201
|
Wong YS, Czarny B, Venkatraman SS. Precision nanomedicine in atherosclerosis therapy: how far are we from reality? PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(1).181114.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, characterized by build-up of lipids and chronic inflammation of the arterial wall, is the primary cause of cardiovascular disease and is a leading cause of death worldwide. Currently available therapies are inadequate and warrant the demand for improved technologies for more effective treatment. Although primarily the domain of antitumor therapy, recent advances have shown the considerable potential of nanomedicine to advance atherosclerosis treatment. This Review details the arsenal of nanocarriers and molecules available for selective targeting in atherosclerosis, and emphasize the challenges in atherosclerosis treatment.
Collapse
|
202
|
Reassembly of native components with donepezil to execute dual-missions in Alzheimer's disease therapy. J Control Release 2019; 296:14-28. [PMID: 30639387 DOI: 10.1016/j.jconrel.2019.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a multifaceted and progressive neurodegenerative disease characterized by accumulation of amyloid-beta (Aβ) and deficits of acetylcholine. Accordingly, the intra-/extra-cerebral level of high density lipoprotein (HDL) is crucial on the pathogenesis of AD; and most of all, various HDL-protein subtypes play a double-edged role in AD pathology, of which apolipoprotein A-I (apoA-I) gives protective outcomes. Inspired from "HDL bionics", we proposed biologically reassembled nanodrugs, donepezil-loaded apolipoprotein A-I-reconstituted HDL (rHDL/Do) that concurrently executed dual-missions of Aβ-targeting clearance and acetylcholinesterase (AChE) inhibition in AD therapy. Once prepared, rHDL/Do nanodrug achieved high drug encapsulation efficiency of 90.47%, and mimicked the configurations and properties of natural lipoproteins aiming to significantly enhance BBB penetration and modulate Aβ-induced neuronal damage both in vitro and in vivo. Surface plasmon resonance (SPR) analysis confirmed that rHDL/Do facilitated microglial-mediated Aβ intake and degradation, demonstrating low KD value with Aβ affinity (2.45 × 10-8 of Aβ monomer and 2.78 × 10-8 of Aβ oligomer). In AD animal models, daily treatment of rHDL/Do efficiently inhibited AChE activity, ameliorated neurologic variation, promoted Aβ clearance, and rescued memory loss at a safe level. The collective findings indicated that the biological nanodrug was provided with the capacities of BBB penetration, Aβ capture and degradation via microglial cells, and cholinergic dysfunction amelioration after controlled donepezil release. In summary, rHDL/Do nanodrugs could offer a promising strategy to synergize both symptom control and disease modification in AD therapy.
Collapse
|
203
|
Fibla M, Hernández-Aguilera A, Camps J, Menendez JA, Joven J. Treating atherosclerosis: targeting risk factors should not be the only option. ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S34. [PMID: 30613609 DOI: 10.21037/atm.2018.09.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Montserrat Fibla
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain
| | - Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,The Campus of International Excellence Southern Catalonia, Tarragona, Spain
| |
Collapse
|
204
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
205
|
Isaac-Olivé K, Ocampo-García BE, Aranda-Lara L, Santos-Cuevas CL, Jiménez-Mancilla NP, Luna-Gutiérrez MA, Medina LA, Nagarajan B, Sabnis N, Raut S, Prokai L, Lacko AG. [ 99mTc-HYNIC-N-dodecylamide]: a new hydrophobic tracer for labelling reconstituted high-density lipoproteins (rHDL) for radioimaging. NANOSCALE 2019; 11:541-551. [PMID: 30543234 DOI: 10.1039/c8nr07484d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the widespread use of nanotechnology in radio-imaging applications, lipoprotein based delivery systems have received only limited attention so far. These studies involve the synthesis of a novel hydrophobic radio-imaging tracer consisting of a hydrazinonicotinic acid (HYNIC)-N-dodecylamide and 99mTc conjugate that can be encapsulated into rHDL nanoparticles (NPs). These rHDL NPs can selectively target the Scavenger Receptor type B1 (SR-B1) that is overexpressed on most cancer cells due to excess demand for cholesterol for membrane biogenesis and thus can target tumors in vivo. We provide details of the tracer synthesis, characterization of the rHDL/tracer complex, in vitro uptake, stability studies and in vivo application of this new radio-imaging approach.
Collapse
Affiliation(s)
- Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Mable CJ, Canton I, Mykhaylyk OO, Ustbas Gul B, Chambon P, Themistou E, Armes SP. Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles. Chem Sci 2019. [DOI: 10.1039/c8sc05589k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue fever-mimicking pH-responsive framboidal triblock copolymer vesicles enable delivery of a nucleic acid payload to the nuclei of triple-negative breast cancer cells.
Collapse
Affiliation(s)
| | - Irene Canton
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | | | - Burcin Ustbas Gul
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | - Pierre Chambon
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | |
Collapse
|
207
|
Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. NANOCARRIERS FOR DRUG DELIVERY 2019:557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
208
|
Sago CD, Lokugamage MP, Lando GN, Djeddar N, Shah NN, Syed C, Bryksin AV, Dahlman JE. Modifying a Commonly Expressed Endocytic Receptor Retargets Nanoparticles in Vivo. NANO LETTERS 2018; 18:7590-7600. [PMID: 30216729 PMCID: PMC6426696 DOI: 10.1021/acs.nanolett.8b03149] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticles are often targeted to receptors expressed on specific cells, but few receptors are (i) highly expressed on one cell type and (ii) involved in endocytosis. One unexplored alternative is manipulating an endocytic gene expressed on multiple cell types; an ideal gene would inhibit delivery to cell type A more than cell type B, promoting delivery to cell type B. This would require a commonly expressed endocytic gene to alter nanoparticle delivery in a cell type-dependent manner in vivo; whether this can occur is unknown. Based on its microenvironmental regulation, we hypothesized Caveolin 1 (Cav1) would exert cell type-specific effects on nanoparticle delivery. Fluorescence was not sensitive enough to investigate this question, and as a result, we designed a platform named QUANT to study nanoparticle biodistribution. QUANT is 108× more sensitive than fluorescence and can be multiplexed. By measuring how 226 lipid nanoparticles (LNPs) delivered nucleic acids to multiple cell types in vivo in wild-type and Cav1 knockout mice, we found Cav1 altered delivery in a cell-type specific manner. Cav1 knockout did not alter LNP delivery to lung and kidney macrophages but substantially reduced LNP delivery to Kupffer cells, which are liver-resident macrophages. These data suggest caveolin-mediated endocytosis of nanomedicines by macrophages varies with tissue type. These results suggest manipulating receptors expressed on multiple cell types can tune drug delivery.
Collapse
|
209
|
Morin EE, Li XA, Schwendeman A. HDL in Endocrine Carcinomas: Biomarker, Drug Carrier, and Potential Therapeutic. Front Endocrinol (Lausanne) 2018; 9:715. [PMID: 30555417 PMCID: PMC6283888 DOI: 10.3389/fendo.2018.00715] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
High-density lipoprotein (HDL) have long been studied for their protective role against cardiovascular diseases, however recently relationship between HDL and cancer came into focus. Several epidemiological studies have shown an inverse correlation between HDL-cholesterol (HDL-C) and cancer risk, and some have even implied that HDL-C can be used as a predictive measure for survival prognosis in for specific sub-population of certain types of cancer. HDL itself is an endogenous nanoparticle capable of removing excess cholesterol from the periphery and returning it to the liver for excretion. One of the main receptors for HDL, scavenger receptor type B-I (SR-BI), is highly upregulated in endocrine cancers, notably due to the high demand for cholesterol by cancer cells. Thus, the potential to exploit administration of cholesterol-free reconstituted or synthetic HDL (sHDL) to deplete cholesterol in endocrine cancer cell and stunt their growth of use chemotherapeutic drug loaded sHDL to target payload delivery to cancer cell has become increasingly attractive. This review focuses on the role of HDL and HDL-C in cancer and application of sHDLs as endocrine cancer therapeutics.
Collapse
Affiliation(s)
- Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Xiang-An Li
- Department of Physiology, Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
210
|
Tsujita M, Wolska A, Gutmann DAP, Remaley AT. Reconstituted Discoidal High-Density Lipoproteins: Bioinspired Nanodiscs with Many Unexpected Applications. Curr Atheroscler Rep 2018; 20:59. [PMID: 30397748 DOI: 10.1007/s11883-018-0759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Summarize the initial discovery of discoidal high-density lipoprotein (HDL) in human plasma and review more recent innovations that span the use of reconstituted nanodisc HDL for membrane protein characterization to its use as a drug carrier and a novel therapeutic agent for cardiovascular disease. RECENT FINDINGS Using a wide variety of biophysical techniques, the structure and composition of endogenous discoidal HDL have now largely been solved. This has led to the development of new methods for the in vitro reconstitution of nanodisc HDL, which have proven to have a wide variety of biomedical applications. Nanodisc HDL has been used as a platform for mimicking the plasma membrane for the reconstitution and investigation of the structures of several plasma membrane proteins, such as cytochrome P450s and ABC transporters. Nanodisc HDL has also been designed as drug carriers to transport amphipathic, as well as hydrophobic small molecules, and has potential therapeutic applications for several diseases. Finally, nanodisc HDL itself like native discoidal HDL can mediate cholesterol efflux from cells and are currently being tested in late-stage clinical trials for cardiovascular disease. The discovery of the characterization of native discoidal HDL has inspired a new field of synthetic nanodisc HDL, which has offered a growing number of unanticipated biomedical applications.
Collapse
Affiliation(s)
- Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
211
|
Ravula T, Hardin NZ, Di Mauro GM, Ramamoorthy A. Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. Eur Polym J 2018; 108:597-602. [PMID: 31105326 PMCID: PMC6516473 DOI: 10.1016/j.eurpolymj.2018.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane mimetics are essential to study the structure, dynamics and function of membrane-associated proteins by biophysical and biochemical approaches. Among various membrane mimetics that have been developed and demonstrated for studies on membrane proteins, lipid nanodiscs are the latest developments in the field and are increasingly used for various applications. While lipid-nanodiscs can be formed using an amphipathic membrane scaffold protein (MSP), peptide, or synthetic polymer, the synthetic polymer based nanodiscs exhibit unique advantages because of the ability to functionalize them for various applications. In addition to the use of synthetic polymers to extract membrane proteins directly from the cell membranes, recent advances in the development of polymers used for nanodiscs formation are attracting new attention to the field of nanodiscs technology. Here we review the developments of novel polymer modifications that overcome the current limitations and enhance the applications of polymer based nanodiscs to a wider variety of biophysical techniques used to study membrane proteins. A summary of the functionalization of poly(Styrene-co-Maleic Acid), SMA, polymers developed by our research and their advantages are also covered in this review article.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Nathaniel. Z Hardin
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Giacomo M. Di Mauro
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
212
|
Samadi S, Ghayour-Mobarhan M, Mohammadpour A, Farjami Z, Tabadkani M, Hosseinnia M, Miri M, Heydari-Majd M, Mehramiz M, Rezayi M, Ferns GA, Avan A. High-density lipoprotein functionality and breast cancer: A potential therapeutic target. J Cell Biochem 2018; 120:5756-5765. [PMID: 30362608 DOI: 10.1002/jcb.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.
Collapse
Affiliation(s)
- Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhooshang Mohammadpour
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Tabadkani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hosseinnia
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Miri
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Heydari-Majd
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
213
|
Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Díaz JC, Pérez-Méndez O, Belefant-Miller H, Betanzos-Cabrera G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018; 23:molecules23112730. [PMID: 30360466 PMCID: PMC6278283 DOI: 10.3390/molecules23112730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) comprise a heterogeneous family of lipoprotein particles divided into subclasses that are determined by density, size and surface charge as well as protein composition. Epidemiological studies have suggested an inverse correlation between High-density lipoprotein-cholesterol (HDL-C) levels and the risk of cardiovascular diseases and atherosclerosis. HDLs promote reverse cholesterol transport (RCT) and have several atheroprotective functions such as anti-inflammation, anti-thrombosis, and anti-oxidation. HDLs are considered to be atheroprotective because they are associated in serum with paraoxonases (PONs) which protect HDL from oxidation. Polyphenol consumption reduces the risk of chronic diseases in humans. Polyphenols increase the binding of HDL to PON1, increasing the catalytic activity of PON1. This review summarizes the evidence currently available regarding pharmacological and alternative treatments aimed at improving the functionality of HDL-C. Information on the effectiveness of the treatments has contributed to the understanding of the molecular mechanisms that regulate plasma levels of HDL-C, thereby promoting the development of more effective treatment of cardiovascular diseases. For that purpose, Scopus and Medline databases were searched to identify the publications investigating the impact of current therapies focused on high-density lipoproteins.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - María Araceli Ortiz-Rodriguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, UAEM, Calle Río Iztaccihuatl S/N, Vista Hermosa, 62350 Cuernavaca, Morelos, Mexico.
| | - Lizett Medina-Briseño
- Universidad de la Sierra Sur, UNSIS, Miahuatlán de Porfirio Díaz, 70800 Oaxaca, Mexico.
| | - Elizabeth Carreón-Torres
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, 76130 Queretaro, Mexico.
| | - Juan Carlos Cancino-Díaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Oscar Pérez-Méndez
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | | | - Gabriel Betanzos-Cabrera
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| |
Collapse
|
214
|
Raut S, Mooberry L, Sabnis N, Garud A, Dossou AS, Lacko A. Reconstituted HDL: Drug Delivery Platform for Overcoming Biological Barriers to Cancer Therapy. Front Pharmacol 2018; 9:1154. [PMID: 30374303 PMCID: PMC6196266 DOI: 10.3389/fphar.2018.01154] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to malignant tumors is limited by several factors, including off-target toxicities and suboptimal benefits to cancer patient. Major research efforts have been directed toward developing novel technologies involving nanoparticles (NPs) to overcome these challenges. Major obstacles, however, including, opsonization, transport across cancer cell membranes, multidrug-resistant proteins, and endosomal sequestration of the therapeutic agent continue to limit the efficiency of cancer chemotherapy. Lipoprotein-based drug delivery technology, "nature's drug delivery system," while exhibits highly desirable characteristics, it still needs substantial investment from private/government stakeholders to promote its eventual advance to the bedside. Consequently, this review focuses specifically on the synthetic (reconstituted) high-density lipoprotein rHDL NPs, evaluating their potential to overcome specific biological barriers and the challenges of translation toward clinical utilization and commercialization. This highly robust drug transport system provides site-specific, tumor-selective delivery of anti-cancer agents while reducing harmful off-target effects. Utilizing rHDL NPs for anti-cancer therapeutics and tumor imaging revolutionizes the future strategy for the management of a broad range of cancers and other diseases.
Collapse
Affiliation(s)
- Sangram Raut
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Linda Mooberry
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ashwini Garud
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Andras Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
215
|
Border SE, Pavlović RZ, Zhiquan L, Gunther MJ, Wang H, Cui H, Badjić JD. Light‐Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry 2018; 25:273-279. [PMID: 30133001 DOI: 10.1002/chem.201803693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Michael J. Gunther
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Wang
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Honggang Cui
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
216
|
Bioinspired and biomimetic systems for advanced drug and gene delivery. J Control Release 2018; 287:142-155. [DOI: 10.1016/j.jconrel.2018.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
|
217
|
Paunovska K, Gil CJ, Lokugamage MP, Sago CD, Sato M, Lando GN, Gamboa Castro M, Bryksin AV, Dahlman JE. Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery. ACS NANO 2018; 12:8341-8349. [PMID: 30016076 PMCID: PMC6115295 DOI: 10.1021/acsnano.8b03640] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lipid nanoparticles (LNPs) are formulated using unmodified cholesterol. However, cholesterol is naturally esterified and oxidized in vivo, and these cholesterol variants are differentially trafficked in vivo via lipoproteins including LDL and VLDL. We hypothesized that incorporating the same cholesterol variants into LNPs-which can be structurally similar to LDL and VLDL-would alter nanoparticle targeting in vivo. To test this hypothesis, we quantified how >100 LNPs made with six cholesterol variants delivered DNA barcodes to 18 cell types in wild-type, LDLR-/-, and VLDLR-/- mice that were both age-matched and female. By analyzing ∼2000 in vivo drug delivery data points, we found that LNPs formulated with esterified cholesterol delivered nucleic acids more efficiently than LNPs formulated with regular or oxidized cholesterol when compared across all tested cell types in the mouse. We also identified an LNP containing cholesteryl oleate that efficiently delivered siRNA and sgRNA to liver endothelial cells in vivo. Delivery was as-or more-efficient as the same LNP made with unmodified cholesterol. Moreover, delivery to liver endothelial cells was 3 times more efficient than delivery to hepatocytes, distinguishing this oleate LNP from hepatocyte-targeting LNPs. RNA delivery can be improved by rationally selecting cholesterol variants, allowing optimization of nanoparticle targeting.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Manaka Sato
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Gwyn N Lando
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Marielena Gamboa Castro
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| | - Anton V Bryksin
- Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory School of Medicine , Atlanta , Georgia 30332 , United States
| |
Collapse
|
218
|
Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond) 2018; 13:2341-2371. [PMID: 30088440 DOI: 10.2217/nnm-2018-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease, Parkinson's disease and stroke are the most common CNS diseases, all characterized by progressive cellular dysfunction and death in specific areas of the nervous system. Therapeutic development for these diseases has lagged behind other disease areas due to difficulties in early diagnosis, long disease courses and drug delivery challenges, not least due to the blood-brain barrier. Over recent decades, nanotechnology has been explored as a potential tool for the diagnosis, treatment and monitoring of CNS diseases. In this review, we describe the application of nanotechnology to common CNS diseases, highlighting disease pathogenesis and the underlying mechanisms and promising functional outcomes that make nanomaterials ideal candidates for early diagnosis and therapy. Moreover, we discuss the limitations of nanotechnology, and possible solutions.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China
| | - Wenyue Wang
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - David X Yu
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhicheng Xiao
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China.,Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| |
Collapse
|
219
|
Nobeyama T, Mori M, Shigyou K, Takata K, Pandian GN, Sugiyama H, Murakami T. Colloidal Stability of Lipid/Protein-Coated Nanomaterials in Salt and Sucrose Solutions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tomohiro Nobeyama
- Graduate School of Engineering; Toyama Prefectural University, 5180 Kurokawa; Toyama 939-0393 Japan
| | - Megumi Mori
- Faculty of Agriculture; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Kazuki Shigyou
- School of Material Science; Japan Advanced Institute Science and Technology 1-1 Asahidai; Ishikawa 923-1212 Japan
| | - Koji Takata
- Toyama Industry Technology Center, 383 Takada; Toyama 930-0866 Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
- Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Tatsuya Murakami
- Graduate School of Engineering; Toyama Prefectural University, 5180 Kurokawa; Toyama 939-0393 Japan
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
| |
Collapse
|
220
|
Kuai R, Sun X, Yuan W, Ochyl LJ, Xu Y, Hassani Najafabadi A, Scheetz L, Yu MZ, Balwani I, Schwendeman A, Moon JJ. Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. J Control Release 2018; 282:131-139. [PMID: 29702142 PMCID: PMC6056764 DOI: 10.1016/j.jconrel.2018.04.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that certain combinations of Toll-like receptor (TLR) agonists can induce synergistic immune activation. However, it remains challenging to achieve such robust responses in vivo in a manner that is effective, facile, and amenable for clinical translation. Here, we show that MPLA, a TLR4 agonist, and CpG, a TLR9 agonist, can be efficiently co-loaded into synthetic high-density lipoprotein nanodiscs, forming a potent adjuvant system (ND-MPLA/CpG) that can be readily combined with a variety of subunit antigens, including proteins and peptides. ND-MPLA/CpG significantly enhanced activation of dendritic cells, compared with free dual adjuvants or nanodiscs delivering a single TLR agonist. Importantly, mice immunized with physical mixtures of protein antigens ND-MPLA/CpG generated strong humoral responses, including induction of IgG responses against protein convertase subtilisin/kexin 9 (PCSK9), leading to 17-30% reduction of the total plasma cholesterol levels. Moreover, ND-MPLA/CpG exerted strong anti-tumor efficacy in multiple murine tumor models. Compared with free adjuvants, ND-MPLA/CpG admixed with ovalbumin markedly improved antigen-specific CD8+ T cell responses by 8-fold and promoted regression of B16F10-OVA melanoma (P < 0.0001). Furthermore, ND-MPLA/CpG admixed with E7 peptide antigen elicited ~20% E7-specific CD8+ T cell responses and achieved complete regression of established TC-1 tumors in all treated animals. Taken together, our work highlights the simplicity, versatility, and potency of dual TLR agonist nanodiscs for applications in vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min-Zhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishina Balwani
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
221
|
Harmatys KM, Chen J, Charron DM, MacLaughlin CM, Zheng G. Multipronged Biomimetic Approach To Create Optically Tunable Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kara M. Harmatys
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Danielle M. Charron
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Christina M. MacLaughlin
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
222
|
Harmatys KM, Chen J, Charron DM, MacLaughlin CM, Zheng G. Multipronged Biomimetic Approach To Create Optically Tunable Nanoparticles. Angew Chem Int Ed Engl 2018; 57:8125-8129. [DOI: 10.1002/anie.201803535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kara M. Harmatys
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Danielle M. Charron
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Christina M. MacLaughlin
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
223
|
Subramanian C, White PT, Kuai R, Kalidindi A, Castle VP, Moon JJ, Timmermann BN, Schwendeman A, Cohen MS. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal. Surgery 2018; 164:S0039-6060(18)30080-1. [PMID: 29753460 PMCID: PMC6814450 DOI: 10.1016/j.surg.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. METHODS Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. RESULTS qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. CONCLUSION Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo.
Collapse
Affiliation(s)
| | - Peter T White
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | | | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | | | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
224
|
Shen N, Yan F, Pang J, Gao Z, Al-Kali A, Haynes CL, Litzow MR, Liu S. HDL-AuNPs-BMS Nanoparticle Conjugates as Molecularly Targeted Therapy for Leukemia. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14454-14462. [PMID: 29668254 DOI: 10.1021/acsami.8b01696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) with adsorbed high-density lipoprotein (HDL) have been utilized to deliver oligonucleotides, yet HDL-AuNPs functionalized with small-molecule inhibitors have not been systematically explored. Here, we report an AuNP-based therapeutic system (HDL-AuNPs-BMS) for acute myeloid leukemia (AML) by delivering BMS309403 (BMS), a small molecule that selectively inhibits AML-promoting factor fatty acid-binding protein 4. To synthesize HDL-AuNPs-BMS, we use AuNP as a template to control conjugate size ensuring a spherical shape to engineer HDL-like nanoparticles containing BMS. The zeta potential and size of the HDL-AuNPs obtained from transmission electron microscopy demonstrate that the HDL-AuNPs-BMS are electrostatically stable and 25 nm in diameter. Functionally, compared to free drug, HDL-AuNPs-BMS conjugates are more readily internalized by AML cells and have more pronounced effects on downregulation of DNA methyltransferase 1 (DNMT1), induction of DNA hypomethylation, and restoration of epigenetically silenced tumor suppressor p15INK4B coupled with AML growth arrest. Importantly, systemic administration of HDL-AuNPs-BMS conjugates into AML-bearing mice inhibits DNMT1-dependent DNA methylation, induces AML cell differentiation, and diminishes AML disease progression without obvious side effects. In summary, these data, for the first time, demonstrate HDL-AuNPs as an effective delivery platform with great potential to attach distinct inhibitors and HDL-AuNPs-BMS conjugates as a promising therapeutic platform to treat leukemia.
Collapse
Affiliation(s)
- Na Shen
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Fei Yan
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Jiuxia Pang
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Zhe Gao
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Aref Al-Kali
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Christy L Haynes
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Mark R Litzow
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Shujun Liu
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| |
Collapse
|
225
|
Detecting the functional complexities between high-density lipoprotein mimetics. Biomaterials 2018; 170:58-69. [PMID: 29653287 DOI: 10.1016/j.biomaterials.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023]
Abstract
High-density lipoprotein (HDL) is a key regulator of lipid homeostasis through its native roles like reverse cholesterol transport. The reconstitution of this natural nanoparticle (NP) has become a nexus between nanomedicine and multi-disease therapies, for which a major portion of HDL functionality is attributed to its primary scaffolding protein, apolipoprotein A1 (apoA1). ApoA1-mimetic peptides were formulated as cost-effective alternatives to apoA1-based therapies; reverse-4F (r4F) is one such peptide used as part of a nanoparticle platform. While similarities between r4F- and apoA1-based HDL-mimetic nanoparticles have been identified, key functional differences native to HDL have remained undetected. In the present study, we executed a multidisciplinary approach to uncover these differences by exploring the form, function, and medical applicability of engineered HDL-mimetic NPs (eHNPs) made from r4F (eHNP-r4F) and from apoA1 (eHNP-A1). Comparative analyses of the eHNPs through computational molecular dynamics (MD), advanced microfluidic NP synthesis and screening technologies, and in vivo animal model studies extracted distinguishable eHNP characteristics: the eHNPs share identical structural and compositional characteristics with distinct differences in NP stability and organization; eHNP-A1 could more significantly stimulate anti-inflammatory responses characteristic of the scavenger receptor class B type 1 (SR-B1) mediated pathways; and eHNP-A1 could outperform eHNP-r4F in the delivery of a model hydrophobic drug to an in vivo tumor. The biomimetic microfluidic technologies and MD simulations uniquely enabled our comparative analysis through which we determined that while eHNP-r4F is a capable NP with properties mimicking natural eHNP-A1, challenges remain in reconstituting the full functionality of NPs naturally derived from humans.
Collapse
|
226
|
Kuai R, Yuan W, Son S, Nam J, Xu Y, Fan Y, Schwendeman A, Moon JJ. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. SCIENCE ADVANCES 2018; 4:eaao1736. [PMID: 29675465 PMCID: PMC5906077 DOI: 10.1126/sciadv.aao1736] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/01/2018] [Indexed: 05/19/2023]
Abstract
Although immune checkpoint blockade has shown initial success for various cancers, only a small subset of patients benefits from this therapy. Some chemotherapeutic drugs have been reported to induce antitumor T cell responses, prompting a number of clinical trials on combination chemoimmunotherapy. However, how to achieve potent immune activation with traditional chemotherapeutics in a manner that is safe, effective, and compatible with immunotherapy remains unclear. We show that high-density lipoprotein-mimicking nanodiscs loaded with doxorubicin (DOX), a widely used chemotherapeutic agent, can potentiate immune checkpoint blockade in murine tumor models. Delivery of DOX via nanodiscs triggered immunogenic cell death of cancer cells and exerted antitumor efficacy without any overt off-target side effects. "Priming" tumors with DOX-carrying nanodiscs elicited robust antitumor CD8+ T cell responses while broadening their epitope recognition to tumor-associated antigens, neoantigens, and intact whole tumor cells. Combination chemoimmunotherapy with nanodiscs plus anti-programmed death 1 therapy induced complete regression of established CT26 and MC38 colon carcinoma tumors in 80 to 88% of animals and protected survivors against tumor recurrence. Our work provides a new, generalizable framework for using nanoparticle-based chemotherapy to initiate antitumor immunity and sensitize tumors to immune checkpoint blockade.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
227
|
Park HJ, Kuai R, Jeon EJ, Seo Y, Jung Y, Moon JJ, Schwendeman A, Cho SW. High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials 2018; 161:69-80. [PMID: 29421564 PMCID: PMC5817004 DOI: 10.1016/j.biomaterials.2018.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Therapeutic strategies using endogenous stem cell mobilizer can provide effective cell-free therapy for addressing various ischemic diseases. In particular, substance P (SP) exhibited therapeutic regeneration by facilitating mobilization of endogenous stem cells from bone marrow to the injured sites. However, its therapeutic effect has been limited due to short half-life and rapid degradation of administered SP peptides in vivo. Here we sought to develop high-density lipoprotein (HDL)-mimicking nanodiscs conjugated with SP (HDL-SP) in order to increase the in vivo half-life, bone marrow targeting, and therapeutic efficacy of SP for the treatment of diabetic peripheral ischemia. Conjugation of SP onto HDL nanodisc led to remarkable ∼3215- and ∼1060-fold increase in the ex vivo and in vivo half-lives of SP, respectively. Accordingly, HDL-SP nanodiscs improved retention of SP in bone marrow after systemic administration, leading to efficient mobilization of stem cells from bone marrow into blood circulation and reduction of systemic inflammation. Consequently, nanodisc based SP peptide delivery promoted blood vessel formation, blood perfusion recovery and markedly improved limb salvage in diabetic hindlimb ischemia model relative to administration of free SP without nanodisc modification. Therefore, HDL-SP nanodisc can provide a novel strategy for the treatment of diabetic ischemia and HDL nanodisc modification could be potentially useful for the extension of plasma circulation of other labile peptides.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoojin Seo
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
| |
Collapse
|
228
|
Kuai R, Sun X, Yuan W, Xu Y, Schwendeman A, Moon JJ. Subcutaneous Nanodisc Vaccination with Neoantigens for Combination Cancer Immunotherapy. Bioconjug Chem 2018; 29:771-775. [PMID: 29485848 PMCID: PMC6080626 DOI: 10.1021/acs.bioconjchem.7b00761] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While cancer immunotherapy provides new exciting treatment options for patients, there is an urgent need for new strategies that can synergize with immune checkpoint blockers and boost the patient response rates. We have developed a personalized vaccine nanodisc platform based on synthetic high-density lipoproteins for co-delivery of immunostimulatory agents and tumor antigens, including tumor-specific neoantigens. Here we examined the route of delivery, safety profiles, and therapeutic efficacy of nanodisc vaccination against established tumors. We report that nanodiscs administered via the subcutaneous (SC) or intramuscular (IM) routes were well tolerated in mice without any signs of toxicity. The SC route significantly enhanced nanoparticle delivery to draining lymph nodes, improved nanodisc uptake by antigen-presenting cells, and generated 7-fold higher frequency of neoantigen-specific T cells, compared with the IM route. Importantly, when mice bearing advanced B16F10 melanoma tumors were treated with nanodiscs plus anti-PD-1 and anti-CTLA-4 IgG therapy, the combination immunotherapy exerted potent antitumor efficacy, leading to eradication of established tumors in ∼60% of animals. These results demonstrate nanodiscs customized with patient-specific tumor neoepitopes as a safe and powerful vaccine platform for immunotherapy against advanced cancer.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
229
|
Moon S, Kong B, Jung YH, Kim Y, Yu S, Park JB, Shin J, Kweon DH. Endotoxin-free purification of recombinant membrane scaffold protein expressed in Escherichia coli. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
230
|
Lipoproteins for therapeutic delivery: recent advances and future opportunities. Ther Deliv 2018; 9:257-268. [DOI: 10.4155/tde-2017-0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological role(s) of mammalian plasma lipoproteins is to transport hydrophobic molecules (primarily cholesterol and triacylglycerols) to their respective destinations. Lipoproteins have also been studied as drug-delivery agents due to their advantageous payload capacity, long residence time in the circulation and biocompatibility. The purpose of this review is to briefly discuss current findings with the focus on each type of formulation's potential for clinical applications. Regarding utilizing lipoprotein type formulation for cancer therapeutics, their potential for tumor-selective delivery is also discussed.
Collapse
|
231
|
Wang R, Han Y, Sun B, Zhao Z, Opoku-Damoah Y, Cheng H, Zhang H, Zhou J, Ding Y. Deep Tumor Penetrating Bioparticulates Inspired Burst Intracellular Drug Release for Precision Chemo-Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703110. [PMID: 29320614 DOI: 10.1002/smll.201703110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/19/2017] [Indexed: 06/07/2023]
Abstract
The relevance of personalized medicine has inspired research for individually concerted diagnosis and therapy. Numerous efforts are devoted to designing drug particulates with capabilities of tumor penetrating and subcellular trafficking to concurrently discharge theranostics in response to multistimulations. In this study, a bioinspired particulate, formulated with whole components of native high-density lipoproteins (HDLs) and decorated with the tumor-penetrating peptide iRGD, is proposed to promote tumor penetration of HDLs (pHDLs) together with payloads. Specifically, paclitaxel (PTX), and the NIR fluorescent probe indocyanine green (ICG) are integrated into pHDLs (pHDL/PTX-ICG) for synergetic chemo-phototherapy. Inspired by lipoproteins, pHDLs are not only restored from naturally occurring materials but also possessed artificially endowed functions, leading to an enhanced cellular uptake, higher accumulation, and deep penetration into tumors without causing appreciable adverse effects, compared to reconstituted HDLs or lipid-based nanoparticles. After intravenous administration, pHDL/PTX-ICG performs a burst of intracellular drug release and imaging-guided precision chemo-phototherapy upon NIR irradiation that completely eradicates xenograft tumors. Neither recurrence nor significant toxicity is observed due to maneuvered regional photodynamic and photothermal therapy. Taken together, pHDL/PTX-ICG is proven to be a promising platform to achieve deep tumor penetration and imaging-guided chemo-phototherapy.
Collapse
Affiliation(s)
- Ruoning Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yue Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Bo Sun
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Ziqiang Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yaw Opoku-Damoah
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
232
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
233
|
Wang K, Yu C, Liu Y, Zhang W, Sun Y, Chen Y. Enhanced Antiatherosclerotic Efficacy of Statin-Loaded Reconstituted High-Density Lipoprotein via Ganglioside GM1 Modification. ACS Biomater Sci Eng 2018; 4:952-962. [DOI: 10.1021/acsbiomaterials.7b00871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
234
|
Wang W, Chen K, Su Y, Zhang J, Li M, Zhou J. Lysosome-Independent Intracellular Drug/Gene Codelivery by Lipoprotein-Derived Nanovector for Synergistic Apoptosis-Inducing Cancer-Targeted Therapy. Biomacromolecules 2018; 19:438-448. [DOI: 10.1021/acs.biomac.7b01549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Kerong Chen
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jielei Zhang
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Li
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
235
|
Li D, Fawaz MV, Morin EE, Sviridov D, Ackerman R, Olsen K, Remaley AT, Schwendeman A. Effect of Synthetic High Density Lipoproteins Modification with Polyethylene Glycol on Pharmacokinetics and Pharmacodynamics. Mol Pharm 2018; 15:83-96. [PMID: 29141139 PMCID: PMC6435036 DOI: 10.1021/acs.molpharmaceut.7b00734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic high density lipoprotein nanoparticles (sHDLs) capable of mobilizing excess cholesterol from atherosclerotic arteries and delivering it to the liver for elimination have been shown to reduce plaque burden in patients. Unfortunately, sHDLs have a narrow therapeutic index and relative to the endogenous HDL shorter circulation half-life. Surface modification with polyethylene glycol (PEG) was investigated for its potential to extend sHDL circulation in vivo. Various amounts (2.5, 5, and 10%) and different chain lengths (2 and 5 kDa) of PEG-modified lipids were incorporated in sHDL's lipid membrane. Incorporating PEG did not reduce the ability of sHDL to facilitate cholesterol efflux, nor did it inhibit cholesterol uptake by the liver cells. By either adding more PEG or using PEG of longer chain lengths, the circulation half-life was extended. Addition of PEG also increased the area under the curve for the phospholipid component of sHDL (p < 0.05), but not for the apolipoprotein A-I peptide component of sHDL, suggesting sHDL is remodeled by endogenous lipoproteins in vivo. The extended phospholipid circulation led to a higher mobilization of plasma free cholesterol, a biomarker for facilitation of reverse cholesterol transport. The area under the cholesterol mobilization increased about 2-4-fold (p < 0.05), with greater increases observed for longer PEG chains and higher molar percentages of incorporated PEGylated lipids. Mobilized cholesterol was associated primarily with the HDL fraction, led to a transient increase in VLDL cholesterol, and returned to baseline 24 h postdose. Overall, PEGylation of sHDL led to beneficial changes in sHDL particle pharmacokinetic and pharmacodynamic behaviors.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Maria V. Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 – 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892
| | - Rose Ackerman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Karl Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 – 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI 48109
| |
Collapse
|
236
|
Chan CKW, Zhang L, Cheng CK, Yang H, Huang Y, Tian XY, Choi CHJ. Recent Advances in Managing Atherosclerosis via Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702793. [PMID: 29239134 DOI: 10.1002/smll.201702793] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Atherosclerosis, driven by chronic inflammation of the arteries and lipid accumulation on the blood vessel wall, underpins many cardiovascular diseases with high mortality rates globally, such as stroke and ischemic heart disease. Engineered bio-nanomaterials are now under active investigation as carriers of therapeutic and/or imaging agents to atherosclerotic plaques. This Review summarizes the latest bio-nanomaterial-based strategies for managing atherosclerosis published over the past five years, a period marked by a rapid surge in preclinical applications of bio-nanomaterials for imaging and/or treating atherosclerosis. To start, the biomarkers exploited by emerging bio-nanomaterials for targeting various components of atherosclerotic plaques are outlined. In addition, recent efforts to rationally design and screen for bio-nanomaterials with the optimal physicochemical properties for targeting plaques are presented. Moreover, the latest preclinical applications of bio-nanomaterials as carriers of imaging, therapeutic, or theranostic agents to atherosclerotic plaques are discussed. Finally, a mechanistic understanding of the interactions between bio-nanomaterials and the plaque ("athero-nano" interactions) is suggested, the opportunities and challenges in the clinical translation of bio-nanomaterials for managing atherosclerosis are discussed, and recent clinical trials for atherosclerotic nanomedicines are introduced.
Collapse
Affiliation(s)
- Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Zhang
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongrong Yang
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
237
|
Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci 2018; 6:958-973. [DOI: 10.1039/c8bm00175h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bio-inspired platforms directly derived from biological sources are becoming a rapidly emerging field in the development of future anticancer therapeutics. The various platforms discussed are bacteria-based, virus-inspired, cell-derived, nanostructured lipid nanoparticles, and biomacromolecular drug delivery systems.
Collapse
Affiliation(s)
- Gella Maelys Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yaw Opoku-Damoah
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaochen Gu
- Faculty of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
238
|
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8:51-63. [PMID: 29872622 PMCID: PMC5985628 DOI: 10.1016/j.apsb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
High-density lipoproteins (HDL) are naturally-occurring nanoparticles that are biocompatible, non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and microRNA from donor cells to recipient cells. Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins (rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative, promising avenue for efficient targeting transport of nanomedicine.
Collapse
Affiliation(s)
| | | | - Xiaoling Gao
- Corresponding author. Tel.: +86 21 63846590 776945.
| |
Collapse
|
239
|
Kudinov VA, Zakharova TS, Torkhovskaya TI, Ipatova OM, Archakov AI. [Pharmacological targets for dislipidemies correction. Opportunities and prospects of therapeutic usage]. BIOMEDITSINSKAIA KHIMIIA 2018; 64:66-83. [PMID: 29460837 DOI: 10.18097/pbmc20186401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Literature data on influence of existing and new groups of drug preparations for dyslipidemias correction are systemized, and molecular mechanisms of their effects are reviewed. The results of experimental and clinical investigations aimed at revealing of new pharmacological targets of dyslipidemias correction were analyzed. The approaches for activation of high density lipoproteins functionality are described. The implementation of alternative preparations with new alternative mechanisms of action may be suggested to improve the effectiveness of traditional treatment in the future.
Collapse
Affiliation(s)
- V A Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
240
|
Ochando J, Braza MS. Nanoparticle-Based Modulation and Monitoring of Antigen-Presenting Cells in Organ Transplantation. Front Immunol 2017; 8:1888. [PMID: 29312352 PMCID: PMC5743935 DOI: 10.3389/fimmu.2017.01888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Donor-specific unresponsiveness while preserving an intact immune function remains difficult to achieve in organ transplantation. Induction of tolerance requires a fine modulation of the interconnected innate and adaptive immune systems. Antigen-presenting cells (APCs) predominate during allograft rejection and create a highly inflammatory context where allospecific T cells are primed. Currently, the available protocols to prevent allograft rejection include a cocktail of drugs that are efficient in the short-term, but with severe long-term side effects and considerable toxicity. Consequently, better and less burdensome strategies are needed to promote indefinite allograft survival. Targeted delivery of immunosuppressive drugs that prevent the alloimmune response may address some of these problems. Nanoparticle-based approaches represent a promising strategy to negatively modulate the alloresponse by specifically delivering small compounds to APCs in vivo. Nanoparticles are also used as integrating imaging moieties to monitor inflammation for diagnostic purposes. Therefore, nanotechnology approaches represent an attractive strategy to deliver and monitor the efficacy of immunosuppressive therapy in organ transplantation with the potential to improve the clinical treatment of transplant patients.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Mounia S Braza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| |
Collapse
|
241
|
Xiong F, Nirupama S, Sirsi SR, Lacko A, Hoyt K. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles. Nanotheranostics 2017; 1:440-449. [PMID: 29188177 PMCID: PMC5704009 DOI: 10.7150/ntno.21905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
The abnormal tumor vasculature and the resulting abnormal microenvironment are major barriers to optimal chemotherapeutic drug delivery. It is well known that ultrasound (US) can increase the permeability of the tumor vessel walls and enhance the accumulation of anticancer agents. Reconstituted high-density lipoproteins (rHDL) nanoparticles (NPs) allow selective delivery of anticancer agents to tumor cells via their overexpressed scavenger receptor type B1 (SR-B1) receptor. The goal of this study is to investigate the potential of noninvasive US therapy to further improve delivery and tumor uptake of the payload from rHDL NPs, preloaded with an infrared dye (IR-780), aimed to establish a surrogate chemotherapeutic model with optical localization. Athymic nude mice were implanted orthotopically with one million breast cancer cells (MDA-MB-231/Luc). Three weeks later, animals were divided into seven groups with comparable mean tumor size: control, low, moderate, and high concentration of rHDL NPs alone groups, as well as these three levels of rHDL NPs plus US therapy groups (N = 7 to 12 animals per group), where low, moderate and high denote 5, 10, and 50 µg of the IR-780 dye payload per rHDL NP injection, respectively. The US therapy system included a single element focused transducer connected in series with a function generator and power amplifier. A custom 3D printed cone with an acoustically transparent aperture and filled with degassed water allowed delivery of focused US energy to the tumor tissue. US exposure involved a pulsed sequence applied for a duration of 5 min. Each animal in the US therapy groups received a slow bolus co-injection of MB contrast agent and rHDL NPs. Animals were imaged using a whole-body optical system to quantify intratumoral rHDL NP accumulation at baseline and again at 1 min, 30 min, 24 h, and 48 h. At 48 h, all animals were euthanized and tumors were excised for ex vivo analysis. We investigated a noninvasive optical imaging method for monitoring the effects of US-stimulated drug delivery of IR-780 dye-loaded rHDL NPs in living animals. No change in optical imaging data was found in the control animals. However, there was considerable dye accumulation (surrogate drug) within 48 h in the low (5 µg), moderate (10 µg), and high (50 µg) rHDL NP concentration-dosed group animals (p < 0.09). With US therapy added to the experimental protocol, there was an additional and significant increase in local tumor drug uptake at 48 h (p < 0.02). Optical image data collected from ex vivo tumor samples confirmed tumor retention of the IR-780 dye-loaded rHDL NPs and correlated positively with in vivo optical imaging results (R2 > 0.69, p < 0.003). IR-780 dye extraction from the tumor tissue samples confirmed the in vivo and ex vivo US therapy findings. Overall, the addition of US therapy considerably improved local rHDL NP accumulation in tumor tissue. This study concludes that US-mediated drug delivery can facilitate tumor uptake of rHDL NPs and more research is warranted to optimize the drug dosing schedule and the respective therapeutic protocols.
Collapse
Affiliation(s)
- Fangyuan Xiong
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sabnis Nirupama
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth TX 76107 USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Andras Lacko
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth TX 76107 USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
242
|
Ding Y, Han Y, Wang R, Wang Y, Chi C, Zhao Z, Zhang H, Wang W, Yin L, Zhou J. Rerouting Native HDL to Predetermined Receptors for Improved Tumor-Targeted Gene Silencing Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30488-30501. [PMID: 28828863 DOI: 10.1021/acsami.7b10047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-density lipoprotein (HDL) is an outstanding biocompatible nanovector for tumor-targeted delivery of multimodel drugs in cancer therapy. However, this seemingly promising delivery platform demonstrates an adverse accumulation in liver and adrenal due to the primary expression of natural target scavenger receptor class B type I (SR-BI), which overexpressed in malignant cells as well. Therefore, we endowed native HDLs with rerouting capacity, that is, enabling HDLs to get away from natural receptors (SR-BI) to selectively alternate tumor-rich receptors. The αvβ3-integrin specific cyclic-RGDyk peptide was conjugated with HDL-protein component apolipoprotein A-I (apoA-I), demonstrating high substitution degree of 26.2%. Afterward, RGD-modified apoA-I was introduced to fabricate cholesterol siRNA-loaded HDL nanoparticles (RGD-HDL/Ch-siRNA) for specific affinity with tumor angiogenesis and αvβ3 integrin on tumor surface. After preparation, RGD-HDL/Ch-siRNA shared desirable particle size, efficient siRNA protection during blood circulation, and favorable proton sponge effect. αvβ3 integrin-associated superior rerouting capacity, endocytosis pathway, and rapid endolysosome escape were confirmed both in vitro and in vivo. For targeted gene silencing therapy, Pokemon-specific siRNA (siPokemon) was introduced as RNA interference candidate; the enhanced antitumor efficacy and decreased Pokemon expression level were commendably confirmed by tumor growth inhibition, survival period extension, and western blot analysis. Collectively, cyclic-RGDyk modification endows native HDLs with rerouting capacity to specific αvβ3 integrin receptor, which provides a promising strategy to extend malignancy targeting potential of native HDL to a broader purview.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yue Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Ruoning Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yazhe Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Cheng Chi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Ziqiang Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
243
|
Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 2017; 7:11263. [PMID: 28900242 PMCID: PMC5596017 DOI: 10.1038/s41598-017-11766-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysophosphatidylcholine (LPC) (40 mg DHA/kg) for 30 days increased DHA content of the brain by >2-fold. In contrast, the same amount of free DHA did not increase brain DHA, but increased the DHA in adipose tissue and heart. Moreover, LPC-DHA treatment markedly improved the spatial learning and memory, as measured by Morris water maze test, whereas free DHA had no effect. The brain derived neurotrophic factor increased in all brain regions with LPC-DHA, but not with free DHA. These studies show that dietary LPC-DHA efficiently increases brain DHA content and improves brain function in adult mammals, thus providing a novel nutraceutical approach for the prevention and treatment of neurological diseases associated with DHA deficiency, such as Alzheimer’s disease.
Collapse
|
244
|
Kuai R, Subramanian C, White PT, Timmermann BN, Moon JJ, Cohen MS, Schwendeman A. Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. Int J Nanomedicine 2017; 12:6581-6594. [PMID: 28919755 PMCID: PMC5593402 DOI: 10.2147/ijn.s140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and has a 5-year survival rate of <35%. ACC cells require cholesterol for steroid hormone production, and this requirement is met via expression on the cell surface of a high level of SRB1, responsible for the uptake of high-density lipoproteins (HDLs), which carry and transport cholesterol in vivo. Here, we describe how this natural lipid carrier function of SRB1 can be utilized to improve the tumor-targeted delivery of a novel natural product derivative - withalongolide A 4,19,27-triacetate (WGA-TA) - which has shown potent antitumor efficacy, but poor aqueous solubility. Our strategy was to use synthetic HDL (sHDL) nanodisks, which are effective in tumor-targeted delivery due to their smallness, long circulation half-life, documented safety, and ability to bind to SRB1. In this study, we prepared sHDL nanodisks using an optimized phospholipid composition combined with ApoA1 mimetic peptide (22A), which has previously been tested in clinical trials, to load WGA-TA. Following optimization, WGA-TA nanodisks showed drug encapsulation efficiency of 78%, a narrow particle size distribution (9.81±0.41 nm), discoid shape, and sustained drug release in phosphate buffered saline. WGA-TA-sHDL nanodisks exhibited higher cytotoxicity in the ACC cell line H295R half maximal inhibitory concentration ([IC50] 0.26±0.045 μM) than free WGA-TA (IC50 0.492±0.115 μM, P<0.05). Fluorescent dye-loaded sHDL nanodisks efficiently accumulated in H295R adrenal carcinoma xenografts 24 hours following dosing. Moreover, daily intraperitoneal administration of 7 mg/kg WGA-TA-loaded sHDL nanodisks significantly inhibited tumor growth during 21-day administration to H295R xenograft-bearing mice compared to placebo (P<0.01). Collectively, these results suggest that WGA-TA-loaded nanodisks may represent a novel and beneficial therapeutic strategy for the treatment of ACC.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
| | | | - Peter T White
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - James J Moon
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
- Department of Biomedical Engineering
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy
- Biointerfaces Institute, University of Michigan
| |
Collapse
|
245
|
Johnson R, Sabnis N, Sun X, Ahluwalia R, Lacko AG. SR-B1-targeted nanodelivery of anti-cancer agents: a promising new approach to treat triple-negative breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:383-392. [PMID: 28670138 PMCID: PMC5479299 DOI: 10.2147/bctt.s131038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with triple-negative breast cancer (TNBC) have a considerably less favorable prognosis than those with hormone-positive breast cancers. TNBC patients do not respond to current endocrine treatment and have a 5-year survival prognosis of <30%. The research presented here is intended to fill a void toward the much needed development of improved treatment strategies for metastatic TNBC. The overall goal of this research was to evaluate the effectiveness of reconstituted high-density lipoprotein (rHDL) nanoparticles (NPs) as delivery agents for anti-TNBC drugs. Using lapatinib and valrubicin as components of the rHDL/drug complexes resulted in a significantly better performance of the NP-transported drugs compared with their free (unencapsulated) counterparts. The enhancement of the therapeutic effect and the protection of normal cells (cardiomyocytes) achieved via the rHDL NPs were likely due to the overexpression of the high-density lipoprotein (HDL) (scavenger receptor class B type 1 [SR-B1]) receptor by the TNBC cells.
Collapse
Affiliation(s)
| | - Nirupama Sabnis
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center
| | | | | | - Andras G Lacko
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center.,Department of Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
246
|
Zhu J, Dong X. Preparation and Characterization of Novel HDL-mimicking Nanoparticles for Nerve Growth Factor Encapsulation. J Vis Exp 2017. [PMID: 28570541 DOI: 10.3791/55584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The objective of this article is to introduce preparation and characterization methods for nerve growth factor (NGF)-loaded, high-density, lipoprotein (HDL)-mimicking nanoparticles (NPs). HDLs are endogenous NPs and have been explored as vehicles for the delivery of therapeutic agents. Various methods have been developed to prepare HDL-mimicking NPs. However, they are generally complicated, time consuming, and difficult for industrial scale-up. In this study, one-step homogenization was used to mix the excipients and form the prototype NPs. NGF is a water-soluble protein of 26 kDa. To facilitate the encapsulation of NGF into the lipid environment of HDL-mimicking NPs, protamine USP was used to form an ion-pair complex with NGF to neutralize the charges on the NGF surface. The NGF/protamine complex was then introduced into the prototype NPs. Apolipoprotein A-I was finally coated on the surface of the NPs. NGF HDL-mimicking NPs showed preferable properties in terms of particle size, size distribution, entrapment efficiency, in vitro release, bioactivity, and biodistribution. With the careful design and exploration of homogenization in HDL-mimicking NPs, the procedure was greatly simplified, and the NPs were made scalable. Moreover, various challenges, such as separating unloaded NGF from the NPs, conducting reliable in vitro release studies, and measuring the bioactivity of the NPs, were overcome.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center;
| |
Collapse
|
247
|
Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1869-1878. [PMID: 28434931 DOI: 10.1016/j.nano.2017.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
Synthetic high-density lipoprotein nanoparticles (sHDL) are a valuable class of nanomedicines with established animal safety profile, clinical tolerability and therapeutic efficacy for cardiovascular applications. In this study we examined how the scavenger receptor B-I-mediated (SR-BI) tumor-targeting ability of sHDL, long plasma circulation half-life, and small particle size (9.6±0.2nm) impacted sHDL accumulation in SR-BI positive colorectal carcinoma cells, 3D tumor spheroids, and in vivo xenografts. We compared tumor accumulation of sHDL with that of liposomes (LIP, 130.7±0.8nm), pegylated liposomes (PEG-LIP, 101±2nm), and pegylated sHDL (12.1±0.1nm), all prepared with the same lipid components. sHDL penetrated deep (210μm) into tumor spheroids and exhibited 12- and 3-fold higher in vivo solid tumor accumulation, compared with LIP (p<0.01) and PEG-LIP (p<0.05), respectively. These results suggest that sHDL with established human safety possess promising intrinsic tumor-targeted properties.
Collapse
|
248
|
Luby BM, Charron DM, MacLaughlin CM, Zheng G. Activatable fluorescence: From small molecule to nanoparticle. Adv Drug Deliv Rev 2017; 113:97-121. [PMID: 27593264 DOI: 10.1016/j.addr.2016.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
Molecular imaging has emerged as an indispensable technology in the development and application of drug delivery systems. Targeted imaging agents report the presence of biomolecules, including therapeutic targets and disease biomarkers, while the biological behaviour of labelled delivery systems can be non-invasively assessed in real time. As an imaging modality, fluorescence offers additional signal specificity and dynamic information due to the inherent responsivity of fluorescence agents to interactions with other optical species and with their environment. Harnessing this responsivity is the basis of activatable fluorescence imaging, where interactions between an engineered fluorescence agent and its biological target induce a fluorogenic response. Small molecule activatable agents are frequently derivatives of common fluorophores designed to chemically react with their target. Macromolecular scale agents are useful for imaging proteins and nucleic acids, although their biological delivery can be difficult. Nanoscale activatable agents combine the responsivity of fluorophores with the unique optical and physical properties of nanomaterials. The molecular imaging application and overall complexity of biological target dictate the most advantageous fluorescence agent size scale and activation strategy.
Collapse
Affiliation(s)
- Benjamin M Luby
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Danielle M Charron
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Christina M MacLaughlin
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
249
|
Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. NATURE MATERIALS 2017; 16:489-496. [PMID: 28024156 PMCID: PMC5374005 DOI: 10.1038/nmat4822] [Citation(s) in RCA: 777] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/08/2016] [Indexed: 05/04/2023]
Abstract
Despite the tremendous potential of peptide-based cancer vaccines, their efficacy has been limited in humans. Recent innovations in tumour exome sequencing have signalled the new era of personalized immunotherapy with patient-specific neoantigens, but a general methodology for stimulating strong CD8α+ cytotoxic T-lymphocyte (CTL) responses remains lacking. Here we demonstrate that high-density lipoprotein-mimicking nanodiscs coupled with antigen (Ag) peptides and adjuvants can markedly improve Ag/adjuvant co-delivery to lymphoid organs and sustain Ag presentation on dendritic cells. Strikingly, nanodiscs elicited up to 47-fold greater frequencies of neoantigen-specific CTLs than soluble vaccines and even 31-fold greater than perhaps the strongest adjuvant in clinical trials (that is, CpG in Montanide). Moreover, multi-epitope vaccination generated broad-spectrum T-cell responses that potently inhibited tumour growth. Nanodiscs eliminated established MC-38 and B16F10 tumours when combined with anti-PD-1 and anti-CTLA-4 therapy. These findings represent a new powerful approach for cancer immunotherapy and suggest a general strategy for personalized nanomedicine.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lukasz J. Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keith S. Bahjat
- Discovery Research, Bristol-Myers Squibb Biologics Discovery California, Redwood City, CA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Co-corresponding authors. J.J.M. () or A.S. ()
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Co-corresponding authors. J.J.M. () or A.S. ()
| |
Collapse
|
250
|
Choi HY, Hafiane A, Schwertani A, Genest J. High-Density Lipoproteins: Biology, Epidemiology, and Clinical Management. Can J Cardiol 2017; 33:325-333. [DOI: 10.1016/j.cjca.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/29/2023] Open
|