201
|
Camacho-Cristóbal JJ, González-Fontes A. Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. PLANTA 2007; 226:443-51. [PMID: 17334782 DOI: 10.1007/s00425-007-0494-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 01/30/2007] [Indexed: 05/02/2023]
Abstract
The effects of short-term boron deficiency on several aspects (growth, biomass allocation, metabolite concentrations, gene expression, enzyme activities) related with nitrate assimilation were studied in tobacco (Nicotiana tabacum L.) plants in order to know the early changes caused by this mineral deficiency. For this purpose, plants were grown hydroponically in a nutrient solution supplemented with 10 microM boron and then transferred to a boron-free medium for 1-5 days. Nitrate concentration decreased in both leaves and roots under boron deficiency, which was not observed in control plants. This correlated with the lower net nitrate uptake rate found in boron-deficient plants when compared to boron-sufficient ones. Results suggest that boron deficiency decreases net nitrate uptake by declining the activity of nitrate transporters rather than affecting their transcript levels. This is supported by a drop in the levels of root PMA2 transcript during the boron deficient treatment, which could lead to a decrease in the plasma membrane H+-ATPase activity necessary to get protons out of cell for the cotransport with nitrate inwards. In addition, boron deficiency led to an increase in root Asn content and a decline in glutamine synthetase activity when compared to control plants, which suggest that this mineral deficiency may promote ammonium assimilation via asparagine synthetase in tobacco roots.
Collapse
Affiliation(s)
- Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | |
Collapse
|
202
|
Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 2007; 282:23541-52. [PMID: 17573350 DOI: 10.1074/jbc.m700901200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Arabidopsis the NRT2.1 gene encodes a main component of the root high-affinity nitrate uptake system (HATS). Its regulation has been thoroughly studied showing a strong correlation between NRT2.1 expression and HATS activity. Despite its central role in plant nutrition, nothing is known concerning localization and regulation of NRT2.1 at the protein level. By combining a green fluorescent protein fusion strategy and an immunological approach, we show that NRT2.1 is mainly localized in the plasma membrane of root cortical and epidermal cells, and that several forms of the protein seems to co-exist in cell membranes (the monomer and at least one higher molecular weight complex). The monomer is the most abundant form of NRT2.1, and seems to be the one involved in NO(3)(-) transport. It strictly requires the NAR2.1 protein to be expressed and addressed at the plasma membrane. No rapid changes in NRT2.1 abundance were observed in response to light, sucrose, or nitrogen treatments that strongly affect both NRT2.1 mRNA level and HATS activity. This suggests the occurrence of post-translational regulatory mechanisms. One such mechanism could correspond to the cleavage of NRT2.1 C terminus, which results in the presence of both intact and truncated proteins in the plasma membrane.
Collapse
Affiliation(s)
- Judith Wirth
- Institut de Biologie Intégrative des Plantes, UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/SupAgro/UM2, Place Viala, F-34060 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R. Short-term interactions between nitrate and iron nutrition in cucumber. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:402-408. [PMID: 32689367 DOI: 10.1071/fp07022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/15/2007] [Indexed: 05/14/2023]
Abstract
Cucumber (Cucumis sativus L.) plants were precultured for 7 days in either optimal (10 µm) or low (0.5 µm) Fe conditions and then grown for further 5 days in a N-free nutrient solution with (+Fe) or without (-Fe) 10 µm Fe. Thereafter NO3- (4 mm) was added to the nutrient solution for 24 h and, concomitantly, half of the -Fe plants were treated with 1 µm Fe complexed to water extractable humic substances (WEHS). Supply of NO3- to +Fe-N-deprived plants caused a large induction in the capacity to take up the anion by roots, which was accompanied by a rise in root-shoot NO3- concentration. The -Fe plants showed a lower level of induction of NO3- uptake and hence a lower accumulation of the anion in the tissues, these effects being reversed by supply of Fe-WEHS. Supply of either NO3-- or NH4+-N (+/- Fe-WEHS) to -Fe plants promoted the development of the root FeIII-chelate reductase activity, but the capacity of roots to take up the Fe2+ remained unaffected. Results show that an inadequate Fe supply can limit the acquisition of NO3-, whereas NO3- supply can affect Fe uptake by influencing the development and maintenance of a high FeIII-chelate reducing capacity.
Collapse
Affiliation(s)
- Miroslav Nikolic
- Center for Multidisciplinary Studies of the Belgrade University, Serbia
| | - Stefano Cesco
- Department of Agriculture and Environmental Sciences, University of Udine, Italy
| | - Volker Römheld
- Institute of Plant Nutrition (330), University of Hohenheim, Germany
| | - Zeno Varanini
- Department of Sciences, Technologies and Marketing of Grapevine and Wine, University of Verona, Italy
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, Italy
| |
Collapse
|
204
|
Slot JC, Hallstrom KN, Matheny PB, Hibbett DS. Diversification of NRT2 and the Origin of Its Fungal Homolog. Mol Biol Evol 2007; 24:1731-43. [PMID: 17513882 DOI: 10.1093/molbev/msm098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the origin and diversification of the high-affinity nitrate transporter NRT2 in fungi and other eukaryotes using Bayesian and maximum parsimony methods. To assess the higher-level relationships and origins of NRT2 in eukaryotes, we analyzed 200 amino acid sequences from the Nitrate/Nitrite Porter (NNP) Family (to which NRT2 belongs), including 55 fungal, 41 viridiplantae (green plants), 11 heterokonts (stramenopiles), and 87 bacterial sequences. To assess evolution of NRT2 within fungi and other eukaryotes, we analyzed 116 amino acid sequences of NRT2 from 58 fungi, 40 viridiplantae (green plants), 1 rhodophyte, and 5 heterokonts, rooted with 12 bacterial sequences. Our results support a single origin of eukaryotic NRT2 from 1 of several clades of mostly proteobacterial NNP transporters. The phylogeny of bacterial NNP transporters does not directly correspond with bacterial taxonomy, apparently due to ancient duplications and/or horizontal gene transfer events. The distribution of NRT2 in the eukaryotes is patchy, but the NRT2 phylogeny nonetheless supports the monophyly of major groups such as viridiplantae, flowering plants, monocots, and eudicots, as well as fungi, ascomycetes, basidiomycetes, and agaric mushrooms. At least 1 secondary origin of eukaryotic NRT2 via horizontal transfer to the fungi is suggested, possibly from a heterokont donor. Our analyses also suggest that there has been a horizontal transfer of nrt2 from a basidiomycete fungus to an ascomycete fungus and reveal a duplication of nrt2 in the ectomycorrhizal mushroom genus, Hebeloma.
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biology, Clark University, MA, USA.
| | | | | | | |
Collapse
|
205
|
Boudko DY. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:186-210. [PMID: 17329176 PMCID: PMC2040328 DOI: 10.1016/j.jchromb.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Another aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| |
Collapse
|
206
|
de Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F, Barbier-Brygoo H. Anion channels and transporters in plant cell membranes. FEBS Lett 2007; 581:2367-74. [PMID: 17434490 DOI: 10.1016/j.febslet.2007.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/01/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
Anion channels/transporters appear as key players in signaling pathways leading to the adaptation of plant cells to abiotic and biotic environmental stresses, in the control of metabolism and in the maintenance of electrochemical gradients. Focusing on the most recent advances, this review aims at providing a description of the role of these channels in various physiological functions such as control of stomatal movements, plant-pathogen interaction, xylem loading, compartmentalization of metabolites and coupling with proton gradients. These functions have been demonstrated by a combination of electrophysiology, pharmacology and genetics approaches, the key issue being to identify the corresponding proteins and genes.
Collapse
Affiliation(s)
- Alexis de Angeli
- Institut des Sciences du Végétal, UPR 2355, CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
207
|
Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V. Engineering nitrogen use efficiency with alanine aminotransferase. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-019] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen (N) is the most important factor limiting crop productivity worldwide. The ability of plants to acquire N from applied fertilizers is one of the critical steps limiting the efficient use of nitrogen. To improve N use efficiency, genetically modified plants that overexpress alanine aminotransferase (AlaAT) were engineered by introducing a barley AlaAT cDNA driven by a canola root specific promoter (btg26). Compared with wild-type canola, transgenic plants had increased biomass and seed yield both in the laboratory and field under low N conditions, whereas no differences were observed under high N. The transgenics also had increased nitrate influx. These changes resulted in a 40% decrease in the amount of applied nitrogen fertilizer required under field conditions to achieve yields equivalent to wild-type plants.
Collapse
Affiliation(s)
- Allen G. Good
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Susan J. Johnson
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mary De Pauw
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Rebecka T. Carroll
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nic Savidov
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - John Vidmar
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zhongjin Lu
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gregory Taylor
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Virginia Stroeher
- Monsanto Company, Mystic Research, 62 Maritime Drive, Mystic, CT 06355, USA
- Crop Diversification Centre, Alberta Agriculture, SS#4, Brooks, AB T1R 1E6, Canada
- Arcadia Biosciences Inc., 202 Cousteau Place, Suite 200, Davis, CA 95616, USA
- Department of Biological Sciences, Bishop’s University, Lennoxville, QC J1M 1Z7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
208
|
Tsujimoto R, Yamazaki H, Maeda SI, Omata T. Distinct roles of nitrate and nitrite in regulation of expression of the nitrate transport genes in the moss Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2007; 48:484-97. [PMID: 17289796 DOI: 10.1093/pcp/pcm019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Five NRT2 genes and three Nar2 genes, encoding putative high-affinity nitrate transporters, and the respective cDNAs were identified and characterized in Physcomitrella patens. The deduced moss NRT2 and NAR2 proteins were more similar to the corresponding proteins of higher plants than to those of the green alga Chlamydomonas reinhardtii. Expression of all the genes was inhibited by ammonium added to the medium. The regulation by ammonium was abolished by an inhibitor of glutamine synthetase, but the effect of this inhibitor was counteracted by an inhibitor of glutamate synthase. Negative correlation was observed between the glutamine content of protonemata and the transcript levels of PpNRT2 and PpNar2. These results indicated that glutamine is the signal for repression of the genes. All the genes except PpNRT2;5 showed transient expression stimulated by nitrate but not by nitrite, peaking at 2-4 h after the medium was deprived of ammonium. When the glutamine synthetase inhibitor was used to inhibit assimilation of the ammonium generated intracellularly from nitrate or nitrite, the second phase of activation of genes became manifest at approximately 8 h after the medium was deprived of ammonium. Surprisingly, both nitrate and nitrite stimulated gene expression at this stage. PpNRT2;5 was distinct from the other genes in that its expression is sharply induced by nitrite, is strictly dependent on nitrite or nitrate, and is much less susceptible to the feedback regulation, retaining a constant level in nitrate-containing medium. These results indicated that P. patens has multiple mechanisms for sensing nitrate and nitrite.
Collapse
Affiliation(s)
- Ryoma Tsujimoto
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | |
Collapse
|
209
|
Kosola KR, Workmaster BAA, Spada PA. Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx. THE NEW PHYTOLOGIST 2007; 176:184-196. [PMID: 17803649 DOI: 10.1111/j.1469-8137.2007.02149.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite the ubiquitous presence of ericoid mycorrhizal (ERM) fungi in cranberry (Vaccinium macrocarpon), no prior studies have examined the effect of ERM colonization on NO(3)(-) influx kinetics. Here, (15)NO(3)(-) influx was measured in nonmycorrhizal and mycorrhizal cranberry in hydroponics. Mycorrhizal cranberry were inoculated with the ERM fungus Rhizoscyphus (syn. Hymenoscyphus) ericae. (15)NO(3)(-) influx by R. ericae in solution culture was also measured. Rhizoscyphus ericae NO(3)(-) influx kinetics were linear when mycelium was exposed for 24 h to 3.8 mm NH(4)(+), and saturable when pretreated with 3.8 mm NO(3)(-), 50 microm NO(3)(-), or 50 microm NH(4)(+). Both low-N pretreatments induced greater NO(3)(-) influx than either of the high-N pretreatments. Nonmycorrhizal cranberry exhibited linear NO(3)(-) influx kinetics. By contrast, mycorrhizal cranberry had saturable NO(3)(-) influx kinetics, with c. eightfold greater NO(3)(-) influx than nonmycorrhizal cranberry at NO(3)(-) concentrations from 20 microm to 2 mm. There was no influence of pretreatments on cranberry NO(3)(-) influx kinetics, regardless of mycorrhizal status. Inoculation with R. ericae increased the capacity of cranberry to utilize NO(3)(-)-N. This finding is significant both for understanding the potential nutrient niche breadth of cranberry and for management of cultivated cranberry when irrigation water sources contain nitrate.
Collapse
Affiliation(s)
- Kevin R Kosola
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| | - Beth Ann A Workmaster
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| | - Piero A Spada
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
210
|
Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1957-67. [PMID: 17452753 DOI: 10.1093/jxb/erm057] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.
Collapse
Affiliation(s)
- Sakae Agarie
- Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Wickert E, Marcondes J, Lemos MV, Lemos EG. Nitrogen assimilation in Citrus based on CitEST data mining. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
212
|
Debouba M, Gouia H, Suzuki A, Ghorbel MH. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1247-58. [PMID: 17126728 DOI: 10.1016/j.jplph.2005.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 09/15/2005] [Indexed: 05/03/2023]
Abstract
Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.
Collapse
Affiliation(s)
- Mohamed Debouba
- Unité de Recherche 09-20: Nutrition, Métabolisme Azoté et Protéines de Stress, Faculté des Sciences de Tunis Département de Biologie, Université Tunis El Manar, Tunis 1060, Tunisie
| | | | | | | |
Collapse
|
213
|
Hu TZ, Cao KM, Xia M, Wang XP. Functional characterization of a putative nitrate transporter gene promoter from rice. Acta Biochim Biophys Sin (Shanghai) 2006; 38:795-802. [PMID: 17091197 DOI: 10.1111/j.1745-7270.2006.00225.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Drought is one of the most significant abiotic stresses that influence plant growth and development. Expression analysis revealed that OsNRT1.3, a putative nitrate transporter gene in rice, was induced by drought. To confirm if the OsNRT1.3 promoter can respond to drought stress, a 2019 bp upstream sequence of OsNRT1.3 was cloned. Three OsNRT1.3 promoter fragments were generated by 5'-deletion, and fused to the beta-glucuronidase (GUS) gene. The chimeric genes were introduced into rice plants. NRT2019::GUS, NRT1196::GUS and NRT719::GUS showed similar expression patterns in seeds, roots, leaves and flowers in all transgenic rice, and GUS activity conferred by different OsNRT1.3 promoter fragments was significantly upregulated by drought stress, indicating that OsNRT1.3 promoter responds to drought stress and the 719 bp upstream sequence of OsNRT1.3 contains the drought response elements.
Collapse
Affiliation(s)
- Ting-Zhang Hu
- Department of Biochemistry, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
214
|
Krouk G, Tillard P, Gojon A. Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. PLANT PHYSIOLOGY 2006; 142:1075-86. [PMID: 16998085 PMCID: PMC1630733 DOI: 10.1104/pp.106.087510] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity NO(3)(-) transport system (HATS) that plays a crucial role in NO(3)(-) uptake by the plant. Although NRT2.1 was known to be induced by NO(3)(-) and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when NO(3)(-) concentration decreases to a low level (<0.5 mm) in media containing a high concentration of NH(4)(+) or Gln (>or=1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external NO(3)(-) availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high NO(3)(-) is specifically mediated by the NRT1.1 NO(3)(-) transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up NO(3)(-) in the presence of a reduced N source. Under low NO(3)(-)/high NH(4)(+) provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against NH(4)(+) toxicity because NO(3)(-) taken up by the HATS in this situation prevents the detrimental effects of pure NH(4)(+) nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific NO(3)(-) demand of the plant in relation to the various specific roles that NO(3)(-) plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high NO(3)(-).
Collapse
Affiliation(s)
- Gabriel Krouk
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Agro-M, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier, France
| | | | | |
Collapse
|
215
|
Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. PLANT PHYSIOLOGY 2006; 142:1304-17. [PMID: 17012411 PMCID: PMC1630756 DOI: 10.1104/pp.106.085209] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The identification of a family of NAR2-type genes in higher plants showed that there was a homolog in Arabidopsis (Arabidopsis thaliana), AtNAR2.1. These genes encode part of a two-component nitrate high-affinity transport system (HATS). As the Arabidopsis NRT2 gene family of nitrate transporters has been characterized, we tested the idea that AtNAR2.1 and AtNRT2.1 are partners in a two-component HATS. Results using the yeast split-ubiquitin system and Xenopus oocyte expression showed that the two proteins interacted to give a functional HATS. The growth and nitrogen (N) physiology of two Arabidopsis gene knockout mutants, atnrt2.1-1 and atnar2.1-1, one for each partner protein, were compared. Both types of plants had lost HATS activity at 0.2 mm nitrate, but the effect was more severe in atnar2.1-1 plants. The relationship between plant N status and nitrate transporter expression revealed a pattern that was characteristic of N deficiency that was again stronger in atnar2.1-1. Plants resulting from a cross between both mutants (atnrt2.1-1 x atnar2.1-1) showed a phenotype like that of the atnar2.1-1 mutant when grown in 0.5 mm nitrate. Lateral root assays also revealed growth differences between the two mutants, confirming that atnar2.1-1 had a stronger phenotype. To show that the impaired HATS did not result from the decreased expression of AtNRT2.1, we tested if constitutive root expression of a tobacco (Nicotiana plumbaginifolia) gene, NpNRT2.1, previously been shown to complement atnrt2.1-1, can restore HATS to the atnar2.1-1 mutant. These plants did not recover wild-type nitrate HATS. Taken together, these results show that AtNAR2.1 is essential for HATS of nitrate in Arabidopsis.
Collapse
Affiliation(s)
- Mathilde Orsel
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
216
|
Kawachi T, Sunaga Y, Ebato M, Hatanaka T, Harada H. Repression of Nitrate Uptake by Replacement of Asp105 by Asparagine in AtNRT3.1 in Arabidopsis thaliana L. ACTA ACUST UNITED AC 2006; 47:1437-41. [PMID: 16980702 DOI: 10.1093/pcp/pcl010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An Arabidopsis mutant (rnc1) with a mutation at the 313th nucleotide from the translational start site of AtNRT3.1 was isolated. The mutation resulted in the replacement of aspartate by asparagine at the 105th amino acid in a region conserved among higher plants. In the rnc1 mutant, both the nitrate concentrations in plants and the nitrate uptake from the medium were <13% compared with those of the wild type, while AtNRT3.1 mRNA was accumulated similarly and both AtNRT1.1 and AtNRT2.1 mRNA were decreased. These results suggest that the replacement of Asp105 in AtNRT3.1 markedly reduces nitrate uptake and accumulation.
Collapse
Affiliation(s)
- Tahei Kawachi
- National Institute of Livestock and Grassland Science, 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793 Japan.
| | | | | | | | | |
Collapse
|
217
|
Montanini B, Gabella S, Abbà S, Peter M, Kohler A, Bonfante P, Chalot M, Martin F, Ottonello S. Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 2006; 43:630-41. [PMID: 16698294 DOI: 10.1016/j.fgb.2006.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 03/31/2006] [Accepted: 04/02/2006] [Indexed: 01/04/2023]
Abstract
The focus of this work is on the nitrogen starvation stress responses operating in a plant symbiotic fungus. A cDNA array profiling analysis was conducted on N-limited mycelia of the mycorrhizal ascomycete Tuber borchii. Fifty-one unique transcripts, out of 2062 redundant arrayed cDNAs, were differentially expressed by at least 1.5-fold in response to N deprivation. Only two N assimilation components-a nitrate transporter and a high-affinity ammonium transporter-were found among differentially expressed genes. All the other N status responsive genes code for as yet unidentified hypothetical proteins or components not directly involved in N assimilation or metabolism, especially carbohydrate binding proteins and oligosaccharide as well as lipid modifying enzymes. A subset of cDNA array data were confirmed and extended by Northern blot analysis, which showed that most of the latter components respond not only to nitrogen, but also to carbon source depletion.
Collapse
Affiliation(s)
- Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Xiong ZT, Zhao F, Li MJ. Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. ENVIRONMENTAL TOXICOLOGY 2006; 21:147-53. [PMID: 16528690 DOI: 10.1002/tox.20167] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lead is a major heavy-metal contaminant in the environment that has various anthropogenic and natural sources. To study the phytotoxic effects of Pb on the popular vegetable Chinese cabbage (Brassica pekinensis Rupr.) via depression of nitrogen assimilation, pot culture experiments with three concentrations of treatment with Pb (0, 4, and 8 mmol/kg dry soil) were carried out. Our results demonstrated adverse effects of Pb on nitrogen assimilation and plant growth. The addition of Pb in the soil resulted in elevated accumulation of Pb in the shoots of the plants: Pb concentrations of 14.3, 202.3, and 418.2 mg/kg (DW) in the shoots were detected with the 0, 4, and 8 mmol/kg treatments, respectively. Compared to the control, Pb exposure (4 and 8 mmol/kg) significantly decreased shoot nitrate content (71% and 80% of the control), nitrate reductase activity (104% and 49% of the control), and free amino acid content (81% and 82% of the control), indicating decreased nitrogen assimilation in the plants. The effect of Pb also was shown by the progressive decline in shoot biomass with increasing Pb concentration in plant shoots and in the soil. However, at the treatment levels used in this study, lead did not induce visible toxic symptoms. The lowest-concentration Pb treatment (4 mmol/kg) stimulated chlorophyll b content but did not influence chlorophyll a content. The results suggested that the toxicity of Pb to the plants occurred at least partly via depression of nitrogen assimilation.
Collapse
Affiliation(s)
- Zhi-Ting Xiong
- Department of Environmental Sciences, Wuhan University, Wuhan, Hubei 430079, People's Republic of China.
| | | | | |
Collapse
|
219
|
Navarro FJ, Machín F, Martín Y, Siverio JM. Down-regulation of eukaryotic nitrate transporter by nitrogen-dependent ubiquitinylation. J Biol Chem 2006; 281:13268-13274. [PMID: 16543229 DOI: 10.1074/jbc.m601253200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Hansenula polymorpha, the YNT1 gene encodes the high affinity nitrate transporter, which is repressed by reduced nitrogen sources such as ammonium or glutamine. Ynt1 protein is degraded in response to glutamine in the growth medium. Ynt1 disappears independently of YNT1 glutamine repression as shown in strains where YNT1 repression is abolished. Ynt1-green fluorescent protein chimera and a mutant defective in vacuolar proteinase A (deltapep4) showed that Ynt1 is degraded in the vacuole in response to glutamine. The central hydrophilic domain of Ynt1 contains PEST-like sequences whose deletion blocked Ynt1 down-regulation. Site-directed mutagenesis showed that Lys-253 and Lys-270, located in this sequence, were involved in internalization and subsequent vacuolar degradation of Ynt1. Ynt1-ubiquitin conjugates were induced by glutamine and not nitrate. We conclude that glutamine triggers Ynt1 down-regulation via ubiquitinylation of lysines in the central hydrophilic domain, and proteolysis in the vacuole.
Collapse
Affiliation(s)
- Francisco J Navarro
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Enfermedades Tropicales, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain
| | - Félix Machín
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Enfermedades Tropicales, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain
| | - Yusé Martín
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Enfermedades Tropicales, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain
| | - José M Siverio
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Enfermedades Tropicales, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain.
| |
Collapse
|
220
|
Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:909-21. [PMID: 16415211 PMCID: PMC1400583 DOI: 10.1104/pp.105.075721] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Up-regulation of the high-affinity transport system (HATS) for NO(3)(-) and stimulation of lateral root (LR) growth are two important adaptive responses of the root system to nitrogen limitation. Up-regulation of the NO(3)(-) HATS by nitrogen starvation is suppressed in the atnrt2.1-1 mutant of Arabidopsis (Arabidopsis thaliana), deleted for both NRT2.1 and NRT2.2 nitrate transporter genes. We then used this mutant to determine whether lack of HATS stimulation affected the response of the root system architecture (RSA) to low NO(3)(-) availability. In Wassilewskija (Ws) wild-type plants, transfer from high to low NO(3)(-) medium resulted in contrasting responses of RSA, depending on the level of nitrogen limitation. Moderate nitrogen limitation (transfer from 10 mm to 1 or 0.5 mm NO(3)(-)) mostly led to an increase in the number of visible laterals, while severe nitrogen stress (transfer from 10 mm to 0.1 or 0.05 mm NO(3)(-)) promoted mean LR length. The RSA response of the atnrt2.1-1 mutant to low NO(3)(-) was markedly different. After transfer from 10 to 0.5 mm NO(3)(-), the stimulated appearance of LRs was abolished in atnrt2.1-1 plants, whereas the increase in mean LR length was much more pronounced than in Ws. These modifications of RSA mimicked those of Ws plants subjected to severe nitrogen stress and could be fully explained by the lowered NO(3)(-) uptake measured in the mutant. This suggests that the uptake rate of NO(3)(-), rather than its external concentration, is the key factor triggering the observed changes in RSA. However, the mutation of NRT2.1 was also found to inhibit initiation of LR primordia in plants subjected to nitrogen limitation independently of the rate of NO(3)(-) uptake by the whole root system and even of the presence of added NO(3)(-) in the external medium. This indicates a direct stimulatory role for NRT2.1 in this particular step of LR development. Thus, it is concluded that NRT2.1 has a key dual function in coordinating root development with external NO(3)(-) availability, both indirectly through its role as a major NO(3)(-) uptake system that determines the nitrogen uptake-dependent RSA responses, and directly through a specific action on LR initiation under nitrogen-limited conditions.
Collapse
Affiliation(s)
- Tony Remans
- Laboratoire de Biochimie and Physiologie Moléculaire des Plantes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure Agronomique, Université Monpellier II, France
| | | | | | | | | | | | | |
Collapse
|
221
|
Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass ADM. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. PLANT PHYSIOLOGY 2006; 140:1036-46. [PMID: 16415212 PMCID: PMC1400568 DOI: 10.1104/pp.105.074385] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The NAR2 protein of Chlamydomonas reinhardtii has no known transport activity yet it is required for high-affinity nitrate uptake. Arabidopsis (Arabidopsis thaliana) possesses two genes, AtNRT3.1 and AtNRT3.2, that are similar to the C. reinhardtii NAR2 gene. AtNRT3.1 accounts for greater than 99% of NRT3 mRNA and is induced 6-fold by nitrate. AtNRT3.2 was expressed constitutively at a very low level and did not compensate for the loss of AtNRT3.1 in two Atnrt3.1 mutants. Nitrate uptake by roots and nitrate induction of gene expression were analyzed in two T-DNA mutants, Atnrt3.1-1 and Atnrt3.1-2, disrupted in the AtNRT3.1 promoter and coding regions, respectively, in 5-week-old plants. Nitrate induction of the nitrate transporter genes AtNRT1.1 and AtNRT2.1 was reduced in Atnrt3.1 mutant plants, and this reduced expression was correlated with reduced nitrate concentrations in the tissues. Constitutive high-affinity influx was reduced by 34% and 89%, respectively, in Atnrt3.1-1 and Atnrt3.1-2 mutant plants, while high-affinity nitrate-inducible influx was reduced by 92% and 96%, respectively, following induction with 1 mm KNO(3) after 7 d of nitrogen deprivation. By contrast, low-affinity influx appeared to be unaffected. Thus, the constitutive high-affinity influx and nitrate-inducible high-affinity influx (but not the low-affinity influx) of higher plant roots require a functional AtNRT3 (NAR2) gene.
Collapse
Affiliation(s)
- Mamoru Okamoto
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. PLANT MOLECULAR BIOLOGY 2006; 60:617-31. [PMID: 16649102 DOI: 10.1007/s11103-005-5441-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/18/2005] [Indexed: 05/08/2023]
Abstract
Development of crop varieties with high nitrogen use efficiency (NUE) is imperative for sustainable agriculture. Understanding how plant genes respond to low N stress is essential for formulating approaches to manipulating genes for improving NUE. In this study we analyzed the expression profiles of an indica rice cultivar Minghui 63 at seedling stage at 20 min, 1 and 2 h after low N stress with the normal N as the control, using a microarray of 11,494 rice ESTs representing 10,422 unique genes. While no significant difference was detected in the leaf tissue, a total of 471 ESTs were detected as responsive to low N stress in the root tissue with 115 ESTs showing up-regulation and 358 ESTs showing down-regulation. The analysis of expression profiles after low N stress identified following patterns: (1) the genes involved in photosynthesis and energy metabolism were down-regulated rapidly; (2) many of the genes involved in early responses to biotic and abiotic stresses were up-regulated while many other stress responsive genes were down-regulated; (3) regulatory genes including transcription factors and ones involved in signal transduction were both up- and down-regulated; and (4) the genes known to be involved in N uptake and assimilation showed little response to the low N stress. The challenges for future studies are to characterize the functional roles of the low N stress responsive genes in N metabolisms, including the large number of genes presently with unknown functions.
Collapse
Affiliation(s)
- Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Montanini B, Viscomi A, Bolchi A, Martin Y, Siverio J, Balestrini R, Bonfante P, Ottonello S. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochem J 2006; 394:125-34. [PMID: 16201972 PMCID: PMC1386010 DOI: 10.1042/bj20051199] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/12/2005] [Accepted: 10/05/2005] [Indexed: 11/17/2022]
Abstract
Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (K(m)=4.7 microM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils.
Collapse
Key Words
- gene regulation
- hansenula polymorpha
- mycorrhiza
- nitrate/nitrite transport
- nitrogen deficiency
- tuber borchii nrt2 family transporter (tbnrt2)
- est, expressed sequence tag
- gst, glutathione s-transferase
- mfs, major facilitator superfamily
- ncbi, national center for biotechnology information
- nin/out, n-terminus intracellular/extracellular
- nir, nitrite reductase
- nr, nitrate reductase
- ns, nitrate signature
- nt, nitrate transporter
- orf, open reading frame
- ssm, synthetic solid medium
- tbnrt2,tuber borchii nrt2 family transporter
- tm, transmembrane
Collapse
Affiliation(s)
- Barbara Montanini
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Arturo R. Viscomi
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Angelo Bolchi
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Yusé Martin
- †Instituto Universitario de Enfermedades Tropicales y Salud Pública, Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206, La Laguna, Spain
| | - José M. Siverio
- †Instituto Universitario de Enfermedades Tropicales y Salud Pública, Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206, La Laguna, Spain
| | - Raffaella Balestrini
- ‡Dipartimento di Biologia Vegetale, Università di Torino and Istituto per la Protezione delle Piante (Sezione di Micologia), Consiglio Nazionale delle Ricerche, 10125 Torino, Italy
| | - Paola Bonfante
- ‡Dipartimento di Biologia Vegetale, Università di Torino and Istituto per la Protezione delle Piante (Sezione di Micologia), Consiglio Nazionale delle Ricerche, 10125 Torino, Italy
| | - Simone Ottonello
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| |
Collapse
|
224
|
Maeda SI, Sugita C, Sugita M, Omata T. Latent nitrate transport activity of a novel sulfate permease-like protein of the cyanobacterium Synechococcus elongatus. J Biol Chem 2006; 281:5869-76. [PMID: 16407232 DOI: 10.1074/jbc.m513196200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Synechococcus elongatus mutant lacking the nrtABCD gene cluster (NA3) is defective in active nitrate transport and requires high nitrate concentrations (>30 mm) for sustained growth. Prolonged incubation of NA3 in medium containing 2 mm nitrate led to isolation of a pseudorevertant (NA3R) capable of transport of millimolar concentrations of nitrate, from which three mutants with improved affinity for nitrate were obtained. We identified three genes responsible for the latent transport activity for nitrate: ltnA, which encodes a response regulator with no effector domain; ltnB, which encodes a hybrid histidine kinase with two receiver domains; and ltnT, which encodes a sulfate permease-like protein with a putative cyclic nucleoside monophosphate (cNMP)-binding domain. Missense mutations of the high affinity derivatives of NA3R were found in ltnT, verifying that LtnT acts as the transporter. Overexpression of truncated LtnT lacking the cNMP-binding domain (but not full-length LtnT) conferred nitrate transport activity on NA3, suggesting that the cNMP-binding domain inhibits transport under normal conditions. A nonsense mutation in ltnB that resulted in elimination of the receiver domains of the encoded protein was responsible for expression of nitrate transport activity in NA3R. Expression of LtnB derivatives lacking the receiver domains also conferred low affinity nitrate transport activity on NA3. The phosphoryl group of the histidine kinase domain of LtnB was transferred to Asp(52) of LtnA in vitro. Overexpression of LtnA (but not LtnA(D52E)) led to manifestation of the latent nitrate transport activity in NA3, indicating involvement of phosphorylated LtnA in activation of the novel transporter.
Collapse
Affiliation(s)
- Shin-ichi Maeda
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furucho, Chikusaku, Nagoya, Aichi 464-8601, Japan.
| | | | | | | |
Collapse
|
225
|
Santacroce PV, Okunola OA, Zavalij PY, Davis JT. A transmembrane anion transporter selective for nitrate over chloride. Chem Commun (Camb) 2006:3246-8. [PMID: 17028758 DOI: 10.1039/b607221f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C3-symmetric triamide selectively transports NO3- anions across lipid vesicles: this H+-NO3- co-transporter alters the pH inside of liposomes experiencing a NO3-/Cl- gradient.
Collapse
Affiliation(s)
- Paul V Santacroce
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
226
|
Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 112:85-96. [PMID: 16189659 DOI: 10.1007/s00122-005-0108-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/20/2005] [Indexed: 05/04/2023]
Abstract
Tolerance to low nitrogen conditions is a highly desired characteristic for sustainable crop production. In this study, we analyzed the genetic components associated with low N tolerance in rice at seedling stage, including main effects, epistatic effects of the quantitative trait locus (QTLs), and QTL by environment interactions (QEs), using a population of 239 recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of an elite hybrid. A genetic linkage map with 253 DNA maker loci was constructed. Seedlings of RILs were cultivated in low N and normal N solutions. Root, shoot and plant weight in the two N treatments were measured and the relative weight of the two treatments for each trait was considered as measurements for low N tolerance. Four to eight QTLs with main effects were detected for each of the nine traits. Very few QTLs were detected in both low and normal N conditions, and most QTLs for the relative measurements were different from those for traits under the two N treatments, indicating very little commonality in the genetic basis of the traits and their relative performance under low and normal N conditions. A total of 103 digenic interactions were detected for the nine traits. While the epistatic effects collectively accounted for large proportions of the variation for several traits, the effects of QEs appeared to be trivial. It was concluded that low N tolerance of rice seedling had complex genetic basis that requires extensive studies for full characterization.
Collapse
Affiliation(s)
- Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | | | |
Collapse
|
227
|
Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A 2005; 102:13693-8. [PMID: 16157886 PMCID: PMC1224627 DOI: 10.1073/pnas.0504219102] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral root initiation is strongly repressed in Arabidopsis by the combination of high external sucrose and low external nitrate. A previously isolated mutant, lin1, can overcome this repression. Here, we show that lin1 carries a missense mutation in the NRT2.1 gene. Several allelic mutants, including one in which the NRT2.1 gene is completely deleted, show similar phenotypes to lin1 and fail to complement lin1. NRT2.1 encodes a putative high-affinity nitrate transporter that functions at low external nitrate concentrations. Direct measurement of nitrate uptake and nitrate content in the lin1 mutant seedlings established that both are indeed reduced. Because repression of lateral root initiation in WT plants can be relieved by increased concentrations of external nitrate, it is surprising to find that repression is also relieved by a defect in a component of the high-affinity nitrate uptake system. Furthermore, lateral root initiation is increased in lin1 relative to WT even when seedlings are grown on nitrate-free media, suggesting that the mutant phenotype is nitrate-independent. These results indicate that NRT2.1 is a repressor of lateral root initiation and that this role is independent of nitrate uptake. We propose that Arabidopsis NRT2.1 acts either as a nitrate sensor or signal transducer to coordinate the development of the root system with nutritional cues.
Collapse
Affiliation(s)
- Daniel Y Little
- Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
228
|
Vincill ED, Szczyglowski K, Roberts DM. GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate. PLANT PHYSIOLOGY 2005; 137:1435-44. [PMID: 15793072 PMCID: PMC1088332 DOI: 10.1104/pp.104.051953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/11/2004] [Accepted: 10/14/2004] [Indexed: 05/23/2023]
Abstract
A cDNA was isolated from soybean (Glycine max) nodules that encodes a putative transporter (GmN70) of the major facilitator superfamily. GmN70 is expressed predominantly in mature nitrogen-fixing root nodules. By western-blot and immunocytochemical analyses, GmN70 was localized to the symbiosome membrane of infected root nodule cells, suggesting a transport role in symbiosis. To investigate its transport function, cRNA encoding GmN70 was expressed in Xenopus laevis oocytes, and two-electrode voltage clamp analysis was performed. Ooctyes expressing GmN70 showed outward currents that are carried by anions with a selectivity of nitrate > nitrite > > chloride. These currents showed little sensitivity to pH or the nature of the counter cation in the oocyte bath solution. One-half maximal currents were induced by nitrate concentrations between 1 to 3 mm. No apparent transport of organic anions was observed. Voltage clamp records of an ortholog of GmN70 from Lotus japonicus (LjN70; K. Szczyglowski, P. Kapranov, D. Hamburger, F.J. de Bruijn [1998] Plant Mol Biol 37: 651-661) also showed anion currents with a similar selectivity profile. Overall, these findings suggest that GmN70 and LjN70 are inorganic anion transporters of the symbiosome membrane with enhanced preference for nitrate. These transport activities may aid in regulation of ion and membrane potential homeostasis, possibly in response to external nitrate concentrations that are known to regulate the symbiosis.
Collapse
Affiliation(s)
- Eric D Vincill
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
229
|
Kinghorn JR, Sloan J, Kana'n GJM, Dasilva ER, Rouch DA, Unkles SE. Missense mutations that inactivate the Aspergillus nidulans nrtA gene encoding a high-affinity nitrate transporter. Genetics 2005; 169:1369-77. [PMID: 15545642 PMCID: PMC1449554 DOI: 10.1534/genetics.104.036590] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022] Open
Abstract
The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class of nitrate permeases, a collection of chemically induced mutations in the nrtA gene encoding a 12-transmembrane domain, high-affinity nitrate transporter from the eukaryote Aspergillus nidulans was isolated and characterized. This mutational analysis, coupled with protein alignments, demonstrates the utility of the approach to predicting peptide motifs and individual residues important for the movement of nitrate across the membrane. These include the highly conserved nitrate signature motif (residues 166-173) in Tm 5, the conserved charged residues Arg87 (Tm 2) and Arg368 (Tm 8), as well as the aromatic residue Phe47 (Tm 1), all within transmembrane helices. No mutations were observed in the large central loop (Lp 6/7) between Tm 6 and Tm 7. Finally, the study of a strain with a conversion of Trp481 (Tm 12) to a stop codon suggests that all 12 transmembrane domains and/or the C-terminal tail are required for membrane insertion and/or stability of NrtA.
Collapse
Affiliation(s)
- James R Kinghorn
- School of Biology, University of Saint Andrews, Fife, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
230
|
Tong Y, Zhou JJ, Li Z, Miller AJ. A two-component high-affinity nitrate uptake system in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:442-50. [PMID: 15659102 DOI: 10.1111/j.1365-313x.2004.02310.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The analysis of genome databases for many different plants has identified a group of genes that are related to one part of a two-component nitrate transport system found in algae. Earlier work using mutants and heterologous expression has shown that a high-affinity nitrate transport system from the unicellular green algae, Chlamydomonas reinhardtii required two gene products for function. One gene encoded a typical carrier-type structure with 12 putative trans-membrane (TM) domains and the other gene, nar2 encoded a much smaller protein that had only one TM domain. As both gene families occur in plants we investigated whether this transport model has more general relevance among plants. The screening for nitrate transporter activity was greatly helped by a novel assay using (15)N-enriched nitrate uptake into Xenopus oocytes expressing the proteins. This assay enables many oocytes to be rapidly screened for nitrate transport activity. The functional activity of a barley nitrate transporter, HvNRT2.1, in oocytes required co-injection of a second mRNA. Although three very closely related nar2-like genes were cloned from barley, only one of these was able to give functional nitrate transport when co-injected into oocytes. The nitrate transport performed by this two-gene system was inhibited at more acidic external pH and by acidification of the cytoplasm. This specific requirement for two-gene products to give nitrate transport function has important implications for attempts to genetically manipulate this fundamental process in plants.
Collapse
Affiliation(s)
- Yiping Tong
- Crop Performance and Improvement Division, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | | |
Collapse
|
231
|
|
232
|
Flores E, Frías JE, Rubio LM, Herrero A. Photosynthetic nitrate assimilation in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2005; 83:117-33. [PMID: 16143847 DOI: 10.1007/s11120-004-5830-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/02/2004] [Indexed: 05/03/2023]
Abstract
Nitrate uptake and reduction to nitrite and ammonium are driven in cyanobacteria by photosynthetically generated assimilatory power, i.e., ATP and reduced ferredoxin. High-affinity nitrate and nitrite uptake takes place in different cyanobacteria through either an ABC-type transporter or a permease from the major facilitator superfamily (MFS). Nitrate reductase and nitrite reductase are ferredoxin-dependent metalloenzymes that carry as prosthetic groups a [4Fe-4S] center and Mo-bis-molybdopterin guanine dinucleotide (nitrate reductase) and [4Fe-4S] and siroheme centers (nitrite reductase). Nitrate assimilation genes are commonly found forming an operon with the structure: nir (nitrite reductase)-permease gene(s)-narB (nitrate reductase). When the cells perceive a high C to N ratio, this operon is transcribed from a complex promoter that includes binding sites for NtcA, a global nitrogen-control regulator that belongs to the CAP family of bacterial transcription factors, and NtcB, a pathway-specific regulator that belongs to the LysR family of bacterial transcription factors. Transcription is also affected by other factors such as CnaT, a putative glycosyl transferase, and the signal transduction protein P(II). The latter is also a key factor for regulation of the activity of the ABC-type nitrate/nitrite transporter, which is inhibited when the cells are incubated in the presence of ammonium or in the absence of CO(2). Notwithstanding significant advance in understanding the regulation of nitrate assimilation in cyanobacteria, further post-transcriptional regulatory mechanisms are likely to be discovered.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C.-Universidad de Sevilla, Avda. Américo Vespucio 49, Seville 41092, Spain.
| | | | | | | |
Collapse
|
233
|
Unkles SE, Rouch DA, Wang Y, Siddiqi MY, Glass ADM, Kinghorn JR. Two perfectly conserved arginine residues are required for substrate binding in a high-affinity nitrate transporter. Proc Natl Acad Sci U S A 2004; 101:17549-54. [PMID: 15576512 PMCID: PMC536016 DOI: 10.1073/pnas.0405054101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 11/18/2022] Open
Abstract
This study represents the first attempt to investigate the molecular mechanisms by which nitrate, an anion of significant ecological, agricultural, and medical importance, is transported into cells by high-affinity nitrate transporters. Two charged residues, R87 and R368, located within hydrophobic transmembrane domains 2 and 8, respectively, are conserved in all 52 high-affinity nitrate transporters sequenced thus far. Site-directed replacements of either of R87 or R368 residues by lysine were found to be tolerated, but such residue changes increased the K(m) for nitrate influx from micromolar to millimolar values. Seven other amino acid substitutions of R87 or R368 all led to loss of function and lack of growth on nitrate. No evidence was obtained of R87 or R368 forming a salt-bridge with conserved acidic residues. Remarkably, the phenotype of loss-of-function mutant R87T was found to be alleviated by an alteration to lysine of N459, present in the second copy of the nitrate signature (transmembrane domain 11), suggesting a structural or functional interplay between residues R87 and N459 in the three-dimensional NrtA protein structure. Failure of the potential reciprocal second site suppressor N168K (in the first nitrate signature copy of transmembrane domain 5) to revert R368T was observed. Taken with recent structural studies of other major facilitator superfamily proteins, the results suggest that R87 and R368 are involved in substrate binding and probably located in a region of the protein close to N459.
Collapse
Affiliation(s)
- Shiela E Unkles
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | | | | | | | | | | |
Collapse
|
234
|
Good AG, Shrawat AK, Muench DG. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? TRENDS IN PLANT SCIENCE 2004; 9:597-605. [PMID: 15564127 DOI: 10.1016/j.tplants.2004.10.008] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant scientists have long recognized the need to develop crops that absorb and use nutrients more efficiently. Two approaches have been used to increase nutrient use efficiency (NUE) in crop plants. The first involves both traditional breeding and marker-assisted selection in an attempt to identify the genes involved. The second uses novel gene constructs designed to improve specific aspects of NUE. Here, we discuss some recent developments in the genetic manipulation of NUE in crop plants and argue that an improved understanding of the transition between nitrogen assimilation and nitrogen recycling will be important in applying this technology to increasing crop yields. Moreover, we emphasize the need to combine genetic and transgenic approaches to make significant improvements in NUE.
Collapse
Affiliation(s)
- Allen G Good
- Department of Biological Sciences, G-425, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| | | | | |
Collapse
|
235
|
Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. THE PLANT CELL 2004; 16:2433-47. [PMID: 15319483 PMCID: PMC520944 DOI: 10.1105/tpc.104.024380] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 06/21/2004] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana mutants deficient for the NRT1.1 NO(3)(-) transporter display complex phenotypes, including lowered NO(3)(-) uptake, altered development of nascent organs, and reduced stomatal opening. To obtain further insight at the molecular level on the multiple physiological functions of NRT1.1, we performed large-scale transcript profiling by serial analysis of gene expression in the roots of the chl1-5 deletion mutant of NRT1.1 and of the Columbia wild type. Several hundred genes were differentially expressed between the two genotypes, when plants were grown on NH(4)NO(3) as N source. Among these genes, the N satiety-repressed NRT2.1 gene, encoding a major component of the root high-affinity NO(3)(-) transport system (HATS), was found to be strongly derepressed in the chl1-5 mutant (as well as in other NRT1.1 mutants). This was associated with a marked stimulation of the NO(3)(-) HATS activity in the mutant, suggesting adaptive response to a possible N limitation resulting from NRT1.1 mutation. However, derepression of NRT2.1 in NH(4)NO(3)-fed chl1-5 plants could not be attributed to lowered production of N metabolites. Rather, the results show that normal regulation of NRT2.1 expression is strongly altered in the chl1-5 mutant, where this gene is no more repressible by high N provision to the plant. This indicates that NRT1.1 plays an unexpected but important role in the regulation of both NRT2.1 expression and NO(3)(-) HATS activity. Overexpression of NRT2.1 was also found in wild-type plants supplied with 1 mM NH(4)(+) plus 0.1 mM NO(3)(-), a situation where NRT1.1 is likely to mediate very low NO(3)(-) transport. Thus, we suggest that it is the lack of NRT1.1 activity, rather than the absence of this transporter, that derepresses NRT2.1 expression in the presence of NH(4)(+). Two hypotheses are discussed to explain these results: (1) NRT2.1 is upregulated by a NO(3)(-) demand signaling, indirectly triggered by lack of NRT1.1-mediated uptake, which overrides feedback repression by N metabolites, and (2) NRT1.1 plays a more direct signaling role, and its transport activity generates an unknown signal required for NRT2.1 repression by N metabolites. Both mechanisms would warrant that either NRT1.1 or NRT2.1 ensure significant NO(3)(-) uptake in the presence of NH(4)(+) in the external medium, which is crucial to prevent the detrimental effects of pure NH(4)(+) nutrition.
Collapse
Affiliation(s)
- Stéphane Muños
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Montpellier 2, 34060 Montpellier, Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Cedergreen N, Madsen TV. Light regulation of root and leaf NO 3 - uptake and reduction in the floating macrophyte Lemna minor. THE NEW PHYTOLOGIST 2004; 161:449-457. [PMID: 33873502 DOI: 10.1046/j.1469-8137.2003.00936.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The regulation of NO3 - uptake kinetics and reduction in relation to long- and short-term changes in irradiance was explored in roots and photosynthetic tissues of Lemna minor. • The NO3 - uptake kinetics, nitrate reductase activity, plant morphology, chlorophyll and tissue NO3 - , organic-N, starch and sugars were measured on roots and fronds of L. minor grown at four combinations of irradiance- and NO3 - availability. • Long-term acclimatizations paralleled those of terrestrial plants. Short-term changes in irradiance, however, changed frond NO3 - uptake proportionally with frond chlorophyll and N content, indicating a relationship between responsiveness and the metabolic potential of the plants. Root uptake changed to balance the change in frond uptake keeping whole plant uptake varying by < 40%. Nitrate reductase activity was primarily located in the roots and was correlated with frond uptake, indicating a transport of NO3 - from shoot to root before reduction. • This study shows that irradiance can affect the contribution of root and leaf uptake by aquatic plants and that roots play a major role in NO3 - reduction despite large foliar uptake.
Collapse
Affiliation(s)
- Nina Cedergreen
- Institute of Agricultural Sciences, The Royal Veterinary and Agricultural University, Højbakkegård Allé 9, DK-2630 Taastrup, Denmark
| | - Tom V Madsen
- Department of Plant Ecology, Aarhus University, Nordlandsvej 68, DK-8240 Risskov, Denmark
| |
Collapse
|
237
|
Loqué D, Tillard P, Gojon A, Lepetit M. Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction. PLANT PHYSIOLOGY 2003; 132:958-67. [PMID: 12805624 PMCID: PMC167034 DOI: 10.1104/pp.102.018523] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 01/07/2003] [Accepted: 01/20/2003] [Indexed: 05/19/2023]
Abstract
NRT1.1 and NIA1 genes, which encode a nitrate (NO3-) transporter and the minor isoform of NO3- reductase (NR), respectively, are overexpressed in roots of NR-deficient mutants of Arabidopsis grown on nutrient solution containing NO3- and reduced N. The overexpression is found only in mutants with reduced NIA2 activity, and disruption of the NIA1 gene alone has no effect on NRT1.1 expression. Because the up-regulation of NRT1.1 and NIA1 is observed in N-sufficient NR mutant plants, it cannot be related to a release of the general feedback repression exerted by the N status of the plant. Our data do not support the hypothesis of overinduction of these genes by an increased concentration of NO3- in tissues. Furthermore, although a control by external pH might contribute to the regulation of NRT1.1, changes in external pH due to lack of NR activity cannot alone explain the up-regulation of both genes. The stimulation of NRT1.1 and NIA1 in NR mutants in these conditions suggests that NR activity is able to repress directly the expression of both genes independently of the availability of reduced N metabolites in wild-type plants. Accordingly, nitrite (NO2-) strongly represses NRT1.1 and NIA1 transcript accumulation in the roots. This effect is rapid, specific, and reversible. Furthermore, transport studies on plants exposed to NO2- show that down-regulation of the NRT1.1 gene is associated with a decrease in NO3- influx. These results indicate that feedback regulation of genes of NO3- assimilation relies not only on the repression exerted by reduced N metabolites, such as NH4+ or amino acids, but may also involve the action of NO2- as a regulatory signal.
Collapse
Affiliation(s)
- Dominique Loqué
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/AgroM/UM2, 2 Place Viala, 34060 Montpellier cedex 1, France
| | | | | | | |
Collapse
|
238
|
Wang R, Okamoto M, Xing X, Crawford NM. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. PLANT PHYSIOLOGY 2003; 132:556-67. [PMID: 12805587 PMCID: PMC166997 DOI: 10.1104/pp.103.021253] [Citation(s) in RCA: 442] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Revised: 02/27/2003] [Accepted: 03/19/2003] [Indexed: 05/17/2023]
Abstract
The genomic response to low levels of nitrate was studied in Arabidopsis using the Affymetrix ATH1 chip containing more than 22,500 probe sets. Arabidopsis plants were grown hydroponically in sterile liquid culture on ammonium as the sole source of nitrogen for 10 d, then treated with 250 microm nitrate for 20 min. The response to nitrate was much stronger in roots (1,176 genes showing increased or decreased mRNA levels) than in shoots (183 responding genes). In addition to known nitrate-responsive genes (e.g. those encoding nitrate transporters, nitrate reductase, nitrite reductase, ferredoxin reductase, and enzymes in the pentose phosphate pathway), genes encoding novel metabolic and potential regulatory proteins were found. These genes encode enzymes in glycolysis (glucose-6-phosphate isomerase and phosphoglycerate mutase), in trehalose-6-P metabolism (trehalose-6-P synthase and trehalose-6-P phosphatase), in iron transport/metabolism (nicotianamine synthase), and in sulfate uptake/reduction. In many cases, only a few select genes out of several in small gene families were induced by nitrate. These results show that the effect of nitrate on gene expression is substantial (affecting almost 10% of the genes with detectable mRNA levels) yet selective and affects many genes involved in carbon and nutrient metabolism.
Collapse
Affiliation(s)
- Rongchen Wang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
239
|
Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 2003; 43:199-205. [PMID: 12665993 DOI: 10.1007/s00294-003-0387-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 12/03/2002] [Accepted: 02/18/2003] [Indexed: 10/25/2022]
Abstract
Symbiotic ectomycorrhizal fungi contribute to the nitrogen nutrition of their host-plants but little information is available on the molecular control of their nitrogen metabolism. We cloned and characterised genes encoding a nitrite reductase and a nitrate transporter in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum. These two genes are divergently transcribed and linked to a previously cloned nitrate reductase gene, thus demonstrating that nitrate assimilation gene clusters occur in homobasidiomycetes. The nitrate transporter polypeptide (NRT2) is characterised by 12 transmembrane domains and presents both a long putative intracellular loop and a short C-terminal tail, two structural features which distinguish fungal high-affinity transporters from their plant homologues. In different wild-type genetic backgrounds, transcription of the two genes was repressed by ammonium and was strongly stimulated not only in the presence of nitrate but also in the presence of organic nitrogen sources or under nitrogen deficiency.
Collapse
Affiliation(s)
- Patricia Jargeat
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon 1, Bât. A. Lwoff, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
240
|
Cataldi TRI, Margiotta G, Del Fiore A, Bufo SA. Ionic content in plant extracts determined by ion chromatography with conductivity detection. PHYTOCHEMICAL ANALYSIS : PCA 2003; 14:176-183. [PMID: 12793466 DOI: 10.1002/pca.700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A simple method is described for the determination of the ionic content of vegetable samples by ion chromatography with suppressed conductivity detection. Extracts of leaves of cucumber (Cucumis sativus), leaves and cotyledons of watermelon (Citrullus lanantus), cotyledons of zucchini (Cucurbitapepo), and leaves and roots of olive (Olea europaea) obtained at room temperature yielded chromatographic profiles with substantial differences in the relative contents of Cl-, NO3-, HPO4(2-) and SO4(2-) as well as of Na+, NH4+, K+, Mg2+ and Ca2+. Although NO3-, Cl- and K+ were common to each extracted sample and accounted for most of the ions present, two additional anion peaks (i.e. malate and oxalate) were detected. Among the vegetable tissues investigated, olive roots contained a considerable amount of oxalate (37 mg/g dry weight), while Na+, which is present in very low amount in extracted samples of leaves and cotyledons, represented ca. 30% of the cationic content of olive roots. In all the examined tissue extracts, K+ was the main cation (16-55 mg/g dry weight) and NO3-, Cl- and HPO4(2-) were the main inorganic anions.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi della Basilicata, Via N. Sauro, 85-85100 Potenza, Italy.
| | | | | | | |
Collapse
|
241
|
Okamoto M, Vidmar JJ, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. PLANT & CELL PHYSIOLOGY 2003; 44:304-17. [PMID: 12668777 DOI: 10.1093/pcp/pcg036] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Four low-affinity (NRT1), and seven high-affinity (NRT2) nitrate transporter gene homologues have been identified in Arabidopsis thaliana. We investigated the transcript abundances of all eleven genes in shoot and root tissues in response to the provision of 1 mM NO(3)(-), using relative quantitative RT-PCR. Based upon this criterion, genes were classified as nitrate-inducible, nitrate-repressible, or nitrate-constitutive. AtNRT1.1, 2.1, and 2.2 were strongly induced by NO(3)(-), peaking at 3-12 h and subsequently declining. By contrast AtNRT2.4 showed only modest induction both in shoots and roots. Expression of AtNRT2.5, one of the nitrate-repressible genes, was strongly suppressed by nitrate provision in both roots and shoots. The last group, characterized by a constitutive expression pattern, included AtNRT1.2, 1.4, 2.3, 2.6, and 2.7. Correlation coefficients between (13)NO(3)(-) influx from 100 micro M and 5 mM [NO(3)(-)], suggest that high- and low-affinity transport systems are mediated primarily by AtNRT2.1 and AtNRT1.1, respectively. Functional roles for the other members of these families remain uncertain.
Collapse
Affiliation(s)
- Mamoru Okamoto
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4, Canada
| | | | | |
Collapse
|
242
|
Reid R, Hayes J. Mechanisms and Control of Nutrient Uptake in Plants. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 229:73-114. [PMID: 14669955 DOI: 10.1016/s0074-7696(03)29003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is a distillation of the vast amount of physiological and molecular data on plant membrane transport, to provide a concise overview of the main processes involved in the uptake of mineral nutrients in plants. Emphasis has been placed on transport across the plasma membrane, and on the primary uptake from soil into roots, or in the case of aquatic plants, from their aqueous environment. Control of uptake has been mainly considered in terms of local effects on the rate of transport and not in terms of long-distance signaling. The general picture emerging is of a large array of membrane transporters, few of which display any strong selectivity for individual nutrients. Instead, many transporters allow low-affinity uptake of several different nutrients. These features, plus the huge number of potential transporter genes that has been revealed by sequencing of plant genomes, raise some interesting questions about their evolution and likely function.
Collapse
Affiliation(s)
- Robert Reid
- Department of Environmental Biology, University of Adelaide, Adelaide 5005, Australia
| | | |
Collapse
|
243
|
Abstract
Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.
Collapse
Affiliation(s)
- José M Siverio
- Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
244
|
Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. PLANT PHYSIOLOGY 2002; 129:886-96. [PMID: 12068127 PMCID: PMC161709 DOI: 10.1104/pp.005280] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 03/11/2002] [Indexed: 05/18/2023]
Abstract
Nitrate is an essential element for plant growth, both as a primary nutrient in the nitrogen assimilation pathway and as an important signal for plant development. The uptake of nitrate from the soil and its translocation throughout the plant has been the subject of intensive physiological and molecular studies. Using a reverse genetic approach, the AtNRT2.1 gene has been shown to be involved in the inducible component of the high-affinity nitrate transport system in Arabidopsis. The Arabidopsis Genome Initiative has released nearly the whole genome sequence of Arabidopsis, allowing the identification of a small NRT2 multigene family in this species. Thus, we investigated the phylogenetic relationship between NRT2 proteins belonging to several kingdoms and compared the structure of the different members of the Arabidopsis family. We analyzed, by semiquantitative reverse transcriptase-polymerase chain reaction, the expression pattern of each gene depending on plant organ and development or nutritional status, and compared the relative level of each gene by real-time polymerase chain reaction. We also evaluated the significance of each paralog on the basis of the relative levels of gene expression. The results are discussed in relation with distinct roles for the individual members of the AtNRT2 family.
Collapse
Affiliation(s)
- Mathilde Orsel
- Unité de la Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de St. Cyr, F-78026 Versailles cedex, France
| | | | | |
Collapse
|
245
|
Hildebrandt U, Schmelzer E, Bothe H. Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. PHYSIOLOGIA PLANTARUM 2002; 115:125-136. [PMID: 12010476 DOI: 10.1034/j.1399-3054.2002.1150115.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PCR amplifications using tomato DNA and degenerate oligonucleotide primers allowed identification of a new putative nitrate transporter, termed NRT2;3. Its sequence showed typical motifs of a high affinity nitrate transporter of the Major Facilitator Superfamily (MFS). The formation of its mRNA was positively controlled by nitrate, and negatively by ammonium, but not by glutamine. In situ hybridization experiments showed that this transporter was mainly expressed in rhizodermal cells. Results from expression studies with two other nitrate transporters, LeNRT1;1 and LeNRT2;1, were essentially in accord with data of the literature. In roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices Sy167, transcript formation of NRT2;3 extended to the inner cortical cells where the fungal structures, arbuscules and vesicles, were concentrated. Northern analyses indicated that the expression of only NRT2;3 among the transporters assayed was higher in AMF colonized tomato roots than in non-colonized controls. AMF-colonization caused a significant expression of a nitrate reductase gene of G. intraradices. The results may mean that AMF-colonization positively affects nitrate uptake from soil and nitrate allocation to the plant partner, probably mediated preferentially by LeNRT2;3. In addition, part of the nitrate taken up is reduced by the fungal partner itself and may then be transferred, when in excess, as glutamine to the plant symbiotic partner.
Collapse
Affiliation(s)
- Ulrich Hildebrandt
- Botanisches Institut, Universität zu Koeln, Gyrhofstr. 15, D-50923 Köln, Germany Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | |
Collapse
|
246
|
Llamas A, Igeño MI, Galván A, Fernández E. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:261-71. [PMID: 12000675 DOI: 10.1046/j.1365-313x.2002.01281.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate signalling on the nitrate reductase (Nia1) gene promoter from Chlamydomonas reinhardtii has been studied by using a construct of the Nia1 promoter transcriptionally fused to the Chlamydomonas arylsulphatase gene as a reporter in strains bearing different sets of nitrate/nitrite transport genes. The high-affinity nitrate transport (HANT) system I is required for efficient signalling by nitrate, even at submicromolar concentrations of the anion. In addition, the autogenous regulation of nitrate reductase has been found to depend on the presence of system I. The low-affinity nitrate transport system III promoted signalling optimally on the promoter at millimolar nitrate concentrations. The HANT system IV, which is insensitive to ammonium and active at low CO2, allowed nitrate signalling at micromolar concentrations even in the presence of ammonium, suggesting that the balance of these two effectors controls Nia1 transcription. Our data indicate that nitrate signalling on the Nia1 gene promoter occurs intracellularly and depends on the activity of nitrate transporters.
Collapse
Affiliation(s)
- Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071-Córdoba, Spain
| | | | | | | |
Collapse
|
247
|
Galván A, Rexach J, Mariscal V, Fernández E. Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:845-853. [PMID: 11912227 DOI: 10.1093/jexbot/53.370.845] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrite transport to the chloroplast is not a well documented process in spite of being a central step in the nitrate assimilation pathway. The lack of molecular evidence, as well as the easy diffusion of nitrite through biological membranes, have made this physiological process difficult to understand in plant nutrition. The aim of this review is to illustrate that nitrite transport to the chloroplast is a regulated step, intimately related to the efficiency of nitrate utilization. In Chlamydomonas reinhardtii, the Nar1;1 gene has been shown to have this role in nitrate assimilation. NAR1;1 corresponds to a plastidic membrane transporter protein related to the bacterial formate/nitrite transporters. At least four Nar1 genes might exist in Chlamydomonas. The existence of orthologous Nar1 genes in plants is discussed.
Collapse
Affiliation(s)
- Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba. Campus de Rabanales, Edif. 'Severo Ochoa', 14071-Córdoba, Spain
| | | | | | | |
Collapse
|
248
|
Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. Nitrate transport in plants: which gene and which control? JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:825-833. [PMID: 11912225 DOI: 10.1093/jexbot/53.370.825] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological level and, more recently, at the molecular level. Two classes of genes, NRT1 and NRT2, have been found to be potentially involved in the high and low affinity nitrate transport systems (HATS and LATS, respectively). The complexity of the molecular basis of nitrate uptake has been enhanced by the finding that in many plants both NRT1 and NRT2 classes are represented by multigene families. Furthermore, recent studies demonstrate that the control mechanisms that lead to an active protein at the plasma membrane act on gene transcription, modulating the steady-state levels of mRNA, and on the activation of the protein, possibly by a phosphorylation/dephosphorylation process. This is a review of recent progress in the characterization of the NRT2 nitrate transporters, the composition of this family in Arabidopsis, their possible role in nitrate acquisition, and some aspects of their regulation in plants.
Collapse
Affiliation(s)
- Mathilde Orsel
- Unité de la Nutrition Azotée des Plantes, INRA, route de St Cyr, 78026 Versailles cedex, France
| | | | | | | |
Collapse
|
249
|
Guo FQ, Wang R, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:835-844. [PMID: 11912226 DOI: 10.1093/jexbot/53.370.835] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The AtNRT1.1 (CHL1) gene of Arabidopsis encodes a dual-affinity nitrate transporter and contributes to both low and high affinity nitrate uptake. Localization studies have shown that CHL1 expression is preferentially targeted to nascent organs and growing regions of roots and shoots in Arabidopsis. In roots, CHL1 expression is concentrated in the tips of primary and lateral roots and is activated during lateral root initiation. In shoots, strong CHL1 expression is found in young leaves and developing flower buds. These findings suggest that CHL1 expression might be regulated by a growth signal such as the phytohormone auxin. To test this, auxin regulation of CHL1 was examined. Using transgenic Arabidopsis plants containing CHL1::GUS/GFP DNA constructs, it was found that treatment with exogenous auxin or introduction of the auxin overproducing mutations (yucca and rooty) resulted in a strong increase in CHL1::GUS/GFP signals in roots and leaves. When mature roots were treated with auxin to induce lateral root formation, CHL1::GFP signals were dramatically enhanced in dividing pericycle cells and throughout primordia development. RNA blot analysis showed that CHL1 mRNA levels in whole seedlings increase within 30 min of auxin treatment. The distribution of CHL1 expression in Arabidopsis roots and shoots was found to be similar to that of DR5::GUS, a synthetic, auxin-responsive gene. These results indicate that auxin acts as an important signal regulating CHL1 expression and contributes to the targeting of CHL1 expression to nascent organs and root tips in Arabidopsis.
Collapse
Affiliation(s)
- Fang-Qing Guo
- Section of Cell and Developmental Biology, Division of Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
250
|
Forde BG. Local and long-range signaling pathways regulating plant responses to nitrate. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:203-24. [PMID: 12221973 DOI: 10.1146/annurev.arplant.53.100301.135256] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate is the major source of nitrogen (N) for plants growing in aerobic soils. However, the NO3- ion is also used by plants as a signal to reprogram plant metabolism and to trigger changes in plant architecture. A striking example is the way that a root system can react to a localized source of NO3- by activating the NO3- uptake system and proliferating lateral roots preferentially within the NO3(-)-rich zone. That roots are able to respond autonomously in this fashion implies the existence of local signaling pathways that are sensitive to local changes in the external NO3- concentration. On the other hand, long-range signaling pathways are also needed to modulate these responses according to the plant's N status and to coordinate the allocation of resources between the root and the shoot. This review examines these signaling mechanisms and their interactions with sugar-sensing and hormonal response pathways.
Collapse
Affiliation(s)
- Brian G Forde
- Department of Biological Sciences, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|