However, a new phenomenon termed 'repeat-associated nonAUG dependent (RAN) translation' paints a new and unifying picture of how distinct repeat expansion-bearing RNAs might act as substrates for this noncanonical form of translation, leading to the production of a wide range of repeat sequence-specific-encoded toxic proteins. Here, we review how the model system Caenorhabditis elegans has been utilized to model many repeat disorders and discuss how RAN translation could be a previously unappreciated contributor to the toxicity associated with these different models.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| | | |
Collapse
|
220
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
221
|
Derbis M, Konieczny P, Walczak A, Sekrecki M, Sobczak K. Quantitative Evaluation of Toxic Polyglycine Biosynthesis and Aggregation in Cell Models Expressing Expanded CGG Repeats. Front Genet 2018; 9:216. [PMID: 29971092 PMCID: PMC6018535 DOI: 10.3389/fgene.2018.00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expanded CGG (CGGexp) trinucleotides in the 5′UTR of the FMR1 gene encoding fragile X mental retardation protein (FMRP). The patients, with the number of the repeats ranging from 55 to 200, show specific manifestation of clinical symptoms that include intention tremor, gait ataxia, cognitive deficits, and brain atrophy. Accumulation of toxic polyglycine (FMRpolyG), a by-product of the CGGexp repeat-associated non-ATG (RAN) translation, is considered to be one of the main factors triggering neurodegenerative processes in FXTAS patients. Nevertheless, the nature of the FMRpolyG-induced cell damage, especially in the context of its soluble and inclusion-associated forms, is still elusive. Targeting either biosynthesis, cellular stability or aggregation capacity of toxic FMRpolyG could be considered as a potential therapeutic strategy for FXTAS. Therefore, we tested a variety of quantitative methods based on forced expression of genetic constructs carrying CGGexp repeats in the context of the FMR1 5′UTR fused to GFP, mCherry or Firefly luciferase gene in or out of frame to the polyglycine encoding sequence. We show that FMRpolyG translation either from native or an AUG-induced start codon as well as the translation yield of the FMRP open reading frame equivalent located downstream of the CGGexp element can be effectively estimated using fluorescence microscopy, flow cytometry or luciferase assay. We also quantitatively estimated soluble fraction and insoluble form of FMRpolyG aggregated in foci using an electrophoretic separation of cell lysates and fluorescence microscopy, respectively. Importantly, we show that dependent on a fusion tag, FMRpolyG has a different potential for aggregate formation. Our established protocols enable sensitive tracking of FMRP and FMRpolyG quantitative and qualitative changes after treatment with potential therapeutic agents for FXTAS. Furthermore, they can be modified for application to other RAN translation- and aggregation-related diseases.
Collapse
Affiliation(s)
- Magdalena Derbis
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
222
|
Guler GD, Rosenwaks Z, Gerhardt J. Human DNA Helicase B as a Candidate for Unwinding Secondary CGG Repeat Structures at the Fragile X Mental Retardation Gene. Front Mol Neurosci 2018; 11:138. [PMID: 29760651 PMCID: PMC5936766 DOI: 10.3389/fnmol.2018.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The fragile X syndrome (FXS) is caused by a CGG repeat expansion at the fragile X mental retardation (FMR1) gene. FMR1 alleles with more than 200 CGG repeats bear chromosomal fragility when cells experience folate deficiency. CGG repeats were reported to be able to form secondary structures, such as hairpins, in vitro. When such secondary structures are formed, repeats can lead to replication fork stalling even in the absence of any additional perturbation. Indeed, it was recently shown that the replication forks stall at the endogenous FMR1 locus in unaffected and FXS cells, suggesting the formation of secondary repeat structures at the FMR1 gene in vivo. If not dealt with properly replication fork stalling can lead to polymerase slippage and repeat expansion as well as fragile site expression. Despite the presence of repeat structures at the FMR1 locus, chromosomal fragility is only expressed under replicative stress suggesting the existence of potential molecular mechanisms that help the replication fork progress through these repeat regions. DNA helicases are known to aid replication forks progress through repetitive DNA sequences. Yet, the identity of the DNA helicase(s) responsible for unwinding the CGG repeats at FMR1 locus is not known. We found that the human DNA helicase B (HDHB) may provide an answer for this question. We used chromatin-immunoprecipitation assay to study the FMR1 region and common fragile sites (CFS), and asked whether HDHB localizes at replication forks stalled at repetitive regions even in unperturbed cells. HDHB was strongly enriched in S-phase at the repetitive DNA at CFS and FMR1 gene but not in the flanking regions. Taken together, these results suggest that HDHB functions in preventing or repairing stalled replication forks that arise in repeat-rich regions even in unperturbed cells. Furthermore, we discuss the importance and potential role of HDHB and other helicases in the resolution of secondary CGG repeat structures.
Collapse
Affiliation(s)
- Gulfem D Guler
- Celgene Quanticel Research, San Francisco, CA, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
223
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
224
|
FMR1 allele size distribution in 35,000 males and females: a comparison of developmental delay and general population cohorts. Genet Med 2018; 20:1627-1634. [DOI: 10.1038/gim.2018.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
|
225
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
226
|
Muslimov IA, Eom T, Iacoangeli A, Chuang SC, Hukema RK, Willemsen R, Stefanov DG, Wong RKS, Tiedge H. BC RNA Mislocalization in the Fragile X Premutation. eNeuro 2018; 5:ENEURO.0091-18.2018. [PMID: 29766042 PMCID: PMC5952321 DOI: 10.1523/eneuro.0091-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X premutation disorder is caused by CGG triplet repeat expansions in the 5' untranslated region of FMR1 mRNA. The question of how expanded CGG repeats cause disease is a subject of continuing debate. Our work indicates that CGG-repeat structures compete with regulatory BC1 RNA for access to RNA transport factor hnRNP A2. As a result, BC1 RNA is mislocalized in vivo, as its synapto-dendritic presence is severely diminished in brains of CGG-repeat knock-in animals (a premutation mouse model). Lack of BC1 RNA is known to cause seizure activity and cognitive dysfunction. Our working hypothesis thus predicted that absence, or significantly reduced presence, of BC1 RNA in synapto-dendritic domains of premutation animal neurons would engender cognate phenotypic alterations. Testing this prediction, we established epileptogenic susceptibility and cognitive impairments as major phenotypic abnormalities of CGG premutation mice. In CA3 hippocampal neurons of such animals, synaptic release of glutamate elicits neuronal hyperexcitability in the form of group I metabotropic glutamate receptor-dependent prolonged epileptiform discharges. CGG-repeat knock-in animals are susceptible to sound-induced seizures and are cognitively impaired as revealed in the Attentional Set Shift Task. These phenotypic disturbances occur in young-adult premutation animals, indicating that a neurodevelopmental deficit is an early-initial manifestation of the disorder. The data are consistent with the notion that RNA mislocalization can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ilham A. Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Taesun Eom
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Shih-Chieh Chuang
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Renate K. Hukema
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dimitre G. Stefanov
- Statistical Design and Analysis, Research Division, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Robert K. S. Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
227
|
β-glucuronidase use as a single internal control gene may confound analysis in FMR1 mRNA toxicity studies. PLoS One 2018; 13:e0192151. [PMID: 29474364 PMCID: PMC5825026 DOI: 10.1371/journal.pone.0192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55–199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called β-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10−11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.
Collapse
|
228
|
Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, Hnisz D, Li CH, Yuan B, Xu C, Li Y, Vershkov D, Cacace A, Young RA, Jaenisch R. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell 2018; 172:979-992.e6. [PMID: 29456084 PMCID: PMC6375087 DOI: 10.1016/j.cell.2018.01.012] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/06/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.
Collapse
Affiliation(s)
- X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Hao Wu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Fulcrum Therapeutics, One Kendall Square, Binney Street b7102, Cambridge, MA 02139, USA
| | - Marine Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xuebing Wu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - John Graef
- Fulcrum Therapeutics, One Kendall Square, Binney Street b7102, Cambridge, MA 02139, USA
| | - Julien Muffat
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dan Vershkov
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Angela Cacace
- Fulcrum Therapeutics, One Kendall Square, Binney Street b7102, Cambridge, MA 02139, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
229
|
CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun 2018; 9:152. [PMID: 29323119 PMCID: PMC5764992 DOI: 10.1038/s41467-017-02643-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Expansion of G4C2 repeats in the C9ORF72 gene is the most prevalent inherited form of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded transcripts undergo repeat-associated non-AUG (RAN) translation producing dipeptide repeat proteins from all reading frames. We determined cis-factors and trans-factors influencing translation of the human C9ORF72 transcripts. G4C2 translation operates through a 5′–3′ cap-dependent scanning mechanism, requiring a CUG codon located upstream of the repeats and an initiator Met-tRNAMeti. Production of poly-GA, poly-GP, and poly-GR proteins from the three frames is influenced by mutation of the same CUG start codon supporting a frameshifting mechanism. RAN translation is also regulated by an upstream open reading frame (uORF) present in mis-spliced C9ORF72 transcripts. Inhibitors of the pre-initiation ribosomal complex and RNA antisense oligonucleotides selectively targeting the 5′-flanking G4C2 sequence block ribosomal scanning and prevent translation. Finally, we identified an unexpected affinity of expanded transcripts for the ribosomal subunits independently from translation. Repeat-associated non-AUG (RAN) translation contributes to the pathogenic mechanism of several microsatellite expansion diseases. Here the authors delineate the different steps involved in recruiting the ribosome to initiate G4C2 RAN translation to produce poly-Glycine Alanine, poly-Glycine Proline, and poly-Glycine Arginine repeats.
Collapse
|
230
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
231
|
Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R, Drenner K, Jiang J, Cleveland DW, Sun S. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 2018; 9:51. [PMID: 29302060 PMCID: PMC5754368 DOI: 10.1038/s41467-017-02495-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the repeat-associated non-AUG (RAN) translation of (GGGGCC) n -containing RNAs into poly-dipeptides can initiate in vivo without a 5'-cap. The primary RNA substrate for RAN translation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR). Compounds inhibiting phospho-eIF2α-signaling pathways are shown to suppress RAN translation. Since the poly-dipeptides can themselves induce stress, these findings support a feedforward loop with initial repeat-mediated toxicity enhancing RAN translation and subsequent production of additional poly-dipeptides through ISR, thereby promoting progressive disease.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander A Mestre
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenglai Fu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andres Makarem
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fengfan Xian
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rodrigo Lopez-Gonzalez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kevin Drenner
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jie Jiang
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Shuying Sun
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
232
|
Lehmkuhl EM, Zarnescu DC. Lost in Translation: Evidence for Protein Synthesis Deficits in ALS/FTD and Related Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:283-301. [PMID: 29916024 DOI: 10.1007/978-3-319-89689-2_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells utilize a complex network of proteins to regulate translation, involving post-transcriptional processing of RNA and assembly of the ribosomal unit. Although the complexity provides robust regulation of proteostasis, it also offers several opportunities for translational dysregulation, as has been observed in many neurodegenerative disorders. Defective mRNA localization, mRNA sequatration, inhibited ribogenesis, mutant tRNA synthetases, and translation of hexanucleotide expansions have all been associated with neurodegenerative disease. Here, we review dysregulation of translation in the context of age-related neurodegeneration and discuss novel methods to interrogate translation. This review primarily focuses on amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum disorder heavily associated with RNA metabolism, while also analyzing translational inhibition in the context of related neurodegenerative disorders such as Alzheimer's disease and Huntington's disease and the translation-related pathomechanisms common in neurodegenerative disease.
Collapse
Affiliation(s)
- Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA. .,Department of Neuroscience, University of Arizona, Tucson, AZ, USA. .,Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
233
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
234
|
Abstract
More than 40 diseases, most of which primarily affect the nervous system, are caused by expansions of simple sequence repeats dispersed throughout the human genome. Expanded trinucleotide repeat diseases were discovered first and remain the most frequent. More recently tetra-, penta-, hexa-, and even dodeca-nucleotide repeat expansions have been identified as the cause of human disease, including some of the most common genetic disorders seen by neurologists. Repeat expansion diseases include both causes of myotonic dystrophy (DM1 and DM2), the most common genetic cause of amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72), Huntington disease, and eight other polyglutamine disorders, including the most common forms of dominantly inherited ataxia, the most common recessive ataxia (Friedreich ataxia), and the most common heritable mental retardation (fragile X syndrome). Here I review distinctive features of this group of diseases that stem from the unusual, dynamic nature of the underlying mutations. These features include marked clinical heterogeneity and the phenomenon of clinical anticipation. I then discuss the diverse molecular mechanisms driving disease pathogenesis, which vary depending on the repeat sequence, size, and location within the disease gene, and whether the repeat is translated into protein. I conclude with a brief clinical and genetic description of individual repeat expansion diseases that are most relevant to neurologists.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
235
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
236
|
Lekovich J, Man L, Xu K, Canon C, Lilienthal D, Stewart JD, Pereira N, Rosenwaks Z, Gerhardt J. CGG repeat length and AGG interruptions as indicators of fragile X-associated diminished ovarian reserve. Genet Med 2017; 20:957-964. [PMID: 29267266 DOI: 10.1038/gim.2017.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fragile X premutation (PM) carriers may experience difficulties conceiving a child probably due to fragile X-associated diminished ovarian reserve (FXDOR). We investigated which subgroups of carriers with a PM are at higher risk of FXDOR, and whether the number of AGG interruptions within the repeat sequence further ameliorates the risk. METHODS We compared markers of ovarian reserve, including anti-Müllerian hormone, antral follicle count, and number of oocytes retrieved between different subgroups of patients with a PM. RESULTS We found that carriers with midrange repeats size (70-90 CGG) demonstrate significantly lower ovarian reserve. Additionally, the number of AGG interruptions directly correlated with parameters of ovarian reserve. Patients with longer uninterrupted CGG repeats post-AGG interruptions had the lowest ovarian reserve. CONCLUSION This study connects AGG interruptions and certain CGG repeat length to reduced ovarian reserve in carriers with a PM. A possible explanation for our findings is the proposed gonadotoxicity of the FMR1 transcripts. Reduction of AGG interruptions could increase the likelihood that secondary RNA structures in the FMR1 messenger RNA are formed, which could cause cell dysfunction within the ovaries. These findings may provide women with guidance regarding their fertility potential and accordingly assist with their family planning.
Collapse
Affiliation(s)
- Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kangpu Xu
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Chelsea Canon
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Debra Lilienthal
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Joshua D Stewart
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nigel Pereira
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA. .,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
237
|
Gao FB, Richter JD, Cleveland DW. Rethinking Unconventional Translation in Neurodegeneration. Cell 2017; 171:994-1000. [PMID: 29149615 DOI: 10.1016/j.cell.2017.10.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 11/27/2022]
Abstract
Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605 USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
238
|
RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 2017; 8:2005. [PMID: 29222490 PMCID: PMC5722904 DOI: 10.1038/s41467-017-02200-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation allows for unconventional initiation at disease-causing repeat expansions. As RAN translation contributes to pathogenesis in multiple neurodegenerative disorders, determining its mechanistic underpinnings may inform therapeutic development. Here we analyze RAN translation at G4C2 repeat expansions that cause C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9RAN) and at CGG repeats that cause fragile X-associated tremor/ataxia syndrome. We find that C9RAN translation initiates through a cap- and eIF4A-dependent mechanism that utilizes a CUG start codon. C9RAN and CGG RAN are both selectively enhanced by integrated stress response (ISR) activation. ISR-enhanced RAN translation requires an eIF2α phosphorylation-dependent alteration in start codon fidelity. In parallel, both CGG and G4C2 repeats trigger phosphorylated-eIF2α-dependent stress granule formation and global translational suppression. These findings support a model whereby repeat expansions elicit cellular stress conditions that favor RAN translation of toxic proteins, creating a potential feed-forward loop that contributes to neurodegeneration. A nucleotide repeat expansion in C9orf72 is a common genetic cause of neurodegenerative disorders. Here, the authors provide insight into the molecular mechanism by which this repeat undergoes Repeat-Associated Non-AUG (RAN) translation, implicating the integrated stress response and eIF2α phosphorylation.
Collapse
|
239
|
Boivin M, Willemsen R, Hukema RK, Sellier C. Potential pathogenic mechanisms underlying Fragile X Tremor Ataxia Syndrome: RAN translation and/or RNA gain-of-function? Eur J Med Genet 2017; 61:674-679. [PMID: 29223504 DOI: 10.1016/j.ejmg.2017.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disease caused by an expansion of 55-200 CGG repeats located in the FMR1 gene. The main clinical and neuropathological features of FXTAS are progressive intention tremor and gait ataxia associated with brain atrophy, neuronal cell loss and presence of ubiquitin-positive intranuclear inclusions in both neurons and astrocytes. At the molecular level, FXTAS is characterized by increased expression of FMR1 sense and antisense RNA containing expanded CGG or GGC repeats, respectively. Here, we discuss the putative molecular mechanisms underlying FXTAS and notably recent reports that expanded CGG and GGC repeats may be pathogenic through RAN translation into toxic proteins.
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
240
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
241
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
242
|
Abstract
Sellier et al. (2017) show that translation of expanded CGG repeats in fragile X-associated tremor/ataxia syndrome is initiated at an upstream ACG near-cognate start codon. The resulting polyglycine-containing protein, but not repeat RNA, is pathogenic by disrupting the nuclear lamina.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
243
|
Abstract
Repeat expansions cause dominantly inherited neurological disorders. In this issue of Molecular Cell, Kearse et al. (2016) examine the requirements for RAN translation of the CGG repeats that cause fragile X-associated tremor/ataxia syndrome, revealing similarities and differences with canonical translation.
Collapse
Affiliation(s)
- Diana C Cox
- Departments of Pathology and Immunology, Molecular and Cellular Biology, and Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Thomas A Cooper
- Departments of Pathology and Immunology, Molecular and Cellular Biology, and Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
244
|
Castro H, Kul E, Buijsen RAM, Severijnen LAWFM, Willemsen R, Hukema RK, Stork O, Santos M. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2017; 26:2133-2145. [PMID: 28369393 DOI: 10.1093/hmg/ddx108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods.
Collapse
Affiliation(s)
- Hoanna Castro
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Emre Kul
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg
| | - Mónica Santos
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
245
|
Zu T, Cleary JD, Liu Y, Bañez-Coronel M, Bubenik JL, Ayhan F, Ashizawa T, Xia G, Clark HB, Yachnis AT, Swanson MS, Ranum LPW. RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron 2017; 95:1292-1305.e5. [PMID: 28910618 DOI: 10.1016/j.neuron.2017.08.039] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively. In DM2 autopsy brains, LPAC is found in neurons, astrocytes, and glia in gray matter, and antisense QAGR proteins accumulate within white matter. LPAC and QAGR proteins are toxic to cells independent of RNA gain of function. RNA foci and nuclear sequestration of CCUG transcripts by MBNL1 is inversely correlated with LPAC expression. These data suggest a model that involves nuclear retention of expansion RNAs by RNA-binding proteins (RBPs) and an acute phase in which expansion RNAs exceed RBP sequestration capacity, are exported to the cytoplasm, and undergo RAN translation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tao Zu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Yuanjing Liu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Monica Bañez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jodi L Bubenik
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Fatma Ayhan
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Tetsuo Ashizawa
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Guangbin Xia
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
246
|
Cammas A, Millevoi S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res 2017; 45:1584-1595. [PMID: 28013268 PMCID: PMC5389700 DOI: 10.1093/nar/gkw1280] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
RNA G-quadruplexes (G4s) are formed by G-rich RNA sequences in protein-coding (mRNA) and non-coding (ncRNA) transcripts that fold into a four-stranded conformation. Experimental studies and bioinformatic predictions support the view that these structures are involved in different cellular functions associated to both DNA processes (telomere elongation, recombination and transcription) and RNA post-transcriptional mechanisms (including pre-mRNA processing, mRNA turnover, targeting and translation). An increasing number of different diseases have been associated with the inappropriate regulation of RNA G4s exemplifying the potential importance of these structures on human health. Here, we review the different molecular mechanisms underlying the link between RNA G4s and human diseases by proposing several overlapping models of deregulation emerging from recent research, including (i) sequestration of RNA-binding proteins, (ii) aberrant expression or localization of RNA G4-binding proteins, (iii) repeat associated non-AUG (RAN) translation, (iv) mRNA translational blockade and (v) disabling of protein–RNA G4 complexes. This review also provides a comprehensive survey of the functional RNA G4 and their mechanisms of action. Finally, we highlight future directions for research aimed at improving our understanding on RNA G4-mediated regulatory mechanisms linked to diseases.
Collapse
Affiliation(s)
- Anne Cammas
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| | - Stefania Millevoi
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| |
Collapse
|
247
|
Napoli E, Song G, Wong S, Hagerman R, Giulivi C. Altered Bioenergetics in Primary Dermal Fibroblasts from Adult Carriers of the FMR1 Premutation Before the Onset of the Neurodegenerative Disease Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2017; 15:552-64. [PMID: 27089882 DOI: 10.1007/s12311-016-0779-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder, characterized by tremors, ataxia, impaired coordination, and cognitive decline. While all FXTAS individuals are carriers of a 55-200 CGG expansion at the 5'-UTR of the fragile X mental retardation gene (FMR1), also known as premutation, not all carriers develop FXTAS symptoms and some display other types of psychological/emotional disorders (e.g., autism, anxiety). The goal of this study was to investigate whether the mitochondrial dysfunction previously observed in fibroblasts from older premutation individuals (>60 years) was already present in younger (17-48 years), non-FXTAS-affected carriers and to identify the type and severity of the bioenergetic deficit. Since FXTAS affects mostly males, while females account for a small part of the FXTAS-affected population displaying less severe symptoms, only fibroblasts from males were evaluated in this study. Based on polarographic and enzymatic measurements, a generalized OXPHOS deficit was noted accompanied by increases in the matrix biomarker citrate synthase, oxidative stress (as increased mtDNA copy number and deletions), and mitochondrial network disruption/disorganization. Some of the outcomes (ATP-linked oxygen uptake, coupling, citrate synthase activity, and mitochondrial network organization) strongly correlated with the extent of the CGG expansion, with more severe deficits observed in cell lines carrying higher CGG number. Furthermore, mitochondrial outcomes can identify endophenotypes among carriers and are robust predictors of the premutation diagnosis before the onset of FXTAS, with the potential to be used as markers of prognosis and/or as readouts of pharmacological interventions.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Medical Center, Sacramento, CA, 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA. .,Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
248
|
Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Sherman SL. Women who carry a fragile X premutation are biologically older than noncarriers as measured by telomere length. Am J Med Genet A 2017; 173:2985-2994. [PMID: 28941155 DOI: 10.1002/ajmg.a.38476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 01/25/2023]
Abstract
Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older." Using linear regression, we found that women carrying a premutation (n = 172) have shorter telomeres and hence, are "biologically older" than women carrying the normal size allele (n = 81). Strikingly, despite having shorter telomeres, age was not statistically associated with their telomere length, in contrast to non-carrier controls. Further, telomere length within premutation carriers was not associated with repeat length but was associated with a diagnosis of FXPOI, although the latter finding may depend on FXPOI age of onset.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ashima S Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
249
|
Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-Associated Diminished Ovarian Reserve and Primary Ovarian Insufficiency from Molecular Mechanisms to Clinical Manifestations. Front Mol Neurosci 2017; 10:290. [PMID: 28955201 PMCID: PMC5600956 DOI: 10.3389/fnmol.2017.00290] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS), is caused by a loss-of-function mutation in the FMR1 gene located on the X-chromosome, which leads to the most common cause of inherited intellectual disability in males and the leading single-gene defect associated with autism. A full mutation (FM) is represented by more than 200 CGG repeats within the FMR1 gene, resulting in FXS. A FM is inherited from women carrying a FM or a premutation (PM; 55–200 CGG repeats) allele. PM is associated with phenotypes distinct from those associated with FM. Some manifestations of the PM are unique; fragile-X-associated tremor/ataxia syndrome (FXTAS), and fragile-X-associated primary ovarian insufficiency (FXPOI), while others tend to be non-specific such as intellectual disability. In addition, women carrying a PM may suffer from subfertility or infertility. There is a need to elucidate whether the impairment of ovarian function found in PM carriers arises during the primordial germ cell (PGC) development stage, or due to a rapidly diminishing oocyte pool throughout life or even both. Due to the possibility of expansion into a FM in the next generation, and other ramifications, carrying a PM can have an enormous impact on one’s life; therefore, preconception counseling for couples carrying the PM is of paramount importance. In this review, we will elaborate on the clinical manifestations in female PM carriers and propose the definition of fragile-X-associated diminished ovarian reserve (FXDOR), then we will review recent scientific findings regarding possible mechanisms leading to FXDOR and FXPOI. Lastly, we will discuss counseling, preventative measures and interventions available for women carrying a PM regarding different aspects of their reproductive life, fertility treatment, pregnancy, prenatal testing, contraception and fertility preservation options.
Collapse
Affiliation(s)
- Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| |
Collapse
|
250
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|