201
|
Trachootham D, Lu W, Ogasawara MA, Valle NRD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008; 10:1343-74. [PMID: 18522489 PMCID: PMC2932530 DOI: 10.1089/ars.2007.1957] [Citation(s) in RCA: 1282] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases.
Collapse
Affiliation(s)
- Dunyaporn Trachootham
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum-thani, Thailand
| | - Weiqin Lu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Marcia A. Ogasawara
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Nilsa Rivera-Del Valle
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Peng Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
202
|
Shi X, Han W, Yamamoto H, Omelchenko I, Nuttall A. Nitric oxide and mitochondrial status in noise-induced hearing loss. Free Radic Res 2008; 41:1313-25. [PMID: 17963121 DOI: 10.1080/10715760701687117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
203
|
Abstract
Mitochondria are sources of energy production through their role in producing adenosine triphosphate for cell metabolism. Defective mitochondrial biogenesis and function play relevant roles in the pathophysiology of relevant diseases, including obesity, diabetes mellitus, myopathies, and neurodegenerative diseases. Their function is the product of synthesis of macromolecules within the mitochondria and import of proteins and lipids synthesized outside the organelles. Both are required for mitochondrial proliferation and may also facilitate the growth of preexisting mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. Nitric oxide (NO) appears to be a novel modulator of mitochondrial biogenesis. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, low-grade increases of NO stimulate mitochondrial biogenesis in diverse cell types. Here, we suggest that some types of nutrients, including specific mixtures of amino acids, may improve mitochondrial biogenesis and energy production in energy-defective conditions by increasing endothelial NO synthase expression.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
204
|
|
205
|
Abstract
The mycotoxin citrinin (CTN) is a natural contaminant in foodstuffs and animal feeds, and exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. However, its precise regulatory mechanisms of action, particularly in stem cells and embryos, are currently unclear. Recent studies show that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments with the embryonic stem cell line, ESC-B5, disclose that CTN induces apoptosis via several mechanisms, including ROS generation, increased cytoplasmic free calcium levels, intracellular nitric oxide production, enhanced Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, activation of caspase-9 and caspase-3, and p21-activated protein kinase 2 and c-Jun N-terminal protein kinase activation. Additional studies show that CTN promotes cell death via inactivation of the HSP90/multi-chaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes such as the Ras-->ERK signal transduction pathway. On the basis of these findings, we propose a model for CTN-induced cell injury signalling cascades in embryonic stem cells and blastocysts.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
206
|
Calderón-Cortés E, Cortés-Rojo C, Clemente-Guerrero M, Manzo-Avalos S, Villalobos-Molina R, Boldogh I, Saavedra-Molina A. Changes in mitochondrial functionality and calcium uptake in hypertensive rats as a function of age. Mitochondrion 2008; 8:262-72. [PMID: 18541459 DOI: 10.1016/j.mito.2008.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 03/13/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
Abstract
We studied whether mitochondrial functions and Ca2+ metabolism were altered in Wistar Kyoto normotensive (WKY) and spontaneous hypertensive rats (SHR). Ca2+ uptake was decreased in SHR compared to WKY rats. Accumulation of Ca2+ was more efficient in WKY than in SHR rats. mDeltaPsi was lower in SHR compared to WKY rats. Basal complex IV activity was higher in SHR than WKY rats, whereas basal L-citrulline production, an indicator of nitric oxide synthesis, was decreased in SHR and dependent on Ca2+ concentration (p<0.05). Impact of Ca2+ was counteracted by EGTA. These data show an age-dependent decreased mitochondrial functions in brain mitochondria during hypertension.
Collapse
Affiliation(s)
- E Calderón-Cortés
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3. C.U., Morelia, Mich. 58030, Mexico
| | | | | | | | | | | | | |
Collapse
|
207
|
Levesque MC, Ghosh DK, Beasley BE, Chen Y, Volkheimer AD, O'Loughlin CW, Gockerman JP, Moore JO, Weinberg JB. CLL cell apoptosis induced by nitric oxide synthase inhibitors: correlation with lipid solubility and NOS1 dissociation constant. Leuk Res 2008; 32:1061-70. [PMID: 18180035 DOI: 10.1016/j.leukres.2007.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 09/10/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Nitric oxide synthase (NOS) inhibitors induce chronic lymphocytic leukemia (CLL) cell apoptosis and have potential as CLL therapeutics. We determined the half-maximal concentration (ED(50)) of 22 NOS inhibitors that induced CLL cell death in vitro. There was a direct correlation of the NOS1 (but not NOS2) dissociation constant (K(d)) and the hydrophobicity partitioning coefficient of each NOS inhibitor and its ED(50). NOS inhibitors that bound tightly to CLL cell NOS1 and were hydrophobic potently induced CLL cell death. CLL cell RNA and protein analyses confirmed CLL cell NOS1 expression. Our studies permit the rational selection of NOS inhibitors for testing as CLL therapeutics.
Collapse
Affiliation(s)
- Marc C Levesque
- Department of Medicine, Division of Rheumatology and Clinical Immunology, Duke University and Durham VA Medical Centers, Durham, NC 27710, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Chan WH, Wu HJ. Methylglyoxal and high glucose co-treatment induces apoptosis or necrosis in human umbilical vein endothelial cells. J Cell Biochem 2008; 103:1144-57. [PMID: 17721990 DOI: 10.1002/jcb.21489] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). We previously showed that high glucose (HG; 30 mM) or MG (50-400 microM) could induce apoptosis in mammalian cells, but these doses are higher than the physiological concentrations of glucose and MG in the plasma of DM patients. The physiological concentration of MG and glucose in the normal blood circulation is about 1 microM and 5 mM, respectively. Here, we show that co-treatment with concentrations of MG and glucose comparable to those seen in the blood circulation of DM patients (5 microM and 15-30 mM, respectively) could cause cell apoptosis or necrosis in human umbilical vein endothelial cells (HUVECs) in vitro. HG/MG co-treatment directly increased the reactive oxygen species (ROS) content in HUVECs, leading to increases in intracellular ATP levels, which can control cell death through apoptosis or necrosis. Co-treatment of HUVECs with 5 microM MG and 20 mM glucose significantly increased cytoplasmic free calcium levels, activation of nitric oxide synthase (NOS), caspase-3 and -9, cytochrome c release, and apoptotic cell death. In contrast, these apoptotic biochemical changes were not detected in HUVECs treated with 5 microM MG and 30 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers could inhibit 5 microM MG/20 mM glucose-induced cytochrome c release, decrease activation of caspase-9 and caspase-3, and increase the gene expression and protein levels of p53 and p21, which are known to be involved in apoptotic signaling. Inhibition of p53 protein expression using small interfering RNA (siRNA) blocked the activation of p21 and the cell apoptosis induced by 5 microM MG/20 mM glucose. In contrast, inhibition of p21 protein expression by siRNA prevented apoptosis in HUVECs but had no effect on p53 expression. These results collectively suggest that the treatment dosage of MG and glucose could determine the mode of cell death (apoptosis vs. necrosis) in HUVECs, and both ROS and NO played important roles in MG/HG-induced apoptosis of these cells.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| | | |
Collapse
|
209
|
Fleming I. Biology of Nitric Oxide Synthases. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
210
|
Huang LH, Shiao NH, Hsuuw YD, Chan WH. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts. Toxicology 2007; 242:109-22. [DOI: 10.1016/j.tox.2007.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 02/03/2023]
|
211
|
The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells. Int J Mol Sci 2007. [DOI: 10.3390/i8111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
212
|
Burke AS, Redeker K, Kurten RC, James LP, Hinson JA. Mechanisms of chloroform-induced hepatotoxicity: oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1936-1945. [PMID: 17966065 DOI: 10.1080/15287390701551399] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The role of mitochondrial permeability transition (MPT) and oxidative stress in chloroform toxicity was determined in freshly isolated female B6C3F1 mouse hepatocytes. Incubation of chloroform (12 mM) with hepatocytes resulted in cell death (alanine aminotransferase release and propidium iodide fluorescence). Chloroform had volatilized from the incubation and glutathione was depleted by 1 h; however, toxicity was not significantly different between control and chloroform-incubated cells. Hepatocytes were washed and reincubated in fresh media at 1 h. Subsequent reincubation of chloroform-treated hepatocytes resulted in significant toxicity at 3-5 h. Inclusion of the MPT inhibitor cyclosporine A or the antioxidant N-acetylcysteine (NAC) in the reincubation media at 1 h prevented toxicity. Confocal microscopy studies with the dye calcein AM indicated MPT that was blocked by cyclosporine A or NAC. Fluorescence microscopy studies utilizing JC-1 indicated loss of mitochondrial membrane potential, which was also blocked by cyclosporine A or NAC. Dichlorofluorescein fluorescence increased during the reincubation phase, indicating increased oxidative stress, and the increase was blocked by cyclosporine A. Since oxidative stress may occur by peroxynitrite, its role in toxicity was examined. Either of the nitric oxide synthase inhibitors N(G)-methyl-L-arginine (L-NMMA) and 7-nitroindazole (7-NI) at 1 h blocked toxicity. Western blot analysis of hepatocytes for 3-nitrotyrosine in proteins, a biomarker of peroxynitrite, indicated one major nitrated protein at 81 kD. Nitration of this protein was inhibited by cyclosporine A, L-NMMA, 7-NI, or NAC. The data indicate that chloroform-induced cell death occurs in two phases: a metabolic phase characterized by glutathione depletion, and an oxidative phase characterized by MPT and protein nitration.
Collapse
Affiliation(s)
- Angela S Burke
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
213
|
Nazarewicz RR, Zenebe WJ, Parihar A, Parihar MS, Vaccaro M, Rink C, Sen CK, Ghafourifar P. 12(S)-hydroperoxyeicosatetraenoic acid (12-HETE) increases mitochondrial nitric oxide by increasing intramitochondrial calcium. Arch Biochem Biophys 2007; 468:114-20. [PMID: 17963719 DOI: 10.1016/j.abb.2007.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
12(S)-hydroxyeicosatetraenoic acid (12-HETE) is one of the metabolites of arachidonic acid involved in pathological conditions associated with mitochondria and oxidative stress. The present study tested effects of 12-HETE on mitochondrial functions. In isolated rat heart mitochondria, 12-HETE increases intramitochondrial ionized calcium concentration that stimulates mitochondrial nitric oxide (NO) synthase (mtNOS) activity. mtNOS-derived NO causes mitochondrial dysfunctions by decreasing mitochondrial respiration and transmembrane potential. mtNOS-derived NO also produces peroxynitrite that induces release of cytochrome c and stimulates aggregation of mitochondria. Similarly, in HL-1 cardiac myocytes, 12-HETE increases intramitochondrial calcium and mitochondrial NO, and induces apoptosis. The present study suggests a novel mechanism for 12-HETE toxicity.
Collapse
Affiliation(s)
- Rafal R Nazarewicz
- Department of Surgery, Davis Heart and Lung Research Institute, Institute of Mitochondrial Biology, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE. Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 2007; 101:101-11. [PMID: 17906319 DOI: 10.1093/toxsci/kfm254] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute cyanide toxicity is attributed to inhibition of cytochrome c oxidase (CcOX), the oxygen-reducing component of mitochondrial electron transport; however, the mitochondrial action of cyanide is complex and not completely understood. State-3 oxygen consumption and CcOX activity were studied in rat N27 mesencephalic cells to examine the functional interaction of cyanide and nitric oxide (NO). KCN produced a concentration-dependent inhibition of cellular respiration. Cyanide's median inhibitory concentration (IC50) of oxygen consumption (13.2 +/- 1.8microM) was higher than the CcOX IC50 (7.2 +/- 0.1microM). Based on respiratory threshold analysis, 60% inhibition of CcOX was necessary before oxygen consumption was decreased. Addition of high levels of exogenous NO (100microM S-nitroso-N-acetyl-DL-penicillamine) attenuated cyanide inhibition of both respiration and CcOX. On the other hand, when endogenous NO generation was blocked by an NOS inhibitor (N(omega)-monomethyl-L-arginine ester), the cyanide IC50 for both respiration and CcOX increased to 59.6 +/- 0.9microM and 102 +/- 10microM, respectively, thus showing constitutive, low-level NO production enhanced cyanide inhibition. Laser scanning cytometry showed that cyanide elevated mitochondrial NO, which then was available to interact with CcOX to enhance the inhibition. It is concluded that the rapid, potent action of cyanide is due in part to mitochondrial generation of NO, which enhances inhibition of CcOX. At low mitochondrial oxygen tensions, the cyanide-NO interaction would be increased. Also, the antidotal action of sodium nitrite is partly explained by generation of high mitochondrial levels of NO, which antagonizes the CcOX inhibition.
Collapse
Affiliation(s)
- Heather B Leavesley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA
| | | | | | | | | |
Collapse
|
215
|
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6:662-80. [PMID: 17667957 DOI: 10.1038/nrd2222] [Citation(s) in RCA: 1679] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, University Heights, Newark, New Jersey 07103-2714, USA.
| | | | | |
Collapse
|
216
|
Satoh E, Yasuda I, Yamada T, Suzuki Y, Ohyashiki T. Involvement of NO generation in aluminum-induced cell death. Biol Pharm Bull 2007; 30:1390-4. [PMID: 17666791 DOI: 10.1248/bpb.30.1390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have reported that the exposure of PC12 cells to the aluminum-maltolate complex (Al(maltol)(3)) results in decreased cell viability via the apoptotic cell death pathway. In this study, we have used several nitric oxide synthase (NOS) inhibitors and the NO generator diethylenetriamine NONOate (DETA NONOate) to examine whether or not intracellular nitric oxide (NO) generation is involved in the onset mechanism of Al(maltol)(3)-induced cell death. Cell viability was assessed by measuring lactate dehydrogenase (LDH) release and caspase-3 activity. Treatment of the cells with 150 microM Al(maltol)(3) for 48 h resulted in intracellular NO generation. Exposure of the cells to DETA NONOate also induced a marked decrease in cell viability. Pre-treatment of the cells with a general NOS inhibitor or with a selective inducible NOS (iNOS) inhibitor effectively prevented Al(maltol)(3)-induced cell death. However, a neuronal NOS (nNOS) inhibitor did not exhibit any protective effect against Al(maltol)(3)-induced cell death. In addition, ascorbic acid markedly inhibited Al(maltol)(3)- and DETA NONOate-induced cell death. Based on these results, we discussed the involvement of intracellular NO generation in the onset mechanisms of Al(maltol)(3)-induced cell death.
Collapse
Affiliation(s)
- Eiko Satoh
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | | | |
Collapse
|
217
|
Tengan CH, Kiyomoto BH, Godinho RO, Gamba J, Neves AC, Schmidt B, Oliveira ASB, Gabbai AA. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects. Biochem Biophys Res Commun 2007; 359:771-7. [PMID: 17560547 DOI: 10.1016/j.bbrc.2007.05.184] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/25/2007] [Indexed: 11/30/2022]
Abstract
NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle.
Collapse
Affiliation(s)
- Célia H Tengan
- Department of Neurology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
|
219
|
Piccoli C, Scrima R, Quarato G, D'Aprile A, Ripoli M, Lecce L, Boffoli D, Moradpour D, Capitanio N. Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 2007; 46:58-65. [PMID: 17567832 DOI: 10.1002/hep.21679] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection induces a state of oxidative stress that is more pronounced than that in many other inflammatory diseases. In this study we used well-characterized cell lines inducibly expressing the entire HCV open-reading frame to investigate the impact of viral protein expression on cell bioenergetics. It was shown that HCV protein expression has a profound effect on cell oxidative metabolism, with specific inhibition of complex I activity, depression of mitochondrial membrane potential and oxidative phosphorylation coupling efficiency, increased production of reactive oxygen and nitrogen species, as well as loss of the Pasteur effect. Importantly, all these effects were causally related to mitochondrial calcium overload, as inhibition of mitochondrial calcium uptake completely reversed the observed bioenergetic alterations. CONCLUSION Expression of HCV proteins causes deregulation of mitochondrial calcium homeostasis. This event occurs upstream of further mitochondrial dysfunction, leading to alterations in the bioenergetic balance and nitro-oxidative stress. These observations provide new insights into the pathogenesis of hepatitis C and may offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Zenebe WJ, Nazarewicz RR, Parihar MS, Ghafourifar P. Hypoxia/reoxygenation of isolated rat heart mitochondria causes cytochrome c release and oxidative stress; evidence for involvement of mitochondrial nitric oxide synthase. J Mol Cell Cardiol 2007; 43:411-9. [PMID: 17597148 PMCID: PMC2045686 DOI: 10.1016/j.yjmcc.2007.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 12/19/2022]
Abstract
The objective of the present study was to delineate the molecular mechanisms for mitochondrial contribution to oxidative stress induced by hypoxia and reoxygenation in the heart. The present study introduces a novel model allowing real-time study of mitochondria under hypoxia and reoxygenation, and describes the significance of intramitochondrial calcium homeostasis and mitochondrial nitric oxide synthase (mtNOS) for oxidative stress. The present study shows that incubating isolated rat heart mitochondria under hypoxia followed by reoxygenation, but not hypoxia per se, causes cytochrome c release from the mitochondria, oxidative modification of mitochondrial lipids and proteins, and inactivation of mitochondrial enzymes susceptible to inactivation by peroxynitrite. These alterations were prevented when mtNOS was inhibited or mitochondria were supplemented with antioxidant peroxynitrite scavengers. The present study shows mitochondria independent of other cellular components respond to hypoxia/reoxygenation by elevating intramitochondrial ionized calcium and stimulating mtNOS. The present study proposes a crucial role for heart mitochondrial calcium homeostasis and mtNOS in oxidative stress induced by hypoxia/reoxygenation.
Collapse
Affiliation(s)
| | | | | | - Pedram Ghafourifar
- Address correspondence to: Pedram Ghafourifar, 460 West 12th Avenue, Columbus, Ohio 43210, E-Mail:
| |
Collapse
|
221
|
Bayir H, Kagan VE, Clark RSB, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V, Billiar TR, Kochanek PM. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 2007; 101:168-81. [PMID: 17394464 DOI: 10.1111/j.1471-4159.2006.04353.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.
Collapse
Affiliation(s)
- Hülya Bayir
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Boudko DY. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:186-210. [PMID: 17329176 PMCID: PMC2040328 DOI: 10.1016/j.jchromb.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Another aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| |
Collapse
|
223
|
Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007; 257:221-39. [PMID: 17462670 DOI: 10.1016/j.jns.2007.01.033] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mitochondria have several important functions in the cell. A mitochondrial dysfunction causes an abatement in ATP production, oxidative damage and the induction of apoptosis, all of which are involved in the pathogenesis of numerous disorders. This review focuses on mitochondrial dysfunctions and discusses their consequences and potential roles in the pathomechanism of neurodegenerative disorders. Other pathogenetic factors are also briefly surveyed. The second part of the review deals with the kynurenine metabolic pathway, its alterations and their potential association with cellular energy impairment in certain neurodegenerative diseases. During energy production, most of the O(2) consumed by the mitochondria is reduced fully to water, but 1-2% of the O(2) is reduced incompletely to give the superoxide anion (O(2)(-)). If the function of one or more respiratory chain complexes is impaired for any reason, the enhanced production of free radicals further worsens the mitochondrial function by causing oxidative damage to macromolecules, and by opening the mitochondrial permeability transition pores thereby inducing apoptosis. These high-conductance pores offer a pathway which can open in response to certain stimuli, leading to the induction of the cells' own suicide program. This program plays an essential role in regulating growth and development, in the differentiation of immune cells, and in the elimination of abnormal cells from the organism. Both failure and exaggeration of apoptosis in a human body can lead to disease. The increasing amount of superoxide anions can react with nitric oxide to yield the highly toxic peroxynitrite anion, which can destroy cellular macromolecules. The roles of oxidative, nitrative and nitrosative damage are discussed. Senescence is accompanied by a higher degree of reactive oxygen species production, and by diminished functions of the endoplasmic reticulum and the proteasome system, which are responsible for maintenance of the normal protein homeostasis of the cell. In the event of a dysfunction of the endoplasmic reticulum, unfolded proteins aggregate in it, forming potentially toxic deposits which tend to be resistant to degradation. Cells possess adaptive mechanisms with which to avoid the accumulation of incorrectly folded proteins. These involve molecular chaperones that fold proteins correctly, and the ubiquitin proteasome system which degrades misfolded, unwanted proteins. Both the endoplasmic reticulum and the ubiquitin proteasome system fulfill cellular protein quality control functions. The kynurenine system: Tryptophan is metabolized via several pathways, the main one being the kynurenine pathway. A central compound of the pathway is kynurenine (KYN), which can be metabolized in two separate ways: one branch furnishing kynurenic acid, and the other 3-hydroxykynurenine and quinolinic acid, the precursors of NAD. An important feature of kynurenic acid is the fact that it is one of the few known endogenous excitatory amino acid receptor blockers with a broad spectrum of antagonistic properties in supraphysiological concentrations. One of its recently confirmed sites of action is the alpha7-nicotinic acetylcholine receptor and interestingly, a more recently identified one is a higher affinity positive modulatory binding site at the AMPA receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a specific agonist at the N-methyl-d-aspartate receptors, and a potent neurotoxin with an additional and marked free radical-producing property. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. These changes may disturb normal brain function and can add to the pathomechanisms of the diseases. In certain disorders, there is a quinolinic acid overproduction, while in others the alterations in brain kynurenic acid levels are more pronounced. A more precise knowledge of these alterations yields a basis for getting better therapeutic possibilities. The last part of the review discusses metabolic disturbances and changes in the kynurenine metabolic pathway in Parkinson's, Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, University of Szeged, POB 427, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
224
|
Canová NK, Kmonícková E, Martínek J, Zídek Z, Farghali H. Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+ -ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture. Cell Biol Toxicol 2007; 23:337-54. [PMID: 17447015 DOI: 10.1007/s10565-007-0185-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/21/2007] [Indexed: 12/20/2022]
Abstract
Increased cytosolic calcium ([Ca2+]i) and nitric oxide (NO) are suggested to be associated with apoptosis that is a main feature of many liver diseases and is characterized by biochemical and morphological features. We sought to investigate the events of increase in [Ca2+]i and endoplasmic reticulum (ER) calcium depletion by thapsigargin (TG), a selective inhibitor of sarco-ER-Ca2+ -ATPases, in relation to NO production and apoptotic and necrotic markers of cell death in primary rat hepatocyte culture. Cultured hepatocytes were treated with TG (1 and 5 micromol/L) for 0-24 or 24-48 h. NO production and inducible NO synthase (iNOS) expression were determined as nitrite levels and by iNOS-specific antibody, respectively. Hepatocyte apoptosis was estimated by caspase-3 activity, cytosolic cytochrome c content and DNA fragmentation, and morphologically using Annexin-V/propidium iodide staining. Hepatocyte viability and mitochondrial activity were evaluated by ALT leakage and MTT test. Increasing basal [Ca2+]i by TG, NO production and apoptotic/necrotic parameters were altered in different ways, depending on TG concentration and incubation time. During 0-24 h, TG dose-dependently decreased iNOS-mediated spontaneous NO production and simultaneously enhanced hepatocyte apoptosis. In addition, TG 5 micromol/L produced secondary necrosis. During 24-48 h, TG dose-dependently enhanced basal NO production and rate of necrosis. TG 5 micromol/L further promoted mitochondrial damage as demonstrated by cytochrome c release. A selective iNOS inhibitor, aminoguanidine, suppressed TG-stimulated NO production and ALT leakage from hepatocytes after 24-48 h. Our data suggest that the extent of the [Ca2+]i increase and the modulation of NO production due to TG treatment contribute to hepatocyte apoptotic and/or necrotic events.
Collapse
Affiliation(s)
- N Kutinová Canová
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Albertov 4, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
225
|
Abstract
Underlying the pathogenesis of chronic disease is the state of oxidative stress. Oxidative stress is an imbalance in oxidant and antioxidant levels. If an overproduction of oxidants overwhelms the antioxidant defenses, oxidative damage of cells, tissues, and organs ensues. In some cases, oxidative stress is assigned a causal role in disease pathogenesis, whereas in others the link is less certain. Along with underlying oxidative stress, chronic disease is often accompanied by muscle wasting. It has been hypothesized that catabolic programs leading to muscle wasting are mediated by oxidative stress. In cases where disease is localized to the muscle, this concept is easy to appreciate. Transmission of oxidative stress from diseased remote organs to skeletal muscle is thought to be mediated by humoral factors such as inflammatory cytokines. This review examines the relationship between oxidative stress, chronic disease, and muscle wasting, and the mechanisms by which oxidative stress acts as a catabolic signal.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, 800 Rose Street, Room MS-509, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
226
|
Escames G, López LC, Ortiz F, López A, García JA, Ros E, Acuña-Castroviejo D. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 2007; 274:2135-47. [PMID: 17371545 DOI: 10.1111/j.1742-4658.2007.05755.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The existence of an inducible mitochondrial nitric oxide synthase has been recently related to the nitrosative/oxidative damage and mitochondrial dysfunction that occurs during endotoxemia. Melatonin inhibits both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase activities, a finding related to the antiseptic properties of the indoleamine. Hence, we examined the changes in inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase expression and activity, bioenergetics and oxidative stress in heart mitochondria following cecal ligation and puncture-induced sepsis in wild-type (iNOS(+/+)) and inducible nitric oxide synthase-deficient (iNOS(-/-)) mice. We also evaluated whether melatonin reduces the expression of inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase, and whether this inhibition improves mitochondrial function in this experimental paradigm. The results show that cecal ligation and puncture induced an increase of inducible mitochondrial nitric oxide synthase in iNOS(+/+) mice that was accompanied by oxidative stress, respiratory chain impairment, and reduced ATP production, although the ATPase activity remained unchanged. Real-time PCR analysis showed that induction of inducible nitric oxide synthase during sepsis was related to the increase of inducible mitochondrial nitric oxide synthase activity, as both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase were absent in iNOS(-/-) mice. The induction of inducible mitochondrial nitric oxide synthase was associated with mitochondrial dysfunction, because heart mitochondria from iNOS(-/-) mice were unaffected during sepsis. Melatonin treatment blunted sepsis-induced inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase isoforms, prevented the impairment of mitochondrial homeostasis under sepsis, and restored ATP production. These properties of melatonin should be considered in clinical sepsis.
Collapse
Affiliation(s)
- Germaine Escames
- Instituto de Biotecnología, Departamento de Fisiología, Universidad de Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
227
|
Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, Ghafourifar P. Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res 2007; 67:1282-90. [PMID: 17283165 DOI: 10.1158/0008-5472.can-06-3099] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)-dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca(2+) concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, tamoxifen hampers mitochondrial respiration, releases cytochrome c, elevates mitochondrial lipid peroxidation, increases protein tyrosine nitration of certain mitochondrial proteins, decreases the catalytic activity of succinyl-CoA:3-oxoacid CoA-transferase, and induces aggregation of mitochondria. The present report suggests a critical role for mtNOS in apoptosis induced by tamoxifen.
Collapse
Affiliation(s)
- Rafal R Nazarewicz
- Vascular Surgery, Davis Heart and Lung Research Institute, and Institute of Mitochondrial Biology, Ohio State University Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Gorren ACF, Mayer B. Nitric-oxide synthase: A cytochrome P450 family foster child. Biochim Biophys Acta Gen Subj 2007; 1770:432-45. [PMID: 17014963 DOI: 10.1016/j.bbagen.2006.08.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 08/25/2006] [Indexed: 11/28/2022]
Abstract
Nitric-oxide synthase (NOS), the enzyme responsible for mammalian NO generation, is no cytochrome P450, but there are striking similarities between both enzymes. First and foremost, both are heme-thiolate proteins, employing the same prosthetic group to perform similar chemistry. Moreover, they share the same redox partner, a diflavoprotein reductase, which in the case of NOS is incorporated with the oxygenase in one polypeptide chain. There are, however, also conspicuous differences, such as the presence in NOS of the additional cofactor tetrahydrobiopterin, which is applied as an auxiliary electron donor to prevent decay of the oxyferrous complex to ferric heme and superoxide. In this review similarities and differences between NOS and cytochrome P450 are analyzed in an attempt to explain why NOS requires BH4 and why NO synthesis is not catalyzed by a member of the cytochrome P450 family.
Collapse
Affiliation(s)
- Antonius C F Gorren
- Department of Pharmacology und Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | | |
Collapse
|
229
|
|
230
|
Piotrkowski B, Fraga CG, de Cavanagh EMV. Mitochondrial function and nitric oxide metabolism are modified by enalapril treatment in rat kidney. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1494-501. [PMID: 17185409 DOI: 10.1152/ajpregu.00540.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renal and cardiac benefits of renin-angiotensin system (RAS) inhibition in hypertension exceed those attributable to blood pressure reduction, and seem to involve mitochondrial function changes. To investigate whether mitochondrial changes associated with RAS inhibition are related to changes in nitric oxide (NO) metabolism, four groups of male Wistar rats were treated during 2 wk with a RAS inhibitor, enalapril (10 mg x kg(-1) x day(-1); Enal), or a NO synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mg x kg(-1) x day(-1)), or both (Enal+L-NAME), or were untreated (control). Blood pressure and body weight were lower in Enal than in control. Electron transfer through complexes I to III and cytochrome oxidase activity were significantly lower, and uncoupling protein-2 content was significantly higher in kidney mitochondria isolated from Enal than in those from control. All of these changes were prevented by L-NAME cotreatment and were accompanied by a higher production/bioavailability of kidney NO. L-NAME abolished mitochondrial NOS activity but failed to inhibit extra-mitochondrial kidney NOS, underscoring the relevance of mitochondrial NO in those effects of enalapril that were suppressed by L-NAME cotreatment. In Enal, kidney mitochondria H(2)O(2) production rate and MnSOD activity were significantly lower than in control, and these effects were not prevented by L-NAME cotreatment. These findings may clarify the role of NO in the interactions between RAS and mitochondrial metabolism and can help to unravel the mechanisms involved in renal protection by RAS inhibitors.
Collapse
Affiliation(s)
- Barbara Piotrkowski
- Physical Chemistry-PRALIB, Univ. of Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | | | | |
Collapse
|
231
|
Abstract
The characteristic structural organization of mitochondria is the product of synthesis of macromolecules within the mitochondria together with the import of proteins and lipids synthesized outside the organelle. Synthetic and import processes are required for mitochondrial proliferation and might also facilitate the growth of pre-existing mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. A newly discovered role of this organelle in retrograde intracellular signaling back to the nucleus has also emerged. This is likely to have far-reaching implications in development, aging, disease and environmental adaptation. Generation of nitric oxide (NO) appears to be an important player in these processes, possibly acting as a unifying molecular switch to trigger the whole mitochondrial biogenesis process. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, smaller increases in NO levels stimulate mitochondrial biogenesis in diverse cell types. NO-induced mitochondrial biogenesis seems to be linked to proliferation and differentiation of normal and tumor cells, as well as in aging.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, via Vanvitelli 32, 20129 Milan, Italy.
| | | |
Collapse
|
232
|
Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol 2006; 17:13-8. [PMID: 17126550 DOI: 10.1016/j.tcb.2006.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 10/20/2006] [Accepted: 11/14/2006] [Indexed: 12/30/2022]
Abstract
The mitochondrial electron transport chain is the major source for the production of oxygen radicals. Mitochondria-generated reactive oxygen species (mROS) have been implicated in decreasing the life span and contributing to age-related diseases (known as the free radical theory of aging). Recently, the serine/threonine kinase protein kinase D1 (PKD1) was identified as a mitochondrial sensor for oxidative stress. mROS-activated PKD regulates a radical-sensing signaling pathway, which relays mROS production to the induction of nuclear genes that mediate cellular detoxification and survival. This PKD regulated signaling pathway is the first known mitochondria located and mitochondrially regulated antioxidant system that protects these organelles and cells from oxidative stress-mediated damage or cell death. The identification of this and further intracellular protective signaling pathways provides an opportunity to manipulate the effects of mROS, and might provide the key to targeting aging effects and age-related diseases that have been linked to mitochondrial dysfunctions.
Collapse
|
233
|
Lu Z, Tao Y, Zhou Z, Zhang J, Li C, Ou L, Zhao B. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment. Free Radic Biol Med 2006; 41:1590-605. [PMID: 17045927 DOI: 10.1016/j.freeradbiomed.2006.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/19/2006] [Accepted: 08/26/2006] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) is a novel and promising cancer treatment which employs a combination of a photosensitizing chemical and visible light to induce apoptosis in cancer cells. Singlet oxygen has been recognized as the main origin of oxidative stress in PDT. However, the precise mechanism of PDT-induced apoptosis is not well characterized, especially the dualistic role of nitric oxide (NO). To dissect the apoptosis pathways triggered by PDT, the intracellular free radicals in MCF-7 cells were investigated by examining a novel photosensitizer 2-butylamino-2-demethoxyhypocrellin B (2-BA-2-DMHB)-mediated PDT. It was found that exposure of the cells to 2-BA-2-DMHB and irradiation resulted in a significant increase of intracellular ROS in minutes, and then followed by cytoplasmic free calcium enhancement, mitochondrial nitric oxide synthase (mtNOS) activation, cytochrome c release, and apoptotic death. Scavengers of singlet oxygen or NO could attenuate PDT-induced cell viability loss, nucleus morphology changes, cytochrome c release, mitochondria swelling, and apo-apoptosis gene p53 and p21 mRNA levels. The results suggested that both ROS and NO played important roles in the apoptosis-induced by PDT.
Collapse
Affiliation(s)
- Zhongbing Lu
- State Key Laboratory of Brain and Recognition Laboratory, Institute of Biophysics, The Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
234
|
Bayir H, Kochanek PM, Kagan VE. Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci 2006; 28:420-31. [PMID: 16943665 DOI: 10.1159/000094168] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 04/25/2006] [Indexed: 12/30/2022] Open
Abstract
High oxygen demand along with the abundance of readily oxidizable substrates yielding productive oxidative metabolism are required for the normal function of the brain. This necessitates the existence of the complex and multicomponent antioxidant system in the brain for protection against oxidative damage. However, during development, individual components of the antioxidant system are not equally expressed and not always sufficient to fulfill their tasks in a coordinated way. As a result, the developing brain may be more vulnerable to oxidative insults than the adult brain. Traumatic brain injury is one of the damaging acute impacts that challenge the brain antioxidant reserves by exposing them to a number of decompartmentalized prooxidant molecules. This review focuses on the sources and assessment of oxidative stress and the link between oxidative stress and cell death pathways in the immature brain after experimental and clinical traumatic brain injury.
Collapse
Affiliation(s)
- Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Environmental and Occupational Health, Chidren's Hospital of Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
235
|
Kagan V, Tyurina Y, Bayir H, Chu C, Kapralov A, Vlasova I, Belikova N, Tyurin V, Amoscato A, Epperly M, Greenberger J, DeKosky S, Shvedova A, Jiang J. The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 2006; 163:15-28. [DOI: 10.1016/j.cbi.2006.04.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 01/13/2023]
|
236
|
Matsura T, Nishida T, Togawa A, Horie S, Kusumoto C, Ohata S, Nakada J, Ishibe Y, Yamada K, Ohta Y. Mechanisms of protection by melatonin against acetaminophen-induced liver injury in mice. J Pineal Res 2006; 41:211-9. [PMID: 16948781 DOI: 10.1111/j.1600-079x.2006.00356.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was performed to determine whether melatonin protects mouse liver against severe damage induced by acetaminophen (APAP) administration and where melatonin primarily functions in the metabolic pathway of APAP to protect mouse liver against APAP-induced injury. Treatment of mice with melatonin (50 or 100 mg/kg, p.o.) 8 or 4 hr before APAP administration (750 mg/kg, p.o.) suppressed the increase in plasma alanine aminotransferase and aspartate aminotransferase activities in a dose- and a time-dependent manner. Melatonin treatment (100 mg/kg, p.o.) 4 hr before APAP administration remarkably inhibited centrilobular hepatic necrosis with inflammatory cell infiltration and increases in hepatic lipid peroxidation and myeloperoxidase activity, an index of tissue neutrophil infiltration, as well as release of nitric oxide and interleukin-6 into blood circulation at 9 hr after APAP administration. However, melatonin neither affected hepatic reduced glutathione (GSH) content nor spared hepatic GSH consumption by APAP treatment. Moreover, pretreatment with melatonin 4 hr before APAP administration did not influence the induction of hepatic heat shock protein 70 (HSP70) by APAP and melatonin alone did not induce HSP70 in mouse liver. These results indicate that exogenously administered melatonin exhibits a potent hepatoprotective effect against APAP-induced hepatic damage probably downstream of the activity of cytochrome P450 2E1, which works upstream of GSH conjugation in the pathway of APAP metabolism, via its anti-nitrosative and anti-inflammatory activities in addition to its antioxidant activity.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
|
238
|
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006; 17:571-88. [PMID: 16524713 DOI: 10.1016/j.jnutbio.2005.12.001] [Citation(s) in RCA: 467] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by NO synthase in virtually all cell types. Emerging evidence shows that NO regulates the metabolism of glucose, fatty acids and amino acids in mammals. As an oxidant, pathological levels of NO inhibit nearly all enzyme-catalyzed reactions through protein oxidation. However, as a signaling molecule, physiological levels of NO stimulate glucose uptake as well as glucose and fatty acid oxidation in skeletal muscle, heart, liver and adipose tissue; inhibit the synthesis of glucose, glycogen, and fat in target tissues (e.g., liver and adipose); and enhance lipolysis in adipocytes. Thus, an inhibition of NO synthesis causes hyperlipidemia and fat accretion in rats, whereas dietary arginine supplementation reduces fat mass in diabetic fatty rats. The putative underlying mechanisms may involve multiple cyclic guanosine-3',5'-monophosphate-dependent pathways. First, NO stimulates the phosphorylation of adenosine-3',5'-monophosphate-activated protein kinase, resulting in (1) a decreased level of malonyl-CoA via inhibition of acetyl-CoA carboxylase and activation of malonyl-CoA decarboxylase and (2) a decreased expression of genes related to lipogenesis and gluconeogenesis (glycerol-3-phosphate acyltransferase, sterol regulatory element binding protein-1c and phosphoenolpyruvate carboxykinase). Second, NO increases the phosphorylation of hormone-sensitive lipase and perilipins, leading to the translocation of the lipase to the neutral lipid droplets and, hence, the stimulation of lipolysis. Third, NO activates expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, thereby enhancing mitochondrial biogenesis and oxidative phosphorylation. Fourth, NO increases blood flow to insulin-sensitive tissues, promoting substrate uptake and product removal via the circulation. Modulation of the arginine-NO pathway through dietary supplementation with L-arginine or L-citrulline may aid in the prevention and treatment of the metabolic syndrome in obese humans and companion animals, and in reducing unfavorable fat mass in animals of agricultural importance.
Collapse
|
239
|
Abstract
Nitric oxide (NO*) has been proposed to be a physiological modulator of cell proliferation, able to promote in most cases cell cycle arrest. In this review I explore the molecular basis of this mechanism of action. The modulatory action of NO* on the intracellular concentration of cGMP and the machinery directly involved in the control of cell cycle progression, including the expression and activity of diverse cyclins and cyclin-dependent kinases, their physiological inhibitors, and the master transcriptional regulator retinoblastoma protein, will be discussed. The role of NO* in proliferation mediated by tyrosine kinase receptors such as the epidermal growth factor receptor and downstream signalling pathways will also be considered. Finally, the involvement of NO* in proliferative processes relevant for normal development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
240
|
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2006; 39:44-84. [PMID: 16978905 DOI: 10.1016/j.biocel.2006.07.001] [Citation(s) in RCA: 8826] [Impact Index Per Article: 464.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/27/2006] [Accepted: 07/05/2006] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
Collapse
Affiliation(s)
- Marian Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
241
|
|
242
|
Piccoli C, Scrima R, D'Aprile A, Ripoli M, Lecce L, Boffoli D, Capitanio N. Mitochondrial dysfunction in hepatitis C virus infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1429-37. [PMID: 16814246 DOI: 10.1016/j.bbabio.2006.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/25/2006] [Accepted: 05/12/2006] [Indexed: 12/15/2022]
Abstract
The mechanisms of liver injury in chronic hepatitis C virus (HCV) infection are poorly understood though HCV induces a state of hepatic oxidative stress that is more pronounced than that present in many other inflammatory diseases. This mini-review will focus on recent findings revealing an unexpected role of mitochondria in providing a central role in the innate immunity and in addition will illustrate the application of stably transfected human-derived cell lines, inducibly expressing the entire HCV open reading frame for in vitro studies on mitochondria. Results obtained by a comparative analysis of the respiratory chain complexes activities along with mitochondrial morpho-functional confocal microscopy imaging show a detrimental effect of HCV proteins on the cell oxidative metabolism with specific inhibition of complex I activity, decrease of mtDeltaPsi, increased production of reactive oxygen species. A possible de-regulation of calcium recycling between the endoplasmic reticulum and the mitochondrial network is discussed to provide new insights in the pathogenesis of hepatitis C.
Collapse
Affiliation(s)
- C Piccoli
- Department of Biomedical Science, University of Foggia, viale L. Pinto OO.RR. 71100 Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
243
|
Brunori M, Forte E, Arese M, Mastronicola D, Giuffrè A, Sarti P. Nitric oxide and the respiratory enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1144-54. [PMID: 16792997 DOI: 10.1016/j.bbabio.2006.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/13/2006] [Accepted: 05/03/2006] [Indexed: 11/29/2022]
Abstract
Available information on the molecular mechanisms by which nitric oxide (NO) controls the activity of the respiratory enzyme (cytochrome-c-oxidase) is reviewed. We report that, depending on absolute electron flux, NO at physiological concentrations reversibly inhibits cytochrome-c-oxidase by two alternative reaction pathways, yielding either a nitrosyl- or a nitrite-heme a3 derivative. We address a number of hypotheses, envisaging physiological and/or pathological effects of the reactions between NO and cytochrome-c-oxidase.
Collapse
Affiliation(s)
- Maurizio Brunori
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, I-00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
244
|
Lacza Z, Kozlov AV, Pankotai E, Csordás A, Wolf G, Redl H, Kollai M, Szabó C, Busija DW, Horn TFW. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res 2006; 40:369-78. [PMID: 16517501 DOI: 10.1080/10715760500539139] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We measured the contribution of mitochondrial nitric oxide synthase (mtNOS) and respiratory chain enzymes to reactive nitrogen species (RNS) production. Diaminofluorescein (DAF) was applied for the assessment of RNS production in isolated mouse brain, heart and liver mitochondria and also in a cultured neuroblastoma cell line by confocal microscopy and flow cytometry. Mitochondria produced RNS, which was inhibited by catalysts of peroxynitrite decomposition but not by nitric oxide (NO) synthase inhibitors. Disrupting the organelles or withdrawing respiratory substrates markedly reduced RNS production. Inhibition of complex I abolished the DAF signal, which was restored by complex II substrates. Inhibition of the respiratory complexes downstream from the ubiquinone/ubiquinol cycle or dissipating the proton gradient had no effect on DAF fluorescence. We conclude that mitochondria from brain, heart and liver are capable of significant RNS production via the respiratory chain rather than through an arginine-dependent mtNOS.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Boullerne AI, Benjamins JA. Nitric oxide synthase expression and nitric oxide toxicity in oligodendrocytes. Antioxid Redox Signal 2006; 8:967-80. [PMID: 16771686 DOI: 10.1089/ars.2006.8.967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligodendrocytes (OLG) have more complex interactions with nitric oxide (NO) than initially suspected. Historically, OLG were seen only as targets of high NO levels released from other cells. Expression of nitric oxide synthase type II (NOS-2) in primary cultures of OLGs stimulated by cytokines led to controversy due to the presence of small numbers of microglia, cells also inducible for NOS-2 expression. The present review summarizes the findings that immature OLG express NOS-2, but that they do not in their most mature stage in culture as membrane sheet-bearing cells. This raises questions about the regulation of NOS-2 expression in OLG. Additionally, novel data are presented on NOS-3 expression in cultured OLG. If confirmed in vivo, this finding suggests that constitutive NOS-3 expression may play a key role in OLG injury due to its activation by calcium, in interaction with pathways mediating glutamate toxicity. The authors discuss in vivo NO levels to place in vitro findings in context, and compare OLG sensitivity to NO with that of other brain cells. Lastly, the multiple interactions of NO are considered with regard to glutamate cytotoxicity, the antioxidant glutathione, mitochondrial function, and myelin architecture.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
246
|
Manser RC, Houghton FD. Ca2+ -linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo. J Cell Sci 2006; 119:2048-55. [PMID: 16638811 DOI: 10.1242/jcs.02927] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous studies have demonstrated a role for the signalling agent nitric oxide in regulating preimplantation embryo development. We have now investigated the biochemical mode of action of nitric oxide in mouse embryos in terms of mitochondrial function and Ca2+ signalling. DETA-NONOate, a nitric oxide donor, decreased day 4 blastocyst cell number and oxygen consumption, consistent with a role for nitric oxide in the inhibition mitochondrial cytochrome c oxidase. Using live cell imaging and the nitric-oxide-sensitive probe DAF-FM diacetate, nitric oxide was detected at all stages of preimplantation development and FRET analysis revealed a proportion of the nitric oxide to be colocalised with mitochondria. This suggests that mitochondria of preimplantation embryos produce nitric oxide to regulate their own oxygen consumption. Inhibiting or uncoupling the electron transport chain induced an increase in nitric oxide and [Ca2+]i as well as disruption of Ca2+ deposits at the plasma membrane, suggesting that mitochondrial disruption can quickly compromise cellular function through Ca2+ -stimulated nitric oxide production. A link between antimycin-A-induced apoptosis and nitric oxide signalling is proposed.
Collapse
Affiliation(s)
- Rosemary C Manser
- Department of Biology, University of York, PO Box 373, York, YO10 5YW, UK
| | | |
Collapse
|
247
|
Wang S, Paton JFR, Kasparov S. The challenge of real-time measurements of nitric oxide release in the brain. Auton Neurosci 2006; 126-127:59-67. [PMID: 16624633 DOI: 10.1016/j.autneu.2006.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO) acts as a signalling molecule in the brain. NO has been implicated in a variety of central functions such as learning, plasticity and neurodegeneration. It is also involved in regulation of autonomic homeostasis at different levels of neuraxis including the nucleus tractus solitarii. In spite of the ample evidence for NO-mediated signalling many aspects of its mechanism of action the brain remain unknown largely due to the difficulties of NO detection in real time coupled with its unique ability to freely cross cellular membranes. Here we give a brief overview of the currently available options for NO detection in the brain (such as electrochemistry, fluorescent indicators, electron-paramagnetic resonance) and consider some of their limitations. We conclude that it would be extremely useful to develop a highly sensitive probe for NO detection with some kind of build-in amplification which would magnify the changes triggered by NO to allow its detection within microdomains of the brain tissue in real time.
Collapse
Affiliation(s)
- S Wang
- Department of Physiology, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
248
|
Fellet AL, Balaszczuk AM, Arranz C, López-Costa JJ, Boveris A, Bustamante J. Autonomic regulation of pacemaker activity: role of heart nitric oxide synthases. Am J Physiol Heart Circ Physiol 2006; 291:H1246-54. [PMID: 16617132 DOI: 10.1152/ajpheart.00711.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In autonomic-blocked rats treated with NG-nitro-L-arginine methyl ester (L-NAME, 7.5 mg/kg), heart rate increased 18% and mean arterial pressure increased 48%. Thyroidectomy, along with autonomic blockade, hampered the chronotropic response but did not modify the effect on blood pressure. After 150 min of autonomic blockade, the experimental end point, total nitric oxide (NO) production by heart NO synthases (NOS) decreased 61%: from 54 to 21 nmol NO.min-1.g heart-1. Mitochondrial NOS (mtNOS) and sarcoplasmic reticulum endothelial NOS activities decreased 74% and 52%, respectively. Mitochondria isolated from whole heart showed a well-coupled oxidative phosphorylation with high respiratory control and ADP-to-O ratios, decreased mtNOS activity (55-60%), and decreased mtNOS protein expression (70%). Immunohistochemistry with anti-inducible NOS antibody linked to gold particles localized mtNOS at the inner mitochondrial membranes. Histochemical right atrial NOS (NADPH-diaphorase) decreased 55% after heart denervation. The effects of autonomic denervation on the NO system were partially prevented by thyroidectomy performed simultaneously with autonomic blockade. Western blot analysis indicated a very rapid mtNOS protein turnover (half time=120 min) with a process of protein expression that was upregulated by thyroidectomy and a degradation process that was downregulated by the autonomic nervous system. The observations suggest that NO-mediated pathways contribute to pacemaker heart activity, likely through the NO steady-state levels in the right atrium and the whole heart.
Collapse
Affiliation(s)
- Andrea L Fellet
- Department of Physiology, Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
249
|
Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 2006; 3:277-87. [PMID: 16581005 DOI: 10.1016/j.cmet.2006.02.011] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/17/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved oxygen concentrations below 20 microM. This NO production is nitrite (NO2-) dependent, requires an electron donor, and is carried out by cytochrome c oxidase in a pH-dependent fashion. Mitochondrial NO production in yeast is influenced by the YHb flavohemoglobin NO oxidoreductase, stimulates expression of the hypoxic nuclear gene CYC7, and is accompanied by an increase in protein tyrosine nitration. These findings demonstrate an alternative role for the mitochondrial respiratory chain under hypoxic or anoxic conditions and suggest that mitochondrially produced NO is involved in hypoxic signaling, possibly via a pathway that involves protein tyrosine nitration.
Collapse
Affiliation(s)
- Pablo R Castello
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
250
|
Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:648-59. [PMID: 16740248 DOI: 10.1016/j.bbabio.2006.03.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/17/2006] [Accepted: 03/06/2006] [Indexed: 11/26/2022]
Abstract
Since the (re)discovery of cytochrome c (cyt c) in the early 1920s and subsequent detailed characterization of its structure and function in mitochondrial electron transport, it took over 70 years to realize that cyt c plays a different, not less universal role in programmed cell death, apoptosis, by interacting with several proteins and forming apoptosomes. Recently, two additional essential functions of cyt c in apoptosis have been discovered that are carried out via its interactions with anionic phospholipids: a mitochondria specific phospholipid, cardiolipin (CL), and plasma membrane phosphatidylserine (PS). Execution of apoptotic program in cells is accompanied by substantial and early mitochondrial production of reactive oxygen species (ROS). Because antioxidant enhancements protect cells against apoptosis, ROS production was viewed not as a meaningless side effect of mitochondrial disintegration but rather playing some - as yet unidentified - role in apoptosis. This conundrum has been resolved by establishing that mitochondria contain a pool of cyt c, which interacts with CL and acts as a CL oxygenase. The oxygenase is activated during apoptosis, utilizes generated ROS and causes selective oxidation of CL. The oxidized CL is required for the release of pro-apoptotic factors from mitochondria into the cytosol. This redox mechanism of cyt c is realized earlier than its other well-recognized functions in the formation of apoptosomes and caspase activation. In the cytosol, released cyt c interacts with another anionic phospholipid, PS, and catalyzes its oxidation in a similar oxygenase reaction. Peroxidized PS facilitates its externalization essential for the recognition and clearance of apoptotic cells by macrophages. Redox catalysis of plasma membrane PS oxidation constitutes an important redox-dependent function of cyt c in apoptosis and phagocytosis. Thus, cyt c acts as an anionic phospholipid specific oxygenase activated and required for the execution of essential stages of apoptosis. This review is focused on newly discovered redox mechanisms of complexes of cyt c with anionic phospholipids and their role in apoptotic pathways in health and disease.
Collapse
Affiliation(s)
- H Bayir
- Center for Free Radical and Antioxidant Health, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|