201
|
Yamin R, Ahmad I, Khalid H, Perveen A, Abbasi SW, Nishan U, Sheheryar S, Moura AA, Ahmed S, Ullah R, Ali EA, Shah M, Chandra Ojha S. Identifying plant-derived antiviral alkaloids as dual inhibitors of SARS-CoV-2 main protease and spike glycoprotein through computational screening. Front Pharmacol 2024; 15:1369659. [PMID: 39086396 PMCID: PMC11288853 DOI: 10.3389/fphar.2024.1369659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.
Collapse
Affiliation(s)
- Ramsha Yamin
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
202
|
Almestica-Roberts M, Nguyen ND, Sun L, Serna SN, Rapp E, Burrell-Gerbers KL, Memon TA, Stone BL, Nkoy FL, Lamb JG, Deering-Rice CE, Rower JE, Reilly CA. The Cytochrome P450 2C8*3 Variant (rs11572080) Is Associated with Improved Asthma Symptom Control in Children and Altered Lipid Mediator Production and Inflammatory Response in Human Bronchial Epithelial Cells. Drug Metab Dispos 2024; 52:836-846. [PMID: 38772712 PMCID: PMC11257687 DOI: 10.1124/dmd.124.001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
This study investigated an association between the cytochrome P450 (CYP) 2C8*3 polymorphism with asthma symptom control in children and changes in lipid metabolism and pro-inflammatory signaling by human bronchial epithelial cells (HBECs) treated with cigarette smoke condensate (CSC). CYP genes are inherently variable in sequence, and while such variations are known to produce clinically relevant effects on drug pharmacokinetics and pharmacodynamics, the effects on endogenous substrate metabolism and associated physiologic processes are less understood. In this study, CYP2C8*3 was associated with improved asthma symptom control among children: Mean asthma control scores were 3.68 (n = 207) for patients with one or more copies of the CYP2C8*3 allele versus 4.42 (n = 965) for CYP2C8*1/*1 (P = 0.0133). In vitro, CYP2C8*3 was associated with an increase in montelukast 36-hydroxylation and a decrease in linoleic acid metabolism despite lower mRNA and protein expression. Additionally, CYP2C8*3 was associated with reduced mRNA expression of interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL-8) by HBECs in response to CSC, which was replicated using the soluble epoxide hydrolase inhibitor, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid. Interestingly, 9(10)- and 12(13)- dihydroxyoctadecenoic acid, the hydrolyzed metabolites of 9(10)- and 12(13)- epoxyoctadecenoic acid, increased the expression of IL-6 and CXCL-8 mRNA by HBECs. This study reveals previously undocumented effects of the CYP2C8*3 variant on the response of HBECs to exogenous stimuli. SIGNIFICANCE STATEMENT: These findings suggest a role for CYP2C8 in regulating the epoxyoctadecenoic acid:dihydroxyoctadecenoic acid ratio leading to a change in cellular inflammatory responses elicited by environmental stimuli that exacerbate asthma.
Collapse
Affiliation(s)
- Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Samantha N Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell-Gerbers
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Bryan L Stone
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Flory L Nkoy
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
203
|
Ooka M, Sakamuru S, Zhao J, Qu Y, Fang Y, Tao D, Huang R, Ferguson S, Reif D, Simeonov A, Xia M. Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome p450 enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134642. [PMID: 38776814 PMCID: PMC11181952 DOI: 10.1016/j.jhazmat.2024.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in commercial products. PFAS are a global concern due to their persistence in the environment and extensive associations with adverse health outcomes. While legacy PFAS have been extensively studied, many non-legacy PFAS lack sufficient toxicity information. In this study, we first analyzed the bioactivity of PFAS using Tox21 screening data surveying more than 75 assay endpoints (e.g., nuclear receptors, stress response, and metabolism) to understand the toxicity of non-legacy PFAS and investigate potential new targets of PFAS. From the Tox21 screening data analysis, we confirmed several known PFAS targets/pathways and identified several potential novel targets/pathways of PFAS. To confirm the effect of PFAS on these novel targets/pathways, we conducted several cell- and enzyme-based assays in the follow-up studies. We found PFAS inhibited cytochromes P450s (CYPs), especially CYP2C9 with IC50 values of < 1 µM. Considering PFAS affected other targets/pathways at > 10 µM, PFAS have a higher affinity to CYP2C9. This PFAS-CYP2C9 interaction was further investigated using molecular docking analysis. The result suggested that PFAS directly bind to the active sites of CYP2C9. These findings have important implications to understand the mechanism of PFAS action and toxicity.
Collapse
Affiliation(s)
- Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
204
|
Cavanah LR, Goldhirsh JL, Huey LY, Piper BJ. National patterns of paroxetine use among US Medicare patients from 2015-2020. Front Psychiatry 2024; 15:1399493. [PMID: 39050917 PMCID: PMC11266311 DOI: 10.3389/fpsyt.2024.1399493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Paroxetine is an older "selective" serotonin reuptake inhibitor (SSRI) that is notable for its lack of selectivity, resulting in an anticholinergic adverse-effect profile, especially among older adults (65+). Methods Paroxetine prescription rates and costs per state were ascertained from the Medicare Specialty Utilization and Payment Data. States' annual prescription rate, corrected per thousand Part D enrollees, outside a 95% confidence interval were considered significantly different from the average. Results Nationally, there was a steady decrease in population-corrected paroxetine prescriptions (-34.52%) and spending (-29.55%) from 2015-2020 but a consistent, five-fold state-level difference. From 2015-2020, Kentucky (194.9, 195.3, 182.7, 165.1, 143.3, 132.5) showed significantly higher prescriptions rates relative to the national average, and Hawaii (42.1, 37.9, 34.3, 31.7, 27.7, 26.6) showed significantly lower prescription rates. North Dakota was often a frequently elevated prescriber of paroxetine (2016: 170.7, 2018: 143.3), relative to the average. Neuropsychiatry and geriatric medicine frequently prescribed the most paroxetine, relative to the number of providers in that specialty, from 2015-2020. Discussion Despite the American Geriatrics Society's prohibition against paroxetine use in older adults and many effective treatment alternatives, paroxetine was still commonly used in the US in this population, especially in Kentucky and North Dakota and by neuropsychiatry and geriatric medicine. These findings provide information on the specialty types and states where education and policy reform would likely have the greatest impact on improving adherence to the paroxetine prescription recommendations.
Collapse
Affiliation(s)
- Luke R. Cavanah
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | - Leighton Y. Huey
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Behavioral Health Initiative, Scranton, PA, United States
| | - Brian J. Piper
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Center for Pharmacy Innovation and Outcomes, Danville, PA, United States
| |
Collapse
|
205
|
Carvalho APC, Silva HCM, Gomes ALS, Duncan WLP, Mota AJ, Artoni RF, Carvalho-Zilse G, Matoso DA. Effects of trichlorfon on ecotoxicological biomarkers in farmed Colossoma macropomum (tambaqui). BRAZ J BIOL 2024; 84:e281971. [PMID: 38985061 DOI: 10.1590/1519-6984.281971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 07/11/2024] Open
Abstract
Producers of fish have been looking for viable alternatives for the management of Colossoma macropomum (tambaqui) in confinement systems in order to avoid the harm and subsequent losses caused by parasitic diseases. One alternative used by farmers is pesticides, such as trichlorfon, which has a genotoxic effect. Thus, this study aimed to evaluate the changes in gene expression due to the side effects of trichlorfon in tambaqui. Two treatments were used based on LC50-96h of 0.870 mg/L using 30% and 50% trichlorfon with exposure periods of 48, 72 and 96 h. For differential expression of the genes in the liver, real-time PCR was performed for the AChE, GST, CYP2J6, CYP2C8, 18S and GAPDH genes. After 96 h of exposure to trichlorfon, an alteration in the gene expression profile of the antioxidant defense system (GST) of the tambaqui was observed. It was also observed that this organophosphate did not affect the expression of genes related to the isoenzymes that are responsible for the biotransformation of xenobiotics in phase I (2J6 and 2C8) and cholinesterase AChE. It was concluded that the reduction in gene expression of GST suggests a decrease in metabolization capacity in phase II.
Collapse
Affiliation(s)
- A P C Carvalho
- Instituto Nacional de Pesquisas da Amazônia - INPA, Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Manaus, AM, Brasil
| | - H C M Silva
- Universidade Estadual de Ponta Grossa - UEPG, Departamento de Biologia Estrutural, Molecular e Genética - DEBIOGEM, Laboratório de Genética e Evolução, Ponta Grossa, PR, Brasil
| | - A L S Gomes
- Universidade Federal do Amazonas - UFAM, Departamento de Parasitologia. Instituto de Ciências Biológica - ICB, Laboratório de Parasitologia de Animais Aquáticos - LAPPA, Manaus, AM, Brasil
| | - W L P Duncan
- Universidade Federal do Amazonas - UFAM, Instituto de Ciências Biológica - ICB, Departamento de Morfologia, Laboratório de Morfologia Funcional - LMF, Manaus, AM, Brasil
| | - A J Mota
- Universidade Federal do Amazonas - UFAM, Faculdade de Ciências Agrárias - FCA, Departamento de Ciências Fundamentais e Desenvolvimento Agrícola - DCFDA, Manaus, AM, Brasil
| | - R F Artoni
- Universidade Estadual de Ponta Grossa - UEPG, Departamento de Biologia Estrutural, Molecular e Genética - DEBIOGEM, Laboratório de Genética e Evolução, Ponta Grossa, PR, Brasil
| | - G Carvalho-Zilse
- Instituto Nacional de Pesquisas da Amazônia - INPA, Coordenação de Biodiversidade, Grupo de Pesquisas em Abelhas - GPA, Manaus, AM, Brasil
| | - D A Matoso
- Universidade Federal do Amazonas - UFAM, Instituto de Ciências Biológicas - ICB, Departamento de Genética, Laboratório de Biotecnologia e Citogenômica Animal - LACA, Manaus, AM, Brasil
| |
Collapse
|
206
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
207
|
Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, Hussein MA, Abdelnaser A. From Drug Discovery to Drug Approval: A Comprehensive Review of the Pharmacogenomics Status Quo with a Special Focus on Egypt. Pharmaceuticals (Basel) 2024; 17:881. [PMID: 39065732 PMCID: PMC11279872 DOI: 10.3390/ph17070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Pharmacogenomics (PGx) is the hope for the full optimization of drug therapy while minimizing the accompanying adverse drug events that cost billions of dollars annually. Since years before the century, it has been known that inter-individual variations contribute to differences in specific drug responses. It is the bridge to what is well-known today as "personalized medicine". Addressing the drug's pharmacokinetics and pharmacodynamics is one of the features of this science, owing to patient characteristics that vary on so many occasions. Mainly in the liver parenchymal cells, intricate interactions between the drug molecules and enzymes family of so-called "Cytochrome P450" occur which hugely affects how the body will react to the drug in terms of metabolism, efficacy, and safety. Single nucleotide polymorphisms, once validated for a transparent and credible clinical utility, can be used to guide and ensure the succession of the pharmacotherapy plan. Novel tools of pharmacoeconomics science are utilized extensively to assess cost-effective pharmacogenes preceding the translation to the bedside. Drug development and discovery incorporate a drug-gene perspective and save more resources. Regulations and laws shaping the clinical PGx practice can be misconceived; however, these pre-/post approval processes ensure the product's safety and efficacy. National and international regulatory agencies seek guidance on maintaining conduct in PGx practice. In this patient-centric era, social and legal considerations manifest in a way that makes them unavoidable, involving patients and other stakeholders in a deliberate journey toward utmost patient well-being. In this comprehensive review, we contemporarily addressed the scientific leaps in PGx, along with various challenges that face the proper implementation of personalized medicine in Egypt. These informative insights were drawn to serve what the Egyptian population, in particular, would benefit from in terms of knowledge and know-how while maintaining the latest global trends. Moreover, this review is the first to discuss various modalities and challenges faced in Egypt regarding PGx, which we believe could be used as a pilot piece of literature for future studies locally, regionally, and internationally.
Collapse
Affiliation(s)
- Fadya M. Elgarhy
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 4435121, Egypt
| | - Abdallah Borham
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Noha Alziny
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Khlood R. AbdElaal
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt;
| | - Mahmoud Shuaib
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Abobaker Salem Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| |
Collapse
|
208
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
209
|
Öeren M, Hunt PA, Wharrick CE, Tabatabaei Ghomi H, Segall MD. Predicting routes of phase I and II metabolism based on quantum mechanics and machine learning. Xenobiotica 2024; 54:379-393. [PMID: 37966132 DOI: 10.1080/00498254.2023.2284251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Unexpected metabolism could lead to the failure of many late-stage drug candidates or even the withdrawal of approved drugs. Thus, it is critical to predict and study the dominant routes of metabolism in the early stages of research.We describe the development and validation of a 'WhichEnzyme' model that accurately predicts the enzyme families most likely to be responsible for a drug-like molecule's metabolism. Furthermore, we combine this model with our previously published regioselectivity models for Cytochromes P450, Aldehyde Oxidases, Flavin-containing Monooxygenases, UDP-glucuronosyltransferases and Sulfotransferases - the most important Phase I and Phase II drug metabolising enzymes - and a 'WhichP450' model that predicts the Cytochrome P450 isoform(s) responsible for a compound's metabolism.The regioselectivity models are based on a mechanistic understanding of these enzymes' actions and use quantum mechanical simulations with machine learning methods to accurately predict sites of metabolism and the resulting metabolites. We train heuristics based on the outputs of the 'WhichEnzyme', 'WhichP450', and regioselectivity models to determine the most likely routes of metabolism and metabolites to be observed experimentally.Finally, we demonstrate that this combination delivers high sensitivity in identifying experimentally reported metabolites and higher precision than other methods for predicting in vivo metabolite profiles.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | | | | | | |
Collapse
|
210
|
Deng J, Yang JC, Feng Y, Xu ZJ, Kuča K, Liu M, Sun LH. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB 1 in chicken. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1468-1478. [PMID: 38703348 DOI: 10.1007/s11427-023-2512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 05/06/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
211
|
Hulin A, Gelé T, Fenioux C, Kempf E, Sahali D, Tournigand C, Ollero M. Pharmacology of Tyrosine Kinase Inhibitors: Implications for Patients with Kidney Diseases. Clin J Am Soc Nephrol 2024; 19:927-938. [PMID: 38079278 PMCID: PMC11254026 DOI: 10.2215/cjn.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tyrosine kinase inhibitors (TKI) have introduced a significant advancement in cancer management. These compounds are administered orally, and their absorption holds a pivotal role in determining their variable efficacy. They exhibit extensive distribution within the body, binding strongly to both plasma and tissue proteins. Often reliant on efflux and influx transporters, TKI undergo primary metabolism by intestinal and hepatic cytochrome P450 enzymes, with nonkidney clearance being predominant. Owing to their limited therapeutic window, many TKI display considerable intraindividual and interindividual variability. This review offers a comprehensive analysis of the clinical pharmacokinetics of TKI, detailing their interactions with drug transporters and metabolic enzymes, while discussing potential clinical implications. The prevalence of kidney conditions, such as AKI and CKD, among patients with cancer is explored in their effect on TKI pharmacokinetics. Finally, the potential nephrotoxicity associated with TKI is also examined.
Collapse
Affiliation(s)
- Anne Hulin
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Thibaut Gelé
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Charlotte Fenioux
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Emmanuelle Kempf
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Dil Sahali
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Nephrology Unit, University Medicine Department of Medicine, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Christophe Tournigand
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Mario Ollero
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
212
|
Maier HB, Borchert A, Neyazi A, Moschny N, Schülke R, Bundies GL, Folsche T, Gaspert A, Seifert J, Bleich S, Scherf-Clavel M, Unterecker S, Deckert J, Frieling H, Weber H. Risk Phenotypes, Comorbidities, Pharmacotherapy, and Electroconvulsive Therapy (ECT) in a Cohort with Difficult-to-Treat Depression in Comparison to an Unmedicated Control Group. PHARMACOPSYCHIATRY 2024; 57:191-203. [PMID: 38698605 PMCID: PMC11233224 DOI: 10.1055/a-2292-1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Approximately 15-25% of depressed patients suffer from difficult-to-treat depression (DTD). Patients with DTD require a thorough examination to avoid the oversight of treatable (psychiatric/somatic) comorbidities or (pseudo-)resistance to antidepressant drugs (ADs). Polymorphisms of the cytochrome P450 (CYP) enzymes 2D6 and 2C19, which play a major role in the metabolism of ADs, may contribute to resistance to ADs. Patients with DTD might benefit from electroconvulsive therapy (ECT). METHODS We enrolled 109 patients with DTD and 29 untreated depressed controls (UDC). We assessed risk phenotypes, comorbidities, and treatment, including ECT. We also performed pharmacokinetic analyses of CYP2D6 and CYP2C19. RESULTS DTD patients significantly more often suffered from comorbid psychiatric diseases, especially ICD-10: F40-F48 (DTD:40.4%, UDC:17.2%, OR 11.87, p=0.011) than UDC patients. DTD patients receiving ECT were more likely to achieve remission (37.7% vs. 11.8%, OR=3.96, p=0.023). Treatment with ADs did not differ between remitters and non-remitters. No significant differences were observed in the distribution of CYP2D6 and CYP2C19 variants between both groups. CONCLUSION Patients with DTD appear to experience comorbid neurotic stress and somatoform disorders (ICD-10: F40 - F48) more frequently. Therefore, a comprehensive differential diagnosis is crucial when patients do not respond sufficiently to antidepressant medication. Genotyping CYP2D6 and CYP2C19 should be considered.
Collapse
Affiliation(s)
- Hannah B. Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Anton Borchert
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
- Department of Psychiatry and Psychotherapy, Otto von Guericke
University Magdeburg, Germany
| | - Nicole Moschny
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Gabriel L. Bundies
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Thorsten Folsche
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Anastasia Gaspert
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, University Hospital of Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, University Hospital of Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, University Hospital of Würzburg, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy,
Hannover Medical School, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
213
|
Baum ML, Widge AS, Carpenter LL, McDonald WM, Cohen BM, Nemeroff CB. Pharmacogenomic Clinical Support Tools for the Treatment of Depression. Am J Psychiatry 2024; 181:591-607. [PMID: 38685859 DOI: 10.1176/appi.ajp.20230657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE In this review, the authors update the 2018 position statement of the American Psychiatric Association Council of Research Workgroup on Biomarkers and Novel Treatments on pharmacogenomic (PGx) tools for treatment selection in depression. METHODS The literature was reviewed for new clinical trials and meta-analyses, published from 2017 to 2022, of studies using PGx tools for treatment selection in depression. The blinding and control conditions, as well as primary and secondary outcomes and post hoc analyses, were summarized. RESULTS Eleven new clinical trials and five meta-analyses were identified; all studies had primary outcome measures related to speed or efficacy of treatment response. Three trials (27%) demonstrated efficacy on the primary outcome measure with statistical significance; the three studies used different PGx tools; one study was open-label and the other two were small single-blind trials. Five trials (45%) did not detect efficacy with statistical significance on either primary or secondary outcome measures. Only one trial (9%) used adverse events as a primary outcome measure. All studies had significant limitations; for example, none adopted a fully blinded study design, only two studies attempted to blind the treating clinician, and none incorporated measures to estimate the effectiveness of the blinds or the influence of lack of blinding on the study results. CONCLUSIONS The addition of these new data do not alter the recommendations of the 2018 report, or the advice of the U.S. Food and Drug Administration, that the evidence does not support the use of currently available combinatorial PGx tools for treatment selection in major depressive disorder. Priority efforts for future studies and the development and testing of effective tools include fully blinded study designs, inclusion of promising genetic variants not currently included in any commercially available tests, and investigation of other uses of pharmacogenomics, such as estimating the likelihood of rare adverse drug effects, rather than increasing the speed or magnitude of drug response.
Collapse
Affiliation(s)
- Matthew L Baum
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| | - Alik S Widge
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| | - Linda L Carpenter
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| | - William M McDonald
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| | - Bruce M Cohen
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| | - Charles B Nemeroff
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston (Baum); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital Neuromodulation Research Facility, Providence, R.I., and Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, Mass. (Cohen); Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin (Nemeroff)
| |
Collapse
|
214
|
van der Heijden LT, Opdam FL, Beijnen JH, Huitema ADR. The Use of Microdosing for In vivo Phenotyping of Cytochrome P450 Enzymes: Where Do We Stand? A Narrative Review. Eur J Drug Metab Pharmacokinet 2024; 49:407-418. [PMID: 38689161 PMCID: PMC11199305 DOI: 10.1007/s13318-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Cytochrome P450 (CYP) enzymes play a central role in the elimination of approximately 80% of all clinically used drugs. Differences in CYP enzyme activity between individuals can contribute to interindividual variability in exposure and, therefore, treatment outcome. In vivo CYP enzyme activity could be determined with phenotyping. Currently, (sub)therapeutic doses are used for in vivo phenotyping, which can lead to side effects. The use of microdoses (100 µg) for in vivo phenotyping for CYP enzymes could overcome the limitations associated with the use of (sub)therapeutic doses of substrates. The aim of this review is to provide a critical overview of the application of microdosing for in vivo phenotyping of CYP enzymes. A literature search was performed to find drug-drug interaction studies of CYP enzyme substrates that used microdoses of the respective substrates. A substrate was deemed sensitive to changes in CYP enzyme activity when the pharmacokinetics of the substrate significantly changed during inhibition and induction of the enzyme. On the basis of the currently available evidence, the use of microdosing for in vivo phenotyping for subtypes CYP1A2, CYP2C9, CYP2D6, and CYP2E1 is not recommended. Microdosing can be used for the in vivo phenotyping of CYP2C19 and CYP3A. The recommended microdose phenotyping test for CYP2C19 is measuring the omeprazole area-under-the-concentration-time curve over 24 h (AUC0-24) after administration of a single 100 µg dose. CYP3A activity could be best determined with a 0.1-75 µg dose of midazolam, and subsequently measuring AUC extrapolated to infinity (AUC∞) or clearance. Moreover, there are two metrics available for midazolam using a limited sampling strategy: AUC over 10 h (AUC0-10) and AUC from 2 to 4 h (AUC2-4).
Collapse
Affiliation(s)
- Lisa T van der Heijden
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Clinical Pharmacy, OLVG Hospital, Amsterdam, The Netherlands.
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmaco-Epidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Maxima Center, Utrecht, The Netherlands
| |
Collapse
|
215
|
Jiang YR, Liu RJ, Tang J, Li MQ, Zhang DK, Pei ZQ, Fan SH, Xu RC, Huang HZ, Lin JZ. The health benefits of dietary polyphenols on pediatric intestinal diseases: Mechanism of action, clinical evidence and future research progress. Phytother Res 2024; 38:3782-3800. [PMID: 38839050 DOI: 10.1002/ptr.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 06/07/2024]
Abstract
Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.
Collapse
Affiliation(s)
- Yu-Rou Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Jie Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Qi Li
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Qing Pei
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
216
|
Alharbi NFM, Ahad A, Bin Jardan YA, Al-Jenoobi FI. Effect of eugenol on cytochrome P450 1A2, 2C9, 2D6, and 3A4 activity in human liver microsomes. Saudi Pharm J 2024; 32:102118. [PMID: 38841106 PMCID: PMC11152732 DOI: 10.1016/j.jsps.2024.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
This study aimed to provide an understanding of the influence of eugenol on CYP1A2, 2C9, 2D6, and 3A4 in human liver microsomes (HLM). Specific substrate for CYP1A2, 2C9, 2D6, and 3A4 were incubated in HLM with or without eugenol. The formation of their respective metabolites was assessed with HPLC analytical methods. Eugenol at 1, 10 and 100 µM levels inhibited the activity of CYP1A2 and CYP2C9 by 23.38 %, 23.57 %, 39.80 % and 62.82 %, 63.27 %, 67.70 % respectively. While, CYP2D6 and CYP3A4 activity was decreased by 40.70 %, 45.88 %, 62.68 % and 37.41 %, 42.58 % and 67.86 % at 1, 10 and 100 µM eugenol level respectively. The IC50 value of eugenol for CYP2D6 and CYP3A4 was calculated as 11.09 ± 3.49 µM and 13.48 ± 3.86 µM respectively. Potential herb-drug interactions was noted when eugenol is administered simultaneously with medications metabolized by these enzymes, most notably CYP2C9, CYP2D6 and CYP3A4.
Collapse
Affiliation(s)
- Naif Fahad M. Alharbi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
217
|
Revanasiddappa PD, Gowtham HG, G. S. C, Gangadhar S, A. S, Murali M, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP, Amruthesh KN. Exploration of Type III effector Xanthomonas outer protein Q (XopQ) inhibitor from Picrasma quassioides as an antibacterial agent using chemoinformatics analysis. PLoS One 2024; 19:e0302105. [PMID: 38889115 PMCID: PMC11185476 DOI: 10.1371/journal.pone.0302105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin). The molecular dynamics (MD) simulations performed at 300 ns validated the stability of top lead ligands (Kumudine B, Picrasamide A, and Quassidine I)-bound XopQ protein complex with slightly lower fluctuation than Streptomycin. The MM-PBSA calculation confirmed the strong interactions of top lead ligands (Kumudine B and QuassidineI) with XopQ protein, as they offered the least binding energy. The results of absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed that Quassidine I, Kumudine B and Picrasamide A were found to qualify most of the drug-likeness rules with excellent bioavailability scores compared to Streptomycin. Results of the computational studies suggested that Kumudine B, Picrasamide A, and Quassidine I could be considered potential compounds to design novel antibacterial drugs against X. oryzae infection. Further in vitro and in vivo antibacterial activities of Kumudine B, Picrasamide A, and Quassidine I are required to confirm their therapeutic potentiality in controlling the X. oryzae infection.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, India
| | - Chikkanna G. S.
- Department of Home Science, ICAR Krishi Vigyan Kendra, Kolar, India
| | - Suchithra Gangadhar
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Satish A.
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | | |
Collapse
|
218
|
Sostare E, Bowen TJ, Lawson TN, Freier A, Li X, Lloyd GR, Najdekr L, Jankevics A, Smith T, Varshavi D, Ludwig C, Colbourne JK, Weber RJM, Crizer DM, Auerbach SS, Bucher JR, Viant MR. Metabolomics Simultaneously Derives Benchmark Dose Estimates and Discovers Metabolic Biotransformations in a Rat Bioassay. Chem Res Toxicol 2024; 37:923-934. [PMID: 38842447 PMCID: PMC11187623 DOI: 10.1021/acs.chemrestox.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).
Collapse
Affiliation(s)
- Elena Sostare
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
| | - Tara J. Bowen
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Thomas N. Lawson
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
| | - Anne Freier
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Xiaojing Li
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Gavin R. Lloyd
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Lukáš Najdekr
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Andris Jankevics
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Thomas Smith
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Dorsa Varshavi
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Christian Ludwig
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - John K. Colbourne
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Ralf J. M. Weber
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - David M. Crizer
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - Scott S. Auerbach
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - John R. Bucher
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - Mark R. Viant
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
219
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
220
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
221
|
Meyer C, Stravs MA, Hollender J. How Wastewater Reflects Human Metabolism─Suspect Screening of Pharmaceutical Metabolites in Wastewater Influent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9828-9839. [PMID: 38785362 PMCID: PMC11154963 DOI: 10.1021/acs.est.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Pharmaceuticals and their human metabolites are contaminants of emerging concern in the aquatic environment. Most monitoring studies focus on a limited set of parent compounds and even fewer metabolites. However, more than 50% of the most consumed pharmaceuticals are excreted in higher amounts as metabolites than as parents, as confirmed by a literature analysis within this study. Hence, we applied a wide-scope suspect screening approach to identify human pharmaceutical metabolites in wastewater influent from three Swiss treatment plants. Based on consumption amounts and human metabolism data, a suspect list comprising 268 parent compounds and over 1500 metabolites was compiled. Online solid phase extraction combined with liquid chromatography coupled to high-resolution tandem mass spectrometry was used to analyze the samples. Data processing, annotation, and structure elucidation were achieved with various tools, including molecular networking as well as SIRIUS/CSI:FingerID and MetFrag for MS2 spectra rationalization. We confirmed 37 metabolites with reference standards and 16 by human liver S9 incubation experiments. More than 25 metabolites were detected for the first time in influent wastewater. Semiquantification with MS2Quant showed that metabolite to parent concentration ratios were generally lower compared to literature expectations, probably due to further metabolite transformation in the sewer system or limitations in the metabolite detection. Nonetheless, metabolites pose a large fraction to the total pharmaceutical contribution in wastewater, highlighting the need for metabolite inclusion in chemical risk assessment.
Collapse
Affiliation(s)
- Corina Meyer
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse
16, 8092 Zurich, Switzerland
| | - Michael A. Stravs
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Juliane Hollender
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse
16, 8092 Zurich, Switzerland
| |
Collapse
|
222
|
Pihlaja T, Kiiski I, Sikanen T. HLM chip - A microfluidic approach to study the mechanistic basis of cytochrome P450 inhibition using immobilized human liver microsomes. Eur J Pharm Sci 2024; 197:106773. [PMID: 38641124 DOI: 10.1016/j.ejps.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.
Collapse
Affiliation(s)
- Tea Pihlaja
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland
| | - Iiro Kiiski
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tiina Sikanen
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland.
| |
Collapse
|
223
|
Walsh DJ, O'Driscoll M, Sahm LJ, Meagher AM, Doblas P, McGowan E, Smith-Lehane G, Hannan M, Goggin C, Buckley C, Horgan AM. Ageing-related considerations for medication used in supportive care in cancer. J Geriatr Oncol 2024; 15:101760. [PMID: 38556399 DOI: 10.1016/j.jgo.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Both randomized controlled trials (RCTs) and retrospective studies have shown that a comprehensive geriatric assessment (CGA) prior to a patient commencing systemic anti-cancer therapy (SACT) results in improved quality of life outcomes and is associated with a decreased risk of grade 3-5 toxicity; however, data are lacking in relation to adverse drug events (ADE) associated with supportive care medications. Supportive care medications are prescribed as prophylactic agents in a SACT regimen, for management of treatment related toxicity and for symptoms caused by the disease itself. While necessary, the commencement of SACT and supportive medications may cause, or exacerbate, a significant drug burden in older patients, some of whom may have existing comorbidities. For many medications, older adults are underrepresented in pharmacokinetic and pharmacodynamic modelling studies. In this article we will review ageing-related changes in pharmacokinetics and pharmacodynamics, as well as how these changes may impact supportive care medications. Additional considerations for prescribing these medications in older adults with cancer, such as polypharmacy, potentially inappropriate medications, drug-drug interactions, and anticholinergic burden, as well as ageing-related considerations and recommendations for supportive care medications commonly used in older adults with cancer are also reviewed.
Collapse
Affiliation(s)
- Darren J Walsh
- Pharmacy Department, University Hospital Waterford, Waterford, Ireland; Oncology Department, University Hospital Waterford, Waterford, Ireland; Pharmaceutical Care Research Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | - Michelle O'Driscoll
- Pharmaceutical Care Research Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Laura J Sahm
- Pharmaceutical Care Research Group, School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacy, Mercy University Hospital, Grenville Place, Cork. Ireland
| | - Anne Marie Meagher
- Pharmacy Department, University Hospital Waterford, Waterford, Ireland; Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Pedro Doblas
- Pharmacy Department, University Hospital Waterford, Waterford, Ireland; Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Eimear McGowan
- Pharmacy Department, University Hospital Waterford, Waterford, Ireland; Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Gráinne Smith-Lehane
- Pharmacy Department, University Hospital Waterford, Waterford, Ireland; Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Michelle Hannan
- Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Caitríona Goggin
- Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Carol Buckley
- Oncology Department, University Hospital Waterford, Waterford, Ireland
| | - Anne M Horgan
- Oncology Department, University Hospital Waterford, Waterford, Ireland
| |
Collapse
|
224
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
225
|
Chen Z, Taubert M, Chen C, Boland J, Dong Q, Bilal M, Dokos C, Wachall B, Wargenau M, Scheidel B, Wiesen MHJ, Schaeffeler E, Tremmel R, Schwab M, Fuhr U. A Semi-Mechanistic Population Pharmacokinetic Model of Noscapine in Healthy Subjects Considering Hepatic First-Pass Extraction and CYP2C9 Genotypes. Drugs R D 2024; 24:187-199. [PMID: 38809387 PMCID: PMC11315837 DOI: 10.1007/s40268-024-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Noscapine is a commonly used cough suppressant, with ongoing research on its anti-inflammatory and anti-tumor properties. The drug has a pronounced pharmacokinetic variability. OBJECTIVE This evaluation aims to describe the pharmacokinetics of noscapine using a semi-mechanistic population pharmacokinetic model and to identify covariates that could explain inter-individual pharmacokinetic variability. METHODS Forty-eight healthy volunteers (30 men and 18 women, mean age 33 years) were enrolled in a randomized, two-period, two-stage, crossover bioequivalence study of noscapine in two different liquid formulations. Noscapine plasma concentrations following oral administration of noscapine 50 mg were evaluated by a non-compartmental analysis and by a population pharmacokinetic model separately. RESULTS Compared to the reference formulation, the test formulation exhibited ratios (with 94.12% confidence intervals) of 0.784 (0.662-0.929) and 0.827 (0.762-0.925) for peak plasma concentrations and area under the plasma concentration-time curve, respectively. Significant differences in p values (< 0.01) were both observed when comparing peak plasma concentrations and area under the plasma concentration-time curve between CYP2C9 genotype-predicted phenotypes. A three-compartmental model with zero-order absorption and first-order elimination process best described the plasma data. The introduction of a liver compartment was able to describe the profound first-pass effect of noscapine. Total body weight and the CYP2C9 genotype-predicted phenotype were both identified as significant covariates on apparent clearance, which was estimated as 958 ± 548 L/h for extensive metabolizers (CYP2C9*1/*1 and *1/*9), 531 ± 304 L/h for intermediate metabolizers with an activity score of 1.5 (CYP2C9*1/*2), and 343 ± 197 L/h for poor metabolizers and intermediate metabolizers with an activity score of 1.0 (CYP2C9*1/*3, *2/*3, and*3/*3). CONCLUSION The current work is expected to facilitate the future pharmacokinetic/pharmacodynamic development of noscapine. This study was registered prior to starting at "Deutsches Register Klinischer Studien" under registration no. DRKS00017760.
Collapse
Affiliation(s)
- Zhendong Chen
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| | - Max Taubert
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Chunli Chen
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Jana Boland
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Qian Dong
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Muhammad Bilal
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Charalambos Dokos
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Bertil Wachall
- InfectoPharm Arzneimittel und Consilium GmbH, Heppenheim, Germany
| | | | | | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Centre, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
226
|
Rijmers J, Retmana IA, Bui V, Arguedas D, Lebre MC, Sparidans RW, Beijnen JH, Schinkel AH. ABCB1 attenuates brain exposure to the KRAS G12C inhibitor opnurasib whereas binding to mouse carboxylesterase 1c influences its plasma exposure. Biomed Pharmacother 2024; 175:116720. [PMID: 38733773 DOI: 10.1016/j.biopha.2024.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Opnurasib (JDQ443) is a newly developed oral KRASG12C inhibitor, with a binding mechanism distinct from the registered KRASG12C inhibitors sotorasib and adagrasib. Phase I and II clinical trials for opnurasib in NSCLC are ongoing. We evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux and OATP1 influx transporters, and of the metabolizing enzymes CYP3A and CES1 in plasma and tissue disposition of oral opnurasib, using genetically modified cell lines and mouse models. In vitro, opnurasib was potently transported by human (h)ABCB1 and slightly by mouse (m)Abcg2. In Abcb1a/b- and Abcb1a/b;Abcg2-deficient mice, a significant ∼100-fold increase in brain-to-plasma ratios was observed. Brain penetration was unchanged in Abcg2-/- mice. ABCB1 activity in the blood-brain barrier may therefore potentially limit the efficacy of opnurasib against brain metastases. The Abcb1a/b transporter activity could be almost completely reversed by co-administration of elacridar, a dual ABCB1/ABCG2 inhibitor, increasing the brain penetration without any behavioral or postural signs of acute CNS-related toxicity. No significant pharmacokinetic roles of the OATP1 transporters were observed. Transgenic human CYP3A4 did not substantially affect the plasma exposure of opnurasib, indicating that opnurasib is likely not a sensitive CYP3A4 substrate. Interestingly, Ces1-/- mice showed a 4-fold lower opnurasib plasma exposure compared to wild-type mice, whereas no strong effect was seen on the tissue distribution. Plasma Ces1c therefore likely binds opnurasib, increasing its retention in plasma. The obtained pharmacokinetic insights may be useful for further optimization of the clinical efficacy and safety of opnurasib, and might reveal potential drug-drug interaction risks.
Collapse
Affiliation(s)
- Jamie Rijmers
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands
| | - Irene A Retmana
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, the Netherlands
| | - Viët Bui
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands
| | - Davinia Arguedas
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht, the Netherlands; The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, the Netherlands.
| |
Collapse
|
227
|
Lenk HÇ, Smith RL, O'Connell KS, Andreassen OA, Molden E. Rapid Metabolism Underlying Subtherapeutic Serum Levels of Atypical Antipsychotics Preceding Clozapine Treatment: A Retrospective Analysis of Real-World Data. CNS Drugs 2024; 38:473-480. [PMID: 38635089 PMCID: PMC11098931 DOI: 10.1007/s40263-024-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Adequate antipsychotic treatment intensity is required before diagnosing resistant schizophrenia and initiating clozapine treatment. We aimed to investigate potential rapid drug metabolism underlying low dose-adjusted serum concentration (CD) of non-clozapine atypical antipsychotics preceding clozapine treatment. METHODS Patients using non-clozapine, atypical antipsychotics (aripiprazole, risperidone, olanzapine, or quetiapine) within 1 year before starting clozapine were included in this study from a therapeutic drug monitoring service in Oslo, Norway, between 2005 and 2023. Patients were assigned into low CD (LCD) and normal CD (NCD) subgroups. Using a reference sample with 147,964 antipsychotic measurements, LCD was defined as CDs below the 25th percentile, while patients with NCD exhibited CDs between the 25th and 75th percentile of the respective reference measurements. Metabolic ratios, doses, and frequency of subtherapeutic levels of non-clozapine antipsychotics were compared between LCD and NCD groups. RESULTS Preceding clozapine treatment, 110 out of 272 included patients (40.4%) were identified with LCD. Compared with the NCD group, LCD patients exhibited higher metabolic ratios of olanzapine (1.5-fold; p < 0.001), quetiapine (3.0-fold; p < 0.001), and risperidone (6.0-fold; p < 0.001). Metabolic ratio differences were independent of smoking and CYP2D6 genotype for olanzapine (p = 0.008) and risperidone (p = 0.016), respectively. Despite higher doses of olanzapine (1.25-fold; p = 0.054) and quetiapine (1.6-fold; p = 0.001) in LCD versus NCD patients, faster metabolism among the former was accompanied by higher frequencies of subtherapeutic levels of olanzapine (3.3-fold; p = 0.044) and quetiapine (1.8-fold; p = 0.005). CONCLUSION LCD and associated rapid metabolism of non-clozapine antipsychotics is frequent before starting clozapine treatment. For olanzapine and quetiapine, this is associated with significantly increased risk of having subtherapeutic concentrations.
Collapse
Affiliation(s)
- Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, PO Box 85, 0319, Oslo, Norway.
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.
| | - Robert Løvsletten Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, PO Box 85, 0319, Oslo, Norway
| | - Kevin S O'Connell
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, PO Box 85, 0319, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
228
|
Luo Z, Lin ZY, Li ZF, Fu ZQ, Han FL, Li EC. Next-generation neonicotinoid: The impact of cycloxaprid on the crustacean decapod Penaeus vannamei. CHEMOSPHERE 2024; 358:142150. [PMID: 38679174 DOI: 10.1016/j.chemosphere.2024.142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.
Collapse
Affiliation(s)
- Zhi Luo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
229
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
230
|
Saverino A, Qu X, Mendoza RG, Raha S, Manna D, Ermi AG, Subler MA, Windle JJ, Liu J, Sarkar D. Spatial transcriptomics unravels palmitoylation and zonation-dependent gene regulation by AEG-1 in mouse liver. J Biol Chem 2024; 300:107322. [PMID: 38677511 PMCID: PMC11134871 DOI: 10.1016/j.jbc.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.
Collapse
Affiliation(s)
- Alissa Saverino
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xufeng Qu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Suchismita Raha
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Debashri Manna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinze Liu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
231
|
Boinpally R, Trugman J. Pharmacokinetics of Ubrogepant in Healthy Japanese and White Adults. Clin Pharmacol Drug Dev 2024; 13:688-695. [PMID: 38261231 DOI: 10.1002/cpdd.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Ubrogepant is a calcitonin gene-related peptide receptor antagonist indicated for the acute treatment of migraine with or without aura in adults. The objectives of this study were to evaluate (1) single-dose pharmacokinetics (PK) and dose proportionality of ubrogepant in Japanese participants, (2) the safety and tolerability of ubrogepant in healthy Japanese and White participants, and (3) to compare the PK of ubrogepant in Japanese versus White participants. A total of 48 participants were enrolled into 4 cohorts (N = 12 [9 active + 3 placebo] per cohort). A single dose was administered on Day 1 following an overnight fast to assess the PK of ubrogepant at 3 dose levels and test dose proportionality between 25 and 100 mg in Japanese participants. White participants were randomly assigned to ubrogepant (100 mg) or placebo. Dose proportionality was observed in the dose range of 25-100 mg in Japanese participants. Systemic exposure was 20% lower in Japanese participants as compared with White participants, but this difference is unlikely to be clinically relevant. Single doses of ubrogepant (25-100 mg) had a safety profile similar to placebo, and no differences in the safety profile of ubrogepant 100 mg were observed between Japanese versus White participants.
Collapse
Affiliation(s)
| | - Joel Trugman
- Clinical Development, NeuroScience, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|
232
|
Nilkant R, Kathiresan C, Kumar N, Caritis S, Shaik IH, Venkataramanan R. Selection of a suitable animal model to evaluate secretion of drugs in the human milk: a systematic approach. Xenobiotica 2024; 54:288-303. [PMID: 38634455 PMCID: PMC11326520 DOI: 10.1080/00498254.2024.2345283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Lack of data on drug secretion in human milk is a concern for safe use of drugs during postpartum.Clinical studies are often difficult to perform; despite substantial improvements in computational methodologies such as physiologically based pharmacokinetic modelling, there is limited clinical data to validate such models for many drugs.Various factors that are likely to impact milk to plasma ratio were identified. A literature search was performed to gather available data on milk composition, total volume of milk produced per day, milk pH, haematocrit, and renal blood flow and glomerular filtration rate in various animal models.BLAST nucleotide and protein tools were used to evaluate the similarities between humans and animals in the expression and predominance of selected drug transporters, metabolic enzymes, and blood proteins.A multistep analysis of all the potential variables affecting drug secretion was considered to identify most appropriate animal model. The practicality of using the animal in a lab setting was also considered.Donkeys and goats were identified as the most suitable animals for studying drug secretion in milk and future studies should be performed in goats and donkeys to validate the preliminary observations.
Collapse
Affiliation(s)
- Riya Nilkant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
| | - Chintha Kathiresan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
| | - Namrata Kumar
- Department of Molecular Biology and Developmental Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Steve Caritis
- Department of Obstetrics Gynaecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Imam H. Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
233
|
Ye Z, Xia H, Hu J, Liu YN, Wang A, Cai JP, Hu GX, Xu RA. CYP3A4 and CYP2C19 genetic polymorphisms and myricetin interaction on tofacitinib metabolism. Biomed Pharmacother 2024; 175:116421. [PMID: 38719708 DOI: 10.1016/j.biopha.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.
Collapse
Affiliation(s)
- Zhize Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anzhou Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
234
|
Fotouh A, Abdel-Maguid DS, Abdelhaseib M, Zaki RS, Darweish M. Pathological and pharmacovigilance monitoring as toxicological imputations of azithromycin and its residues in broilers. Vet World 2024; 17:1271-1280. [PMID: 39077436 PMCID: PMC11283599 DOI: 10.14202/vetworld.2024.1271-1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim The importance of monitoring antimicrobial residues in food is underlined by increasing worries about food safety and public health. The potential toxicity of azithromycin (Az) on broilers and its impact on chicken meat residues require further investigation. This study assesses Az's toxicity effects and associated risks in broiler chickens through evaluation. Materials and Methods One hundred and twenty chicks were distributed into four equal groups randomly. Each group received different daily oral doses of Az: 200 mg/kg for Az1, 100 mg/kg for Az2, and 50 mg/kg for Az3. The FAz group was given plain water. High-performance liquid chromatography was used to measure Az residue levels in muscle and liver. Oxidative markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT]), liver and kidney function tests, and histopathological examination were conducted. Results The levels of alanine aminotransferase and aspartate aminotransferase increased in Az1 and Az2 groups from 8 h to 3 days and decreased slightly in Az2 by 7 days, while they remained normal in Az3. The levels of uric acid and creatine in the Az1 and Az2 groups increased from 8 h to 3 days and subsequently decreased in Az2 by the 7th day. Az1 group showed the highest increase in MDA levels within 7 days. With higher Az doses, SOD and CAT levels showed a more significant decrease post-treatment. 9.1 μg/kg Az1 liver had the highest residues, whereas none were detected in muscle. Conclusion At higher doses, Az caused significant liver and kidney damage, whereas lower doses had negligible effects. Muscle tissue contains fewer Az residues than liver. Assessing risks and ensuring compliance with regulations necessitate constant surveillance of Az residues in food. The health implications and risk management insights necessitate further investigation into the long-term effects of Az residues.
Collapse
Affiliation(s)
- Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
- MBA, Marywood University, Pennsylvania, USA
| | - Doaa Safwat Abdel-Maguid
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rania Samir Zaki
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Marwa Darweish
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Qaluiobia, Egypt
| |
Collapse
|
235
|
Hafiz MZ, Pan J, Gao Z, Huo Y, Wang H, Liu W, Yang J. Timosaponin AⅢ induces drug-metabolizing enzymes by activating constitutive androstane receptor (CAR) via dephosphorylation of the EGFR signaling pathway. J Biomed Res 2024; 38:382-396. [PMID: 38817007 PMCID: PMC11300519 DOI: 10.7555/jbr.38.20240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
The current study aimed to assess the effect of timosaponin AⅢ (T-AⅢ) on drug-metabolizing enzymes during anticancer therapy. The in vivo experiments were conducted on nude and ICR mice. Following a 24-day administration of T-AⅢ, the nude mice exhibited an induction of CYP2B10, MDR1, and CYP3A11 expression in the liver tissues. In the ICR mice, the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration. The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6, MDR1, and CYP3A4, along with constitutive androstane receptor (CAR) activation. Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression. Furthermore, other CAR target genes also showed a significant increase in the expression. The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice. Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation, with this effect being partially reversed by the ERK activator t-BHQ. Inhibition of the ERK1/2 signaling pathway was also observed in vivo. Additionally, T-AⅢinhibited the phosphorylation of EGFR at Tyr1173 and Tyr845, and suppressed EGF-induced phosphorylation of EGFR, ERK, and CAR. In the nude mice, T-AⅢ also inhibited EGFR phosphorylation. These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
Collapse
Affiliation(s)
- Muhammad Zubair Hafiz
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jie Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiwei Gao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Huo
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haobin Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
236
|
Revanasiddappa PD, H. G. G, K. P. C, Natarajamurthy S, K. N, Pradeep S, Shivamallu C, Elossaily GM, Achar RR, Silina E, Stupin V, Manturova N, A. Shati A, Y. Alfaifi M, I. Elbehairi SE, Kestur Nagaraj A, Mahadevamurthy M, Kollur SP. Computational exploration of Picrasma quassioides compounds as CviR-mediated quorum sensing inhibitors against Chromobacterium violaceum. Front Chem 2024; 12:1286675. [PMID: 38867763 PMCID: PMC11167448 DOI: 10.3389/fchem.2024.1286675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/17/2024] [Indexed: 06/14/2024] Open
Abstract
Chromobacterium violaceum an opportunistic human pathogenic bacterium, exhibits resistance to conventional antibiotics by exploiting its quorum sensing mechanism to regulate virulence factor expression. In light of this, disrupting the quorum sensing mechanism presents a promising avenue for treating infections caused by this pathogen. The study focused on using the cytoplasmic quorum sensing receptor CviR from C. violaceum as a model target to identify novel quorum sensing inhibitors from P. quassioides through in silico computational approaches. Molecular docking analyses unveiled that several phytochemicals derived from Picrasma quassioides exhibit the potential to inhibit quorum sensing by binding to CviR protein. Notably, the compounds such as Quassidine I (- 8.8 kcal/mol), Quassidine J (- 8.8 kcal/mol), Kumudine B (- 9.1 kcal/mol) and Picrasamide A (- 8.9 kcal/mol) exhibited high docking scores, indicating strong binding affinity to the CviR protein. The native ligand C6-HSL (N-hexanoyl-L-homoserine lactone) as a positive control/co-crystal inhibitor also demonstrated a significant binding energy of-7.7 kcal/mol. The molecular dynamics simulation for 200 ns showed the thermodynamic stability and binding affinity refinement of the top-ranked CviR inhibitor (Kumudine B) with its stable binding and minor fluctuations compared to positive control (C6-HSL). Pharmacokinetic predictions indicated that Kumudine B possesses favourable drug-like properties, which suggest its potential as a drug candidate. The study highlight Kumudine B as a potential agent for inhibiting the CviR protein in C. violaceum. The comprehensive evaluation of Kumudine B provides valuable insights into its pharmacological profiles, facilitating its assessment for diverse therapeutic applications and guiding future research activities, particularly as antibacterial agents for clinical drug development.
Collapse
Affiliation(s)
| | - Gowtham H. G.
- Department of Studies and Research in Food Science and Nutrition, Karnataka State Open University, Mysuru, India
| | - Chandana K. P.
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | | | - Nataraj K.
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | |
Collapse
|
237
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
238
|
Decaix T, Kemache K, Gay P, Ketz F, Laprévote O, Pautas É. Pharmacokinetics and pharmacodynamics of drug‒drug interactions in hospitalized older adults treated with direct oral anticoagulants. Aging Clin Exp Res 2024; 36:113. [PMID: 38776005 PMCID: PMC11111557 DOI: 10.1007/s40520-024-02768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Polypharmacy is a frequent situation in older adults that increases the risk of drug-drug interactions (DDIs), both pharmacokinetic (PK) and pharmacodynamic (PD). Direct oral anticoagulants (DOACs) are frequently prescribed in older adults, mainly because of the high prevalence of atrial fibrillation (AF). DOACs are subject to cytochrome P450 3A4 (CYP3A4)- and/or P-glycoprotein (P-gp)-mediated PK DDIs and PD DDIs when co-administered with drugs that interfere with platelet function. The aim of our study was to assess the prevalence of DDIs involving DOACs in older adults and the associated risk factors at admission and discharge. METHODS This was a cross-sectional study conducted in an acute geriatric unit between January 1, 2018 and December 31, 2022, including patients over 75 years of age treated with DOACs at admission and/or discharge, for whom a comprehensive collection of co-medications was performed. RESULTS From 909 hospitalizations collected, the prevalence of PK DDIs involving DOACs was 16.9% at admission and 20.7% at discharge, and the prevalence of PD DDIs was 20.7% at admission and 20.2% at discharge. Factors associated with DDIs were bleeding history [adjusted odds ratio (ORa) 1.74, 95% confidence interval (CI) 1.13-2.68], number of drugs > 6 (ORa 2.54, 95% CI 1.88-3.46) and reduced dose of DOACs (ORa 0.39, 95% CI 0.28-0.54) at admission and age > 87 years (ORa 0.74, 95% CI 0.55-0.99), number of drugs > 6 (ORa 2.01, 95% CI 1.48-2.72) and reduced dose of DOACs (ORa 0.41, 95% CI 0.30-0.57) at discharge. CONCLUSION This study provides an indication of the prevalence of DDIs as well as the profile of DDIs and patients treated with DOACs.
Collapse
Affiliation(s)
- Théodore Decaix
- Geriatrics department, APHP Paris Cité University, Lariboisière-Fernand Widal Hospital, Paris, France.
- Paris-Cité University, CNRS, Paris, F-75006, CitCoM, France.
- Faculty of Pharmacy, Paris-Cité University, 4 avenue de l'Observatoire, Paris, 75006, France.
| | - Kenza Kemache
- Acute Geriatrics Unit, Charles Foix Hospital, APHP Sorbonne University, Ivry-sur-Seine, France
| | - Pierre Gay
- Acute Geriatrics Unit, Charles Foix Hospital, APHP Sorbonne University, Ivry-sur-Seine, France
| | - Flora Ketz
- Acute Geriatrics Unit, Charles Foix Hospital, APHP Sorbonne University, Ivry-sur-Seine, France
| | - Olivier Laprévote
- Paris-Cité University, CNRS, Paris, F-75006, CitCoM, France
- Department of biology, National Hospital Center Of ophthalmology, 15-20, F-75012, Paris, France
| | - Éric Pautas
- Acute Geriatrics Unit, Charles Foix Hospital, APHP Sorbonne University, Ivry-sur-Seine, France
- Therapeutic innovations in hemostasis, Paris-Cité University, UMR-S 1140, Inserm, Paris, France
- Medical school, Sorbonne University, Paris, France
| |
Collapse
|
239
|
Avila A, Zhang SL. A circadian clock regulates the blood-brain barrier across phylogeny. VITAMINS AND HORMONES 2024; 126:241-287. [PMID: 39029975 DOI: 10.1016/bs.vh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
As the central regulatory system of an organism, the brain is responsible for overseeing a wide variety of physiological processes essential for an organism's survival. To maintain the environment necessary for neurons to function, the brain requires highly selective uptake and elimination of specific molecules through the blood-brain barrier (BBB). As an organism's activities vary throughout the day, how does the BBB adapt to meet the changing needs of the brain? A mechanism is through temporal regulation of BBB permeability via its circadian clock, which will be the focal point of this chapter. To comprehend the circadian clock's role within the BBB, we will first examine the anatomy of the BBB and the transport mechanisms enabling it to fulfill its role as a restrictive barrier. Next, we will define the circadian clock, and the discussion will encompass an introduction to circadian rhythms, the Transcription-Translation Feedback Loop (TTFL) as the mechanistic basis of circadian timekeeping, and the organization of tissue clocks found in organisms. Then, we will cover the role of the circadian rhythms in regulating the cellular mechanisms and functions of the BBB. We discuss the implications of this regulation in influencing sleep behavior, the progression of neurodegenerative diseases, and finally drug delivery for treatment of neurological diseases.
Collapse
Affiliation(s)
- Ashley Avila
- Cell Biology Department, Emory University, Atlanta, GA, United States
| | - Shirley L Zhang
- Cell Biology Department, Emory University, Atlanta, GA, United States.
| |
Collapse
|
240
|
Albadry M, Küttner J, Grzegorzewski J, Dirsch O, Kindler E, Klopfleisch R, Liska V, Moulisova V, Nickel S, Palek R, Rosendorf J, Saalfeld S, Settmacher U, Tautenhahn HM, König M, Dahmen U. Cross-species variability in lobular geometry and cytochrome P450 hepatic zonation: insights into CYP1A2, CYP2D6, CYP2E1 and CYP3A4. Front Pharmacol 2024; 15:1404938. [PMID: 38818378 PMCID: PMC11137285 DOI: 10.3389/fphar.2024.1404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.
Collapse
Affiliation(s)
- Mohamed Albadry
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Jonas Küttner
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Grzegorzewski
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Dirsch
- Institute for Pathology, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Eva Kindler
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vladimira Moulisova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sandra Nickel
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sylvia Saalfeld
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Matthias König
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
241
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
242
|
Suthar H, Manea T, Pak D, Woodbury M, Eick SM, Cathey A, Watkins DJ, Strakovsky RS, Ryva BA, Pennathur S, Zeng L, Weller D, Park JS, Smith S, DeMicco E, Padula A, Fry RC, Mukherjee B, Aguiar A, Geiger SD, Ng S, Huerta-Montanez G, Vélez-Vega C, Rosario Z, Cordero JF, Zimmerman E, Woodruff TJ, Morello-Frosch R, Schantz SL, Meeker JD, Alshawabkeh AN, Aung MT. Cross-Sectional Associations between Prenatal Per- and Poly-Fluoroalkyl Substances and Bioactive Lipids in Three Environmental Influences on Child Health Outcomes (ECHO) Cohorts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8264-8277. [PMID: 38691655 PMCID: PMC11097396 DOI: 10.1021/acs.est.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipids─metabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.
Collapse
Affiliation(s)
- Himal Suthar
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Tomás Manea
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Dominic Pak
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Megan Woodbury
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Emory
University Rollins School of Public Health, Atlanta, Georgia 30322, United States
| | - Amber Cathey
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Deborah J. Watkins
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Rita S. Strakovsky
- Institute
for Integrative Toxicology, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Food Sciences and Human Nutrition, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Brad A. Ryva
- Institute
for Integrative Toxicology, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- College
of Osteopathic Medicine, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Subramaniam Pennathur
- Department
of Internal Medicine-Nephrology, University
of Michigan, Ann Arbor, Michigan 48824, United States
- Department
of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lixia Zeng
- Department
of Internal Medicine-Nephrology, University
of Michigan, Ann Arbor, Michigan 48824, United States
| | - David Weller
- NSF International, Ann Arbor, Michigan 48105, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic
Substances
Control, California Environmental Protection
Agency, Berkeley, California 94710, United States
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic
Substances
Control, California Environmental Protection
Agency, Berkeley, California 94710, United States
| | - Erin DeMicco
- Program on Reproductive
Health and the Environment, University of
California, San Francisco, San
Francisco, California 94143, United States
| | - Amy Padula
- Program on Reproductive
Health and the Environment, University of
California, San Francisco, San
Francisco, California 94143, United States
| | - Rebecca C. Fry
- Department
of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, Gillings
School of Global Public Health, Chapel Hill, North Carolina 27599, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Andrea Aguiar
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Comparative Biosciences, University of Illinois Urbana−Champaign, Champaign, Illinois 61802, United States
| | - Sarah Dee Geiger
- Department of Comparative Biosciences, University of Illinois Urbana−Champaign, Champaign, Illinois 61802, United States
- Department of Kinesiology and Community Health, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
| | - Shukhan Ng
- Department of Comparative Biosciences, University of Illinois Urbana−Champaign, Champaign, Illinois 61802, United States
| | - Gredia Huerta-Montanez
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Carmen Vélez-Vega
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia 30606, United States
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico 00935, United States
| | - Jose F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia 30606, United States
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tracey J. Woodruff
- Program on Reproductive
Health and the Environment, University of
California, San Francisco, San
Francisco, California 94143, United States
| | - Rachel Morello-Frosch
- Program on Reproductive
Health and the Environment, University of
California, San Francisco, San
Francisco, California 94143, United States
- Department of Environmental Science, Policy and Management
and School of Public Health, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Susan L. Schantz
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Comparative Biosciences, University of Illinois Urbana−Champaign, Champaign, Illinois 61802, United States
| | - John D. Meeker
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Akram N. Alshawabkeh
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Max T. Aung
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - on behalf of Program Collaborators
for Environmental Influences on Child Health Outcomes
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Gangarosa
Department of Environmental Health, Emory
University Rollins School of Public Health, Atlanta, Georgia 30322, United States
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
- Institute
for Integrative Toxicology, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Food Sciences and Human Nutrition, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- College
of Osteopathic Medicine, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Internal Medicine-Nephrology, University
of Michigan, Ann Arbor, Michigan 48824, United States
- Department
of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- NSF International, Ann Arbor, Michigan 48105, United States
- Environmental Chemistry Laboratory, Department of Toxic
Substances
Control, California Environmental Protection
Agency, Berkeley, California 94710, United States
- Program on Reproductive
Health and the Environment, University of
California, San Francisco, San
Francisco, California 94143, United States
- Department
of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, Gillings
School of Global Public Health, Chapel Hill, North Carolina 27599, United States
- Department of Biostatistics, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Comparative Biosciences, University of Illinois Urbana−Champaign, Champaign, Illinois 61802, United States
- Department of Kinesiology and Community Health, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia 30606, United States
- University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico 00935, United States
- Department of Communication Sciences and Disorders, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Environmental Science, Policy and Management
and School of Public Health, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
243
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|
244
|
Zeng S, Qing Q, Xu W, Yu S, Zheng M, Tan H, Peng J, Huang J. Personalized anesthesia and precision medicine: a comprehensive review of genetic factors, artificial intelligence, and patient-specific factors. Front Med (Lausanne) 2024; 11:1365524. [PMID: 38784235 PMCID: PMC11111965 DOI: 10.3389/fmed.2024.1365524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Precision medicine, characterized by the personalized integration of a patient's genetic blueprint and clinical history, represents a dynamic paradigm in healthcare evolution. The emerging field of personalized anesthesia is at the intersection of genetics and anesthesiology, where anesthetic care will be tailored to an individual's genetic make-up, comorbidities and patient-specific factors. Genomics and biomarkers can provide more accurate anesthetic protocols, while artificial intelligence can simplify anesthetic procedures and reduce anesthetic risks, and real-time monitoring tools can improve perioperative safety and efficacy. The aim of this paper is to present and summarize the applications of these related fields in anesthesiology by reviewing them, exploring the potential of advanced technologies in the implementation and development of personalized anesthesia, realizing the future integration of new technologies into clinical practice, and promoting multidisciplinary collaboration between anesthesiology and disciplines such as genomics and artificial intelligence.
Collapse
Affiliation(s)
- Shiyue Zeng
- Zhuzhou Clinical College, Jishou University, Jishou, China
| | - Qi Qing
- Zhuzhou Clinical College, Jishou University, Jishou, China
| | - Wei Xu
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Simeng Yu
- Zhuzhou Clinical College, Jishou University, Jishou, China
| | - Mingzhi Zheng
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junmin Peng
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
245
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
246
|
Ashraf RA, Liu S, Wolf CA, Wolber G, Bureik M. Identification of New Substrates and Inhibitors of Human CYP2A7. Molecules 2024; 29:2191. [PMID: 38792050 PMCID: PMC11123773 DOI: 10.3390/molecules29102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
CYP2A7 is one of the most understudied human cytochrome P450 enzymes and its contributions to either drug metabolism or endogenous biosynthesis pathways are not understood, as its only known enzymatic activities are the conversions of two proluciferin probe substrates. In addition, the CYP2A7 gene contains four single-nucleotide polymorphisms (SNPs) that cause missense mutations and have minor allele frequencies (MAFs) above 0.5. This means that the resulting amino acid changes occur in the majority of humans. In a previous study, we employed the reference standard sequence (called CYP2A7*1 in P450 nomenclature). For the present study, we created another CYP2A7 sequence that contains all four amino acid changes (Cys311, Glu169, Gly479, and Arg274) and labeled it CYP2A7-WT. Thus, it was the aim of this study to identify new substrates and inhibitors of CYP2A7 and to compare the properties of CYP2A7-WT with CYP2A7*1. We found several new proluciferin probe substrates for both enzyme variants (we also performed in silico studies to understand the activity difference between CYP2A7-WT and CYP2A7*1 on specific substrates), and we show that while they do not act on the standard CYP2A6 substrates nicotine, coumarin, or 7-ethoxycoumarin, both can hydroxylate diclofenac (as can CYP2A6). Moreover, we found ketoconazole, 1-benzylimidazole, and letrozole to be CYP2A7 inhibitors.
Collapse
Affiliation(s)
- Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
247
|
Yang H, Liu J, Chen K, Cong S, Cai S, Li Y, Jia Z, Wu H, Lou T, Wei Z, Yang X, Xiao H. D-CyPre: a machine learning-based tool for accurate prediction of human CYP450 enzyme metabolic sites. PeerJ Comput Sci 2024; 10:e2040. [PMID: 38855237 PMCID: PMC11157575 DOI: 10.7717/peerj-cs.2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
The advancement of graph neural networks (GNNs) has made it possible to accurately predict metabolic sites. Despite the combination of GNNs with XGBOOST showing impressive performance, this technology has not yet been applied in the realm of metabolic site prediction. Previous metabolic site prediction tools focused on bonds and atoms, regardless of the overall molecular skeleton. This study introduces a novel tool, named D-CyPre, that amalgamates atom, bond, and molecular skeleton information via two directed message-passing neural networks (D-MPNN) to predict the metabolic sites of the nine cytochrome P450 enzymes using XGBOOST. In D-CyPre Precision Mode, the model produces fewer, but more accurate results (Jaccard score: 0.497, F1: 0.660, and precision: 0.737 in the test set). In D-CyPre Recall Mode, the model produces less accurate, but more comprehensive results (Jaccard score: 0.506, F1: 0.669, and recall: 0.720 in the test set). In the test set of 68 reactants, D-CyPre outperformed BioTransformer on all isoenzymes and CyProduct on most isoenzymes (5/9). For the subtypes where D-CyPre outperformed CyProducts, the Jaccard score and F1 scores increased by 24% and 16% in Precision Mode (4/9) and 19% and 12% in Recall Mode (5/9), respectively, relative to the second-best CyProduct. Overall, D-CyPre provides more accurate prediction results for human CYP450 enzyme metabolic sites.
Collapse
Affiliation(s)
- Haolan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Jie Liu
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Kui Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Shengnan Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Zhixin Jia
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Tianyu Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Xiaoqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| | - Hongbin Xiao
- Beijing University of Chinese Medicine, Research Center of Chinese Medicine Analysis and Transformation, Beijing, China
| |
Collapse
|
248
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
249
|
Tang Y, Li H, Tang J, Hu L, Ma F, Liu Y, Tang F. Effects of total saikosaponins on CYP3A4 and CYP1A2 in HepaRG cells. Exp Ther Med 2024; 27:217. [PMID: 38590569 PMCID: PMC11000459 DOI: 10.3892/etm.2024.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/02/2024] [Indexed: 04/10/2024] Open
Abstract
Total saikosaponins (TSS) form a group of chemically and biologically active components that can be extracted from Bupleurum, with reported antidepressive, anti-inflammatory, antiviral, antiendotoxin, antitumor, anti-pulmonary fibrosis and anti-gastric ulcer effects. Bupleurum or TSS is frequently utilized in clinical practice alongside other medications (such as entecavir, lamivudine, compound paracetamol and amantadine hydrochloride capsules), leading to an increased risk of drug-drug interactions. The cytochrome P450 (CYP) family serves a critical role in the metabolism of numerous essential drugs (such as tamoxifen, ibuprofen and phenytoin), where the majority of drug interactions involve CYP-mediated metabolism. It is therefore essential to understand the effects of key components of Bupleurum on CYPs when administering combination therapies containing TSS or Bupleurum. The present study aimed to investigate the effects of TSS on the mRNA and protein expression of CYP3A4 and CYP1A2 in HepaRG cells. The effects of TSS on the survival of HepaRG cells was investigated using the Cell Counting Kit-8 (CCK-8) method. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) analysis were used to assess the effects of different concentrations of TSS (0, 5, 10 and 15 µg/ml) on CYP3A4 and CYP1A2 mRNA and protein expression in HepaRG cells. Based on the CCK-8 assay results, it was observed that the cell viability remained above 80% when treated with 1, 5, 10 and 15 µg/ml TSS. Although there was a statistically significant reduced cell viability at TSS concentrations of 10 and 15 µg/ml compared with the control group, the findings indicated that TSS did not exhibit notable cytotoxic effects at these concentrations. Furthermore, RT-qPCR results revealed that compared with those in the control group, TSS at concentrations of 10 and 15 µg/ml reduced CYP3A4 mRNA expression but increased CYP1A2 mRNA expression in HepaRG cells at concentrations of 15 µg/ml. WB analysis found that TSS at concentrations of 10 and 15 µg/ml downregulated CYP3A4 protein expression in HepaRG cells while increasing CYP1A2 protein expression at concentrations of 15 µg/ml. Results in the present study suggest that TSS can inhibit CYP3A4 mRNA and protein expression, but exerts opposite effects on their CYP1A2 counterparts. These findings suggest that it is necessary to consider drug interactions between clinical preparations containing TSS or Bupleurum and drugs metabolized by CYP3A4 and CYP1A2 to avoid potential adverse drug reactions in clinical practice.
Collapse
Affiliation(s)
- Yunyan Tang
- Department of Pharmacy, Affiliated Meitan People's Hospital of Zunyi Medical University, Zunyi, Guizhou 564100, P.R. China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Hongfang Li
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jianhua Tang
- Faculty of Biology, Medicine and Health, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, SK10 4TG, UK
| | - Lei Hu
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi, Guizhou 563006, P.R. China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou 563006, P.R. China
| | - Feifei Ma
- Department of Pharmacy, Affiliated Meitan People's Hospital of Zunyi Medical University, Zunyi, Guizhou 564100, P.R. China
| | - Yanmiao Liu
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Fushan Tang
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi, Guizhou 563006, P.R. China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou 563006, P.R. China
| |
Collapse
|
250
|
Lawaczeck L, Slomma R, Stenzl A, Aufderklamm S, Norz V, Hammes J, Lipp HP, Rausch S. Gross Hematuria Associated with Anticoagulants and Antiplatelet Drugs: Analysis of Current Treatment Standards and Relevance of Co-medication and Pharmacological Interactions. Eur Urol Focus 2024; 10:442-447. [PMID: 37770373 DOI: 10.1016/j.euf.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Anticoagulants and antiplatelet drugs are risk factors for gross hematuria (GH). Moreover, co-medication and drug-drug interactions (DDIs) may influence GH and its clinical course. OBJECTIVE To investigate the relationship between GH and administration of oral anticoagulants and antiplatelet drugs. DESIGN, SETTING, AND PARTICIPANTS Hospitalized patients with GH in an academic tertiary reference center were included. The use of individual compounds and DDIs were recorded and correlated to relevant clinical outcome factors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The association between GH, DDIs, and clinical outcome parameters was analyzed using χ2 and Kruskal-Wallis tests. DDIs were systematically evaluated using a previously published calculator. RESULTS AND LIMITATIONS A total of 189 patients with GH were eligible for the study. Of these, 76.2% took anticoagulants or antiplatelet drugs. The mean hospitalization duration was 4.7 d. The mean bladder irrigation duration was 3.1 d and the mean volume of irrigation fluid used was 22.8 l. Overall, 30.7% of patients had a pre-existing genitourinary malignancy. DDIs were observed in 31.9% of cases. The irrigation duration (p = 0.01) and volume of irrigation fluid (p = 0.05) were significantly associated with the use of anticoagulants or antiplatelet drugs. Specific DDI patterns were not predictive of clinical outcome. CONCLUSIONS Medication with anticoagulants or antiplatelet drugs has a significant impact on GH and its clinical course. DDIs are a relevant issue and may lead to adverse clinical events or greater drug toxicity. Critical evaluation of medication and interdisciplinary counseling for patients with GH and urinary tract disease are recommended. PATIENT SUMMARY Drugs taken to reduce the risk of blood clotting can increase the risk of blood in the urine (called hematuria) and medical expenses for treatment. Drug-drug interactions are a relevant issue, especially in elderly patients and those with other medical conditions who are taking several drugs. Thoughtful discussion of individual risk profiles for hematuria and medication is therefore recommended.
Collapse
Affiliation(s)
- Laura Lawaczeck
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Raika Slomma
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | | | - Valentina Norz
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Joël Hammes
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Hans-Peter Lipp
- Department of Pharmacology, Eberhard-Karls-University, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|