201
|
Aguilera J, Randez-Gil F, Prieto JA. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 2007; 31:327-41. [PMID: 17298585 DOI: 10.1111/j.1574-6976.2007.00066.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The response of yeast cells to sudden temperature downshifts has received little attention compared with other stress conditions. Like other organisms, both prokaryotes and eukaryotes, in Saccharomyces cerevisiae a decrease in temperature induces the expression of many genes involved in transcription and translation, some of which display a cold-sensitivity phenotype. However, little is known about the role played by many cold-responsive genes, the sensing and regulatory mechanisms that control this response or the biochemical adaptations at or near 0 degrees C. This review focuses on the physiological significance of cold-shock responses, emphasizing the molecular mechanisms that generate and transmit cold signals. There is now enough experimental evidence to conclude that exposure to low temperature protects yeast cells against freeze injury through the cold-induced accumulation of trehalose, glycerol and heat-shock proteins. Recent results also show that changes in membrane fluidity are the primary signal triggering the cold-shock response. Notably, this signal is transduced and regulated through classical stress pathways and transcriptional factors, the high-osmolarity glycerol mitogen-activated protein kinase pathway and Msn2/4p. Alternative cold-stress generators and transducers will also be presented and discussed.
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
202
|
Hatle KM, Neveu W, Dienz O, Rymarchyk S, Barrantes R, Hale S, Farley N, Lounsbury KM, Bond JP, Taatjes D, Rincón M. Methylation-controlled J protein promotes c-Jun degradation to prevent ABCB1 transporter expression. Mol Cell Biol 2007; 27:2952-66. [PMID: 17283040 PMCID: PMC1899938 DOI: 10.1128/mcb.01804-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methylation-controlled J protein (MCJ) is a newly identified member of the DnaJ family of cochaperones. Hypermethylation-mediated transcriptional silencing of the MCJ gene has been associated with increased chemotherapeutic resistance in ovarian cancer. However, the biology and function of MCJ remain unknown. Here we show that MCJ is a type II transmembrane cochaperone localized in the Golgi network and present only in vertebrates. MCJ is expressed in drug-sensitive breast cancer cells but not in multidrug-resistant cells. The inhibition of MCJ expression increases resistance to specific drugs by inducing expression of the ABCB1 drug transporter that prevents intracellular drug accumulation. The induction of ABCB1 gene expression is mediated by increased levels of c-Jun due to an impaired degradation of this transcription factor in the absence of MCJ. Thus, MCJ is required in these cells to prevent c-Jun-mediated expression of ABCB1 and maintain drug response.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Conserved Sequence
- Down-Regulation/drug effects
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Golgi Apparatus/drug effects
- Golgi Apparatus/ultrastructure
- HSP40 Heat-Shock Proteins/chemistry
- HSP40 Heat-Shock Proteins/deficiency
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Models, Biological
- Molecular Sequence Data
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- Phylogeny
- Protein Processing, Post-Translational/drug effects
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic/drug effects
- Vertebrates
Collapse
Affiliation(s)
- Ketki M Hatle
- Department of Medicine/Immunobiology Program, Given Medical Building D-305, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Wright CM, Fewell SW, Sullivan ML, Pipas JM, Watkins SC, Brodsky JL. The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 2007; 175:1649-64. [PMID: 17237519 PMCID: PMC1855118 DOI: 10.1534/genetics.106.066274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones, such as Hsp40, regulate cellular processes by aiding in the folding, localization, and activation of multi-protein machines. To identify new targets of chaperone action, we performed a multi-copy suppressor screen for genes that improved the slow-growth defect of yeast lacking the YDJ1 chromosomal locus and expressing a defective Hsp40 chimera. Among the genes identified were MID2, which regulates cell-wall integrity, and PKC1, which encodes protein kinase C and is linked to cell-wall biogenesis. We found that ydj1delta yeast exhibit phenotypes consistent with cell-wall defects and that these phenotypes were improved by Mid2p or Pkc1p overexpression or by overexpression of activated downstream components in the PKC pathway. Yeast containing a thermosensitive allele in the gene encoding Hsp90 also exhibited cell-wall defects, and Mid2p or Pkc1p overexpression improved the growth of these cells at elevated temperatures. To determine the physiological basis for suppression of the ydj1delta growth defect, wild-type and ydj1delta yeast were examined by electron microscopy and we found that Mid2p overexpression thickened the mutant's cell wall. Together, these data provide the first direct link between cytoplasmic chaperone function and cell-wall integrity and suggest that chaperones orchestrate the complex biogenesis of this structure.
Collapse
Affiliation(s)
- Christine M Wright
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
204
|
Habib GM, Shi ZZ, Lieberman MW. Glutathione protects cells against arsenite-induced toxicity. Free Radic Biol Med 2007; 42:191-201. [PMID: 17189825 PMCID: PMC1855165 DOI: 10.1016/j.freeradbiomed.2006.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/05/2006] [Accepted: 10/07/2006] [Indexed: 02/07/2023]
Abstract
To understand the role of glutathione (GSH) in the protection of cells from arsenite toxicity, we studied the mechanism of apoptotic cell death in cells genetically unable to synthesize GSH (GCS-2 cells). Arsenite stimulated an increase in protein ubiquitination in GCS-2 cells while the wild-type cells were unaffected. Arsenite treatment increased lipid peroxidation and induced ubiquitination of molecular chaperone Hsp90 and impaired its ability to bind cochaperone p50(Cdc-37) and client proteins Plk-1 and Cdk-4 in GCS-2 cells. Treatment with arsenite also partially inhibited proteasome activity in GCS-2 cells. In these cells stably transfected with GFP(u) (a reporter consisting of a short degron fused to the COOH-terminus of GFP), intracellular fluorescence increased, suggesting the accumulation of GFP aggregates. GCS-2 cells underwent apoptosis accompanied by release of cytochrome c into the cytoplasm. Taken together, these data suggest that a possible mechanism of arsenite-induced apoptosis is the accumulation of ubiquitinated proteins and impairment of the protein degradative pathway. Further, protection from arsenite-induced ubiquitination is mediated by GSH and to a lesser extent by available reducing equivalents in the cells.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
205
|
Ohta K, Okoshi R, Wakabayashi M, Ishikawa A, Sato Y, Kizaki H. Geldanamycin, a heat-shock protein 90-binding agent, induces thymocyte apoptosis through destabilization of Lck in presence of 12-O-tetradecanoylphorbol 13-acetate. Biomed Res 2007; 28:33-42. [PMID: 17379955 DOI: 10.2220/biomedres.28.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Geldanamycin, a heat-shock protein 90 (Hsp90)-binding agent, modulates various cellular activities. The present study found that, although geldanamycin by itself had no effect on thymocyte viability, it induced apoptosis in thymocytes with a reduction of the mitochondrial transmembrane potential (DeltaPsim) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C (PKC). This apoptosis depended on transcription and translation, and on activation of caspase-8 and -3. Geldanamycin treatment in the presence of TPA also enhanced destabilization of Lck. This destabilization was independent of transcription and translation. It was inhibited, however, by conventional PKC inhibitors, preventing apoptosis. Proteasome inhibitor affected neither the degradation of Lck nor DNA fragmentation, although they inhibited reduction of DeltaPsim. These results suggest that the ubiquitin-proteasome system is not involved in Lck destabilization, and that DeltaPsim reduction is not directly related to the progression of apoptosis. Furthermore, inhibition of Lck in the presence of TPA induced apoptosis in thymocytes. Our findings suggest that Hsp90 modulates thymocyte apoptosis in concert with PKC through the destabilization of Lck and in a caspase-8- and -3-dependent manner.
Collapse
Affiliation(s)
- Kazumasa Ohta
- Department of Biochemistry, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR, Balch WE. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 2006; 127:803-15. [PMID: 17110338 DOI: 10.1016/j.cell.2006.09.043] [Citation(s) in RCA: 488] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 07/08/2006] [Accepted: 09/11/2006] [Indexed: 02/09/2023]
Abstract
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 2006; 175:901-11. [PMID: 17178908 PMCID: PMC2064700 DOI: 10.1083/jcb.200608073] [Citation(s) in RCA: 1109] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/20/2006] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery. Because organelle Ca(2+) homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation, Emilia Romagna Laboratory for Genomics and Biotechnology, University of Ferrara, Ferrara 44100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Dragovic Z, Shomura Y, Tzvetkov N, Hartl FU, Bracher A. Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol Chem 2006; 387:1593-600. [PMID: 17132105 DOI: 10.1515/bc.2006.198] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The HspBP1 homolog Fes1p was recently identified as a nucleotide exchange factor (NEF) of Ssa1p, a canonical Hsp70 molecular chaperone in the cytosol of Saccharomyces cerevisiae. Besides the Ssa-type Hsp70s, the yeast cytosol contains three additional classes of Hsp70, termed Ssb, Sse and Ssz. Here, we show that Fes1p also functions as NEF for the ribosome-bound Ssb Hsp70s. Sequence analysis indicated that residues important for interaction with Fes1p are highly conserved in Ssa1p and Ssb1p, but not in Sse1p and Ssz1p. Indeed, Fes1p interacts with Ssa1p and Ssb1p with similar affinity, but does not form a complex with Sse1p. Functional analysis showed that Fes1p accelerates the release of the nucleotide analog MABA-ADP from Ssb1p by a factor of 35. In contrast to the interaction between mammalian HspBP1 and Hsp70, however, addition of ATP only moderately decreases the affinity of Fes1p for Ssb1p. Point mutations in Fes1p abolishing complex formation with Ssa1p also prevent the interaction with Ssb1p. The ATPase activity of Ssb1p is stimulated by the ribosome-associated complex of Zuotin and Ssz1p (RAC). Interestingly, Fes1p inhibits the stimulation of Ssb1p ATPase by RAC, suggesting a complex regulatory role of Fes1p in modulating the function of Ssb Hsp70s in co-translational protein folding.
Collapse
Affiliation(s)
- Zdravko Dragovic
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
209
|
Uchiyama Y, Takeda N, Mori M, Terada K. Heat shock protein 40/DjB1 is required for thermotolerance in early phase. J Biochem 2006; 140:805-12. [PMID: 17050614 DOI: 10.1093/jb/mvj212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DjB1 (Hsp40/DnajB1/Hdj1) is a member of the Hsp40/DnaJ family that functions as a co-chaperone of mammalian Hsp70s. DjB1 recognizes substrate proteins and facilitates the ATPase activity of Hsp70. We generated DjB1 deficient mice. The DjB1(-/-) mice were viable and fertile with no obvious abnormalities, thus indicating that DjB1 is dispensable for development and viability. No difference was found between the DjB1(-/-) and wild-type peritoneal macrophages regarding resistance against various types of apoptosis-inducing reagents. However, DjB1(-/-) cells showed decreased thermotolerance in the early phase after mild heat treatment, but not in the late phase. After the heat treatment, Hsp70 was induced similarly in wild-type and DjB1(-/-) cells. Immunofluorescence staining of wild-type cells revealed the accumulation of DjB1 and Hsc70 in the nucleus after heat treatment. DjB1 also accumulated in the centrosome. The accumulation of Hsc70 in the nucleus was also observed in DjB1(-/-) cells. These results suggest that the impaired thermotolerance of DjB1(-/-) cells is not due to a mislocation of the Hsp70 family.
Collapse
Affiliation(s)
- Yukako Uchiyama
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556
| | | | | | | |
Collapse
|
210
|
Fan ACY, Bhangoo MK, Young JC. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem 2006; 281:33313-24. [PMID: 16968702 DOI: 10.1074/jbc.m605250200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport.
Collapse
Affiliation(s)
- Anna C Y Fan
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
211
|
Péroval M, Péry P, Labbé M. The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. Int J Parasitol 2006; 36:1205-15. [PMID: 16753167 DOI: 10.1016/j.ijpara.2006.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/06/2006] [Accepted: 04/11/2006] [Indexed: 11/28/2022]
Abstract
The 90-kDa heat shock proteins (Hsp90) are important for stress tolerance, for newly synthesised protein folding and for the growth of various organisms. Participation of Hsp90 in the development of Apicomplexa, notably in Plasmodium falciparum and Toxoplasma gondii, has been proven. In this work, the importance of Hsp90 for Eimeria tenella, which is responsible for avian caecal coccidiosis, was studied. Our results show that E. tenella Hsp90 (EtHsp90) expression increases during infection. Immunofluorescence microscopy studies reveal a dispersed localisation of EtHsp90 during the first schizogony. Moreover, EtHsp90 is secreted by sporozoites as early as 5min after addition of FCS in a temperature-dependent manner. By using staurosporine, we invalidated the hypothesis that EtHsp90 might be a micronemal protein. Then, EtHsp90 was detected in a parasitophorous vacuole membrane. This result suggests the importance of EtHsp90 for intracellular growth of the parasite. Inhibition of EtHsp90 function using specific antibodies and geldanamicin attenuates the capacity of E. tenella to invade and grow in the host cell.
Collapse
Affiliation(s)
- Marylène Péroval
- Département de Biologie, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles, France
| | | | | |
Collapse
|
212
|
Zhang H, Chung D, Yang YC, Neely L, Tsurumoto S, Fan J, Zhang L, Biamonte M, Brekken J, Lundgren K, Burrows F. Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol Cancer Ther 2006; 5:1256-64. [PMID: 16731758 DOI: 10.1158/1535-7163.mct-05-0537] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The selective heat shock protein 90 (HSP90) inhibitor 17-allyamino-17-demethoxygeldanamycin (17-AAG) is currently in phase I/II clinical studies at numerous institutions. Heretofore, the biomarkers to detect 17-AAG bioactivity (Hsp70, Raf-1, and cyclin-dependent kinase 4) had to be analyzed by Western blot of cellular samples, either from tumor biopsies or peripheral blood leukocytes, a method that is both laborious and invasive. We have identified two new biomarkers [insulin-like growth factor binding protein-2 (IGFBP2) and HER-2 extracellular domain] that can be readily detected in patient sera by ELISA. Both secreted proteins are derived from or regulated by Hsp90 client proteins, raising hopes that they might be sensitive serum markers of HSP90 inhibitor activity. Several structurally unrelated HSP90 inhibitors dose-dependently decreased secretion of both IGFBP-2 and HER-2 extracellular domain into culture medium, and both proteins were more sensitive to HSP90 inhibitors than previously identified biomarkers. In sera from BT474 tumor-bearing mice, both IGFBP-2 and HER-2 extracellular domain were down-regulated by 17-AAG in a time-dependent and dose-dependent manner, coincident with the degradation of HER-2 and attenuation of AKT activity in the tumors. Furthermore, IGFBP-2 levels at the end of treatment correlated with residual tumor load, suggesting that IGFBP-2 might serve as an early indicator of therapeutic response. In addition, we also found that both IGFBP-2 and HER-2 extracellular domain levels are elevated in patient sera from several cancer types, suggesting that these novel secreted biomarkers could be valuable pharmacodynamic tools in clinical trials of HSP90 inhibitors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzoquinones
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Clinical Trials, Phase I as Topic
- Dose-Response Relationship, Drug
- Down-Regulation
- Female
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- In Vitro Techniques
- Insulin-Like Growth Factor Binding Protein 2/blood
- Insulin-Like Growth Factor Binding Protein 2/genetics
- Insulin-Like Growth Factor Binding Protein 2/metabolism
- Lactams, Macrocyclic
- Mice
- Mice, Nude
- Protein Structure, Tertiary/drug effects
- Receptor, ErbB-2/blood
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Rifabutin/analogs & derivatives
- Rifabutin/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zhang
- Conforma Therapeutics Corp., 9393 Towne Center Drive, Suite 240, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Chromy LR, Oltman A, Estes PA, Garcea RL. Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 2006; 80:5086-91. [PMID: 16641302 PMCID: PMC1472060 DOI: 10.1128/jvi.80.10.5086-5091.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.
Collapse
Affiliation(s)
- Laura R Chromy
- University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
214
|
|
215
|
Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S. Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. PLANT PHYSIOLOGY 2006; 141:47-60. [PMID: 16531488 PMCID: PMC1459323 DOI: 10.1104/pp.105.073841] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small heat-shock proteins (sHsps) are widespread molecular chaperones for which a peroxisomal localization has not yet been reported. The Arabidopsis (Arabidopsis thaliana) genome encodes two sHsps with putative peroxisomal targeting signals type 1 or 2 (PTS1 or PTS2). As demonstrated by double-labeling experiments using full-length fusion proteins with enhanced yellow fluorescent protein and deletion constructs lacking the putative targeting domains, AtHsp15.7 (At5g37670) and AtAcd31.2 (At1g06460) are targeted to the peroxisome matrix by a functional PTS1 (SKL>) and a functional PTS2 (RLx5HF), respectively. The peroxisomal localization of AtAcd31.2 was further confirmed by isolation of leaf peroxisomes from Arabidopsis by two successive sucrose density gradients, protein separation by one- and two-dimensional gel electrophoresis, and mass spectrometric protein identification. When AtHsp15.7 and AtAcd31.2 were heterologously expressed in yeast (Saccharomyces cerevisiae) and directed to the cytosol by deletion of the PTSs, both sHsps were able to complement the morphological phenotype of yeast mutants deficient in the cytosolic homologs ScHsp42 or ScHsp26. According to expression studies by reverse transcription-PCR, AtAcd31.2 is constitutively expressed, whereas AtHsp15.7 is hardly expressed under normal conditions but strongly induced by heat and oxidative stress, the latter of which was triggered by the catalase inhibitor 3-aminotriazole or the herbicide methyl viologen applied by watering of whole plants or infiltration of rosette leaves. Thus, plants are exceptional among eukaryotes in employing sHsps in the peroxisome matrix to prevent unspecific aggregation of partially denatured proteins under both physiological and stress conditions.
Collapse
Affiliation(s)
- Changle Ma
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
216
|
Abstract
Eukaryotic cells are specialized, interdependent functional units of complex tissues that are composed of metabolically integrated systems defined by chemically distinct organelles that operate as reaction vessels. It is now clear that the small-molecule and polymer-based composition of these organelles plays a crucial role in generating and maintaining protein folds and functions through the systems chemistry of the local environments.
Collapse
Affiliation(s)
- Jeffery W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, California 92130, USA.
| | | |
Collapse
|
217
|
Vilaprinyo E, Alves R, Sorribas A. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock. BMC Bioinformatics 2006; 7:184. [PMID: 16584550 PMCID: PMC1524994 DOI: 10.1186/1471-2105-7-184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 04/03/2006] [Indexed: 01/26/2023] Open
Abstract
Background Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Collapse
Affiliation(s)
- Ester Vilaprinyo
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| |
Collapse
|
218
|
Serva S, Nagy PD. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J Virol 2006; 80:2162-9. [PMID: 16474124 PMCID: PMC1395393 DOI: 10.1128/jvi.80.5.2162-2169.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plus-strand RNA virus replication occurs via the assembly of viral replicase complexes involving multiple viral and host proteins. To identify host proteins present in the cucumber necrosis tombusvirus (CNV) replicase, we affinity purified functional viral replicase complexes from yeast. Mass spectrometry analysis of proteins resolved by two-dimensional gel electrophoresis revealed the presence of CNV p33 and p92 replicase proteins as well as four major host proteins in the CNV replicase. The host proteins included the Ssa1/2p molecular chaperones (yeast homologues of Hsp70 proteins), Tdh2/3p (glyceraldehyde-3-phosphate dehydrogenase, an RNA-binding protein), Pdc1p (pyruvate decarboxylase), and an unknown approximately 35-kDa acidic protein. Copurification experiments demonstrated that Ssa1p bound to p33 replication protein in vivo, and surface plasmon resonance measurements with purified recombinant proteins confirmed this interaction in vitro. The double mutant strain (ssa1 ssa2) showed 75% reduction in viral RNA accumulation, whereas overexpression of either Ssa1p or Ssa2p stimulated viral RNA replication by approximately threefold. The activity of the purified CNV replicase correlated with viral RNA replication in the above-mentioned ssa1 ssa2 mutant and in the Ssa overexpression strains, suggesting that Ssa1/2p likely plays an important role in the assembly of the CNV replicase.
Collapse
Affiliation(s)
- Saulius Serva
- Department of Plant Pathology, University of Kentucky, Lexington, 40546-0312, USA
| | | |
Collapse
|
219
|
Cliff MJ, Harris R, Barford D, Ladbury JE, Williams MA. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure 2006; 14:415-26. [PMID: 16531226 DOI: 10.1016/j.str.2005.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/12/2005] [Accepted: 12/18/2005] [Indexed: 11/25/2022]
Abstract
Protein phosphatase 5 (Ppp5) is one of several proteins that bind to the Hsp90 chaperone via a tetratricopeptide repeat (TPR) domain. We report the solution structure of a complex of the TPR domain of Ppp5 with the C-terminal pentapeptide of Hsp90. This structure has the "two-carboxylate clamp" mechanism of peptide binding first seen in the Hop-TPR domain complexes with Hsp90 and Hsp70 peptides. However, NMR data reveal that the Ppp5 clamp is highly dynamic, and that there are multiple modes of peptide binding and mobility throughout the complex. Although this interaction is of very high affinity, relatively few persistent contacts are found between the peptide and the Ppp5-TPR domain, thus explaining its promiscuity in binding both Hsp70 and Hsp90 in vivo. We consider the possible implications of this dynamic structure for the mechanism of relief of autoinhibition in Ppp5 and for the mechanisms of TPR-mediated recognition of Hsp90 by other proteins.
Collapse
Affiliation(s)
- Matthew J Cliff
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
220
|
Kim YH, Park EJ, Han ST, Park JW, Kwon TK. Arsenic trioxide induces Hsp70 expression via reactive oxygen species and JNK pathway in MDA231 cells. Life Sci 2006; 77:2783-93. [PMID: 15978632 DOI: 10.1016/j.lfs.2005.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/07/2005] [Indexed: 11/27/2022]
Abstract
In the present study, we determined the molecular pathways that induce the heat shock proteins (Hsps) after treatment of cells with arsenic trioxide. Administration of arsenic trioxide to MDA231 cells leads to induce Hsp70, which is accompanied by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). We showed that arsenic trioxide-induced Hsp70 expression was caused by activation of ROS and prevented by the antioxidant N-Acetyl-Cysteine (NAC). SP600125 and dominant-negative SEK suppressed Hsp70 promoter-driven reporter gene expression, suggesting that JNK would be preferentially associated with the protective heat shock response against arsenic trioxide stress. In addition, SP600125, a specific JNK inhibitor, significantly reduced the amount of phosphorylated HSF1 upon administration of arsenic trioxide. It is likely that Hsp70 expression against arsenic trioxide exposure protects cells from oxidative injury and apoptotic cell death by means of JNK activity.
Collapse
Affiliation(s)
- Young-Ho Kim
- Department of Immunology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu, 700-712, South Korea
| | | | | | | | | |
Collapse
|
221
|
Tutar Y, Song Y, Masison DC. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics 2006; 172:851-861. [PMID: 16299395 PMCID: PMC1456249 DOI: 10.1534/genetics.105.048926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022] Open
Abstract
Hsp70's are highly conserved essential protein chaperones that assist protein folding and prevent protein aggregation. They have modular structures consisting of ATPase, substrate-binding, and C-terminal domains. Substrate binding and release is regulated by ATP hydrolysis and nucleotide exchange, which in turn are regulated by cochaperones. Eukaryotes have constitutive (Hsc70) and stress-inducible (iHsp70) isoforms, but their functions have not been systematically compared. Using a yeast system to evaluate heterologous Hsp70's we find that primate Hsc70 supported growth but iHsp70 did not. Plant Hsc70 and iHsp70 counterparts behaved similarly, implying evolutionary conservation of this distinction. Swapping yeast and primate Hsp70 domains showed that (i) the Hsc70-iHsp70 distinction resided in the ATPase domain, (ii) substrate-binding domains of Hsp70's within and across species functioned similarly regarding growth, (iii) C-terminal domain function was important for growth, and (iv) Hsp70 functions important for cell growth and prion propagation were separable. Enzymatic analysis uncovered a correlation between substrate affinity and prion phenotype and showed that ATPase and protein-folding activities were generally similar. Our data support a view that intrinsic activities of Hsp70 isoforms are comparable, and functional differences in vivo lie mainly in complex interactions of Hsp70 with cochaperones.
Collapse
Affiliation(s)
- Yusuf Tutar
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0851, USA
| | | | | |
Collapse
|
222
|
Jiang J, Prasad K, Lafer EM, Sousa R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 2006; 20:513-24. [PMID: 16307916 PMCID: PMC4443753 DOI: 10.1016/j.molcel.2005.09.028] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/31/2005] [Accepted: 09/30/2005] [Indexed: 11/24/2022]
Abstract
Hsp70 family proteins are highly conserved chaperones involved in protein folding, degradation, targeting and translocation, and protein complex remodeling. They are comprised of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD). ATP binding to the NBD alters SBD conformation and substrate binding kinetics, but an understanding of the mechanism of interdomain communication has been hampered by the lack of a crystal structure of an intact chaperone. We report here the 2.6 angstroms structure of a functionally intact bovine Hsc70 (bHsc70) and a mutational analysis of the observed interdomain interface and the immediately adjacent interdomain linker. This analysis identifies interdomain interactions critical for chaperone function and supports an allosteric mechanism in which the interdomain linker invades and disrupts the interdomain interface when ATP binds.
Collapse
Affiliation(s)
- Jianwen Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Kondury Prasad
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Eileen M. Lafer
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
- Correspondence:
| |
Collapse
|
223
|
van Duijn E, Heck AJR. Mass spectrometric analysis of intact macromolecular chaperone complexes. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:21-27. [PMID: 24980098 DOI: 10.1016/j.ddtec.2006.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrospray ionization mass spectrometry enables the efficient and sensitive analysis of small and very large biomolecules. The gentle phase transfer from solution into the gas phase in combination with the seemingly unlimited mass range enables the study of intact homo- and heterogeneous protein complexes, providing an innovative tool in structural biology. Here we highlight recent progress in this field of 'native mass spectrometry' on noncovalent complexes, focusing on several chaperone complexes involved in protein folding.:
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| |
Collapse
|
224
|
Squier TC. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Antioxid Redox Signal 2006; 8:217-28. [PMID: 16487055 DOI: 10.1089/ars.2006.8.217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.
Collapse
Affiliation(s)
- Thomas C Squier
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
225
|
Dinnis DM, Stansfield SH, Schlatter S, Smales CM, Alete D, Birch JR, Racher AJ, Marshall CT, Nielsen LK, James DC. Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 2006; 94:830-41. [PMID: 16489627 DOI: 10.1002/bit.20899] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously compared changes in individual protein abundance between the proteomes of GS-NS0 cell lines with varying rates of cell-specific recombinant monoclonal antibody production (qMab). Here we extend analyses of our proteomic dataset to statistically determine if particular cell lines have distinct functional capabilities that facilitate production of secreted recombinant Mab. We categorized 79 proteins identified by mass spectrometry according to their biological function or location in the cell and statistically compared the relative abundance of proteins in each category between GS-NS0 cell lines with varying qMab. We found that the relative abundance of proteins in ER chaperone, non-ER chaperone, cytoskeletal, cell signaling, metabolic, and mitochondrial categories were significantly increased with qMab. As the GS-NS0 cell line with highest qMab also had an increased intracellular abundance of unassembled Mab heavy chain (HC), we tested the hypothesis that the increased ER chaperone content was caused by induction of an unfolded protein response (UPR) signaling pathway. Immunoblot analyses revealed that spliced X-box binding protein 1 (XBP1), a marker for UPR induction, was not detectable in the GS-NS0 cells with elevated qMab, although it was induced by chemical inhibitors of protein folding. These data suggest that qMab is functionally related to the abundance of specific categories of proteins that together facilitate recombinant protein production. We infer that individual cells within parental populations are more functionally equipped for high-level recombinant protein production than others and that this bias could be used to select cells that are more likely to achieve high qMab.
Collapse
Affiliation(s)
- Diane M Dinnis
- School of Engineering, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Jiang J, Lafer EM, Sousa R. Crystallization of a functionally intact Hsc70 chaperone. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:39-43. [PMID: 16511258 PMCID: PMC2150933 DOI: 10.1107/s1744309105040303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 12/05/2005] [Indexed: 11/10/2022]
Abstract
Hsp70s are essential chaperones with roles in a variety of cellular processes and representatives in all kingdoms of life. They are comprised of a nucleotide-binding domain (NBD) and a protein substrate-binding domain (SBD). Structures of isolated NBDs and SBDs have been reported but, until recently, a functionally intact Hsp70 containing both the NBD and SBD has resisted structure determination. Here, it is reported that preparation of diffraction-quality crystals of functionally intact bovine Hsc70 required (i) deletion of part of the protein to reduce oligomerization, (ii) point mutations in the interface between the SBD and NBD and (iii) use of high concentrations of the structure-stabilizing agents glycerol and trimethylamine oxide (TMAO). The introduction of point mutations in interdomain interfaces and the use of the potent structure stabilizer TMAO may be generally useful in crystallization of multidomain proteins that exhibit interdomain motions.
Collapse
Affiliation(s)
- Jianwen Jiang
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Eileen M. Lafer
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Rui Sousa
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| |
Collapse
|
227
|
Jamil K, Crowe JH, Tablin F, Oliver AE. Arbutin Enhances Recovery and Osteogenic Differentiation in Dried and Rehydrated Human Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1089/cpt.2005.3.244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kamran Jamil
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - John H. Crowe
- Section of Molecular and Cellular Biology, University of California, Davis, California
| | - Fern Tablin
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - Ann E. Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, California
| |
Collapse
|
228
|
Abstract
The cytoskeleton is a dynamic structure that contributes to cell function in terms of shape, movement, transport and secretion. It also provides a platform for regional activities such as signaling, biosynthesis and energy production. The present manuscript describes a method for cytoskeleton isolation based on capture with magnetic microbeads and its application to the analysis of the NK like cell line, YTS. The isolated proteins were separated by SDS-PAGE and the peptides from the in gel digested proteins were analyzed by on line nano-LC-MSMS. Approximately 76% of the 126 isolated proteins were either components of the cytoskeleton or proteins that were known to be capable of associating with the cytoskeleton. The enrichment was confirmed by western blot for actin and alpha-actinin. The isolation was dependent on intact actin microfilaments as pretreatment of cells with cytochalasin D resulted in a marked reduction in the number of proteins isolated. The method allowed for the identification of several proteins that have not been previously described in lymphoid cells (EPLIN, SETA). A number of other scaffolding and lipid raft associated proteins were described suggesting a link between the cytoskeleton and these structures. The approach may have application to the proteomic examination of the cytoskeleton in a variety of cell types.
Collapse
Affiliation(s)
- Xiaobo Meng
- Manitoba Centre for Proteomics and Systems Biology, Rheumatic Diseases Research Laboratory, Department of Internal Medicine, University of Manitoba, Canada
| | | |
Collapse
|
229
|
Batistatou A, Kyzas PA, Goussia A, Arkoumani E, Voulgaris S, Polyzoidis K, Agnantis NJ, Stefanou D. Estrogen receptor beta (ERbeta) protein expression correlates with BAG-1 and prognosis in brain glial tumours. J Neurooncol 2005; 77:17-23. [PMID: 16292491 DOI: 10.1007/s11060-005-9005-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Indexed: 02/06/2023]
Abstract
Estrogen receptor beta (ERbeta) is an important mediator of estrogen function in a variety of tissues. Its expression declines in breast, ovarian, prostatic and colon carcinomas as well as in astrocytic tumours. BAG-1 is a multifunctional protein with an important role in neoplasia and is possibly regulated by estrogen receptors. One of the direct targets of BAG-1 is HSP70. The purpose of this study was to analyse the expression pattern of these proteins in two distinct types of glial neoplasms, to investigate their possible correlation and probe their impact on prognosis. ERbeta, BAG-1 and HSP70 protein expression was monitored immunohistochemically in 66 cases of astrocytomas and 20 oligodendrogliomas. In astrocytic tumours low ERbeta expression correlated significantly with high grade (P < 0.001), higher expression of cytoplasmic BAG-1 (P < 0.001) and worse survival (log rank P = 0.02). Multivariate analysis revealed that ERbeta expression had a prognostic value for overall survival in these patients (Cox P = 0.03), which was not dependent on grade. There was also statistically significant association of BAG-1 nuclear expression with HSP70 cytoplasmic expression. Our results strengthen the hypothesis that ERbeta, BAG-1 and HSP70 play an important role in the pathogenesis and progression of glial neoplasms. Moreover, ERbeta expression in astrocytic tumors might be an important prognostic factor for survival.
Collapse
Affiliation(s)
- Anna Batistatou
- Department of Pathology, University of Ioannina, Medical School, 451 10, Ioannina, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Shapiro J, Ingram J, Johnson KA. Characterization of a molecular chaperone present in the eukaryotic flagellum. EUKARYOTIC CELL 2005; 4:1591-4. [PMID: 16151252 PMCID: PMC1214201 DOI: 10.1128/ec.4.9.1591-1594.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydomonas flagella contain a molecular chaperone now identified as HSP70A, a major cytoplasmic isoform. HSP70A synthesis is upregulated by deflagellation, and its distribution in the flagellum overlaps with the IFT kinesin-II motor FLA10. HSP70A may chaperone flagellar proteins during transport, participating in the assembly and maintenance of the flagellum.
Collapse
Affiliation(s)
- Jessica Shapiro
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | | | | |
Collapse
|
231
|
Affiliation(s)
- Alberto J L Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
232
|
Sim C, Hong YS, Vanlandingham DL, Harker BW, Christophides GK, Kafatos FC, Higgs S, Collins FH. Modulation of Anopheles gambiae gene expression in response to o'nyong-nyong virus infection. INSECT MOLECULAR BIOLOGY 2005; 14:475-81. [PMID: 16164603 PMCID: PMC3840949 DOI: 10.1111/j.1365-2583.2005.00578.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To determine if gene expression of An. gambiae is modulated in response to o'nyong-nyong virus (ONNV) infection, we utilized cDNA microarrays including about 20 000 cDNAs. Gene expression levels of ONNV-infected female mosquitoes were compared to that of the uninfected control females harvested at 14 days postinfection. In response to ONNV infection, expression levels of 18 genes were significantly modulated, being at least two-fold up- or down-regulated. Quantitative real-time PCR analysis (qRT-PCR) further substantiated the differential expression of six of these genes in response to ONNV infection. These genes have similarity to a putative heat shock protein 70, DAN4, agglutinin attachment subunit, elongation factor 1 alpha and ribosomal protein L35. One gene, with sequence similarity to mitochondrial ribosomal protein L7, was down-regulated in infected mosquitoes. The expression levels and annotation of the differentially expressed genes are discussed in the context of host/virus interaction including host translation/replication factors, and intracellular transport pathways.
Collapse
Affiliation(s)
- C Sim
- Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Mitchell BF, Pedersen LB, Feely M, Rosenbaum JL, Mitchell DR. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol Biol Cell 2005; 16:4509-18. [PMID: 16030251 PMCID: PMC1237060 DOI: 10.1091/mbc.e05-04-0347] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies reported previously in the cpc1 strain. We conclude that in situ ATP synthesis throughout the flagellar compartment is essential for normal flagellar motility.
Collapse
Affiliation(s)
- Beth F Mitchell
- Department of Biology, Le Moyne College, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
234
|
Cheng Q, Pappas V, Hallmann A, Miller SM. Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox. Dev Biol 2005; 286:537-48. [PMID: 16168403 DOI: 10.1016/j.ydbio.2005.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/26/2022]
Abstract
GlsA, a J-protein chaperone, is required for the asymmetric divisions that set aside germ and somatic cell precursors during embryogenesis in Volvox carteri, and previous evidence indicated that this function requires an intact Hsp70-binding site. To determine if Hsp70A, the only known cytoplasmic Hsp70 in V. carteri, is the chaperone partner of GlsA, we investigated the localization of the two proteins during critical stages of embryogenesis and tested their capacity to interact. We found that a substantial fraction of Hsp70A co-localizes with GlsA, both in interphase and mitotic blastomeres. In addition, Hsp70A coimmunoprecipitated with GlsA, and co-expression of GlsA and Hsp70A variants partially rescued the Gls phenotype of a glsA mutant, whereas neither variant by itself rescued the mutant phenotype. Immunofluorescence analysis demonstrated that GlsA is about equally abundant in all blastomeres at all cleavage stages examined but that Hsp70A is more abundant in anterior (asymmetrically dividing) blastomeres than in posterior (symmetrically dividing) blastomeres during the period of asymmetric division. We conclude that Hsp70A and GlsA function as chaperone partners that regulate asymmetric division and that the relative abundance of Hsp70A in asymmetrically dividing embryos may determine which blastomeres divide asymmetrically and which do not.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
235
|
Girard M, Poupon V, Blondeau F, McPherson PS. The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 2005; 280:40135-43. [PMID: 16179350 DOI: 10.1074/jbc.m505036200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through a proteomic analysis of clathrin-coated vesicles from rat liver we identified the mammalian homolog of receptor-mediated endocytosis 8 (RME-8), a DnaJ domain-containing protein originally identified in a screen for endocytic defects in Caenorhabditis elegans. Mammalian RME-8 has a broad tissue distribution, and affinity selection assays reveal the ubiquitous chaperone Hsc70, which regulates protein conformation at diverse membrane sites as the major binding partner for its DnaJ domain. RME-8 is tightly associated with microsomal membranes and co-localizes with markers of the endosomal system. Small interfering RNA-mediated knock down of RME-8 has no influence on transferrin endocytosis but causes a reduction in epidermal growth factor internalization. Interestingly, and consistent with a localization to endosomes, knock down of RME-8 also leads to alterations in the trafficking of the cation-independent mannose 6-phosphate receptor and improper sorting of the lysosomal hydrolase cathepsin D. Our data demonstrate that RME-8 functions in intracellular trafficking and provides the first evidence of a functional role for a DnaJ domain-bearing co-chaperone on endosomes.
Collapse
Affiliation(s)
- Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | | | | | | |
Collapse
|
236
|
Ravindran RK, Tablin F, Crowe JH, Oliver AE. Resistance to Dehydration Damage in HeLa Cells Correlates with the Presence of Endogenous Heat Shock Proteins. ACTA ACUST UNITED AC 2005. [DOI: 10.1089/cpt.2005.3.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Resmi K. Ravindran
- Center for Comparative Medicine, University of California, Davis, California
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - John H. Crowe
- Section of Molecular and Cellular Biology, University of California, Davis, California
| | - Ann E. Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, California
| |
Collapse
|
237
|
Kotsiopriftis M, Tanner JE, Alfieri C. Heat shock protein 90 expression in Epstein-Barr virus-infected B cells promotes gammadelta T-cell proliferation in vitro. J Virol 2005; 79:7255-61. [PMID: 15890964 PMCID: PMC1112101 DOI: 10.1128/jvi.79.11.7255-7261.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to elucidate the in vitro response of gammadelta T cells to Epstein-Barr virus (EBV)-infected B cells and to determine whether EBV-induced heat shock proteins (HSPs) might serve as gammadelta T-cell stimulants. Cytofluorometric analysis revealed HSP90 cell surface expression in 12% of the EBV-immortalized B-cell population in all four of the B-cell lines tested. HSP27, HSP60, and HSP70 were not detected on the cell surface by cytofluorometry in these same B-cell lines. HSP90 and HSP60, but not HSP70 or HSP27, were detected on the cell surface after 125I cell surface labeling and immunoprecipitation with anti-human HSP monoclonal antibodies. In vitro kinetic studies indicated that gammadelta T cells increased at least twofold by day 11 postinfection in cultures of EBV-seronegative peripheral blood lymphocytes infected with EBV, whereas percentages of alphabeta T cells in these same cultures either decreased slightly or remained relatively unchanged in response to EBV infection. Addition of anti-human HSP90 monoclonal antibody to the EBV-infected lymphocyte cultures inhibited gammadelta T-cell expansion by 92%. The inhibition of gammadelta T-cell expansion by anti-HSP90 antibody was reversed upon treatment with exogenous HSP90. Taken together, these results indicate that HSP90 played an important role in the stimulation of gammadelta T cells during EBV infection of B cells in vitro and may serve as an important immunomodulator of gammadelta T cells during acute EBV infection.
Collapse
Affiliation(s)
- Maria Kotsiopriftis
- Sainte-Justine Hospital Research Center, 3175 Côte Sainte-Catherine Road, Montréal (Québec), Canada H3T 1C5
| | | | | |
Collapse
|
238
|
Price JT, Quinn JMW, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT, Thompson EW. The Heat Shock Protein 90 Inhibitor, 17-Allylamino-17-demethoxygeldanamycin, Enhances Osteoclast Formation and Potentiates Bone Metastasis of a Human Breast Cancer Cell Line. Cancer Res 2005; 65:4929-38. [PMID: 15930315 DOI: 10.1158/0008-5472.can-04-4458] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor kappaB ligand (RANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence caused by 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.
Collapse
Affiliation(s)
- John T Price
- Tumour Cell Migration and Metastasis Laboratory, St. Vincent's Institute, Melbourne, Vistoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 2005; 39:279-95. [PMID: 15763706 DOI: 10.1080/10409230490892513] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A wide array of proteins in signal transduction pathways depend on Hsp90 and other chaperone components for functional maturation, regulation, and stability. Among these Hsp90 client proteins are steroid receptors, members from other classes of transcription factors, and representatives of both serine/threonine and tyrosine kinase families. Typically, dynamic complexes form on the client protein, and these consist of Hsp90- plus bound co-chaperones that often have enzymatic activities. In addition to its direct influence on client folding, Hsp90 locally concentrates co-chaperone activity within the client complex, and dynamic exchange of co-chaperones on Hsp90 facilitates sampling of co-chaperone activities that may, or may not, act on the client protein. We are just beginning to understand the nature of biochemical and molecular interactions between co-chaperone and Hsp90-bound client. This review focuses on the differential effects of Hsp90 co-chaperones toward client protein function and on the specificity that allows co-chaperones to discriminate between even closely related clients.
Collapse
Affiliation(s)
- Daniel L Riggs
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA
| | | | | | | | | | | |
Collapse
|
240
|
Hubbard MJ, Mangum JE, McHugh NJ. Purification and biochemical characterization of native ERp29 from rat liver. Biochem J 2005; 383:589-97. [PMID: 15500441 PMCID: PMC1133753 DOI: 10.1042/bj20040983] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ERp29 is a recently characterized resident of the ER (endoplasmic reticulum) lumen that has broad biological significance, being expressed ubiquitously and abundantly in animal cells. As an apparent housekeeper, ERp29 is thought to be a general folding assistant for secretory proteins and to probably function as a PDI (protein disulphide isomerase)-like molecular chaperone. In the present paper, we report the first purification to homogeneity and direct functional analysis of native ERp29, which has led to the unexpected finding that ERp29 lacks PDI-like folding activities. ERp29 was purified 4800-fold in non-denaturing conditions exploiting an unusual affinity for heparin. Two additional biochemical hallmarks that will assist the classification of ERp29 homologues were identified, namely the idiosyncratic behaviours of ERp29 on size-exclusion chromatography (M(r)<globular homodimer) and SDS/PAGE (M(r)>monomeric mass). In contrast with PDI and parallel-purified co-residents (calreticulin, ERp60), native ERp29 lacked classical chaperone, disulphide reductase and isomerase, and calcium-binding activities. In the chaperone assays, ERp29 neither protected substrate proteins against thermal aggregation nor interacted stably with chemically denatured proteins as detected by cross-linking. ERp29 also did not exhibit helper activity toward calreticulin (chaperone) or PDI and ERp60 (disulphide reductase). By refuting long-standing predictions about chaperone activity, these results expose ERp29 as a functionally distinct member of the ER machinery and prompt a revised hypothesis that ERp29 acts as a non-classical folding assistant. The native preparation and biochemical hallmarks established here provide a useful foundation for ongoing efforts to resolve the functional orphan status of ERp29.
Collapse
Affiliation(s)
- Michael J Hubbard
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
241
|
Winter J, Jakob U. Beyond transcription--new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol 2005; 39:297-317. [PMID: 15763707 DOI: 10.1080/10409230490900658] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions-the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.
Collapse
Affiliation(s)
- Jeannette Winter
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
242
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
Affiliation(s)
- M. P. Mayer
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - B. Bukau
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
243
|
Lancaster GI, Møller K, Nielsen B, Secher NH, Febbraio MA, Nybo L. Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 2005; 9:276-80. [PMID: 15544165 PMCID: PMC1065286 DOI: 10.1379/csc-18r.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The present study tested the hypothesis that in response to physical stress the human brain has the capacity to release heat shock protein 72 (Hsp72) in vivo. Therefore, 6 humans (males) cycled for 180 minutes at 60% of their maximal oxygen uptake, and the cerebral Hsp72 response was determined on the basis of the internal jugular venous to arterial difference and global cerebral blood flow. At rest, there was a net balance of Hsp72 across the brain, but after 180 minutes of exercise, we were able to detect the release of Hsp72 from the brain (335 +/- 182 ng/min). However, large individual differences were observed as 3 of the 6 subjects had a marked increase in the release of Hsp72, whereas exercise had little effect on the cerebral Hsp72 balance in the remaining 3 subjects. Given that cerebral blood flow was unchanged during exercise compared with values obtained at rest, it is unlikely that the cerebral Hsp72 release relates to necrosis of specific cells within the brain. These data demonstrate that the human brain is able to release Hsp72 in vivo in response to a physical stressor such as exercise. Further study is required to determine the biological significance of these observations.
Collapse
Affiliation(s)
- G I Lancaster
- Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT University, Bundoora, 3083, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
244
|
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005; 120:715-27. [PMID: 15766533 DOI: 10.1016/j.cell.2004.12.024] [Citation(s) in RCA: 641] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/19/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022]
Abstract
Physical, genetic, and chemical-genetic interactions centered on the conserved chaperone Hsp90 were mapped at high resolution in yeast using systematic proteomic and genomic methods. Physical interactions were identified using genome-wide two hybrid screens combined with large-scale affinity purification of Hsp90-containing protein complexes. Genetic interactions were uncovered using synthetic genetic array technology and by a microarray-based chemical-genetic screen of a set of about 4700 viable yeast gene deletion mutants for hypersensitivity to the Hsp90 inhibitor geldanamycin. An extended network, consisting of 198 putative physical interactions and 451 putative genetic and chemical-genetic interactions, was found to connect Hsp90 to cofactors and substrates involved in a wide range of cellular functions. Two novel Hsp90 cofactors, Tah1 (YCR060W) and Pih1 (YHR034C), were also identified. These cofactors interact physically and functionally with the conserved AAA(+)-type DNA helicases Rvb1/Rvb2, which are key components of several chromatin remodeling factors, thereby linking Hsp90 to epigenetic gene regulation.
Collapse
Affiliation(s)
- Rongmin Zhao
- Department of Biochemistry, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Gruschus JM, Greene LE, Eisenberg E, Ferretti JA. Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change. Protein Sci 2005; 13:2029-44. [PMID: 15273304 PMCID: PMC2279835 DOI: 10.1110/ps.03390504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.
Collapse
Affiliation(s)
- James M Gruschus
- Laboratories of Biophysical Chemistry and Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8013, USA.
| | | | | | | |
Collapse
|
246
|
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 2004; 29:471-87. [PMID: 15625403 DOI: 10.1007/bf02712120] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Collapse
Affiliation(s)
- Sanjeev Kumar Baniwal
- Department of Molecular Cell Biology, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
|
248
|
Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004; 15:5383-98. [PMID: 15371533 PMCID: PMC532018 DOI: 10.1091/mbc.e04-08-0715] [Citation(s) in RCA: 796] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/08/2004] [Indexed: 01/01/2023] Open
Abstract
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.
Collapse
Affiliation(s)
- Natalie Gilks
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Hermann VM, Cutfield JF, Hubbard MJ. Biophysical characterization of ERp29. Evidence for a key structural role of cysteine 125. J Biol Chem 2004; 280:13529-37. [PMID: 15572350 DOI: 10.1074/jbc.m410889200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERp29 is a major resident of the endoplasmic reticulum (ER) that seemingly plays an important role in most animal cells. Although a protein-folding association is widely supported, ERp29's specific molecular function remains unknown. A chaperone activity was postulated from evidence that ERp29 forms multimers like the classical ER chaperones, but conflicting results have emerged from our recent studies. Here a biophysical approach was used to clarify this issue and also reveal a key structural role for ERp29's characteristic cysteine, Cys-125. Applying hydrodynamic parameters derived from sedimentation and dynamic light-scattering analyses, a model of ERp29's quaternary structure was assembled from existing tertiary substructures. Comparison with Windbeutel, an ERp29-like protein from fruit fly with specialized chaperone activity, revealed similar tri-lobar gross structures but some finer differences consistent with functional divergence. Solubility and hydrophobic probe assays revealed moderate surface hydrophobicity, which was reduced in mutant ERp29 in which serine replaced Cys-125. This mutant was also relatively labile to proteolytic degradation, providing two reasons for the strict conservation of Cys-125. No multimerization was observed with untagged ERp29, which existed as tight homodimers (K(d) < 50 nm), whereas His-tagged ERp29 artifactually formed 670-kDa oligomers. These findings distinguish ERp29 biophysically from its peers in the ER including Windbeutel, endorsing our postulate that ERp29 adds a distinct type of folding activity to the ER machinery. By invoking novel functional associations for Cys-125 and the adjoining linker, new clues about how ERp29 might work have also arisen.
Collapse
Affiliation(s)
- Veronique M Hermann
- Department of Biochemistry, University of Otago, P. O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
250
|
Yang C, Compton MM, Yang P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol Biol Cell 2004; 16:637-48. [PMID: 15563613 PMCID: PMC545900 DOI: 10.1091/mbc.e04-09-0787] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|