201
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
202
|
Zhang X, Zhang X, Li M, Jiao S, Zhang Y. Monitoring Partial EMT Dynamics through Cell Mechanics Using Scanning Ion Conductance Microscopy. Anal Chem 2024; 96:14835-14842. [PMID: 39238086 DOI: 10.1021/acs.analchem.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Tumor cells undergo an epithelial-mesenchymal transition (EMT) accompanied by a reduction in elasticity to initiate metastasis. However, in vivo, tumor cells typically exhibit partial EMT rather than fully EMT. Whether cell mechanics can accurately identify the status of partial EMT, especially the dynamic process, remains unclear. To elucidate the relationship between cell mechanics and partial EMT, we employed scanning ion conductance microscopy (SICM) to analyze the dynamic changes in cell mechanics during the TGFβ-induced partial EMT of HCT116 colon cancer cells. Cells undergoing partial EMT, characterized by increased expression of EMT transcription factors, Snai1 and Zeb1, and EMT-related genes, Fn1 and MMP9, while retaining the expression of the epithelial markers E-cadherin (E-cad) and EpCAM, did not exhibit significant changes in cell morphology, suggesting that morphological changes alone were inadequate for identifying partial EMT status. However, cell elasticity markedly decreased in partial EMT cells, and this reduction was reversed with the reversible transition of partial EMT. These findings suggest a strong correlation between cell mechanics and the dynamic process of partial EMT, indicating that cell mechanics could serve as a valuable label-free marker for identifying the status of partial EMT while preserving the physiological characteristics of tumor cells.
Collapse
Affiliation(s)
- Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xueqia Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Mingkun Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Shuopei Jiao
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanjun Zhang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
203
|
Bette M, Reinhardt L, Gansukh U, Xiang-Tischhauser L, Meskeh H, Di Fazio P, Buchholz M, Stuck BA, Mandic R. The Role of TGF-β1 and Mutant SMAD4 on Epithelial-Mesenchymal Transition Features in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2024; 16:3172. [PMID: 39335144 PMCID: PMC11429651 DOI: 10.3390/cancers16183172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the present study was to investigate possible differences in the sensitivity of HNSCC cells to known EMT regulators. Three HNSCC cell lines (UM-SCC-1, -3, -22B) and the HaCaT control keratinocyte cell line were exposed to transforming growth factor beta 1 (TGF-β1), a known EMT master regulator, and the cellular response was evaluated by real-time cell analysis (RTCA), Western blot, quantitative PCR, flow cytometry, immunocytochemistry, and the wound closure (scratch) assay. Targeted sequencing on 50 cancer-related genes was performed using the Cancer Hotspot Panel v2. Mutant, and wild type SMAD4 cDNA was used to generate recombinant SMAD4 constructs for expression in mammalian cell lines. The most extensive response to TGF-β1, such as cell growth and migration, β-actin expression, or E-cadherin (CDH1) downregulation, was seen in cells with a more epithelial phenotype. Lower response correlated with higher basal p-TGFβ RII (Tyr424) levels, pointing to a possible autocrine pre-activation of these cell lines. Targeted sequencing revealed a homozygous SMAD4 mutation in the UM-SCC-22B cell line. Furthermore, PCR cloning of SMAD4 cDNA from the same cell line revealed an additional SMAD4 transcript with a 14 bp insertion mutation, which gives rise to a truncated SMAD4 protein. Overexpression of this mutant SMAD4 protein in the highly epithelial control cell line HaCaT resulted in upregulation of TGF-β1 and vimentin. Consistent with previous reports, the invasive and metastatic potential of HNSCC tumor cells appears associated with the level of autocrine secretion of EMT regulators such as TGF-β1, and it could be influenced by exogenous EMT cytokines such as those derived from immune cells of the tumor microenvironment. Furthermore, mutant SMAD4 appears to be a significant contributor to the mesenchymal transformation of HNSCC cells.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Laura Reinhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Uyanga Gansukh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Haifa Meskeh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
204
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
205
|
Jiang H, Wang GT, Wang Z, Ma QY, Ma ZH. Resveratrol inhibits pancreatic cancer proliferation and metastasis by depleting senescent tumor-associated fibroblasts. World J Gastrointest Oncol 2024; 16:3980-3993. [PMID: 39350997 PMCID: PMC11438786 DOI: 10.4251/wjgo.v16.i9.3980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Pancreatic cancer, a formidable gastrointestinal neoplasm, is characterized by its insidious onset, rapid progression, and resistance to treatment, which often lead to a grim prognosis. While the complex pathogenesis of pancreatic cancer is well recognized, recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts. However, their precise role in pancreatic cancer remains unknown. Resveratrol is a natural polyphenol known for its multifaceted biological actions, including antioxidative and neuroprotective properties, as well as its potential to inhibit tumor proliferation and migration. Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis. AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts. METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression of α-SMA and p16. HP-1 expression was determined using immunohistochemistry. Cells were treated with the senescence-inducing factors known as 3CKs. Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate. Western blotting was conducted to assess the expression levels of p16 and p21. Immunofluorescence was performed to assess LaminB1 expression. Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors, including IL-4, IL-6, IL-8, IL-13, MMP-2, MMP-9, CXCL1, and CXCL12. A scratch assay was used to assess the migratory capacity of the cells, whereas Transwell assays were used to evaluate their invasive potential. RESULTS Specifically, we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues, linking their abundance to cancer progression. Intriguingly, Resveratrol effectively eradicated these fibroblasts and hindered their senescence, which consequently impeded pancreatic cancer progression. CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- He Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Guo-Tai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing-Yong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen-Hua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
206
|
Chai C, Tang H, Miao X, Chen T, Su Y, Li L, Miao L, Zhang B, Wang Z, Luo W, Zhang H, Xu H, Zhou W. Establishment and characterization of a novel human gallbladder cancer cell line, GBC-X1. Sci Rep 2024; 14:21439. [PMID: 39271742 PMCID: PMC11399391 DOI: 10.1038/s41598-024-72830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we successfully established a novel gallbladder cancer cell line, designated as GBC-X1, derived from a primary tumor of a gallbladder cancer patient. By comprehensively analyzing the cell line's phenotype, molecular characteristics, biomarkers, and histological characteristics, we confirmed that GBC-X1 serves as a valuable model for investigating the pathogenesis of gallbladder cancer and developing therapeutic agents. GBC-X1 has been continuously cultured for one year, with over 60 stable passages. Morphologically, GBC-X1 exhibits typical features of epithelial tumors. The population doubling time of GBC-X1 is 32 h. STR analysis validated a high consistency between GBC-X1 and the patient's primary tumor. Karyotype analysis revealed an abnormal hypertetraploid karyotype for GBC-X1, characterized by representative karyotypes of 98, XXXX del (4) p (12) del (5) p (21) der (10). Under suspension culture conditions, GBC-X1 efficiently forms tumor balls, while subcutaneous inoculation of GBC-X1 cells into NXG mice leads to xenograft formation with a rate of 80%. Drug sensitivity testing demonstrated that GBC-X1 is resistant to oxaliplatin and sensitive to 5-FU, gemcitabine, and paclitaxel. Immunohistochemistry revealed positive expression of CK7, CK19, E-cadherin, MMP-2, CD44, SOX2, and TP53 in GBC-X1 cells, weak positive expression of Vimentin, and a Ki67 positive rate of 35%. Our research highlights GBC-X1 as a novel gallbladder cancer cell line and emphasizes its potential as an effective experimental model for investigating the pathogenesis of gallbladder cancer and drug development.
Collapse
Affiliation(s)
- Changpeng Chai
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yuanhui Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Long Miao
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Bo Zhang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Zhengfeng Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wei Luo
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China.
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
207
|
Murakami T, Shimizu H, Nojima H, Shuto K, Usui A, Kosugi C, Koda K. Diffusion-Weighted Magnetic Resonance Imaging for the Diagnosis of Lymph Node Metastasis in Patients with Biliary Tract Cancer. Cancers (Basel) 2024; 16:3143. [PMID: 39335116 PMCID: PMC11430223 DOI: 10.3390/cancers16183143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Objective: The diagnostic efficacy of the apparent diffusion coefficient (ADC) in diffusion-weighted magnetic resonance imaging (DW-MRI) for lymph node metastasis in biliary tract cancer was investigated in the present study. Methods: In total, 112 surgically resected lymph nodes from 35 biliary tract cancer patients were examined in this study. The mean and minimum ADC values of the lymph nodes as well as the long-axis and short-axis diameters of the lymph nodes were assessed by computed tomography (CT). The relationship between these parameters and the presence of histological lymph node metastasis was evaluated. Results: Histological lymph node metastasis was detected in 31 (27.7%) out of 112 lymph nodes. Metastatic lymph nodes had a significantly larger short-axis diameter compared with non-metastatic lymph nodes (p = 0.002), but the long-axis diameter was not significantly different between metastatic and non-metastatic lymph nodes. The mean and minimum ADC values for metastatic lymph nodes were significantly reduced compared with those for non-metastatic lymph nodes (p < 0.001 for both). However, the minimum ADC value showed the highest accuracy for the diagnosis of histological lymph node metastasis, with an area under the curve of 0.877, sensitivity of 87.1%, specificity of 82.7%, and accuracy of 83.9%. Conclusions: The minimum ADC value in DW-MRI is highly effective for the diagnosis of lymph node metastasis in biliary tract cancer. Accurate preoperative diagnosis of lymph node metastasis in biliary tract cancer should enable the establishment of more appropriate treatment strategies.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Akihiro Usui
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Chihiro Kosugi
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| |
Collapse
|
208
|
Zhang C, Wang S, Lu X, Zhong W, Tang Y, Huang W, Wu F, Wang X, Wei W, Tang H. POP1 Facilitates Proliferation in Triple-Negative Breast Cancer via m6A-Dependent Degradation of CDKN1A mRNA. RESEARCH (WASHINGTON, D.C.) 2024; 7:0472. [PMID: 39268503 PMCID: PMC11391272 DOI: 10.34133/research.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is currently the worst prognostic subtype of breast cancer, and there is no effective treatment other than chemotherapy. Processing of precursors 1 (POP1) is the most substantially up-regulated RNA-binding protein (RBP) in TNBC. However, the role of POP1 in TNBC remains clarified. A series of molecular biological experiments in vitro and in vivo and clinical correlation analyses were conducted to clarify the biological function and regulatory mechanism of POP1 in TNBC. Here, we identified that POP1 is significantly up-regulated in TNBC and associated with poor prognosis. We further demonstrate that POP1 promotes the cell cycle and proliferation of TNBC in vitro and vivo. Mechanistically, POP1 directly binds to the coding sequence (CDS) region of CDKN1A mRNA and degrades it. The degradation process depends on the N6-methyladenosine (m6A) modification at the 497th site of CDKN1A and the recognition of this modification by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Moreover, the m6A inhibitor STM2457 potently impaired the proliferation of POP1-overexpressed TNBC cells and improved the sensitivity to paclitaxel. In summary, our findings reveal the pivotal role of POP1 in promoting TNBC proliferation by degrading the mRNA of CDKN1A and that inhibition of m6A with STM2457 is a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuqing Lu
- Department of Breast Surgery, Zhongshan City People's Hospital, ZhongShan, China
| | - Wenjing Zhong
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Yunyun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Kangda Vocational Technical College, Guangzhou 510700, China
| | - Weiling Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengjia Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Weidong Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
209
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
210
|
Wang Y, Chen SJ, Ma T, Long Q, Chen L, Xu KX, Cao Y. Promotion of apoptosis in melanoma cells by taxifolin through the PI3K/AKT signaling pathway: Screening of natural products using WGCNA and CMAP platforms. Int Immunopharmacol 2024; 138:112517. [PMID: 38924866 DOI: 10.1016/j.intimp.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Melanoma is a skin cancer originating from melanocytes. The global incidence rate of melanoma is rapidly increasing, posing significant public health challenges. Identifying effective therapeutic agents is crucial in addressing this growing problem. Natural products have demonstrated promising anti-tumor activity. In this study, a plant flavonoid, taxifolin, was screened using Weighted Correlation Network Analysis (WGCNA) in combination with the Connectivity Map (CMAP) platform. Taxifolin was confirmed to inhibit the proliferation, migration, and invasion ability of melanoma A375 and MV-3 cells by promoting apoptosis. Additionally, it suppressed the Epithelial-Mesenchymal Transition (EMT) process of melanoma cells. Cyber pharmacological analysis revealed that taxifolin exerts its inhibitory effect on melanoma through the PI3K/AKT signaling pathway, specifically by downregulating the protein expression of p-PI3K and p-AKT. Notably, the addition of SC-79, an activator of the PI3K/AKT signaling pathway, reversed the effects of taxifolin on cell migration and apoptosis. Furthermore, in vivo experiments demonstrated that taxifolin treatment slowed tumor growth in mice without significant toxic effects. Based on these findings, taxifolin holds promise as a potential drug for melanoma treatment.
Collapse
Affiliation(s)
- Ye Wang
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Shao-Jie Chen
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No.28 Gui Medical Street, Yunyan District, Guiyang 550004, Guizhou, China
| | - Ting Ma
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Qiu Long
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Lan Chen
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Ke-Xin Xu
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Yu Cao
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China; Department of Dermatology, Affiliated Hospital of Guizhou Medical University, No.28 Gui Medical Street, Yunyan District, Guiyang 550004, Guizhou, China.
| |
Collapse
|
211
|
Zhou FM, Wang KK, Wang LH, Qiu JG, Wang W, Liu WJ, Wang L, Jiang BH. CIB2 mediates acquired gefitinib resistance by inducing ZEB1 expression and epithelial-mesenchymal transition. Aging (Albany NY) 2024; 16:12277-12292. [PMID: 39264588 PMCID: PMC11424576 DOI: 10.18632/aging.206086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
EGFR-TKIs have been used as frontline treatment in patients with advanced non-small cell lung cancer (NSCLC) suffering from the EGFR mutation. Gefitinib, the first-generation EGFR-TKI, has greatly improved survival rates in lung cancer patients, whereas acquired gefitinib resistance is still a critical issue that needs to be overcome. In our research, high expression levels of CIB2 were found in gefitinib-resistant lung cancer cells. CIB2 knockout rendered gefitinib-resistant cells more sensitive to gefitinib, and overexpression of CIB2 in parental cells was sufficient to induce more resistance to gefitinib. Inhibition of CIB2 in gefitinib-resistant lung cancer cells significantly induced cell apoptosis. To clarify the major molecular mechanism by which CIB2 increases gefitinib resistance, we demonstrated that raised CIB2 in lung cancer cells promoted epithelial-to-mesenchymal transition (EMT) through upregulation of ZEB1. Moreover, FOSL1 transcriptionally regulated CIB2 expression. Finally, CIB2 rendered tumors resistant to gefitinib treatment in vivo. Our results explored a new mechanism: upregulated CIB2 promoted EMT through ZEB1 to regulate gefitinib resistance, which could be a candidate therapeutic target for overcoming acquired resistance to EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun-Kun Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Li-Hong Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
212
|
Wei X, Li Z, Zheng H, Li X, Lin Y, Yang H, Shen Y. Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma. Funct Integr Genomics 2024; 24:158. [PMID: 39249547 PMCID: PMC11384635 DOI: 10.1007/s10142-024-01436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins' expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Heng Zheng
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Hongyu Yang
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| | - Yuehong Shen
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
213
|
Yang X, Liu C, Li Z, Wen J, He J, Lu Y, Liao Q, Wang T, Tang H, Yang X, Zeng L. Paclitaxel hyperthermia suppresses gastric cancer migration through MiR-183-5p/PPP2CA/AKT/GSK3β/β-catenin axis. J Cancer Res Clin Oncol 2024; 150:416. [PMID: 39249161 PMCID: PMC11383839 DOI: 10.1007/s00432-024-05923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Gastric cancer (GC), a prevalent malignant tumor which is a leading cause of death from malignancy around the world. Peritoneal metastasis accounts for the major cause of mortality in patients with GC. Despite hyperthermia intraperitoneal chemotherapy (HIPEC) improves the therapeutic effect of GC, it's equivocal about the mechanism under HIPEC. METHODS MiR-183-5p expression was sifted from miRNA chip and detected in both GC patients and cell lines by qRT-PCR. Gene interference and rescue experiments were performed to identified biological function in vitro and vivo. Next, we affirmed PPP2CA as targeted of miR-183-5p by dual luciferase reporter assay. Finally, the potential relationship between HIPEC and miR-183-5p was explored. RESULTS MiR-183-5p is up-regulated in GC and associated with advanced stage and poor prognosis. MiR-183-5p accelerate GC migration in vitro which is influenced by miR-183-5p/PPP2CA/AKT/GSK3β/β-catenin Axis. HIPEC exerts migration inhibition via attenuating miR-183-5p expression. CONCLUSION MiR-183-5p can be used as a potential HIPEC biomarker in patients with CC.
Collapse
Affiliation(s)
- Xiansheng Yang
- Department of Anus and Intestine Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Chang Liu
- Medical Affair Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zheng Li
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Juncai Wen
- Department of Medical Oncology, Puning People's Hospital, Puning, 515300, China
| | - Jinfu He
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yunxin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Quanxing Liao
- First Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Tian Wang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hongsheng Tang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Xianzi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lisi Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
214
|
Sun X, Wu H, Tang L, Al-Danakh A, Jian Y, Gong L, Li C, Yu X, Zeng G, Chen Q, Yang D, Wang S. GALNT6 promotes bladder cancer malignancy and immune escape by epithelial-mesenchymal transition and CD8 + T cells. Cancer Cell Int 2024; 24:308. [PMID: 39245709 PMCID: PMC11382498 DOI: 10.1186/s12935-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Bladder cancer (BC) ranks as the sixth cancer in males and the ninth most common cancer worldwide. Conventional treatment modalities, including surgery, radiation, chemotherapy, and immunotherapy, have limited efficacy in certain advanced instances. The involvement of GALNT6-mediated aberrant O-glycosylation modification in several malignancies and immune evasion is a subject of speculation. However, its significance in BC has not been investigated. Through the integration of bioinformatics analysis and laboratory experimentation, we have successfully clarified the role of GALNT6 in BC. Our investigation revealed that GALNT6 has significant expression in BC, and its high expression level correlates with advanced stage and high grade, leading to poor overall survival. Moreover, both in vitro and in vivo experiments demonstrate a strong correlation between elevated levels of GALNT6 and tumor growth, migration, and invasion. Furthermore, there is a negative correlation between elevated GALNT6 levels, the extent of CD8+ T cell infiltration in the tumor microenvironment, and the prognosis of patients. Functional experiments have shown that the increased expression of GALNT6 could enhance the malignant characteristics of cancer cells by activating the epithelial-mesenchymal transition (EMT) pathway. In brief, this study examined the impact of GALNT6-mediated abnormal O-glycosylation on the occurrence and progression of bladder cancer and its influence on immune evasion. It also explored the possible molecular mechanism underlying the interaction between tumor cells and immune cells, as well as the bidirectional signaling involved. These findings offer a novel theoretical foundation rooted in glycobiology for the clinical application of immunotherapy in BC.
Collapse
Affiliation(s)
- Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Haotian Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ling Tang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yuli Jian
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Gong
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Congchen Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang Zeng
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, 210096, Nanjing, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
215
|
Wu Y, Wang Y, Liu H, Hu Q, Xie Y, Nan X, He H, Liu Y. Mechanism of apoptosis in oral squamous cell carcinoma promoted by cardamonin through PI3K/AKT signaling pathway. Sci Rep 2024; 14:20802. [PMID: 39242879 PMCID: PMC11379709 DOI: 10.1038/s41598-024-71817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Currently, surgical resection remains the primary approach for treating oral squamous cell carcinoma (OSCC), with limited options for effective drug therapy. Cardamonin, a principal compound derived from Myristica fragrans of the Zingiberaceae family, has garnered attention for its potential to suppress the onset and progression of various malignancies encompassing breast cancer, hepatocellular carcinoma, and ovarian cancers. Nevertheless, the involvement of cardamonin in the treatment of OSCC and its underlying mechanisms are yet to be elucidated. This research explored the possible target of cardamonin in treating OSCC via network pharmacological analysis. Subsequently, this research investigated the impact of cardamonin on OSCC cells via in vitro experiments, revealing its capacity to impede the migration, proliferation, and invasion of OSCC cells. Additionally, western blotting analysis demonstrated that cardamonin facilitates apoptosis by regulating the PI3K/AKT pathway. The findings suggest that MMP9 and the PI3K/AKT signaling pathway may serve as the target and pathway of cardamonin in treating OSCC. To summarize, the research findings suggest that cardamonin may facilitate apoptosis in OSCC cells by inhibition of PI3K/AKT pathway activation. These outcomes offer a theoretical basis for the utilization of cardamonin as a natural drug for treating OSCC.
Collapse
Affiliation(s)
- Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yapei Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Han Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Qiannan Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuqi Xie
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Huan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
216
|
Chour A, Toffart AC, Berton E, Duruisseaux M. Mechanisms of resistance to KRASG12C inhibitors in KRASG12C-mutated non-small cell lung cancer. Front Oncol 2024; 14:1328728. [PMID: 39301544 PMCID: PMC11410594 DOI: 10.3389/fonc.2024.1328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
The KRAS protein, a product of the KRAS gene (V-ki-ras2 Kirsten rat sarcoma viral oncogene homolog), functions as a small GTPase that alternates between an active GTP-bound state (KRAS(ON)) and an inactive GDP-bound state (KRAS(OFF)). The KRASG12C mutation results in the accumulation of KRASG12C(OFF), promoting cell cycle survival and proliferation primarily through the canonical MAPK and PI3K pathways. The KRASG12C mutation is found in 13% of lung adenocarcinomas. Previously considered undruggable, sotorasib and adagrasib are the first available OFF-state KRASG12C inhibitors, but treatment resistance is frequent. In this review, after briefly summarizing the KRAS pathway and the mechanism of action of OFF-state KRASG12C inhibitors, we discuss primary and acquired resistance mechanisms. Acquired resistance is the most frequent, with "on-target" mechanisms such as a new KRAS mutation preventing inhibitor binding; and "off-target" mechanisms leading to bypass of KRAS through gain-of-function mutations in other oncogenes such as NRAS, BRAF, and RET; or loss-of-function mutations in tumor suppressor genes such as PTEN. Other "off-target" mechanisms described include epithelial-to-mesenchymal transition and histological transformation. Multiple co-existing mechanisms can be found in patients, but few cases have been published. We highlight the lack of data on non-genomic resistance and the need for comprehensive clinical studies exploring histological, genomic, and non-genomic changes at resistance. This knowledge could help foster new treatment initiatives in this challenging context.
Collapse
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| | - Anne-Claire Toffart
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Elodie Berton
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Michael Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
217
|
Wang M, You L, Su Z, He Y, Li D, Liu Z. BUB1 induces AKT/mTOR pathway activity to promote EMT induction in human small cell lung cancer. Sci Rep 2024; 14:20654. [PMID: 39232038 PMCID: PMC11375037 DOI: 10.1038/s41598-024-71644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Small cell lung cancer (SCLC) is a very aggressive tumor. Abnormal expression of BUB1 has been reported in several cancer types, wherein it plays a range of functional roles. This work aimed to elucidate the functional significance and molecular impacts of BUB1 in SCLC. It was found that SCLC cell lines exhibited significant BUB1 upregulation relative to control bronchial cells using data from the Gene Expression Omnibus (GEO) database and verified by immunohistochemical staining. BUB1 was also found to promote the proliferative, migratory, invasive activity of SCLC cells, as shown by CCK-8, 3D migration wound-healing, and Transwell assays, as well as flow cytometry. Additionally, it was found that BUB1 silencing enhanced E-cadherin expression while suppressing N-cadherin, Vimentin, ZEB-1, and Snail levels, as shown by Western immunoblotting. The loss of BUB1 also reduced p-AKT and p-mTOR levels without altering total AKT or mTOR protein levels. In conclusion, BUB1 functions as an oncogenic promoter in SCLC, potentially regulating the epithelial-mesenchymal transition by activation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Moufeng Wang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Deyu Li
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
218
|
Winkler J, Tan W, Diadhiou CM, McGinnis CS, Abbasi A, Hasnain S, Durney S, Atamaniuc E, Superville D, Awni L, Lee JV, Hinrichs JH, Wagner PS, Singh N, Hein MY, Borja M, Detweiler AM, Liu SY, Nanjaraj A, Sitarama V, Rugo HS, Neff N, Gartner ZJ, Oliveira Pisco A, Goga A, Darmanis S, Werb Z. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest 2024; 134:e164227. [PMID: 39225101 PMCID: PMC11364385 DOI: 10.1172/jci164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy and
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Weilun Tan
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Sophia Durney
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Elena Atamaniuc
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Joyce V. Lee
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Johanna H. Hinrichs
- Department of Anatomy and
- Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | - Patrick S. Wagner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Namrata Singh
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Y. Hein
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Michael Borja
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, California, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Genentech, South San Francisco, California, USA
| | | |
Collapse
|
219
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. A Boolean model explains phenotypic plasticity changes underlying hepatic cancer stem cells emergence. NPJ Syst Biol Appl 2024; 10:99. [PMID: 39223160 PMCID: PMC11369243 DOI: 10.1038/s41540-024-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.
Collapse
Affiliation(s)
- Alexis Hernández-Magaña
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | | | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
220
|
Zhang Z, Yang J, Liu R, Ma J, Wang K, Wang X, Tang N. Inhibiting HMGCR represses stemness and metastasis of hepatocellular carcinoma via Hedgehog signaling. Genes Dis 2024; 11:101285. [PMID: 39022130 PMCID: PMC11252768 DOI: 10.1016/j.gendis.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor initiation, recurrence, metastasis, and drug resistance. However, the current understanding of CSCs in hepatocellular carcinoma (HCC) remains incomplete. Through a comprehensive analysis of the database, it has been observed that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a critical enzyme involved in cholesterol synthesis, is up-regulated in HCC tissues and liver CSCs. Moreover, high expression of HMGCR is associated with a poor prognosis in patients with HCC. Functionally, HMGCR promotes the stemness and metastasis of HCC both in vitro and in vivo. By screening various signaling pathway inhibitors, we have determined that HMGCR regulates stemness and metastasis by activating the Hedgehog signaling in HCC. Mechanistically, HMGCR positively correlates with the expression of the Smoothened receptor and facilitates the nuclear translocation of the transcriptional activator GLI family zinc finger 1. Inhibition of the Hedgehog pathway can reverse the stimulatory effects of HMGCR on stemness and metastasis in HCC. Notably, simvastatin, an FDA-approved cholesterol-lowering drug, has been shown to inhibit stemness and metastasis of HCC by targeting HMGCR. Taken together, our findings suggest that HMGCR promotes the regeneration and metastasis of HCC through the activation of Hedgehog signaling, and simvastatin holds the potential for clinical suppression of HCC metastasis.
Collapse
Affiliation(s)
- Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jiayao Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojun Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
221
|
Kepuladze S, Burkadze G, Kokhreidze I. Epithelial-Mesenchymal Transition Indexes in Triple-Negative Breast Cancer Progression and Metastases. Cureus 2024; 16:e68761. [PMID: 39371729 PMCID: PMC11456157 DOI: 10.7759/cureus.68761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by the lack of expression of estrogen and progesterone receptors and the absence of HER2 protein overexpression or gene amplification. How TNBC becomes so aggressive at the molecular level is not yet fully understood. The epithelial-mesenchymal transition (EMT) has been increasingly recognized as playing a pivotal role in cancer progression and metastasis. This study aimed to elucidate the connection between TNBC progression with EMT-related markers, including vimentin, beta-catenin, and E-cadherin. Methodology Rigorous immunohistochemical analysis was employed to assess the expression of vimentin, beta-catenin, and E-cadherin in primary tumors, tumor buds, and lymph node metastases (LNMs) from 137 cases with an invasive ductal carcinoma triple-negative phenotype diagnosed between 2018 and 2024. The EMT index, which was especially important in our work, is the sum of vimentin and beta-catenin expression divided by that of E-cadherin. Estimated Pearson correlation, multiple linear regression, and Kruskal-Wallis tests were used to determine the relationships of the EMT index with tumor buds and tumor-infiltrating lymphocytes (TILs). Results Vimentin highly correlated within separate regions of interest with Pearson correlation ranging from 0.90 to 0.92 (p < 0.001). Strong negative correlations between E-cadherin and vimentin (r = -0.81 to - 0.89, p < 0.001) showed its role in preserving the epithelial phenotype. The presence of tumor buds, aggregates, or clusters of cancer cells shed from the primary tumor mass invading the connective tissue showed very strong associations with the EMT index (r = 0.91, p < 0.001). Its presence is suggestive of aggressive disease and may identify a high-risk subpopulation that may benefit from more active surveillance or adjuvant treatment. Similarly, TILs correlated inversely with the EMT index (r = -0.90, p < 0.001). The most significant predictor of the EMT index, i.e., vimentin, had a model R-squared value of 1.000 in the regression analysis. Conclusions This study brings to light the importance of EMT-related markers in TNBC progression, with special emphasis on tumor buds as possible prognostic indicators for aggressive disease. The negative correlation of TILs with the EMT index indicates that an effective immune response could antagonize EMT-mediated tumor progression. These results suggest that EMT-based treatments in TNBC should be designed from a multimarker perspective by including interactions among several markers to optimize predictions and therapeutics. The results hold the potential to set future research directions and actionable outcomes that could influence clinical utility in the battle against TNBC.
Collapse
Affiliation(s)
- Shota Kepuladze
- Pathology and Oncology, Tbilisi State Medical University, Tbilisi, GEO
| | - George Burkadze
- Molecular Pathology, Tbilisi State Medical University, Tbilisi, GEO
| | | |
Collapse
|
222
|
Wei Z, Li J, Zhong L, Yang D, Li W, Chen W, Zhou H, He Y, Song W, Wang B, Zeng L. DDR1 Drives Malignant Progression of Gastric Cancer by Suppressing HIF-1α Ubiquitination and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308395. [PMID: 39024501 PMCID: PMC11425230 DOI: 10.1002/advs.202308395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/07/2024] [Indexed: 07/20/2024]
Abstract
The extracellular matrix (ECM) has been demonstrated to be dysregulated and crucial for malignant progression in gastric cancer (GC), but the mechanism is not well understood. Here, that discoidin domain receptor 1 (DDR1), a principal ECM receptor, is recognized as a key driver of GC progression is reported. Mechanistically, DDR1 directly interacts with the PAS domain of hypoxia-inducible factor-1α (HIF-1α), suppresses its ubiquitination and subsequently strengthens its transcriptional regulation of angiogenesis. Additionally, DDR1 upregulation in GC cells promotes actin cytoskeleton reorganization by activating HIF-1α/ Ras Homolog Family Member A (RhoA)/Rho-associated protein kinase 1 (ROCK1) signaling, which in turn enhances the metastatic capacity. Pharmacological inhibition of DDR1 suppresses GC progression and angiogenesis in patient-derived xenograft (PDX) and organoid models. Taken together, this work first indicates the effects of the DDR1-HIF-1α axis on GC progression and reveals the related mechanisms, providing experimental evidence for DDR1 as a therapeutic target for GC.
Collapse
Affiliation(s)
- Zhewei Wei
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Jin Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Li Zhong
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Dongjie Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wuguo Li
- Laboratory Animal CenterThe First Affiliated HospitalSun Yat‐sen University58 Zhongshan 2nd RoadGuangzhou510080China
| | - Wei Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Hao Zhou
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wu Song
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Boyan Wang
- Reproductive Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| |
Collapse
|
223
|
Luo C, Chen G, Li R, Peng S, Zhang P, Wang F, Yu S, Zhu Y, Zhang J. Juglone suppresses vasculogenic mimicry in glioma through inhibition of HuR-mediated VEGF-A expression. Biochem Pharmacol 2024; 227:116458. [PMID: 39102993 DOI: 10.1016/j.bcp.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Vasculogenic mimicry (VM) serves as a vascular-like channel that provides important substances for tumor growth and is a primary factor in glioblastoma (GBM) drug resistance. Human Antigen R (HuR)-an mRNA-binding protein-is highly expressed in GBM, closely related to tumor progression, and deemed a potential drug target. Although some small-molecule compounds have been identified to disrupt HuR binding to target mRNA, they remain in the preclinical research stage, suggesting the need for further validation and development of HuR inhibitors. In our study, we aim to screen for potential HuR inhibitors and investigate their efficacy and molecular mechanisms in GBM. We employed the fluorescence polarization method to identify HuR inhibitors from a natural compound library, confirming the efficacy of juglone in effectively inhibiting the binding of HuR to AREVegf-a. Further validation of the binding of juglone to HuR at the protein level was conducted through electrophoretic mobility shift analysis, surface plasmon resonance, and molecular docking. Furthermore, juglone demonstrated inhibitory effects on glioma growth and VM formation in vitro and in vivo. Moreover, it was observed that juglone reversed epithelial-mesenchymal transition by inhibiting the VEGF-A/VEGFR2/AKT/SNAIL signaling pathway. Finally, we established the capability of juglone to target HuR in U251 cells through HuR knockdown, mRNA stability, and cell thermal shift assays. Therefore, this study identifies juglone as a novel HuR inhibitor, potentially offering promise as a lead compound for anti-VM therapy in GBM by targeting HuR. Abbreviations: AKT, protein kinase B; ARE, adenine-and uridine-rich elements; CETSA, cellular thermal shift assay; DMEM, Dulbecco's modified Eagle's medium; ELISA, enzyme linked immune sorbent assay; EMSA, electrophoretic mobility shift assay; EMT, epithelial mesenchymal transition; FP, fluorescence polarization; GBM, glioblastoma; HTS, high-throughput screening; HuR, human antigen R; IF, Immunofluorescence; PAS, periodic acid-Schiff; PI3K, phosphoinositide-3 kinase; qRT-PCR, quantitative real-time PCR; RRMs, RNA recognition motifs; SPR, surface plasmon resonance. TMZ, temozolomide; VM, vasculogenic mimicry; VEGF-A, Vascular endothelial growth factor-A; VEGFR2, Vascular endothelial growth factor receptor-2.
Collapse
Affiliation(s)
- Chunying Luo
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guzhou Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shoujiao Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
224
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
225
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
226
|
Winkelkotte AM, Schulze A. A fatty acid switch drives ferroptosis in EMT. Nat Cell Biol 2024; 26:1375-1376. [PMID: 39138318 DOI: 10.1038/s41556-024-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
- Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
227
|
Huang X, Li Q, Zheng X, Jiang C. TTYH3 Promotes Cervical Cancer Progression by Activating the Wnt/ β-Catenin Signaling Pathway. Cancer Invest 2024; 42:726-739. [PMID: 39189652 DOI: 10.1080/07357907.2024.2395014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/β-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiuyan Huang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Qing Li
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Xiaoxia Zheng
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Chen Jiang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| |
Collapse
|
228
|
Liu J, Yi C, Gong D, Zhao Q, Xie H, Zhao S, Yu H, Lv J, Bian E, Tian D. Construction of a 5-Gene super-enhancer-related signature for osteosarcoma prognosis and the regulatory role of TNFRSF11B in osteosarcoma. Transl Oncol 2024; 47:102047. [PMID: 38972174 PMCID: PMC11283062 DOI: 10.1016/j.tranon.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024] Open
Abstract
Osteosarcoma, one of the most common primary malignancies in children and adolescents, has the primary characteristics of a poor prognosis and high rate of metastasis. This study used super-enhancer-related genes derived from two different cell lines to construct five novel super-enhancer-related gene prognostic models for patients with osteosarcoma. The training and testing datasets were used to confirm the prognostic models of the five super-enhancer-related genes, which resulted in an impartial predictive element for osteosarcoma. The immunotherapy and prediction of the response to anticancer drugs have shown that the risk signature of the five super-enhancer-related genes positively correlate with chemosensitivity. Furthermore, functional analysis of the risk signature genes revealed a significant relationship between gene groups and the malignant characteristics of tumours. TNF Receptor Superfamily Member 11b (TNFRSF11B) was selected for functional verification. Silencing of TNFRSF11B suppressed the proliferation, migration, and invasion of osteosarcoma cells in vitro and suppressed osteosarcoma growth in vivo. Moreover, transcriptome sequencing was performed on MG-63 cells to study the regulatory mechanism of TNFRSF11B in osteosarcoma cells, and it was discovered that TNFRSF11B is involved in the development of osteosarcoma via the phosphoinositide 3-kinase signalling pathway. Following the identification of TNFRSF11B as a key gene, we selected an inhibitor that specifically targeted this gene and performed molecular docking simulations. In addition, risedronic acid inhibited osteosarcoma growth at both cellular and molecular levels. In conclusion, the super-enhancer-related gene signature is a viable therapeutic tool for osteosarcoma prognosis and treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Qingzhong Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Hang Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
229
|
Pan R, Zhao Z, Xu D, Li C, Xia Q. GPX4 transcriptionally promotes liver cancer metastasis via GRHL3/PTEN/PI3K/AKT axis. Transl Res 2024; 271:79-92. [PMID: 38797432 DOI: 10.1016/j.trsl.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the most fatal types of malignancy, with a high prevalence of relapse and limited treatment options. As a critical regulator of ferroptosis and redox homeostasis, glutathione peroxidase 4 (GPX4) is commonly upregulated in HCC and is hypothesized to facilitate cancer metastasis, but this has not been fully explored in HCC. Here, we report that up-regulated GPX4 expression in HCC is strongly associated with tumor metastasis. FACS-based in vivo and in vitro analysis revealed that a cell subpopulation featuring lower cellular reactive oxygen species levels and ferroptosis resistance were involved in GPX4-mediated HCC metastasis. Mechanistically, GPX4 overexpressed in HCC tumor cells was enriched in the nucleus and transcriptionally silenced GRHL3 expression, thereby activating PTEN/PI3K/AKT signaling and promoting HCC metastasis. Functional studies demonstrated that GPX4 amino acids 110-145 are a binding site that interacts with the GRHL3 promoter. As AKT is a downstream target of GPX4, we combined the AKT inhibitor, AKT-IN3, with lenvatinib to effectively inhibit HCC tumor cell metastasis. Overall, these results indicate that the GPX4/GRHL3/PTEN/PI3K/AKT axis controls HCC cell metastasis and lenvatinib combined with AKT-IN3 represents a potential therapeutic strategy for patients with metastatic HCC.
Collapse
Affiliation(s)
- Ruogu Pan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Chunlai Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200217, China; Shanghai Institute of Transplantation, Shanghai 200217, China.
| |
Collapse
|
230
|
Tang Z, Zhang D, Yao C, Jiang M, Wang C, Chen Z, Yu H, Xue C, Liu Y, Shi Y, Zhang L, Wang X, Wei Z. TIPE2 inhibits the migration and invasion of epithelial ovarian cancer cells by targeting Smad2 to reverse TGF-β1-induced EMT. FASEB J 2024; 38:e70045. [PMID: 39259551 DOI: 10.1096/fj.202401427r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Epithelial ovarian cancer is the deadliest gynecologic malignancy, characterized by high metastasis. Transforming growth factor-β1 (TGF-β1) drives epithelial- mesenchymal transformation (EMT), a key process in tumor metastasis. Tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TIPE2) acts as a negative regulator of innate and adaptive immunity and involves in various cancers. However, its relationship with TGF-β1 in ovarian cancer and its role in reversing TGF-β1-induced EMT remain unclear. This study examined TIPE2 mRNA and protein expression using quantitative RT-PCR (qRT-PCR), western blot and immunohistochemistry. The effects of TIPE2 overexpression and knockdown on the proliferation, migration and invasion of epithelial ovarian cancer cells were assessed through 5-ethynyl-2-deoxyuridine, colony-forming, transwell migration and invasion assays. The relationship between TIPE2 and TGF-β1 was investigated using qRT-PCR and enzyme-linked immunosorbent assay, while the interaction between TIPE2 and Smad2 was identified via co-immunoprecipitation. The results revealed that TIPE2 protein was significantly down-regulated in epithelial ovarian cancer tissues and correlated with the pathological type of tumor, patients' age, tumor differentiation degree and FIGO stage. TIPE2 and TGF-β1 appeared to play an opposite role to each other during the progression of human ovarian cancer cells. Furthermore, TIPE2 inhibited the metastasis and EMT of ovarian cancer cells by combining with Smad2 in vitro or in an intraperitoneal metastasis model. Consequently, these findings suggest that TIPE2 plays a crucial inhibitory role in ovarian cancer metastasis by modulating the TGF-β1/Smad2/EMT signaling pathway and may serve as a potential target for ovarian cancer, providing important direction for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhongyun Tang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Derui Zhang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Jinan Third People's Hospital, Jinan, Shandong, P.R. China
| | - Chenchen Yao
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Mengmeng Jiang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chongli Wang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Zhen Chen
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Huayun Yu
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chenyue Xue
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yuqiu Liu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoyan Wang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zengtao Wei
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|
231
|
Xu H, Zuo Y, Gao S, Liu Y, Liu T, He S, Wang M, Hu L, Li C, Yu Y. Circulating Tumor Cell Phenotype Detection and Epithelial-Mesenchymal Transition Tracking Based on Dual Biomarker Co-Recognition in an Integrated PDMS Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310360. [PMID: 38698606 DOI: 10.1002/smll.202310360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Circulating tumor cells (CTCs) are widely considered as a reliable and promising class of markers in the field of liquid biopsy. As CTCs undergo epithelial-mesenchymal transition (EMT), phenotype detection of heterogeneous CTCs based on EMT markers is of great significance. In this report, an integrated analytical strategy that can simultaneously capture and differentially detect epithelial- and mesenchymal-expressed CTCs in bloods of non-small cell lung cancer (NSCLS) patients is proposed. First, a commercial biomimetic polycarbonate (PCTE) microfiltration membrane is employed as the capture interface for heterogenous CTCs. Meanwhile, differential detection of the captured CTCs is realized by preparing two distinct CdTe quantum dots (QDs) with red and green emissions, attached with EpCAM and Vimentin aptamers, respectively. For combined analysis, a polydimethylsiloxane (PDMS) chip with simple structure is designed, which integrates the membrane capture and QDs-based phenotype detection of CTCs. This chip not only implements the analysis of the number of CTCs down to 2 cells mL-1, but enables EMT process tracking according to the specific signals of the two QDs. Finally, this method is successfully applied to inspect the correlations of numbers or proportions of heterogenous CTCs in 94 NSCLS patients with disease stage and whether there is distant metastasis.
Collapse
Affiliation(s)
- Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yingchun Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Tingting Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Shiyu He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Mengjiao Wang
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Lili Hu
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| |
Collapse
|
232
|
Ding XJ, Cai XM, Wang QQ, Liu N, Zhong WL, Xi XN, Lu YX. Vitexicarpin suppresses malignant progression of colorectal cancer through affecting c-Myc ubiquitination by targeting IMPDH2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155833. [PMID: 39008915 DOI: 10.1016/j.phymed.2024.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.
Collapse
Affiliation(s)
- Xiao-Jing Ding
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xue-Mei Cai
- Huabei Petroleum Administration Bureau General Hospital, Renqiu 062550, PR China
| | - Qian-Qian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, PR China.
| | - Xiao-Nan Xi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China.
| | - Ya-Xin Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China; College of Chemistry, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
233
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
234
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T, Zhang M. TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer 2024; 27:998-1015. [PMID: 38850316 PMCID: PMC11335886 DOI: 10.1007/s10120-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin (DDP) is a basic chemotherapy drug for gastric cancer (GC). With the increase of DDP drug concentration in clinical treatment, cancer cells gradually became resistant. Therefore, it is necessary to find effective therapeutic targets to enhance the sensitivity of GC to DDP. Studies have shown that Transmembrane protein 205 (TMEM205) is overexpressed in DDP-resistant human epidermoid carcinoma cells and correlates with drug resistance, and database analyses show that TMEM 205 is also overexpressed in GC, but its role in cisplatin-resistant gastric cancer remains unclear. In this study, we chose a variety of experiments in vivo and vitro, aiming to investigate the role of TMEM 205 in cisplatin resistance in gastric cancer. The results showed that TMEM 205 promoted proliferation, stemness, epithelial-mesenchymal transition (EMT), migration and angiogenesis of gastric cancer cells through activation of the Wnt/β-catenin signaling pathway. In addition, TMEM205 promotes GC progression by inducing M2 polarization of tumor-associated macrophages (TAMs). These results suggest that TMEM205 may be an effective target to regulate the sensitivity of GC to DDP, providing a new therapeutic direction for clinical treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
- Department of Pathology, Chifeng Municipal Hospital, Chifeng, 024000, China
| | - Zhongqi Lu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Ying Chang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Meihua Zhang
- Department of Health Examination Centre, Yanbian University Hospital, Yanji, 133002, China.
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
235
|
Schwab A, Rao Z, Zhang J, Gollowitzer A, Siebenkäs K, Bindel N, D'Avanzo E, van Roey R, Hajjaj Y, Özel E, Armstark I, Bereuter L, Su F, Grander J, Bonyadi Rad E, Groenewoud A, Engel FB, Bell GW, Henry WS, Angeli JPF, Stemmler MP, Brabletz S, Koeberle A, Brabletz T. Zeb1 mediates EMT/plasticity-associated ferroptosis sensitivity in cancer cells by regulating lipogenic enzyme expression and phospholipid composition. Nat Cell Biol 2024; 26:1470-1481. [PMID: 39009641 PMCID: PMC11392809 DOI: 10.1038/s41556-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFβ stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1. We demonstrate that Zeb1 increases the ratio of phospholipids containing pro-ferroptotic polyunsaturated fatty acids over cyto-protective monounsaturated fatty acids by modulating the differential expression of the underlying crucial enzymes stearoyl-Co-A desaturase 1 (SCD), fatty acid synthase (FASN), fatty acid desaturase 2 (FADS2), elongation of very long-chain fatty acid 5 (ELOVL5) and long-chain acyl-CoA synthetase 4 (ACSL4). Pharmacological inhibition of selected lipogenic enzymes (SCD and FADS2) allows the manipulation of ferroptosis sensitivity preferentially in high-Zeb1-expressing cancer cells. Our data are of potential translational relevance and suggest a combination of ferroptosis activators and SCD inhibitors for the treatment of aggressive cancers expressing high Zeb1.
Collapse
Affiliation(s)
- Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jie Zhang
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina Siebenkäs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nino Bindel
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Elisabetta D'Avanzo
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ece Özel
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ehsan Bonyadi Rad
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Arwin Groenewoud
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Dept. of Biology, MIT, Cambridge, MA, USA
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
236
|
Zamborlin A, Pagliari F, Ermini ML, Frusca V, García-Calderón D, Tirinato L, Volante S, Bresciani G, Marchetti F, Seco J, Voliani V. Invasiveness modulation of glioma cells by copper complex-loaded nanoarchitectures. Colloids Surf B Biointerfaces 2024; 245:114187. [PMID: 39243709 DOI: 10.1016/j.colsurfb.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Among the tumors with the highest lethality, gliomas are primary brain tumors associated with common recurrence inclined to metastasize along the neuraxis and occasionally out of the central nervous system. Even though metastasis is the main responsible for death in oncological patients, few dedicated treatments are approved. Therefore, the establishment of effective anti-metastasis agents is the final frontier in cancer research. Interestingly, some copper complexes have demonstrated promising efficacy as antimetastatic agents, but they may cause off-site effects such as the alteration of copper homeostasis in healthy tissues. Thus, the incorporation of copper-based antimetastatic agents in rationally designed nano-architectures can increase the treatment localization reducing the side effects. Here, copper complex loaded hybrid nano-architectures (CuLNAs) are presented and employed to assess the impact of an intracellular copper source on glioma cell invasiveness. The novel CuLNAs are fully characterized and exploited for cell migration modulation in a glioma cell line. The results demonstrate that CuLNAs significantly reduce cell migration without impairing cell proliferation compared to standard gold and copper NAs. A concomitant antimigratory-like regulation of the epithelial-to-mesenchymal transition genes confirmed these results, as the gene encoding for the epithelial protein E-cadherin was upregulated and the other explored mesenchymal genes were downregulated. These findings, together with the intrinsic behaviors of NAs, demonstrate that the inclusion of metal complexes in the nano-architectures is a promising approach for the composition of a family of agents with antimetastatic activity.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, Pisa 56127, Italy; NEST-Scuola Normale Superiore, Piazza San Silvestro, 12, Pisa 56127, Italy
| | - Francesca Pagliari
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, Pisa 56127, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, Pisa 56127, Italy; Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, Pisa 56127, Italy
| | - Daniel García-Calderón
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg 69120, Germany; Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Luca Tirinato
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg 69120, Germany; Department of Medical and Surgical Science, University Magna Graecia, Catanzaro 88100, Italy
| | - Stefania Volante
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Joao Seco
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg 69120, Germany; Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.
| | - Valerio Voliani
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, Pisa 56127, Italy; Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, Genoa 16148, Italy.
| |
Collapse
|
237
|
Jiang S, Tang Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion. Biochem Biophys Res Commun 2024; 722:150172. [PMID: 38805788 DOI: 10.1016/j.bbrc.2024.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Colon cancer is a prevalent invasive neoplasm in the gastrointestinal system with a high degree of malignancy. Despite extensive research, the underlying mechanisms of its recurrence and metastasis remain elusive.Rho GTPase activating protein 4 (ARHGAP4), a member of the small GTPases protein family, may be closely related to tumor metastasis, and its expression is increased in colon cancer. However, the role of ARHGAP4 in colon cancer metastasis is uncertain. This study investigates the impact of ARHGAP4 on the metastasis of colon cancer cells. Our objective is to determine the role of ARHGAP4 in regulating the invasive behavior of colon cancer cells. METHODS We downloaded colon adenocarcinoma (COAD) data from the Cancer Genome Atlas (TCGA), and performed differential analysis and survival analysis. By using the CIBERSORT algorithm, we evaluated the proportion of infiltrating immune cells in colon cancer. We further analyzed whether ARHGAP4 is associated with T cell exhaustion. Finally, we investigated the impact of ARHGAP4 knockdown on the migration and invasion of colon cancer cells through in vitro cell experiments. Additionally, we utilized western blotting to assess the expression of protein related to the TGF-β signaling pathway and epithelial-mesenchymal transition (EMT). RESULTS We found that ARHGAP4 is upregulated in colon cancer. Subsequent survival analysis revealed that the high-expression group had significantly lower survival rates compared to the low-expression group. Immune infiltration analysis showed that ARHGAP4 was not only positively correlated with CD8+ T cells, but also positively correlated with T cell exhaustion markers programmed cell death 1 (PDCD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte activating 3 (LAG-3). In vitro cell experiments, the knockdown of ARHGAP4 inhibited the migration and invasion of colon cancer cells. Among EMT-related proteins, when ARHGAP4 was knocked down, the expression of E-cadherin was increased, while the expression of N-cadherin and Vimentin was decreased. Meanwhile, the expression of TGF-β1, p-Smad2, and p-Smad3, which are associated with the TGF-β/Smad pathway, all decreased. CONCLUSION ARHGAP4 promotes colon cancer metastasis through the TGF-β/Smad signaling pathway and may be associated with T cell exhaustion. It plays an important role in the progression of colon cancer and may serve as a potential target for diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Shuanghong Jiang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
238
|
Zhu W, Wu C, Liu Z, Zhao S, Huang J. OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) modulates the stemness feature, chemoresistance, and epithelial-mesenchymal transition of colon cancer via regulating GINS complex subunit 1 (GINS1) expression. Cell Commun Signal 2024; 22:420. [PMID: 39210373 PMCID: PMC11361113 DOI: 10.1186/s12964-024-01789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colon cancer is one of the most prevalent tumors in the digestive tract, and its stemness feature significantly contribute to chemoresistance, promote the epithelial-mesenchymal transition (EMT) process, and ultimately lead to tumor metastasis. Therefore, it is imperative for researchers to elucidate the molecular mechanisms underlying the enhancement of stemness feature, chemoresistance, and EMT in colon cancer. METHODS Sphere-formation and western blotting assays were conducted to assess the stemness feature. Edu, flow cytometry, and cell viability assays were employed to evaluate the chemoresistance. Immunofluorescence and western blotting assays were utilized to detect EMT. Immunoprecipitation, ubiquitination, agarose gel electrophoresis, chromatin immunoprecipitation followed by quantitative PCR (chip-qPCR), and dual luciferase reporter gene assays were employed for mechanistic investigations. RESULTS We demonstrated a markedly higher expression level of OTUB2 in colon cancer tissues compared to adjacent tissues. Furthermore, elevated OTUB2 expression was closely associated with poor prognosis and distant tumor metastasis. Functional experiments revealed that knockdown of OTUB2 attenuated stemness feature of colon cancer, enhanced its sensitivity to oxaliplatin, inhibited its EMT process, ultimately reduced the ability of tumor metastasis. Conversely, overexpression of OTUB2 exerted opposite effects. Mechanistically, we identified OTUB2 as a deubiquitinase for SP1 protein which bound specifically to SP1 protein, thereby inhibiting K48 ubiquitination of SP1 protein. The SP1 protein functioned as a transcription factor for the GINS1, exerting its regulatory effect by binding to the 1822-1830 region of the GINS1 promoter and enhancing its transcriptional activity. Ultimately, alterations in GINS1 expression directly regulated stemness feature, chemosensitivity, and EMT progression in colon cancer. CONCLUSION Collectively, the OTUB2/SP1/GINS1 axis played a pivotal role in driving stemness feature, chemoresistance, and EMT in colon cancer. These results shed new light on understanding chemoresistance and metastasis mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - ShiMin Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
239
|
Fu X, Ren C, Dai K, Ren M, Yan C. Epithelial-Mesenchymal Transition Related Score Functions as a Predictive Tool for Immunotherapy and Candidate Drugs in Glioma. J Chem Inf Model 2024; 64:6648-6661. [PMID: 39116318 DOI: 10.1021/acs.jcim.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gliomas are aggressive CNS tumors where the epithelial-mesenchymal transition (EMT) is crucial for prognosis. We developed an EMT-based score predicting overall survival (OS) and conducted pathway analyses, revealing functions such as cell proliferation and immune response in glioma progression. The EMT score, correlated with immune functions and cell infiltration, shows potential as an immune response indicator. We identified two promising compounds, BIX02189 and QL-XI-92, as potential glioma treatments based on candidate gene analysis.
Collapse
Affiliation(s)
- Xiaojun Fu
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Changyuan Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing 100070, China
| | - Kaining Dai
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Ming Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| | - Changxiang Yan
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| |
Collapse
|
240
|
Chen W, Yang H, Huang L, Fang C, Yao L, Liu F, Jin T. ROS-mediated ITGB5 promotes tongue squamous cell carcinoma metastasis through epithelial mesenchymal transition and cell adhesion signal pathway. J Cancer Res Clin Oncol 2024; 150:398. [PMID: 39180583 PMCID: PMC11344732 DOI: 10.1007/s00432-024-05922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Integrin β5 (ITGB5) is an integrin β subunit member widely expressed in the human bodies, especially in cancer cells and tissues, which is a key factor in promoting tumor metastasis. In this study we investigated the differential expression of ITGB5 in tongue squamous cell carcinoma (TSCC), especially in those with lymph node metastasis, and revealed the possible mechanism. METHODS The expression of ITGB5 in TSCC was analyzed by database and verified by immunohistochemistry through 135 TSCC patients' tissue sections from Sun Yat-sen Memorial Hospital and Guangzhou First People's Hospital. The relationship between ITGB5 and lymph node metastasis or prognosis was analyzed retrospectively. The effects of ITGB5 on TSCC cells were examined through knocking down or overexpression and its possible regulator and signal pathway were explored. RESULTS The expression of ITGB5 in TSCC was higher than that in adjacent tissue, and the expression in patients with lymph node metastasis was higher than that in patients without lymph node metastasis. The high expression of ITGB5 predicted a worse prognosis. Knock down of ITGB5 suppressed invasion and migration of TSCC cells, while overexpression of ITGB5 contributed to invasion and migration. Reactive oxygen species (ROS) regulated epithelial mesenchymal transition (EMT), and we further verified that ROS enhanced the expression of ITGB5 to promote the metastasis of TSCC. Mechanistically, ITGB5 functions through cell adhesion signal pathway. CONCLUSION The increased expression of ITGB5 in tongue squamous cell carcinoma with lymph node metastasis may be a potential target for evaluating lymph node metastasis and worse prognosis of tongue squamous cell carcinoma. Scavenge of ROS or knock down of ITGB5 may be the strategies to overcome metastasis of TSCC.
Collapse
Affiliation(s)
- Weixiong Chen
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China.
- Department of Stomatology, Longgang District Central Hospital, Chinese University of Hong Kong, Shenzhen, 518116, PR China.
| | - Haojie Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lei Huang
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Caihong Fang
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Limin Yao
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Faxin Liu
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Tingting Jin
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, 510115, PR China.
- Department of Stomatology, Longgang District Central Hospital, Chinese University of Hong Kong, Shenzhen, 518116, PR China.
| |
Collapse
|
241
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
242
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
243
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
244
|
Chen WJ, Ye QQ, Wu HT, Wu Z, Lan YZ, Fang ZX, Lin WT, Liu J. MiR-338-5p, a novel metastasis-related miRNA, inhibits triple-negative breast cancer progression by targeting the ETS1/NOTCH1 axis. Heliyon 2024; 10:e34949. [PMID: 39157351 PMCID: PMC11327603 DOI: 10.1016/j.heliyon.2024.e34949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Breast cancer ranks as the most prevalent cancer globally, surpassing lung cancer, with recurrence/metastasis to be its main account for the cancer-related mortality. MicroRNAs (miRNAs) participate critically in various physiological and pathological processes through posttranscriptional regulation of downstream genes. Our preliminary findings identified miR-338-5p, potentially linked to metastasis in breast cancer, a previously unexplored area. Analysis of the GSE38867 dataset revealed the decreased miR-338-5p expression in metastatic breast cancer compared to normal tissues. Cellular function experiments and a xenograft tumor model demonstrated the inhibitory function of miR-338-5p on the progression of breast cancer in vitro and in vivo. Furthermore, it downregulated the expression of mesenchymal biomarkers and NOTCH1 significantly. With the predicting targets of miR-338-5p and transcription factors of the NOTCH1 gene, coupled with dual luciferase reporter assays, it is identified ETS1 as the interactor between miR-338-5p and NOTCH1. In breast cancer tissues, as well as in our xenograft tumor model, expression of ETS1 and NOTCH1 was positively correlated using immunohistochemical staining. This study reports, for the first time, on the miR-338-5p/ETS1/NOTCH1 axis and its pivotal role in breast cancer proliferation and metastasis. These findings propose a novel therapeutic strategy for breast cancer patients and lays a foundation for its clinical detection and treatment evaluation.
Collapse
Affiliation(s)
- Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Department of Pathology, Ganzhou Women and Children's Health Care Hospital, Ganzhou, 341000, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
245
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607195. [PMID: 39149344 PMCID: PMC11326289 DOI: 10.1101/2024.08.08.607195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (Mcu KO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
246
|
Tabei Y, Nakajima Y. IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun Signal 2024; 22:392. [PMID: 39118068 PMCID: PMC11308217 DOI: 10.1186/s12964-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1β (IL-1β) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1β-mediated EMT are not yet completely understood. Here, we found that IL-1β stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1β-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1β-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1β-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
247
|
Wang G, Wu Y, Su Y, Qu N, Chen B, Zhou D, Yuan L, Yin M, Liu M, Zhou W. TCF12-regulated GRB7 facilitates the HER2+ breast cancer progression by activating Notch1 signaling pathway. J Transl Med 2024; 22:745. [PMID: 39113057 PMCID: PMC11304905 DOI: 10.1186/s12967-024-05536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC), which accounts for approximately one-fifth of all BCs, are highly invasive with a high rate of recurrence and a poor prognosis. Several studies have shown that growth factor receptor-bound protein 7 (GRB7) might be a potential therapeutic target for tumor diagnosis and prognosis. Nevertheless, the role of GRB7 in HER2+ BC and its underlying mechanisms have not been fully elucidated. The aim of this study was to investigate the biological function and regulatory mechanism of GRB7 in HER2+ BC. METHODS Bioinformatics analysis was performed using the TCGA, GEO and CancerSEA databases to evaluate the clinical significance of GRB7. RT quantitative PCR, western blot and immunofluorescence were conducted to assess the expression of GRB7 in BC cell lines and tissues. MTT, EdU, colony formation, wound healing, transwell, and xenograft assays were adopted to explore the biological function of GRB7 in HER2+ BC. RNA sequencing was performed to analyze the signaling pathways associated with GRB7 in SK-BR-3 cells after the cells were transfected with GRB7 siRNA. Chromatin immunoprecipitation analysis (ChIP) and luciferase reporter assay were employed to elucidate the potential molecular regulatory mechanisms of GRB7 in HER2+ BC. RESULTS GRB7 was markedly upregulated and associated with poor prognosis in BC, especially in HER2+ BC. Overexpression of GRB7 increased the proliferation, migration, invasion, and colony formation of HER2+ BC cells, while depletion of GRB7 had the opposite effects in HER2+ BC cells and inhibited xenograft growth. ChIP-PCR and luciferase reporter assay revealed that TCF12 directly bound to the promoter of the GRB7 gene to promote its transcription. GRB7 facilitated HER2+ BC epithelial-mesenchymal transition (EMT) progression by interacting with Notch1 to activate Wnt/β-catenin pathways and other signaling (i.e., AKT, ERK). Moreover, forced GRB7 overexpression activated Wnt/β-catenin to promote EMT progression, and partially rescued the inhibition of HER2+ BC proliferation, migration and invasion induced by TCF12 silencing. CONCLUSIONS Our work elucidates the oncogenic role of GRB7 in HER2+ BC, which could serve as a prognostic indicator and promising therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Manjialan Yin
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
248
|
Chen L, Ming H, Li B, Yang C, Liu S, Gao Y, Zhang T, Huang C, Lang T, Yang Z. Tumor-Specific Nano-Herb Delivery System with High L-Arginine Loading for Synergistic Chemo and Gas Therapy against Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403869. [PMID: 39101346 DOI: 10.1002/smll.202403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Indexed: 08/06/2024]
Abstract
Cancer metastasis poses significant challenges in current clinical therapy. Osthole (OST) has demonstrated efficacy in treating cervical cancer and inhibiting metastasis. Despite these positive results, its limited solubility, poor oral absorption, low bioavailability, and photosensitivity hinder its clinical application. To address this limitation, a glutathione (GSH)-responded nano-herb delivery system (HA/MOS@OST&L-Arg nanoparticles, HMOA NPs) is devised for the targeted delivery of OST with cascade-activatable nitric oxide (NO) release. The HMOA NPs system is engineered utilizing enhanced permeability and retention (EPR) effects and active targeting mediated by hyaluronic acid (HA) binding to glycoprotein CD44. The cargoes, including OST and L-Arginine (L-Arg), are released rapidly due to the degradation of GSH-responsive mesoporous organic silica (MOS). Then abundant reactive oxygen species (ROS) are produced from OST in the presence of high concentrations of NAD(P)H quinone oxidoreductase 1 (NQO1), resulting in the generation of NO and subsequently highly toxic peroxynitrite (ONOO-) by catalyzing guanidine groups of L-Arg. These ROS, NO, and ONOO- molecules have a direct impact on mitochondrial function by reducing mitochondrial membrane potential and inhibiting adenosine triphosphate (ATP) production, thereby promoting increased apoptosis and inhibiting metastasis. Overall, the results indicated that HMOA NPs has great potential as a promising alternative for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Lihua Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Chen Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Shanshan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, 315020, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Tingyuan Lang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhuo Yang
- Department of Gynaecology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110001, P. R. China
| |
Collapse
|
249
|
Zhao C, Zhu X, Liu H, Dong Q, Sun J, Sun B, Wang G, Wang X. The prognostic and immune significance of SLAMF9 in pan-cancer and validation of its role in colorectal cancer. Sci Rep 2024; 14:17899. [PMID: 39095516 PMCID: PMC11297030 DOI: 10.1038/s41598-024-68134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
SLAMF9, a member of the conserved lymphocyte activation molecules family (SLAMF), has been less investigated compared to other SLAMs, especially concerning its implications across various cancer types. In our systematic pan-cancer investigation, we observed elevated SLAMF9 expression in various tumor tissues, which was correlated with reduced patient survival across most malignancies. Correlation analyses further revealed significant associations between SLAMF9 expression and immune cell infiltrates, immune checkpoint inhibitors, tumor mutation load, microsatellite instability, and epithelial-mesenchymal transition (EMT) scores. Cell-based assays demonstrated that SLAMF9 knockdown attenuated the proliferative, motile, and invasive capacities of colorectal cancer (CRC) cells. In a nude mouse xenograft model, suppression of SLAMF9 expression substantially inhibited tumor growth. These findings highlight the potential of SLAMF9 as a prognostic and therapeutic biomarker across tumors, with notable implications for CRC cell proliferation and migration.
Collapse
Affiliation(s)
- Chunmei Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, 226001, Jiangsu Province, China
| | - Xingjia Zhu
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Huimin Liu
- Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qingyu Dong
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jing Sun
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Baolan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, 226001, Jiangsu Province, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, 226001, Jiangsu Province, China.
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, 226001, Jiangsu Province, China.
| |
Collapse
|
250
|
Liu L, Feng Y, Xiang X, Xu M, Tang G. Biological effect of ETV4 and the underlying mechanism of its regulatory effect on epithelial‑mesenchymal transition in intrahepatic cholangiocarcinoma cells. Oncol Lett 2024; 28:346. [PMID: 38872859 PMCID: PMC11170264 DOI: 10.3892/ol.2024.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignant tumor. The prognosis of patients with ICC after radical surgical resection remains poor, due to local infiltration, distant metastasis, a high recurrence rate and lack of effective treatment strategies. E26 transformation-specific sequence variant 4 (ETV4) is a pro-carcinogenic factor that is upregulated in several tumors; however, the role of ETV4 in ICC is relatively unknown. The present study aimed to determine the role of ETV4 in the Hccc9810 ICC cell line and to assess how it contributes to epithelial-mesenchymal transition (EMT) in ICC. Hccc9810 cells were infected with lentiviruses to construct stable ETV4-overexpressing cells, stable ETV4 knockdown cells and corresponding control groups. The Cell Counting Kit-8 and Transwell assays were used to quantify cell proliferation, invasion and migration, and the effects on cell cycle progression and apoptosis were detected by flow cytometry. ETV4 was identified as a driver of cell growth, invasion, migration and cell cycle progression, while restraining apoptosis in Hccc9810 cells. Reverse transcription-quantitative PCR and western blotting revealed that increased ETV4 levels may drive EMT by triggering the TGF-β1/Smad signaling pathway. This cascade, in turn, may foster tumor cell proliferation, migration, invasion and cell cycle advancement, and hinder apoptosis.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xuelian Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Mengtao Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|