201
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
202
|
Sehgal PB, Westley J, Lerea KM, DiSenso-Browne S, Etlinger JD. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs). Anal Biochem 2020; 597:113691. [PMID: 32194074 DOI: 10.1016/j.ab.2020.113691] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
Membraneless organelles (MLOs) in the cytoplasm and nucleus in the form of 2D and 3D phase-separated biomolecular condensates are increasingly viewed as critical in regulating diverse cellular functions. These functions include cell signaling, immune synapse function, nuclear transcription, RNA splicing and processing, mRNA storage and translation, virus replication and maturation, antiviral mechanisms, DNA sensing, synaptic transmission, protein turnover and mitosis. Components comprising MLOs often associate with low affinity; thus cell integrity can be critical to the maintenance of the full complement of respective MLO components. Phase-separated condensates are typically metastable (shape-changing) and can undergo dramatic, rapid and reversible assembly and disassembly in response to cell signaling events, cell stress, during mitosis, and after changes in cytoplasmic "crowding" (as observed with condensates of the human myxovirus resistance protein MxA). Increasing evidence suggests that neuron-specific aberrations in phase-separation properties of RNA-binding proteins (e.g. FUS and TDP-43) and others (such as the microtubule-binding protein tau) contribute to the development of degenerative neurological diseases (e.g. amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease). Thus, studies of liquid-like phase separation (LLPS) and the formation, structure and function of MLOs are of considerable importance in understanding basic cell biology and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA; Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| | - Jenna Westley
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Kenneth M Lerea
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Susan DiSenso-Browne
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA; Department of Dental Medicine, Touro College of Dental Medicine, Hawthorne, NY, 10532, USA
| | - Joseph D Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
203
|
Chen J, Wu Y, Wu XD, Zhou J, Liang XD, Baloch AS, Qiu YF, Gao S, Zhou B. The R614E mutation of mouse Mx1 protein contributes to the novel antiviral activity against classical swine fever virus. Vet Microbiol 2020; 243:108621. [PMID: 32273007 DOI: 10.1016/j.vetmic.2020.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Mx proteins are interferon-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses. We previously demonstrated that porcine Mx1 protein (poMx1) inhibited the replication of classical swine fever virus (CSFV), an economically important Pestivirus, and that mouse Mx1 did so as well. It is unknown why the nucleus-localizing mouse Mx1 inhibits CSFV replication which occurs in the cytoplasm. To the end, we assessed the anti-CSFV actions of wild type mouse Mx1 and seven previously reported mutants (K49A, G83R, A222V, A516V, G540E, R614E and ΔL4) and identified the molecular mechanism of R614E action against CSFV replication. A series of experiments revealed that mmMx1 (R614E) mutant reposted to the cytoplasm and interacted with the CSFV nucleocapsid protein (Core), thereby inhibiting viral replication. These findings broaden our understanding of the function of Mx protein family members against CSFV and suggest that the relative conservation of Mx1 among species is the basis of broad-spectrum antiviral properties.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu-Dan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Dong Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdul Sattar Baloch
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Feng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Song Gao
- the Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
204
|
Cao H, Krueger EW, Chen J, Drizyte-Miller K, Schulz ME, McNiven MA. The anti-viral dynamin family member MxB participates in mitochondrial integrity. Nat Commun 2020; 11:1048. [PMID: 32102993 PMCID: PMC7044337 DOI: 10.1038/s41467-020-14727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The membrane deforming dynamin family members MxA and MxB are large GTPases that convey resistance to a variety of infectious viruses. During viral infection, Mx proteins are known to show markedly increased expression via an interferon-responsive promoter to associate with nuclear pores. In this study we report that MxB is an inner mitochondrial membrane GTPase that plays an important role in the morphology and function of this organelle. Expression of mutant MxB or siRNA knockdown of MxB leads to fragmented mitochondria with disrupted inner membranes that are unable to maintain a proton gradient, while expelling their nucleoid-based genome into the cytoplasm. These findings implicate a dynamin family member in mitochondrial-based changes frequently observed during an interferon-based, anti-viral response. Mx proteins belong to the dynamin family of large GTPases and are highly induced by interferon in virally infected cells. The authors show that uninfected immune cells and hepatocytes also express MxB protein that associates with mitochondria to alter the morphology and genome of this organelle.
Collapse
Affiliation(s)
- Hong Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - E W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mary E Schulz
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA. .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
205
|
Gémez-Mata J, Álvarez-Torres D, García-Rosado E, Alonso MC, Béjar J. Comparative analysis of marine and freshwater viral haemorrhagic septicaemia virus (VHSV) isolates antagonistic activity. Comp Immunol Microbiol Infect Dis 2020; 69:101426. [PMID: 32014622 DOI: 10.1016/j.cimid.2020.101426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Viral Haemorrhagic Septicaemia Virus (VHSV) isolates virulent to marine fish species can replicate in freshwater species, although producing little or no mortality. Conversely, isolates from freshwater fish do not cause disease in marine species. An inverse relationship between VHSV virulence and host mx gene up-regulation has been described for several fish species, suggesting that differences between the antagonistic activity exerted by these isolates might be involved in the outcome of infections. In this study, the antagonistic activity against the type I interferon system of two representative marine and freshwater VHSV isolates has been characterised using RTG-2 cells stably transfected with the luciferase gene under the control of the Senegalese sole mx (ssmx) promoter, RTG pssmx-luc cells. Both isolates exerted a dose-dependent negative effect on the activation of ssmx promoter, showing a notably different minimal viral dose to exert the antagonism. In particular, an inverse relationship between the minimal MOI required and the viral virulence to sole has been recorded, which suggests this parameter as a possible in vivo VHSV virulence marker. Furthermore, the quantification of the endogenous inf I, mx1 and mx3 mRNA has demonstrated differences between both isolates in their antagonistic activity. Besides, a different nv RNA kinetics, which seems to depend on specific cellular factors, has been recorded for both isolates. This knowledge could contribute to the development of efficient tools to fight against viral infections in fish farming. For that purpose, the RTG pssmx-luc cells may be a suitable in vitro tool to identify the molecular mechanisms underlying VHSV-host interactions.
Collapse
Affiliation(s)
- Juan Gémez-Mata
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Área De Genética, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain; Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Daniel Álvarez-Torres
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Área De Genética, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain; Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Esther García-Rosado
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Julia Béjar
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Área De Genética, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain.
| |
Collapse
|
206
|
Ishaq M, Marshall H, Natarajan V. GADD34 attenuates HIV-1 replication by viral 5'-UTR TAR RNA-mediated translational inhibition. Virology 2020; 540:119-131. [PMID: 31778897 PMCID: PMC6957764 DOI: 10.1016/j.virol.2019.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Role of GADD34, a protein that is induced following cellular stress, in HIV-1 replication was investigated. GADD34 was induced during the late phase of HIV-1 infection. siRNA-knockdown of GADD34 stimulated whereas overexpression of GADD34 inhibited HIV-1 replication. GADD34 N-terminal ER-binding-helix amino acid region 1-192 alone was found to be sufficient for the inhibition of HIV-1 replication whereas protein-phosphatase -1-binding domain and eIF-2α-phosphatase activity of GADD34 were not crucial for anti-HIV-1 activity. GADD34 did not alter the HIV-1 RNA levels but reduced the viral protein expression suggesting that GADD34 interferes in HIV protein synthesis. Studies on the effect of HIV-1-5'-UTR and its mutants on a human promoter-driven luciferase expression indicated that GADD34-inhibition was mediated by 5'-UTR/TAR RNA, probably by modulating TAR RNA structure. In summary, our data support a novel function of GADD34 as a putative anti-HIV-1 restriction factor.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| | - Heather Marshall
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
207
|
Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 2020; 17:67-81. [PMID: 30487536 DOI: 10.1038/s41579-018-0115-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. These include the ability to bind and enter cells, to replicate the viral RNA genome within the host cell nucleus, to evade host restriction factors and innate immune responses and to transmit between individuals. In this Review, we examine the host barriers that influenza A viruses of animals, especially birds, must overcome to initiate a pandemic in humans and describe how, on crossing the species barrier, the virus mutates to establish new interactions with the human host. This knowledge is used to inform risk assessments for future pandemics and to identify virus-host interactions that could be targeted by novel intervention strategies.
Collapse
Affiliation(s)
- Jason S Long
- Department of Medicine, Imperial College London, London, UK
| | - Bhakti Mistry
- Department of Medicine, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
208
|
Tharuka MDN, Yang H, Lee J. Expression, subcellular localization, and potential antiviral function of three interferon regulatory factors in the big-belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2020; 96:297-310. [PMID: 31811886 DOI: 10.1016/j.fsi.2019.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factors (IRFs) are among the most important transcription mediators and have multiple biological functions, such as antiviral and antimicrobial defense, cell differentiation, immune modulation, and apoptosis. Three IRF family members (HaIRF4-like, HaIRF6, and HaIRF8) of the big belly seahorse (Hippocampus abdominalis) were molecularly and functionally characterized at the sequence and transcriptional level. The coding sequences of HaIRF4-like, HaIRF6, and HaIRF8 were 1214, 1485, and 1266 bp in length, encoding proteins of size 46.21, 55.32, and 47.56 kDa, respectively. Potential viral transcription and replication was detected against VHSV infection using qPCR in HaIRFs-transfected FHM cells. IRFs significantly reduced viral gene expression at 24 h and 48 h post infection and the expression of interferon-stimulated genes (ISGs) was modulated at transcriptional level upon HaIRF overexpression in FHM cells. Subcellular HaIRF localization was observed using GFP-tagged expression vectors in FHM cells. HaIRF4-like and HaIRF8 were localized to the nucleus, whereas HaIRF6 was observed in the cytoplasm. All three IRFs were ubiquitously expressed in all analyzed tissues of the big belly seahorse. The mRNA expression of IRF4-like, IRF6, and IRF8 increased significantly post injection in the blood and gills following LPS, poly (I:C), and Streptococcus iniae challenge. These findings demonstrate that seahorse IRFs are involved in host defense mechanisms against immune stimulants and HaIRFs induce interferon and ISGs which trigger antiviral activity against viral infections in the host.
Collapse
Affiliation(s)
- M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
209
|
Abstract
MxB/Mx2 is an interferon-induced dynamin-like GTPase, which restricts a number of life-threatening viruses. Because of its N-terminal region, predicted to be intrinsically disordered, and its propensity to self-oligomerize, purification of the full-length protein has not been successful in conventional E. coli expression systems. In this chapter, we describe an expression and purification procedure to obtain pure full-length wild-type MxB from suspension-adapted mammalian cells. We further describe how to characterize its GTPase activity and oligomerization function.
Collapse
Affiliation(s)
- Frances Joan D Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
210
|
Imaizumi T, Satake U, Miyashita R, Kawaguchi S, Matsumiya T, Seya K, Ding J, Tanaka H. Interferon-induced transmembrane protein 1 and Myxovirus resistance protein 1 are induced by polyinosinic-polycytidylic acid in cultured hCMEC/D3 human cerebral microvascular endothelial cells. J Neuroimmunol 2019; 337:577047. [PMID: 31520792 DOI: 10.1016/j.jneuroim.2019.577047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of antiviral innate immune reactions in brain microvascular endothelial cells remain unclear. Interferon (IFN)-induced transmembrane protein 1 (IFITM1) and Myxovirus resistance protein 1 (MX1), the members of IFN-stimulated genes, are known as antiviral molecules. IFITM1 inhibits virus entry into host cell cytoplasm, whereas MX1 antagonizes virus replication. Here we observed that IFITM1 and MX1, and a proinflammatory cytokine IL-6 expression was induced by polyinosinic-polycytidylic acid (poly IC) in hCMEC/D3 human brain microvascular endothelial cells. Poly IC-induced IFITM1 and MX1 expression were decreased by NF-κB inhibitor SN50, IFN regulatory factor 3 inhibitor MRT67307 and human type I IFN neutralizing antibody mixture. These findings suggest that IFITM1 and MX1 may help protect the brain from viruses.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Urara Satake
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ruri Miyashita
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Jiangli Ding
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hiroshi Tanaka
- Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki 036-8560, Japan
| |
Collapse
|
211
|
Equine Mx1 Restricts Influenza A Virus Replication by Targeting at Distinct Site of its Nucleoprotein. Viruses 2019; 11:v11121114. [PMID: 31810278 PMCID: PMC6950424 DOI: 10.3390/v11121114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Interferon-mediated host factors myxovirus (Mx) proteins are key features in regulating influenza A virus (IAV) infections. Viral polymerases are essential for viral replication. The Mx1 protein has been known to interact with viral nucleoprotein (NP) and PB2, resulting in the influence of polymerase activity and providing interspecies restriction. The equine influenza virus has evolved as an independent lineage to influenza viruses from other species. We estimated the differences in antiviral activities between human MxA (huMxA) and equine Mx1 (eqMx1) against a broad range of IAV strains. We found that huMxA has antiviral potential against IAV strains from non-human species, whereas eqMx1 could only inhibit the polymerase activity of non-equine species. Here, we demonstrated that NP is the main target of eqMx1. Subsequently, we found adaptive mutations in the NP of strains A/equine/Jilin/1/1989 (H3N8JL89) and A/chicken/Zhejiang/DTID-ZJU01/2013 (H7N9ZJ13) that confer eqMx1 resistance and sensitivity respectively. A substantial reduction in Mx1 resistance was observed for the two mutations G34S and H52N in H3N8JL89 NP. Thus, eqMx1 is an important dynamic force in IAV nucleoprotein evolution. We, therefore, suggest that the amino acids responsible for Mx1 resistance should be regarded as a robust indicator for the pandemic potential of lately evolving IAVs.
Collapse
|
212
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
213
|
Schwerk J, Soveg FW, Ryan AP, Thomas KR, Hatfield LD, Ozarkar S, Forero A, Kell AM, Roby JA, So L, Hyde JL, Gale M, Daugherty MD, Savan R. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat Immunol 2019; 20:1610-1620. [PMID: 31740798 DOI: 10.1038/s41590-019-0527-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Frank W Soveg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew P Ryan
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kerri R Thomas
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lauren D Hatfield
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Snehal Ozarkar
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adriana Forero
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alison M Kell
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Justin A Roby
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA.,Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jennifer L Hyde
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA. .,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
214
|
Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, Iwasaki A. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Sci Immunol 2019; 4:eaav2026. [PMID: 31732517 PMCID: PMC7189564 DOI: 10.1126/sciimmunol.aav2026] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) infection-associated morbidity and mortality are a key global health care concern, necessitating the identification of new therapies capable of reducing the severity of IAV infections. In this study, we show that the consumption of a low-carbohydrate, high-fat ketogenic diet (KD) protects mice from lethal IAV infection and disease. KD feeding resulted in an expansion of γδ T cells in the lung that improved barrier functions, thereby enhancing antiviral resistance. Expansion of these protective γδ T cells required metabolic adaptation to a ketogenic diet because neither feeding mice a high-fat, high-carbohydrate diet nor providing chemical ketone body substrate that bypasses hepatic ketogenesis protected against infection. Therefore, KD-mediated immune-metabolic integration represents a viable avenue toward preventing or alleviating influenza disease.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ryan D Molony
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Eriko Kudo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
215
|
Human Antiviral Protein MxA Forms Novel Metastable Membraneless Cytoplasmic Condensates Exhibiting Rapid Reversible Tonicity-Driven Phase Transitions. J Virol 2019; 93:JVI.01014-19. [PMID: 31484749 DOI: 10.1128/jvi.01014-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Phase-separated biomolecular condensates of proteins and nucleic acids form functional membrane-less organelles (e.g., stress granules and P-bodies) in the mammalian cell cytoplasm and nucleus. In contrast to the long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA) associated with the endoplasmic reticulum (ER) and Golgi apparatus, we report that MxA formed membraneless metastable (shape-changing) condensates in the cytoplasm. In our studies, we used the same cell lines and methods as those used by previous investigators but concluded that wild-type MxA formed variably sized spherical or irregular bodies, filaments, and even a reticulum distinct from that of ER/Golgi membranes. Moreover, in Huh7 cells, MxA structures associated with a novel cytoplasmic reticular meshwork of intermediate filaments. In live-cell assays, 1,6-hexanediol treatment led to rapid disassembly of green fluorescent protein (GFP)-MxA structures; FRAP revealed a relative stiffness with a mobile fraction of 0.24 ± 0.02 within condensates, consistent with a higher-order MxA network structure. Remarkably, in intact cells, GFP-MxA condensates reversibly disassembled/reassembled within minutes of sequential decrease/increase, respectively, in tonicity of extracellular medium, even in low-salt buffers adjusted only with sucrose. Condensates formed from IFN-α-induced endogenous MxA also displayed tonicity-driven disassembly/reassembly. In vesicular stomatitis virus (VSV)-infected Huh7 cells, the nucleocapsid (N) protein, which participates in forming phase-separated viral structures, associated with spherical GFP-MxA condensates in cells showing an antiviral effect. These observations prompt comparisons with the extensive literature on interactions between viruses and stress granules/P-bodies. Overall, the new data correct a long-standing misinterpretation in the MxA literature and provide evidence for membraneless MxA biomolecular condensates in the uninfected cell cytoplasm.IMPORTANCE There is a long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA), which displays antiviral activity against several RNA and DNA viruses, associates with the endoplasmic reticulum (ER) and Golgi apparatus. We provide data to correct this misinterpretation and further report that MxA forms membraneless metastable (shape-changing) condensates in the cytoplasm consisting of variably sized spherical or irregular bodies, filaments, and even a reticulum. Remarkably, MxA condensates showed the unique property of rapid (within 1 to 3 min) reversible disassembly and reassembly in intact cells exposed sequentially to hypotonic and isotonic conditions. Moreover, GFP-MxA condensates included the VSV nucleocapsid (N) protein, a protein previously shown to form liquid-like condensates. Since intracellular edema and ionic changes are hallmarks of cytopathic effects of a viral infection, the tonicity-driven regulation of MxA condensates may reflect a mechanism for modulation of MxA function during viral infection.
Collapse
|
216
|
Lee S, Ishitsuka A, Noguchi M, Hirohama M, Fujiyasu Y, Petric PP, Schwemmle M, Staeheli P, Nagata K, Kawaguchi A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Sci Immunol 2019; 4:4/40/eaau4643. [DOI: 10.1126/sciimmunol.aau4643] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The respiratory epithelium is exposed to the environment and initiates inflammatory responses to exclude pathogens. Influenza A virus (IAV) infection triggers inflammatory responses in the respiratory mucosa, but the mechanisms of inflammasome activation are poorly understood. We identified MxA as a functional inflammasome sensor in respiratory epithelial cells that recognizes IAV nucleoprotein and triggers the formation of ASC (apoptosis-associated speck-like protein containing a CARD) specks via interaction of its GTPase domain with the PYD domain of ASC. ASC specks were present in bronchiolar epithelial cells of IAV-infected MxA-transgenic mice, which correlated with early IL-1β production and early recruitment of granulocytes in the lungs of infected mice. Collectively, these results demonstrate that MxA contributes to IAV resistance by triggering a rapid inflammatory response in infected respiratory epithelial cells.
Collapse
|
217
|
Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun 2019; 12:4-20. [PMID: 31610541 PMCID: PMC6959104 DOI: 10.1159/000503030] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Molecular Virology Laboratory, Leiden, The Netherlands,
| |
Collapse
|
218
|
Abstract
The dynamin superfamily comprises a growing assortment of multi-domain GTPases, found from bacteria to man, that are distinguished from typical GTPases of the Ras, Rab and G-protein families by their modular structure (Figure 1), relatively large size (>70 kDa), and low affinity for guanine nucleotides. In addition, they display a conserved propensity to self-assemble into polymeric arrays, the dynamics of which are regulated by an autonomous, assembly-stimulated GTPase activity.
Collapse
|
219
|
Colón-Thillet R, Hsieh E, Graf L, McLaughlin RN, Young JM, Kochs G, Emerman M, Malik HS. Combinatorial mutagenesis of rapidly evolving residues yields super-restrictor antiviral proteins. PLoS Biol 2019; 17:e3000181. [PMID: 31574080 PMCID: PMC6772013 DOI: 10.1371/journal.pbio.3000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022] Open
Abstract
Antagonistic interactions drive host–virus evolutionary arms races, which often manifest as recurrent amino acid changes (i.e., positive selection) at their protein–protein interaction interfaces. Here, we investigated whether combinatorial mutagenesis of positions under positive selection in a host antiviral protein could enhance its restrictive properties. We tested approximately 700 variants of human MxA, generated by combinatorial mutagenesis, for their ability to restrict Thogotovirus (THOV). We identified MxA super-restrictors with increased binding to the THOV nucleoprotein (NP) target protein and 10-fold higher anti-THOV restriction relative to wild-type human MxA, the most potent naturally occurring anti-THOV restrictor identified. Our findings reveal a means to elicit super-restrictor antiviral proteins by leveraging signatures of positive selection. Although some MxA super-restrictors of THOV were impaired in their restriction of H5N1 influenza A virus (IAV), other super-restrictor variants increased THOV restriction without impairment of IAV restriction. Thus, broadly acting antiviral proteins such as MxA mitigate breadth-versus-specificity trade-offs that could otherwise constrain their adaptive landscape. Antagonistic interactions drive host–virus evolutionary arms-races, often manifesting as recurrent amino acid changes at their protein–protein interaction interfaces. This study shows that evolution-guided combinatorial mutagenesis of a host antiviral protein enhances its restrictive properties, revealing constraints that shape breadth-versus-specificity trade-offs in antiviral proteins.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Emily Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Laura Graf
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Richard N. McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Georg Kochs
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
220
|
Kim MS, Kim KH. Effect of CRISPR/Cas9-mediated knockout of either Mx1 or ISG15 gene in EPC cells on resistance against VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1041-1046. [PMID: 31465870 DOI: 10.1016/j.fsi.2019.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Although the type I interferon-mediated increase of Mx1 and ISG15 gene expression in Epithelioma papulosum cyprini (EPC) cells has been reported, the antiviral role of Mx1 and ISG15 in EPC cells has not been investigated. In this study, to know the anti-viral hemorrhagic septicemia virus (VHSV) role of Mx1 and ISG15 of EPC cells, either Mx1 or ISG15 gene was knocked-out using a CRISPR/Cas9 system, and the progression of cytopathic effects (CPE) and viral growth were analyzed. Mx1 gene and ISG15 gene knockout EPC cells were successfully produced via CRISPR/Cas9 coupled with a single-cell cloning. Through the sequence analysis, one clone showing two heterozygous indel patterns in Mx1 gene and a clone showing three heterozygous indel patterns in ISG15 gene were selected for further analyses. Mx1 knockout EPC cells did not show any differences in VHSV-mediated CPE progression, even when pre-treated with polyinosinic:polycytidylic acid (poly I:C), compared to control EPC cells. These results suggest that Mx1 in EPC cells may be unfunctional to cytoplasmic RNA viruses. In contrast to Mx1, ISG15 knockout cells showed clearly hampered anti-VHSV activity even when pre-treated with poly I:C, indicating that ISG15 plays an important role in type I interferon-mediated anti-viral activity in EPC cells, which allowed VHSV to replicate more efficiently in ISG15 knockout cells than Mx1 knockout and control cells.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
221
|
Pathogenic difference of respiratory syncytial virus infection in cotton rats of different ages. Microb Pathog 2019; 137:103749. [PMID: 31521801 DOI: 10.1016/j.micpath.2019.103749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/31/2023]
Abstract
Human respiratory syncytial virus (RSV) is the most common viral pathogen of lower respiratory tract infection worldwide. The virus selectively infects the respiratory epithelium, and causes diseases of variable severity in infants and the elderly. However, the differences in pathogenesis in the age groups remain poorly studied. Age is a major determinant of RSV disease, and the most severe morbidity and mortality occur in the infants and the elderly, because of the immature immunity in infants and declining immunity in old age. The cotton rat is a good model of RSV infection as it is naturally susceptible to RSV. In this study, we established an infant/adult/elderly RSV infection model in 3-week, 8-week and 30-week-old cotton rats and infected them with equal dose of RSV. This model exhibited airway neutrophils infiltration. In the 3-week-old group, higher viral load was observed in the lungs and noses, may due to low IFN-α/Mx2 levels. In contrast, the 8-week-old group had adequate IFN-α/Mx2 but exhibited the most obvious pulmonary inflammation and peribronchiolitis. Interestingly, the most severe pathology and delayed viral clearance in the lungs were observed in the 30-week-old group, may related to the increase of mucus induced by TNF-α and the lower antiviral effect of IFN-α. These results clearly revealed that an age-dependent severity of RSV disease and antiviral defense in the cotton rats, which may provide an effective model for personalized vaccine research and specific treatment strategies for different RSV age groups.
Collapse
|
222
|
Ford MGJ, Chappie JS. The structural biology of the dynamin-related proteins: New insights into a diverse, multitalented family. Traffic 2019; 20:717-740. [PMID: 31298797 DOI: 10.1111/tra.12676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Dynamin-related proteins are multidomain, mechanochemical GTPases that self-assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X-ray crystallography and cryo-electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.
Collapse
Affiliation(s)
- Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
223
|
Jonsdottir HR, Marti S, Geerts D, Rodriguez R, Thiel V, Dijkman R. Establishment of Primary Transgenic Human Airway Epithelial Cell Cultures to Study Respiratory Virus-Host Interactions. Viruses 2019; 11:v11080747. [PMID: 31412613 PMCID: PMC6723040 DOI: 10.3390/v11080747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Primary human airway epithelial cell (hAEC) cultures represent a universal platform to propagate respiratory viruses and characterize their host interactions in authentic target cells. To further elucidate specific interactions between human respiratory viruses and important host factors in the airway epithelium, it is important to make hAEC cultures amenable to genetic modification. However, the short and finite lifespan of primary cells in cell culture creates a bottleneck for the genetic modification of these cultures. In the current study, we show that the incorporation of the Rho-associated protein kinase (ROCK) inhibitor (Y-27632) during cell propagation extends the life span of primary human cells in vitro and thereby facilitates the incorporation of lentivirus-based expression systems. Using fluorescent reporters for fluorescence-activated cell sorting (FACS)-based sorting, we generated homogenously fluorescent hAEC cultures that differentiate normally after lentiviral transduction. As a proof-of-principle, we demonstrate that host gene expression can be modulated post-differentiation via inducible short hairpin (sh)RNA-mediated knockdown. Importantly, functional characterization of these transgenic hAEC cultures with exogenous poly (I:C), as a proxy for virus infection, demonstrates that such modifications do not influence the host innate immune response. Moreover, the propagation kinetics of both human coronavirus 229E (HCoV-229E) and human respiratory syncytial virus (hRSV) were not affected. Combined, these results validate our newly established protocol for the genetic modification of hAEC cultures, thereby unlocking a unique potential for detailed molecular characterization of virus–host interactions in human respiratory epithelium.
Collapse
Affiliation(s)
- Hulda R Jonsdottir
- Institute of Virology and Immunology, 3012 Bern & 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Sabrina Marti
- Institute of Virology and Immunology, 3012 Bern & 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Regulo Rodriguez
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern & 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology, 3012 Bern & 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Institute for Infectious Diseases, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
224
|
Hölzer M, Schoen A, Wulle J, Müller MA, Drosten C, Marz M, Weber F. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience 2019; 19:647-661. [PMID: 31465999 PMCID: PMC6718828 DOI: 10.1016/j.isci.2019.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/10/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Antiviral interferons (IFN-alpha/beta) are possibly responsible for the high tolerance of bats to zoonotic viruses. Previous studies focused on the IFN system of megabats (suborder Yinpterochiroptera). We present statistically robust RNA sequencing (RNA-seq) data on transcriptomes of cells from the “microbat” Myotis daubentonii (suborder Yangochiroptera) responding at 6 and 24 h to either an IFN-inducing virus or treatment with IFN. Our data reveal genes triggered only by virus, either in both humans and Myotis (CCL4, IFNL3, CH25H), or exclusively in Myotis (STEAP4). Myotis cells also express a series of conserved IFN-stimulated genes (ISGs) and an unusually high paralog number of the antiviral ISG BST2 (tetherin) but lack several ISGs that were described for megabats (EMC2, FILIP1, IL17RC, OTOGL, SLC24A1). Also, in contrast to megabats, we detected neither different IFN-alpha subtypes nor an unusually high baseline expression of IFNs. Thus, Yangochiroptera microbats, represented by Myotis, may possess an IFN system with distinctive features. Virus- and IFN-responsive transcriptomes of the microbat Myotis daubentonii CCL4, IFNL3, CH25H, STEAP4 are IFNB-like genes triggered by virus only Microbats encode more paralogs of BST2 (tetherin) than any other mammal Clear differences between the IFN systems of microbats and megabats
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Julia Wulle
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Marcel A Müller
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany.
| |
Collapse
|
225
|
Smaga SS, Xu C, Summers BJ, Digianantonio KM, Perilla JR, Xiong Y. MxB Restricts HIV-1 by Targeting the Tri-hexamer Interface of the Viral Capsid. Structure 2019; 27:1234-1245.e5. [PMID: 31155311 PMCID: PMC7183857 DOI: 10.1016/j.str.2019.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
The human antiviral protein MxB is a restriction factor that fights HIV infection. Previous experiments have demonstrated that MxB targets the HIV capsid, a protein shell that protects the viral genome. To make the conical-shaped capsid, HIV CA proteins are organized into a lattice composed of hexamer and pentamer building blocks, providing many interfaces for host proteins to recognize. Through extensive biochemical and biophysical studies and molecular dynamics simulations, we show that MxB is targeting the HIV capsid by recognizing the region created at the intersection of three CA hexamers. We are further able to map this interaction to a few CA residues, located in a negatively charged well at the interface between the three CA hexamers. This work provides detailed residue-level mapping of the targeted capsid interface and how MxB interacts. This information could inspire the development of capsid-targeting therapies for HIV.
Collapse
Affiliation(s)
- Sarah Sierra Smaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Brady James Summers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
226
|
Kalia R, Frost A. Open and cut: allosteric motion and membrane fission by dynamin superfamily proteins. Mol Biol Cell 2019; 30:2097-2104. [PMID: 31365329 PMCID: PMC6743466 DOI: 10.1091/mbc.e16-10-0709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cells have evolved diverse protein-based machinery to reshape, cut, or fuse their membrane-delimited compartments. Dynamin superfamily proteins are principal components of this machinery and use their ability to hydrolyze GTP and to polymerize into helices and rings to achieve these goals. Nucleotide-binding, hydrolysis, and exchange reactions drive significant conformational changes across the dynamin family, and these changes alter the shape and stability of supramolecular dynamin oligomers, as well as the ability of dynamins to bind receptors and membranes. Mutations that interfere with the conformational repertoire of these enzymes, and hence with membrane fission, exist in several inherited human diseases. Here, we discuss insights from new x-ray crystal structures and cryo-EM reconstructions that have enabled us to infer some of the allosteric dynamics for these proteins. Together, these studies help us to understand how dynamins perform mechanical work, as well as how specific mutants of dynamin family proteins exhibit pathogenic properties.
Collapse
Affiliation(s)
- Raghav Kalia
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
227
|
Abstract
In the absence of an intact interferon (IFN) response, mammals may be susceptible to lethal viral infection. IFNs are secreted cytokines that activate a signal transduction cascade leading to the induction of hundreds of interferon-stimulated genes (ISGs). Remarkably, approximately 10% of the genes in the human genome have the potential to be regulated by IFNs. What do all of these genes do? It is a complex question without a simple answer. From decades of research, we know that many of the protein products encoded by these ISGs work alone or in concert to achieve one or more cellular outcomes, including antiviral defense, antiproliferative activities, and stimulation of adaptive immunity. The focus of this review is the antiviral activities of the IFN/ISG system. This includes general paradigms of ISG function, supported by specific examples in the literature, as well as methodologies to identify and characterize ISG function.
Collapse
Affiliation(s)
- John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
228
|
Wang H, Guan Q, Nan Y, Ma Q, Zhong Y. Overexpression of human MX2 gene suppresses cell proliferation, migration, and invasion via ERK/P38/NF-κB pathway in glioblastoma cells. J Cell Biochem 2019; 120:18762-18770. [PMID: 31265172 DOI: 10.1002/jcb.29189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022]
Abstract
In human, there are two myxovirus resistance genes-MX1 and MX2, which respectively encode MXA and MXB protein. For MXB, it was traditionally deemed to work in the progression of cell cycle and adjustment of nuclear import. Thus, we speculated that it might play important roles in tumor progression. The purpose of this study was to preliminarily explore the underlying functions and mechanism of the MX2 gene on glioblastoma multiforme. Quantitative reverse transcription polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), and transwell experiments were to detect the relative MX2 mRNA level and its biological functions on glioma cells, respectively. The data displayed that MX2 was obviously downregulated both in glioblastoma (GBM) and GBM cell lines, meanwhile, its overexpression could markedly reduce cell proliferation, migration, and invasion of glioma cells, implying that it was related with glioblastoma progression. In addition, the overall survival of patient with glioblastoma had a negative correlation with the MX2 expression. Then, Western blot indicated the potential mechanism of MX2 in glioblastoma. We found that MX2 overexpression could decrease the relative levels of phosphorylated-ERK1/2 (p-ERK1/2), p-p38, and nuclear factor-κB (NF-κB), while have no effects on extracellular signal-regulated kinase (ERK), p38, and lamin B1. Moreover, the influences of MX2 overexpression on cell proliferation, migration, and invasion could be weakened by the three inhibitors (PD98059, SB203580, and (pyridin-2-ylmethyl) dithiocarbamate [PDTC]). These results implied that MX2 might suppress the proliferation and metastasis of glioma cells by manipulating the ERK/P38/NF-κB signaling pathway. In conclusion, MX2 is potential to be a new marker used for glioblastoma prognosis or a new target for glioblastoma treatments.
Collapse
Affiliation(s)
- Huanyu Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiang Guan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanfeng Ma
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Zhong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
229
|
Wang T, Liu F, Tian G, Secombes CJ, Wang T. Lineage/species-specific expansion of the Mx gene family in teleosts: Differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2019; 90:413-430. [PMID: 31063803 DOI: 10.1016/j.fsi.2019.04.303] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Myxovirus resistance (Mx) proteins are interferon (IFN)-inducible Dynamin-like GTPases, which play an important role in antiviral immunity. Three Mx genes (Mx1-3) have been cloned previously in rainbow trout. In this study, an additional six Mx genes were cloned that reside in four chromosomal loci. Further bioinformatics analysis suggests the presence of three teleost Mx groups (TMG) each with a characteristic gene organisation. Salmonid Mx belong to TMG1 and TMG2. The increased salmonid Mx gene copies are due mainly to local gene duplications that happened before and after salmonid speciation, in a lineage/species specific manner. Trout Mx molecules have been diversified in the loop 1 and 4 regions, and in the nuclear localisation signal in loop 4. The trout Mx genes were shown to be differentially expressed in tissues, with high levels of expression of TMG1 (Mx1-4) in blood and TMG2 (Mx5-9) in intestine. The expression of the majority of the trout Mx genes was induced by poly IC in vitro and in vivo, and increased during development. In addition, induction by antiviral (IFN) and proinflammatory cytokines was studied, and showed that type I IFN, IFNγ and IL-1β can induce Mx gene expression in an Mx gene-, cytokine- and cell line-dependent manner. These results show that salmonids possess a large number Mx genes as well as complex regulatory pathways, which may contribute to their success in an anadromous life style.
Collapse
Affiliation(s)
- Tingyu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
230
|
Ciminski K, Pulvermüller J, Adam J, Schwemmle M. Human MxA is a potent interspecies barrier for the novel bat-derived influenza A-like virus H18N11. Emerg Microbes Infect 2019; 8:556-563. [PMID: 30945621 PMCID: PMC6455144 DOI: 10.1080/22221751.2019.1599301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The human innate immune factor MxA represents an effective interspecies barrier for zoonotic influenza A viruses (IAVs) of animal origin. Accordingly, human but not avian IAVs efficiently escape the antiviral activity of MxA due to adaptive mutations in their viral nucleoprotein. Partial MxA resistance can be acquired in intermediate hosts such as swine, which possess an antivirally active Mx1 protein. Intriguingly, Mx1 of the bat Carollia perspicillata, a host of the recently discovered bat influenza A-like virus H18N11, is antivirally active against avian IAVs, thus raising the question whether H18N11 has undergone a preadaptation to human MxA. Here, by utilizing a chimeric bat influenza virus, PR8-H18N11, we demonstrate that MxA efficiently blocks viral replication in vitro as well as in MxA transgenic mice. Nevertheless, the H18N11 nucleoprotein exhibits partial MxA resistance in a polymerase reconstitution assay, suggesting that a certain degree of MxA preadaptation occurred. Together, our data indicate a currently reduced risk for H18N11 to overcome the human restriction factor MxA. Further adaptive mutations in NP are required to facilitate full MxA escape.
Collapse
Affiliation(s)
- Kevin Ciminski
- a Institute of Virology, Medical Center - University of Freiburg , Freiburg , Germany.,b Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Johanna Pulvermüller
- a Institute of Virology, Medical Center - University of Freiburg , Freiburg , Germany.,b Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Julia Adam
- a Institute of Virology, Medical Center - University of Freiburg , Freiburg , Germany.,b Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Martin Schwemmle
- a Institute of Virology, Medical Center - University of Freiburg , Freiburg , Germany.,b Faculty of Medicine , University of Freiburg , Freiburg , Germany
| |
Collapse
|
231
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
232
|
Peroxisome Proliferator-Activated Receptor Gamma (PPAR) Suppresses Inflammation and Bacterial Clearance during Influenza-Bacterial Super-Infection. Viruses 2019; 11:v11060505. [PMID: 31159430 PMCID: PMC6630660 DOI: 10.3390/v11060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.
Collapse
|
233
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
234
|
Resa-Infante P, Bonet J, Thiele S, Alawi M, Stanelle-Bertram S, Tuku B, Beck S, Oliva B, Gabriel G. Alternative interaction sites in the influenza A virus nucleoprotein mediate viral escape from the importin-α7 mediated nuclear import pathway. FEBS J 2019; 286:3374-3388. [PMID: 31044563 DOI: 10.1111/febs.14868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Influenza A viruses are able to adapt to restrictive conditions due to their high mutation rates. Importin-α7 is a component of the nuclear import machinery required for avian-mammalian adaptation and replicative fitness in human cells. Here, we elucidate the mechanisms by which influenza A viruses may escape replicative restriction in the absence of importin-α7. To address this question, we assessed viral evolution in mice lacking the importin-α7 gene. We show that three mutations in particular occur with high frequency in the viral nucleoprotein (NP) protein (G102R, M105K and D375N) in a specific structural area upon in vivo adaptation. Moreover, our findings suggest that the adaptive NP mutations mediate viral escape from importin-α7 requirement likely due to the utilization of alternative interaction sites in NP beyond the classical nuclear localization signal. However, viral escape from importin-α7 by mutations in NP is, at least in part, associated with reduced viral replication highlighting the crucial contribution of importin-α7 to replicative fitness in human cells.
Collapse
Affiliation(s)
- Patricia Resa-Infante
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jaume Bonet
- Structural Bioinformatics Lab (GRIB), Barcelona Research Park of Biomedicine (PRBB), Universitat Pompeu Fabra, Barcelona, Spain
| | - Swantje Thiele
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Berfin Tuku
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sebastian Beck
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB), Barcelona Research Park of Biomedicine (PRBB), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute of Virology, University of Veterinary Medicine Hannover, Hamburg, Germany
| |
Collapse
|
235
|
Efficient reduction of synthetic mRNA induced immune activation by simultaneous delivery of B18R encoding mRNA. J Biol Eng 2019; 13:40. [PMID: 31168319 PMCID: PMC6509845 DOI: 10.1186/s13036-019-0172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022] Open
Abstract
The application of synthetic modified messenger RNA (mRNA) is a promising approach for the treatment of a variety of diseases and vaccination. In the past few years, different modifications of synthetic mRNA were applied to render the mRNA more stable and less immunogenic. However, the repeated application of synthetic mRNA still requires the suppression of immune activation to avoid cell death and to allow a sufficient production of exogenous proteins. Thus, the addition of type I interferon (IFN) inhibiting recombinant protein B18R is often required to avoid IFN response. In this study, the ability of B18R encoding mRNA to prevent the immune response of cells to the delivered synthetic mRNA was analyzed. The co-transfection of enhanced green fluorescent protein (eGFP) mRNA transfected fibroblasts with B18R encoding mRNA over 7-days resulted in comparable cell viability and eGFP protein expression as in the cells transfected with eGFP mRNA and incubated with B18R protein. Using qRT-PCR, significantly reduced expression of interferon-stimulated gene Mx1 was detected in the cells transfected with B18R mRNA and stimulated with IFNβ compared to the cells without B18R mRNA transfection. Thereby, it was demonstrated that the co-transfection of synthetic mRNA transfected cells with B18R encoding mRNA can reduce the IFN response-related cell death and thus, improve the protein expression.
Collapse
|
236
|
Braun E, Hotter D, Koepke L, Zech F, Groß R, Sparrer KM, Müller JA, Pfaller CK, Heusinger E, Wombacher R, Sutter K, Dittmer U, Winkler M, Simmons G, Jakobsen MR, Conzelmann KK, Pöhlmann S, Münch J, Fackler OT, Kirchhoff F, Sauter D. Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Rep 2019; 27:2092-2104.e10. [DOI: 10.1016/j.celrep.2019.04.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
|
237
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
238
|
Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019; 50:907-923. [PMID: 30995506 PMCID: PMC6839410 DOI: 10.1016/j.immuni.2019.03.025] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) (IFN-α, IFN-β) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology & Immunology, and Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
239
|
Dam Van P, Desmecht D, Garigliany MM, Bui Tran Anh D, Van Laere AS. Anti-Influenza A Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. J Interferon Cytokine Res 2019; 39:274-282. [PMID: 30939061 DOI: 10.1089/jir.2018.0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I/III interferons provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced, Mx proteins of some species appear as key components of defense against influenza A viruses. It is expected that such an antiviral protein must display a platform dedicated to the recognition of said viruses. In an attempt to identify such platform in human MxA, an evolution-guided approach capitalizing on the antagonistic arms race between MxA and its viral targets and the genomic signature it left on primate genomes revealed that the surface-exposed so-called "loop L4", which protrudes from the compact structure of the MxA stalk, is a hotspot of recurrent positive selection. Since MxA is archetypic of Mx1 proteins in general, we reasoned that the L4 loop also functions as a recognition platform for influenza viruses in the Mx1 proteins of other species that had been exposed to the virus for ever. In this study, the anti-influenza activity of 5 distinct mammalian Mx1 proteins was measured by comparing the number of viral nucleoprotein-positive cells 7 h after infection in a sample of 100,000 cells expected to contain both Mx1-positive and Mx1-negative cell subpopulations. The systematic depletion (P < 0.001) of virus nucleoprotein-positive cells among equine, bubaline, porcine, and bovine Mx1-expressing cell populations compared with Mx-negative cells suggests a strong anti-influenza A activity. Looking for common anti-influenza signature elements in the sequence of these Mx proteins, we found that an aromatic residue at positions 561 or 562 in the L4 loop seems critical for the anti-influenza function and/or specificity of mammalian Mx1.
Collapse
Affiliation(s)
- Phai Dam Van
- 1 Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.,2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Daniel Desmecht
- 2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | | | - Dao Bui Tran Anh
- 3 Department of Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Anne-Sophie Van Laere
- 2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
240
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
241
|
Membrane insertion and secretion of the Engrailed-2 (EN2) transcription factor by prostate cancer cells may induce antiviral activity in the stroma. Sci Rep 2019; 9:5138. [PMID: 30914795 PMCID: PMC6435720 DOI: 10.1038/s41598-019-41678-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/12/2019] [Indexed: 01/17/2023] Open
Abstract
Engrailed-2 (EN2) is a homeodomain-containing transcription factor that has roles in boundary formation and neural guidance in early development, but which is also expressed in a range of cancers. In addition to transcriptional regulation, it is secreted by cells and taken up by others through a mechanism that is yet to be fully elucidated. In this study, the distribution of EN2 protein in cells was evaluated using immunofluorescence with a set of antibodies raised against overlapping epitopes across the protein, and through the use of an EN2-GFP construct. MX2 expression in primary prostate tumors was evaluated using immunohistochemistry. We showed that EN2 protein is present in the cell membrane and within microvesicles that can be secreted from the cell and taken up by others. When taken up by normal cells from the stroma EN2 induces the expression of MX2 (MxB), a protein that has a key role in the innate immune response to viruses. Our findings indicate that EN2 secretion by tumors may be a means of preventing viral-mediated immune invasion of tissue immediately adjacent to the tumor.
Collapse
|
242
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
243
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
244
|
Jimah JR, Hinshaw JE. Structural Insights into the Mechanism of Dynamin Superfamily Proteins. Trends Cell Biol 2019; 29:257-273. [DOI: 10.1016/j.tcb.2018.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
|
245
|
Jung HE, Oh JE, Lee HK. Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses 2019; 11:v11020109. [PMID: 30696001 PMCID: PMC6409533 DOI: 10.3390/v11020109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Dynamin-like GTPase myxovirus resistance protein 1 (Mx1) is an intracellular anti-viral protein following the activation of type I and type III interferon signaling. Mx1 inhibits viral replication by blocking the transcription of viral RNA, and a deficiency in this protein enhances susceptibility to influenza infection. Thus, Mx1 could be another efficient target of anti-influenza therapy. To test our hypothesis, we fused poly-arginine cell-penetrating peptides to the C terminus of Mx1 (Mx1-9R) and examined the anti-viral activity of Mx1-9R in vitro and in vivo. Madin-Darby Canine Kidney epithelial cells internalized the Mx1-9R within 12 h. Pre-exposure Mx1-9R treatment inhibited viral replication and viral RNA expression in infected cells. Further, intranasal administration of Mx1-9R improved the survival of mice infected with the PR8 influenza viral strain. These data support the consideration of Mx1-9R as a novel therapeutic agent against mucosal influenza virus infection.
Collapse
Affiliation(s)
- Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
246
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
247
|
Jiao J, Zhang X, Wang M, Zhou C, Yan Q, Tan Z. Linkages between Epithelial Microbiota and Host Transcriptome in the Ileum during High-Grain Challenges: Implications for Gut Homeostasis in Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:551-561. [PMID: 30520636 DOI: 10.1021/acs.jafc.8b05591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-grain (HG) diet can result in ruminal subacute acidosis, which is detrimental to gut health and can lead to decreased productivity. This study investigated the ileal epithelial microbiota and its relationship with host epithelial function in goats fed a HG diet (concentrate/hay, 90:10) and a control diet (concentrate/hay, 55:45), aiming to elucidate the mechanisms involved in ileal adaptation to subacute acidosis. The HG challenge increased the ileal volatile fatty acid concentration ( p = 0.030) and altered the ileal epithelial microbiota by increasing (FDR < 0.05) relative abundances of active carbohydrate and protein degraders Synergistetes, Prevotella, Fibrobacter, Clostridium, Treponema, and unclassified Ruminococcaceae by 20.1-, 6.3-, 16.8-, 8.5-, 19.9-, and 7.1-fold, respectively. However, the HG diet tended to reduce (FDR < 0.10) the relative abundance of Candidatus Arthromitus (38.8 ± 36.1 versus 2.1 ± 3.1). Microbial functional potentials inferred using PICRUSt indicated that the HG challenge elevated abundances of pathways associated with metabolism of amino acid, glycan, cofactors, and vitamins, whereras it decreased pathways associated with signal transduction, xenobiotic biodegradation, and metabolism. Additionally, in the ileal epithelium of HG goats, transcriptome analysis identified the increment (FDR < 0.10) of candidate genes involved in metabolism of carbohydrates, lipids, proteins, vitamins, and the proinflammatory cytokine pathway, while downregulating genes encoding antimicrobials and complements (FDR < 0.05). Collectively, the HG challenge shifted the structure and functional potentials of the ileal microbial community and affected the host responses in the ileum of goats toward increased metabolic activities of macro- and micronutrients, together with an increased risk of gut inflammation.
Collapse
Affiliation(s)
- Jinzhen Jiao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| | - Xiaoli Zhang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
- Graduate University of Chinese Academy of Sciences , Changsha , Beijing 100049 , People's Republic of China
| | - Min Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central , Ministry of Agriculture , Changsha , Hunan 410125 , P. R. China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
248
|
Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein. J Virol 2019; 93:JVI.00997-18. [PMID: 30355693 DOI: 10.1128/jvi.00997-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To cross the human species barrier, influenza A viruses (IAV) of avian origin have to overcome the interferon-induced host restriction factor MxA by acquiring distinct mutations in their nucleoprotein (NP). We recently demonstrated that North American classical swine IAV are able to partially escape MxA restriction. Here we investigated whether the Eurasian avian-like swine IAV lineage currently circulating in European swine would likewise evade restriction by human MxA. We found that the NP of the influenza virus isolate A/Swine/Belzig/2/2001 (Belzig-NP) exhibits increased MxA escape, similar in extent to that with human IAV NPs. Mutational analysis revealed that the MxA escape mutations in Belzig-NP differ from the known MxA resistance cluster of the North American classical swine lineage and human-derived IAV NPs. A mouse-adapted avian IAV of the H7N7 subtype encoding Belzig-NP showed significantly greater viral growth in both MxA-expressing cells and MxA-transgenic mice than control viruses lacking the MxA escape mutations. Similarly, the growth of the recombinant Belzig virus was only marginally affected in MxA-expressing cells and MxA-transgenic mice, in contrast to that of Belzig mutant viruses lacking MxA escape mutations in the NP. Phylogenetic analysis of the Eurasian avian-like swine IAV revealed that the NP amino acids required for MxA escape were acquired successively and were maintained after their introduction. Our results suggest that the circulation of IAV in the swine population can result in the selection of NP variants with a high degree of MxA resistance, thereby increasing the zoonotic potential of these viruses.
IMPORTANCE The human MxA protein efficiently blocks the replication of IAV from nonhuman species. In rare cases, however, these IAV overcome the species barrier and become pandemic. All known pandemic viruses have acquired and maintained MxA escape mutations in the viral NP and thus are not efficiently controlled by MxA. Intriguingly, partial MxA resistance can also be acquired in other hosts that express antivirally active Mx proteins, such as swine. To perform a risk assessment of IAV circulating in the European swine population, we analyzed the degree of MxA resistance of Eurasian avian-like swine IAV. Our data demonstrate that these viruses carry formerly undescribed Mx resistance mutations in the NP that mediate efficient escape from human MxA. We conclude that Eurasian avian-like swine IAV possess substantial zoonotic potential.
Collapse
|
249
|
Hu Y, Wu X, Feng W, Li F, Wang Z, Qi J, Du Y. Cellular protein profiles altered by PRRSV infection of porcine monocytes-derived dendritic cells. Vet Microbiol 2019; 228:134-142. [DOI: 10.1016/j.vetmic.2018.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/24/2023]
|
250
|
Robertsen B, Greiner-Tollersrud L, Jørgensen LG. Analysis of the Atlantic salmon genome reveals a cluster of Mx genes that respond more strongly to IFN gamma than to type I IFN. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:80-89. [PMID: 30195710 DOI: 10.1016/j.dci.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Mx proteins are antiviral GTPases, which are induced by type I IFN and virus infection. Analysis of the Atlantic salmon genome revealed the presence of 9 Mx genes localized to three chromosomes. A cluster of three Mx genes (SsaMx1 - SsaMx3), which includes previously cloned Mx genes, is present on chromosome (Chr) 12. A cluster of five Mx genes (SsaMx4-SsaMx8) is present on Chr25 while one Mx gene (SsaMx9) is present on Chr9. Phylogenetic and gene synteny analyses showed that SsaMx1-SsaMx3 are most closely related to the main group of teleost Mx proteins. In contrast, SsaMx 4-SsaMx9 formed a separate group together with zebrafish MxD and MxG and eel MxB. The Mx cluster in Chr25 showed gene synteny similar to a Mx gene cluster in the gar genome. Expression of Mx genes in cell lines stimulated with recombinant IFNs showed that Mx genes in Chr12 responded more strongly to type I IFN than to type II IFN (IFN gamma) whilst Mx genes in Chr25 responded more strongly to IFN gamma than to type I IFNs. SsaMx9 showed no response to the IFNs.
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Lars Gaute Jørgensen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|