201
|
Luo K, Wang Z, Peters BA, Hanna DB, Wang T, Sollecito CC, Grassi E, Wiek F, St Peter L, Usyk M, Post WS, Landay AL, Hodis HN, Weber KM, French A, Golub ET, Lazar J, Gustafson D, Sharma A, Anastos K, Clish CB, Knight R, Kaplan RC, Burk RD, Qi Q. Tryptophan metabolism, gut microbiota, and carotid artery plaque in women with and without HIV infection. AIDS 2024; 38:223-233. [PMID: 37199567 PMCID: PMC10640661 DOI: 10.1097/qad.0000000000003596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The perturbation of tryptophan (TRP) metabolism has been linked with HIV infection and cardiovascular disease (CVD), but the interrelationship among TRP metabolites, gut microbiota, and atherosclerosis remain unclear in the context of HIV infection. METHODS We included 361 women (241 HIV+, 120 HIV-) with carotid artery plaque assessments from the Women's Interagency HIV Study, measured 10 plasma TRP metabolites and profiled fecal gut microbiome. TRP metabolite-related gut bacteria were selected through the Analysis of Compositions of Microbiomes with Bias Correction method. Associations of TRP metabolites and related microbial features with plaque were examined using multivariable logistic regression. RESULTS Although plasma kynurenic acid (KYNA) [odds ratio (OR) = 1.93, 95% confidence interval (CI): 1.12-3.32 per one SD increase; P = 0.02) and KYNA/TRP [OR = 1.83 (95% CI 1.08-3.09), P = 0.02] were positively associated with plaque, indole-3-propionate (IPA) [OR = 0.62 (95% CI 0.40-0.98), P = 0.03] and IPA/KYNA [OR = 0.51 (95% CI 0.33-0.80), P < 0.01] were inversely associated with plaque. Five gut bacterial genera and many affiliated species were positively associated with IPA (FDR-q < 0.25), including Roseburia spp ., Eubacterium spp., Lachnospira spp., and Coprobacter spp.; but no bacterial genera were found to be associated with KYNA. Furthermore, an IPA-associated-bacteria score was inversely associated with plaque [OR = 0.47 (95% CI 0.28-0.79), P < 0.01]. But no significant effect modification by HIV serostatus was observed in these associations. CONCLUSION In a cohort of women living with and without HIV infection, plasma IPA levels and related gut bacteria were inversely associated with carotid artery plaque, suggesting a potential beneficial role of IPA and its gut bacterial producers in atherosclerosis and CVD.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher C Sollecito
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Evan Grassi
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fanua Wiek
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lauren St Peter
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mykhaylo Usyk
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Howard N Hodis
- Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Audrey French
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jason Lazar
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, Brooklyn, New York, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
202
|
Cao W, Xing M, Liang S, Shi Y, Li Z, Zou W. Causal relationship of gut microbiota and metabolites on cognitive performance: A mendelian randomization analysis. Neurobiol Dis 2024; 191:106395. [PMID: 38159869 DOI: 10.1016/j.nbd.2023.106395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging evidence has indicated that the alterations in gut microbiota and metabolites are associated with cognitive performance. However, whether these associations imply a causal relationship remains to be definitively established. Here, we conducted two-sample mendelian randomization (MR) studies to explore the causal effects of gut microbiota and metabolites on cognitive performance, using large-scale genome-wide association studies (GWASs). We identified seven positive causalities between host genetic-driven gut microbiota and cognitive performance, including Class Clostridia (p = 0.0002), Order Clostridiales (p = 8.12E-05), Family Rhodospirillaceae (p = 0.042) and Ruminococcustorquesgroup (p = 0.030), Dialister (p = 0.027), Paraprevotella (p = 0.037) and RuminococcaceaeUCG003 (p = 0.007) at the genus level. Additionally, a total of four higher abundance of gut microbiota traits were identified to be negatively related to cognitive performance, including genus Blautia (p = 0.013), LachnospiraceaeFCS020group (p = 0.035), LachnospiraceaeNK4A136group (p = 0.034) and Roseburia (p = 0.00016). In terms of plasma metabolites, we discovered eight positive and six negative relationships between genetic liability in metabolites and cognitive performance (all p < 0.05). No evidence was detected across a series of sensitivity analyses, including pleiotropy and heterogeneity. Collectively, our MR analyses revealed that gut microbiota and metabolites were causally connected with cognitive performance, which holds significant potential for shedding light on the early detection and diagnosis of cognitive impairment, offering valuable insights into this area of research.
Collapse
Affiliation(s)
- Wei Cao
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shuang Liang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yufei Shi
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China.
| |
Collapse
|
203
|
Yang J, Wei H, Lin Y, Chu ESH, Zhou Y, Gou H, Guo S, Lau HCH, Cheung AHK, Chen H, To KF, Sung JJY, Wang Y, Yu J. High Soluble Fiber Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites in Mice. Gastroenterology 2024; 166:323-337.e7. [PMID: 37858797 DOI: 10.1053/j.gastro.2023.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND & AIMS Dietary fibers are mainly fermented by the gut microbiota, but their roles in colorectal cancer (CRC) are largely unclear. Here, we investigated the associations of different fibers with colorectal tumorigenesis in mice. METHODS Apcmin/+ mice and C57BL/6 mice with azoxymethane (AOM) injection were used as CRC mouse models. Mice were fed with mixed high-fiber diet (20% soluble fiber and 20% insoluble fiber), high-inulin diet, high-guar gum diet, high-cellulose diet, or diets with different inulin dose. Germ-free mice were used for validation. Fecal microbiota and metabolites were profiled by shotgun metagenomic sequencing and liquid chromatography-mass spectrometry, respectively. RESULTS Mixed high-fiber diet promoted colorectal tumorigenesis with increased tumor number and tumor load in AOM-treated and Apcmin/+ mice. Antibiotics use abolished the pro-tumorigenic effect of mixed high-fiber diet, while transplanting stools from mice fed with mixed high-fiber diet accelerated tumor growth in AOM-treated germ-free mice. We therefore characterized the contribution of soluble and insoluble fiber in CRC separately. Our results revealed that soluble fiber inulin or guar gum, but not insoluble fiber cellulose, promoted colorectal tumorigenesis in AOM-treated and Apcmin/+ mice. Soluble fiber induced gut dysbiosis with Bacteroides uniformis enrichment and Bifidobacterium pseudolongum depletion, accompanied by increased fecal butyrate and serum bile acids and decreased inosine. We also identified a positive correlation between inulin dosage and colorectal tumorigenesis. Moreover, transplanting stools from mice fed with high-inulin diet increased colonic cell proliferation and oncogene expressions in germ-free mice. CONCLUSION High-dose soluble but not insoluble fiber potentiates colorectal tumorigenesis in a dose-dependent manner by dysregulating gut microbiota and metabolites in mice.
Collapse
Affiliation(s)
- Jia Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China; Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eagle S H Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shang Guo
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry C H Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin H K Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Fei To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
204
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
205
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
206
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
207
|
Lessard-Lord J, Lupien-Meilleur J, Roussel C, Gosselin-Cliche B, Silvestri C, Di Marzo V, Roy D, Rousseau E, Desjardins Y. Mathematical modeling of fluid dynamics in in vitro gut fermentation systems: A new tool to improve the interpretation of microbial metabolism. FASEB J 2024; 38:e23398. [PMID: 38214938 DOI: 10.1096/fj.202301739rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
| | | | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche Universitaire de l'Institut de Cardiologie et Pneumologie de Québec (CRIUCPQ), Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche Universitaire de l'Institut de Cardiologie et Pneumologie de Québec (CRIUCPQ), Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Elsa Rousseau
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Computer Science and Software Engineering, Faculty of Science and Engineering, Université Laval, Quebec, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
208
|
Anand G, Clark-Dinovo C, Perry AM, Goodwin VM, St. Raymond E, Sakleshpur S, Steed AL. Aromatic amino acid metabolites alter interferon signaling and influenza pathogenesis. Front Mol Biosci 2024; 10:1232573. [PMID: 38322710 PMCID: PMC10844567 DOI: 10.3389/fmolb.2023.1232573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-β, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashley L. Steed
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
209
|
Guo J, Chowdhury RR, Mallajosyula V, Xie J, Dubey M, Liu Y, Li J, Wei YL, Palanski BA, Wang C, Qiu L, Ohanyan M, Kask O, Sola E, Kamalyan L, Lewis DB, Scriba TJ, Davis MM, Dodd D, Zeng X, Chien YH. γδ T cell antigen receptor polyspecificity enables T cell responses to a broad range of immune challenges. Proc Natl Acad Sci U S A 2024; 121:e2315592121. [PMID: 38227652 PMCID: PMC10823224 DOI: 10.1073/pnas.2315592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.
Collapse
Affiliation(s)
- Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Megha Dubey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Yu-ling Wei
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | | | - Conghua Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
| | - Mané Ohanyan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Oliver Kask
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Elsa Sola
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Lilit Kamalyan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - David B. Lewis
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town7700, South Africa
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Xun Zeng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yueh-hsiu Chien
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
210
|
Krishnamoorthy N, Kalyan M, Hediyal TA, Anand N, Kendaganna PH, Pendyala G, Yelamanchili SV, Yang J, Chidambaram SB, Sakharkar MK, Mahalakshmi AM. Role of the Gut Bacteria-Derived Metabolite Phenylacetylglutamine in Health and Diseases. ACS OMEGA 2024; 9:3164-3172. [PMID: 38284070 PMCID: PMC10809373 DOI: 10.1021/acsomega.3c08184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Over the past few decades, it has been well established that gut microbiota-derived metabolites can disrupt gut function, thus resulting in an array of diseases. Notably, phenylacetylglutamine (PAGln), a bacterial derived metabolite, has recently gained attention due to its role in the initiation and progression of cardiovascular and cerebrovascular diseases. This meta-organismal metabolite PAGln is a byproduct of amino acid acetylation of its precursor phenylacetic acid (PAA) from a range of dietary sources like egg, meat, dairy products, etc. The microbiota-dependent metabolism of phenylalanine produces PAA, which is a crucial intermediate that is catalyzed by diverse microbial catalytic pathways. PAA conjugates with glutamine and glycine in the liver and kidney to predominantly form phenylacetylglutamine in humans and phenylacetylglycine in rodents. PAGln is associated with thrombosis as it enhances platelet activation mediated through the GPCRs receptors α2A, α2B, and β2 ADRs, thereby aggravating the pathological conditions. Clinical evidence suggests that elevated levels of PAGln are associated with pathology of cardiovascular, cerebrovascular, and neurological diseases. This Review further consolidates the microbial/biochemical synthesis of PAGln and discusses its role in the above pathophysiologies.
Collapse
Affiliation(s)
- Naveen
Kumar Krishnamoorthy
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Tousif Ahmed Hediyal
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Nikhilesh Anand
- Department
of Pharmacology, College of Medicine, American
University of Antigua, P. O. Box W-1451, Saint John’s, Antigua and Barbuda
| | - Pavan Heggadadevanakote Kendaganna
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Gurudutt Pendyala
- Department
of Anesthesiology, University of Nebraska
Medical Center (UNMC), Omaha, Nebraska 68198, United States
- Department
of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, Nebraska 68198, United States
- Child Health
Research Institute, UNMC, Omaha, Nebraska 68198, United States
- National
Strategic Research Institute, UNMC, Omaha, Nebraska 68198, United States
| | - Sowmya V. Yelamanchili
- Department
of Anesthesiology, University of Nebraska
Medical Center (UNMC), Omaha, Nebraska 68198, United States
- Department
of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, Nebraska 68198, United States
- National
Strategic Research Institute, UNMC, Omaha, Nebraska 68198, United States
| | - Jian Yang
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Meena Kishore Sakharkar
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Arehally M. Mahalakshmi
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
211
|
Tripathi S, Voogdt CGP, Bassler SO, Anderson M, Huang PH, Sakenova N, Capraz T, Jain S, Koumoutsi A, Bravo AM, Trotter V, Zimmerman M, Sonnenburg JL, Buie C, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals I: Strategies for efficient library construction. Cell Rep 2024; 43:113517. [PMID: 38142397 DOI: 10.1016/j.celrep.2023.113517] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.
Collapse
Affiliation(s)
- Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Mary Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nazgul Sakenova
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tümay Capraz
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentine Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Zimmerman
- Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
212
|
Ren P, Yue H, Tang Q, Wang Y, Xue C. Astaxanthin slows down skeletal muscle atrophy in H22 tumor-bearing mice during sorafenib treatment by modulating the gut microbiota. Food Funct 2024; 15:543-558. [PMID: 38116809 DOI: 10.1039/d3fo04633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Astaxanthin is a carotenoid that is taken orally and has antitumor and anti-inflammatory properties. Our previous research demonstrated that astaxanthin alleviated skeletal muscle atrophy during sorafenib treatment in H22 tumor-bearing mice and altered the intestinal flora composition. However, the relationship between astaxanthin's amelioration of skeletal muscle atrophy in tumor-bearing mice and its ability to regulate intestinal flora is not clear. We used broad-spectrum antibiotics to create pseudo-sterile tumor-bearing mice, which we then used in fecal bacteria transplantation experiments. Our results indicate that the role of astaxanthin in ameliorating skeletal muscle atrophy during molecularly targeted therapy in mice with tumors is dependent on the intestinal flora. Astaxanthin substantially promoted the proliferation of Blautia, Parabacteroides, and Roseburia, altered the levels of metabolites in mouse serum, and primarily affected the amino acid metabolism of mice. Astaxanthin ameliorated skeletal muscle atrophy by promoting the activation of AKT/FOXO3a, which inhibited the expression of ubiquitination-degrading Fbx32 and MuRF1 and promoted myogenesis in skeletal muscle. Our study confirms that the intestinal flora is an important target for astaxanthin to combat skeletal muscle atrophy. Our research supports the use of astaxanthin as a nutritional supplement and intestinal microecological regulator for cancer patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of, China, Qingdao, Shandong 266003, China.
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of, China, Qingdao, Shandong 266003, China.
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of, China, Qingdao, Shandong 266003, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of, China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of, China, Qingdao, Shandong 266003, China.
| |
Collapse
|
213
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Gu Q, Zhang J, Zhao H, Xie X, Wu Q. Therapeutic applications of gut microbes in cardiometabolic diseases: current state and perspectives. Appl Microbiol Biotechnol 2024; 108:156. [PMID: 38244075 PMCID: PMC10799778 DOI: 10.1007/s00253-024-13007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
214
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
215
|
Mao L, Gao B, Chang H, Shen H. Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis. Metabolites 2024; 14:43. [PMID: 38248846 PMCID: PMC10819307 DOI: 10.3390/metabo14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.
Collapse
Affiliation(s)
- Lindong Mao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Biling Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
216
|
López-Hernández Y, Lima-Rogel V, Mandal R, Zheng J, Zhang L, Oler E, García-López DA, Torres-Calzada C, Mejía-Elizondo AR, Poelsner J, López JA, Zubkowski A, Wishart DS. The Urinary Metabolome of Newborns with Perinatal Complications. Metabolites 2024; 14:41. [PMID: 38248844 PMCID: PMC10819924 DOI: 10.3390/metabo14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- Academic Unit of Biological Sciences, Metabolomics and Proteomics Laboratory, CONAHCyT-Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Victoria Lima-Rogel
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Jiamin Zheng
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Lun Zhang
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Eponine Oler
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | | | - Claudia Torres-Calzada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Ana Ruth Mejía-Elizondo
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Jenna Poelsner
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Jesús Adrián López
- Academic Unit of Biological Sciences, microRNAs and Cancer Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico;
| | - Ashley Zubkowski
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - David S. Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| |
Collapse
|
217
|
Hu J, Chen J, Ma L, Hou Q, Zhang Y, Kong X, Huang X, Tang Z, Wei H, Wang X, Yan X. Characterizing core microbiota and regulatory functions of the pig gut microbiome. THE ISME JOURNAL 2024; 18:wrad037. [PMID: 38366194 PMCID: PMC10873858 DOI: 10.1093/ismejo/wrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
Domestic pigs (Sus scrofa) are the leading terrestrial animals used for meat production. The gut microbiota significantly affect host nutrition, metabolism, and immunity. Hence, characterization of the gut microbial structure and function will improve our understanding of gut microbial resources and the mechanisms underlying host-microbe interactions. Here, we investigated the gut microbiomes of seven pig breeds using metagenomics and 16S rRNA gene amplicon sequencing. We established an expanded gut microbial reference catalog comprising 17 020 160 genes and identified 4910 metagenome-assembled genomes. We also analyzed the gut resistome to provide an overview of the profiles of the antimicrobial resistance genes in pigs. By analyzing the relative abundances of microbes, we identified three core-predominant gut microbes (Phascolarctobacterium succinatutens, Prevotella copri, and Oscillibacter valericigenes) in pigs used in this study. Oral administration of the three core-predominant gut microbes significantly increased the organ indexes (including the heart, spleen, and thymus), but decreased the gastrointestinal lengths in germ-free mice. The three core microbes significantly enhanced intestinal epithelial barrier function and altered the intestinal mucosal morphology, as was evident from the increase in crypt depths in the duodenum and ileum. Furthermore, the three core microbes significantly affected several metabolic pathways (such as "steroid hormone biosynthesis," "primary bile acid biosynthesis," "phenylalanine, tyrosine and tryptophan biosynthesis," and "phenylalanine metabolism") in germ-free mice. These findings provide a panoramic view of the pig gut microbiome and insights into the functional contributions of the core-predominant gut microbes to the host.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hong Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
218
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024; 65:1729-1748. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
219
|
Cheng F, Li D, Ma X, Wang Y, Lu L, Hu B, Cui S. Liriodendrin exerts protective effects against chronic endometritis in rats by modulating gut microbiota composition and the arginine/nitric oxide metabolic pathway. Int Immunopharmacol 2024; 126:111235. [PMID: 38007851 DOI: 10.1016/j.intimp.2023.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Chronic endometritis (CE), a gynecological disease, is characterized by inflammation. Liriodendrin is reported to exhibit anti-inflammatory properties. However, the therapeutic effects of liriodendrin on CE and the underlying molecular mechanisms have not been elucidated. This study aimed to investigate the therapeutic effects of liriodendrin on CE in rats and the underlying mechanisms. METHODS A CE rat model was established and administered with liriodendrin for 21 days. The serum levels of inflammatory cytokines were examined using enzyme-linked immunosorbent assay. The uterine mRNA levels of cytokines were examined using quantitative real-time polymerase chain reaction analysis. The activation of the Toll-like receptor 4 (TLR4)/NF-κB pathway was investigated using western blotting analysis. The effects of liriodendrin on intestinal flora and serum metabolites were examined using 16S rRNA sequencing and untargeted serum metabolomics, respectively. The protein and mRNA levels of arginase-2 (Arg-2) and the nitric oxide (NO) metabolic pathway-related factors were assessed. Molecular docking was performed to explore the interaction between liriodendrin and Arg-2. RESULTS Liriodendrin alleviated the CE-induced pathological changes in the uterus, modulated the serum levels of inflammatory cytokines, and downregulated the mRNA and protein levels of TLR4/NF-κB pathway-related factors. Treatment with liriodendrin mitigated the CE-induced upregulation of Firmicutes/Bacteroidetes ratio and Lachnospiraceae abundance and downregulation of Ruminococcaceae abundance. Serum metabolomic analysis revealed that liriodendrin regulated the biosynthesis of choline metabolism pathway-related factors. Liriodendrin suppressed the CE-induced upregulation of Arg-2 and downregulation of inducible nitric oxide synthase (iNOS) expression, and NO levels by directly binding to the amino acid residues of Arg-2 through hydroxyl bonds. CONCLUSIONS Liriodendrin exerted therapeutic effects on CE in rats through the alleviation of inflammation by modulating the gut microbiota structure, directly downregulating Arg-2, and regulating the arginine/NO metabolic pathway.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Gynecology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Dan Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xijia Ma
- College of Acumox and Tuina, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yami Wang
- Research Department, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Luyan Lu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Bin Hu
- Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450000, China.
| | - Shuke Cui
- Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
220
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
221
|
Reens AL, Cosetta CM, Saur R, Trofimuk O, Brooker SL, Lee ML, Sun AK, McKenzie GJ, Button JE. Tunable control of B. infantis abundance and gut metabolites by co-administration of human milk oligosaccharides. Gut Microbes 2024; 16:2304160. [PMID: 38235736 PMCID: PMC10798361 DOI: 10.1080/19490976.2024.2304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Precision engineering of the gut microbiome holds promise as an effective therapeutic approach for diseases associated with a disruption in this microbial community. Engrafting a live biotherapeutic product (LBP) in a predictable, controllable manner is key to the consistent success of this approach and has remained a challenge for most LBPs under development. We recently demonstrated high-level engraftment of Bifidobacterium longum subsp. infantis (B. infantis) in adults when co-dosed with a specific prebiotic, human milk oligosaccharides (HMO). Here, we present a cellular kinetic-pharmacodynamic approach, analogous to pharmacokinetic-pharmacodynamic-based analyses of small molecule- and biologic-based drugs, to establish how HMO controls expansion, abundance, and metabolic output of B. infantis in a human microbiota-based model in gnotobiotic mice. Our data demonstrate that the HMO dose controls steady-state abundance of B. infantis in the microbiome, and that B. infantis together with HMO impacts gut metabolite levels in a targeted, HMO-dependent manner. We also found that HMO creates a privileged niche for B. infantis expansion across a 5-log range of bacterial inocula. These results demonstrate remarkable control of both B. infantis levels and the microbiome community metabolic outputs using this synbiotic approach, and pave the way for precision engineering of desirable microbes and metabolites to treat a range of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin L. Lee
- Prolacta Bioscience, Duarte, CA, USA
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, Los AngelesCA, USA
| | | | | | | |
Collapse
|
222
|
Tian Y, Zhang R, Li G, Zeng T, Chen L, Xu W, Gu T, Tao Z, Du X, Lu L. Microbial fermented feed affects flavor amino acids and yolk trimethylamine of duck eggs via cecal microbiota-yolk metabolites crosstalk. Food Chem 2024; 430:137008. [PMID: 37586289 DOI: 10.1016/j.foodchem.2023.137008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Microbial fermented feed (MFF) has been demonstrated to improve nutritional status as well as promote animal health. However, only a few studies have focused on its effect on the flavor of animal products, and the potential underlying mechanisms remain poorly understood. Herein, egg amino acids and yolk trimethylamine (TMA), small intestine histomorphology, cecal microbiota and yolk metabolites were analyzed in MFF-treated ducks. The results showed that MFF significantly increased the flavor amino acids in duck eggs, along with reducing the yolk TMA. MFF caused an increase in beneficial cecal microflora, and regulated the bacteria involved in the metabolism of glucolipid, TMA and its N-oxide. Moreover, MFF regulated 34 annotated metabolites markedly enriched in four metabolic pathways. Correlation analysis showed that cecal microbiota and yolk metabolites were closely related to flavor-related indicators of duck eggs. Our study therefore provides a theoretical basis for improving avian egg flavor starting from the feed.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Ruikun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xizhong Du
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
223
|
Wu X, Zhang T, Zhang T, Park S. The impact of gut microbiome enterotypes on ulcerative colitis: identifying key bacterial species and revealing species co-occurrence networks using machine learning. Gut Microbes 2024; 16:2292254. [PMID: 38117560 PMCID: PMC10761161 DOI: 10.1080/19490976.2023.2292254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease affecting the colon and rectum, with its pathogenesis attributed to genetic background, environmental factors, and gut microbes. This study aimed to investigate the role of enterotypes in UC by conducting a hierarchical analysis, determining differential bacteria using machine learning, and performing Species Co-occurrence Network (SCN) analysis. Fecal bacterial data were collected from UC patients, and a 16S rRNA metagenomic analysis was performed using the QIIME2 bioinformatics pipeline. Enterotype clustering was conducted at the family level, and deep neural network (DNN) classification models were trained for UC and healthy controls (HC) in each enterotype. Results from eleven 16S rRNA gut microbiome datasets revealed three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Clostridiaceae (ET-C). Ruminococcus (R. gnavus) abundance was significantly higher in UC subjects with ET-B and ET-C than in those with ET-L. R. gnavus also showed a positive correlation with Clostridia in UC SCN for ET-B and ET-C subjects, with a higher correlation in ET-C subjects. Conversely, Odoribacter (O.) splanchnicus and Bacteroides (B.) uniformis exhibited a positive correlation with tryptophan metabolism and AMP-activated protein kinase (AMPK) signaling pathways, while R. gnavus showed a negative correlation. In vitro co-culture experiments with Clostridium (C.) difficile demonstrated that fecal microbiota from ET-B subjects had a higher abundance of C. difficile than ET-L subjects. In conclusion, the ET-B enterotype predisposes individuals to UC, with R. gnavus as a potential risk factor and O. splanchnicus and B. uniformis as protective bacteria, and those with UC may have ultimately become ET-C.
Collapse
Affiliation(s)
- Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan, Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan, Korea
| | - TianShun Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Korea
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan, Korea
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Korea
| |
Collapse
|
224
|
Cui W, Guo M, Liu D, Xiao P, Yang C, Huang H, Liang C, Yang Y, Fu X, Zhang Y, Liu J, Shi S, Cong J, Han Z, Xu Y, Du L, Yin C, Zhang Y, Sun J, Gu W, Chai R, Zhu S, Chu B. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat Cell Biol 2024; 26:124-137. [PMID: 38168770 DOI: 10.1038/s41556-023-01314-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
The gut microbiota play a pivotal role in human health. Emerging evidence indicates that gut microbes participate in the progression of tumorigenesis through the generation of carcinogenic metabolites. However, the underlying molecular mechanism is largely unknown. In the present study we show that a tryptophan metabolite derived from Peptostreptococcus anaerobius, trans-3-indoleacrylic acid (IDA), facilitates colorectal carcinogenesis. Mechanistically, IDA acts as an endogenous ligand of an aryl hydrocarbon receptor (AHR) to transcriptionally upregulate the expression of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), which utilizes retinal as a substrate to generate NADH, essential for ferroptosis-suppressor protein 1(FSP1)-mediated synthesis of reduced coenzyme Q10. Loss of AHR or ALDH1A3 largely abrogates IDA-promoted tumour development both in vitro and in vivo. It is interesting that P. anaerobius is significantly enriched in patients with colorectal cancer (CRC). IDA treatment or implantation of P. anaerobius promotes CRC progression in both xenograft model and ApcMin/+ mice. Together, our findings demonstrate that targeting the IDA-AHR-ALDH1A3 axis should be promising for ferroptosis-related CRC treatment.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Guo
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuancheng Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhui Liang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yudan Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxing Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jingjing Cong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zili Han
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunfei Xu
- Qilu hospital of Shandong University, Jinan, China
| | - Lutao Du
- Qilu hospital of Shandong University, Jinan, China
| | - Chengqian Yin
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinpeng Sun
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- School of Life Science, Beijing Institute of Technology, Beijing, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shu Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
225
|
Khan R, Di Gesù CM, Lee J, McCullough LD. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024; 16:2302801. [PMID: 38237031 PMCID: PMC10798364 DOI: 10.1080/19490976.2024.2302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson's disease, Alzheimer's disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Romeesa Khan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Claudia M. Di Gesù
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
226
|
Yong CC, Sakurai T, Kaneko H, Horigome A, Mitsuyama E, Nakajima A, Katoh T, Sakanaka M, Abe T, Xiao JZ, Tanaka M, Odamaki T, Katayama T. Human gut-associated Bifidobacterium species salvage exogenous indole, a uremic toxin precursor, to synthesize indole-3-lactic acid via tryptophan. Gut Microbes 2024; 16:2347728. [PMID: 38706226 PMCID: PMC11085991 DOI: 10.1080/19490976.2024.2347728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase β subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase β subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.
Collapse
Affiliation(s)
- Cheng Chung Yong
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Takuma Sakurai
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Hiroki Kaneko
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Ayako Horigome
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Eri Mitsuyama
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jin-Zhong Xiao
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Innovative Research Institute, Morinaga Milk Industry Co Ltd, Zama, Kanagawa, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
227
|
Jia D, Kuang Z, Wang L. The role of microbial indole metabolites in tumor. Gut Microbes 2024; 16:2409209. [PMID: 39353090 PMCID: PMC11445886 DOI: 10.1080/19490976.2024.2409209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiota can produce a variety of microbial-derived metabolites to influence tumor development. Tryptophan, an essential amino acid in the human body, can be converted by microorganisms via the indole pathway to indole metabolites such as Indole-3-Lactic Acid (ILA), Indole-3-Propionic Acid (IPA), Indole Acetic Acid (IAA) and Indole-3-Aldehyde (IAld). Recent studies have shown that indole metabolites play key roles in tumor progression, and they can be used as adjuvant regimens for tumor immunotherapy or chemotherapy. Here, we summarize recent findings on the common microbial indole metabolites and provide a review of the mechanisms of different indole metabolites in the tumor microenvironment. We further discuss the limitations of current indole metabolite research and future possibilities. It is expected that microbial indole metabolites will provide new strategies for clinical therapy.
Collapse
Affiliation(s)
- Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
228
|
Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, Binder K, Kinscherf R, Walker A, Nockher WA, Taudte RV, Bertrams W, Schmeck B, Kühl AA, Siegmund B, Romero R, Luu M, Göttig S, Bekeredjian-Ding I, Steinhoff U, Schütz B, Visekruna A. Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes 2024; 16:2412669. [PMID: 39397690 PMCID: PMC11485882 DOI: 10.1080/19490976.2024.2412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Felix F. Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Kira I. Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anna-Lena Ruppert
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Aleksandra Lopez Krol
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Jelena Pesek
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Bernhard Watzer
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Sarah Winterberg
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps-University, Marburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum, München, Germany
| | - Wolfgang A. Nockher
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - R. Verena Taudte
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University, Marburg, Germany
- Department for Respiratory and Critical Care Medicine, Philipps-University, Marburg, Germany
- Member of the German Center for Lung Research (DZL/UGMLC, ) and German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anja A. Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
229
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
230
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
231
|
Zhuang M, Zhang X, Cai J. Microbiota-gut-brain axis: interplay between microbiota, barrier function and lymphatic system. Gut Microbes 2024; 16:2387800. [PMID: 39182226 PMCID: PMC11346530 DOI: 10.1080/19490976.2024.2387800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
The human gastrointestinal tract, boasting the most diverse microbial community, harbors approximately 100 trillion microorganisms comprising viruses, bacteria, fungi, and archaea. The profound genetic and metabolic capabilities of the gut microbiome underlie its involvement in nearly every facet of human biology, from health maintenance and development to aging and disease. Recent recognition of microbiota - gut - brain axis, referring to the bidirectional communication network between gut microbes and their host, has led to a surge in interdisciplinary research. This review begins with an overview of the current understandings regarding the influence of gut microbes on intestinal and blood-brain barrier integrity. Subsequently, we discuss the mechanisms of the microbiota - gut - brain axis, examining the role of gut microbiota-related neural transmission, metabolites, gut hormones and immunity. We propose the concept of microbiota-mediated multi-barrier modulation in the potential treatment in gastrointestinal and neurological disorders. Furthermore, the role of lymphatic network in the development and maintenance of barrier function is discussed, providing insights into lesser-known conduits of communication between the microbial ecosystem within the gut and the brain. In the final section, we conclude by describing the ongoing frontiers in understanding of the microbiota - gut - brain axis's impact on human health and disease.
Collapse
Affiliation(s)
- Miaomiao Zhuang
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Institute of Microbiology, Chinese Academy of Sciences, IMCAS, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
232
|
Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 2024; 9:55-69. [PMID: 38177297 PMCID: PMC11055453 DOI: 10.1038/s41564-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
Collapse
Affiliation(s)
- Alexander S Little
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Isaac T Younker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Matthew S Schechter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Paola Nol Bernardino
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Joshua Stemczynski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - William Leiter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Matthew A Odenwald
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
233
|
Ugwuodo CJ, Colosimo F, Adhikari J, Purvine SO, Eder EK, Hoyt DW, Wright SA, Lipton MS, Mouser PJ. Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs. ISME COMMUNICATIONS 2024; 4:ycae149. [PMID: 39670059 PMCID: PMC11637423 DOI: 10.1093/ismeco/ycae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH 03824, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | | | | | - Samuel O Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Elizabeth K Eder
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - David W Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Stephanie A Wright
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Mary S Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
234
|
Nemet I, Funabashi M, Li XS, Dwidar M, Sangwan N, Skye SM, Romano KA, Cajka T, Needham BD, Mazmanian SK, Hajjar AM, Rey FE, Fiehn O, Tang WHW, Fischbach MA, Hazen SL. Microbe-derived uremic solutes enhance thrombosis potential in the host. mBio 2023; 14:e0133123. [PMID: 37947418 PMCID: PMC10746243 DOI: 10.1128/mbio.01331-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Alterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Masanori Funabashi
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Xinmin S. Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mohammed Dwidar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Skye
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kymberleigh A. Romano
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, California, USA
| | - Brittany D. Needham
- Departments of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sarkis K. Mazmanian
- Departments of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Adeline M. Hajjar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, California, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A. Fischbach
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- ChEM-H Institute, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
235
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
236
|
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H, Shang D. Gut microbiome: decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1299977. [PMID: 38156313 PMCID: PMC10754537 DOI: 10.3389/fcimb.2023.1299977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, accounting for the second most common cause of gastrointestinal tumors. As one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal work, and form the living environment of intestinal cells. Metagenomic next-generation sequencing (mNGS) of the gut bacteria in a large number of CRC patients has been established, enabling specific microbial signatures to be associated with colorectal adenomato-carcinoma. Gut bacteria are involved in both benign precursor lesions (polyps), in situ growth and metastasis of CRC. Therefore, the term tumorigenic bacteria was proposed in 2018, such as Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin (CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and promote cancer occurrence and tumor immune escape. It is important to note that there are differences in the bacteria of different types of CRC. In this paper, the role of tumorigenic bacteria in the polyp-cancer transformation and the effects of their secreted toxins on the tumor microenvironment will be discussed, thereby further exploring new ideas for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongnian Zhang
- Departments of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
237
|
Choueiry F, Gold A, Xu R, Zhang S, Zhu J. Secondary-Electrospray Ionization Mass Spectrometry-Based Online Analyses of Mouse Volatilome Uncover Gut Microbiome-Dictated Metabolic Changes in the Host. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2793-2800. [PMID: 38011635 DOI: 10.1021/jasms.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The symbiotic relationship between the gut microbial population is capable of regulating numerous aspects of host physiology, including metabolism. Bacteria can modulate the metabolic processes of the host by feeding on nutritional components within the lumen and releasing bioactive components into circulation. Endogenous volatile organic compound (VOC) synthesis is dependent on the availability of precursors found in mammalian metabolism. Herein, we report that microbial-mediated metabolic influences can alter the host volatilome and the prominent volatile changes can be uncovered by a novel volatile analysis technique named secondary electrospray ionization mass spectrometry. Mice were subjected to an antibiotic cocktail to deplete the microbiome and then inoculated with either single strain bacteria or fecal matter transplantation (FMT) to replete the microbial population in the gut. VOC sampling was achieved by using an advanced secondary electrospray ionization (SESI) source that directly mounted onto a Thermo Q-Exactive high-resolution mass spectrometer (HRMS). A principal component analysis summarizing the volatile profiles of the mice revealed independent clustering of each strain of the FMT-inoculated groups, suggesting unique volatile profiles. The Mummichog algorithm uncovered phenylalanine metabolism as a significantly altered metabolic profile in the volatilome of the microbiome-repleted mice. Our results indicated that the systemic metabolic changes incurred by the host are translated to unique volatile profiles correlated to the diversity of the microbial population colonized within the host. It is thus possible to take advantage of SESI-HRMS-based platforms for noninvasive screening of VOCs to determine the contribution of various microbial colonization within human gut that may impact host health.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiqi Zhang
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
238
|
AL-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics (Basel) 2023; 12:1698. [PMID: 38136732 PMCID: PMC10741029 DOI: 10.3390/antibiotics12121698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The skin microbiome is crucial in maintaining skin health, and its disruption is associated with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria that release the same effects as their parent bacteria. The human skin microbiome is vital when it comes to maintaining skin health and preventing a variety of dermatological conditions. This review explores novel strategies that use microbiome-targeted treatments to maintain and enhance overall skin health while managing various skin disorders. It is important to understand the dynamic relationship between these beneficial microorganisms and the diverse microbial communities present on the skin to create effective strategies for using probiotics on the skin. This understanding can help optimize formulations and treatment regimens for improved outcomes in skincare, particularly in developing solutions for various skin problems.
Collapse
Affiliation(s)
- Khadeejeh AL-Smadi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Newton Andreo Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
239
|
Mifflin R, Park JE, Lee M, Jena PK, Wan YJY, Barton HA, Aghayev M, Kasumov T, Lin L, Wang X, Novak R, Li F, Huang H, Shriver LP, Lee YK. Microbial products linked to steatohepatitis are reduced by deletion of nuclear hormone receptor SHP in mice. J Lipid Res 2023; 64:100469. [PMID: 37922990 PMCID: PMC10698000 DOI: 10.1016/j.jlr.2023.100469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Ryan Mifflin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jung Eun Park
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, USA
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leah P Shriver
- Department of Chemistry & Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
240
|
Starke S, Harris DMM, Zimmermann J, Schuchardt S, Oumari M, Frank D, Bang C, Rosenstiel P, Schreiber S, Frey N, Franke A, Aden K, Waschina S. Amino acid auxotrophies in human gut bacteria are linked to higher microbiome diversity and long-term stability. THE ISME JOURNAL 2023; 17:2370-2380. [PMID: 37891427 PMCID: PMC10689445 DOI: 10.1038/s41396-023-01537-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Amino acid auxotrophies are prevalent among bacteria. They can govern ecological dynamics in microbial communities and indicate metabolic cross-feeding interactions among coexisting genotypes. Despite the ecological importance of auxotrophies, their distribution and impact on the diversity and function of the human gut microbiome remain poorly understood. This study performed the first systematic analysis of the distribution of amino acid auxotrophies in the human gut microbiome using a combined metabolomic, metagenomic, and metabolic modeling approach. Results showed that amino acid auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being the most common. Auxotrophy frequencies were higher for those amino acids that are also essential to the human host. Moreover, a higher overall abundance of auxotrophies was associated with greater microbiome diversity and stability, and the distribution of auxotrophs was found to be related to the human host's metabolome, including trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results suggest that amino acid auxotrophies are important factors contributing to microbiome ecology and host-microbiome metabolic interactions.
Collapse
Affiliation(s)
- Svenja Starke
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
| | - Danielle M M Harris
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Johannes Zimmermann
- Zoological Institute, Research Group Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Mhmd Oumari
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany.
| |
Collapse
|
241
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
242
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
243
|
Liang X, Fu Y, Niu K, Zhai Z, Shi H, Wang R, Yin Y. Dietary Eucommia ulmoides leaf extract improves laying performance by altering serum metabolic profiles and gut bacteria in aged laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:307-319. [PMID: 38053802 PMCID: PMC10694046 DOI: 10.1016/j.aninu.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 12/07/2023]
Abstract
The leaves of Eucommia ulmoides are rich in bioactive constituents that have potential gastrointestinal benefits for animals. In aged laying hens, intestinal health issues contribute to a significant decline in egg-laying capacity during intermediate and later stages. It remains unclear whether E. ulmoides leaf extract (ELE) can improve intestinal health and enhance egg production in elderly laying hens, and the underlying mechanisms are yet to be elucidated. Therefore, we conducted a study with 480 laying hens (65 weeks old) randomly allocated into four groups: a control group fed with the basal diet, and three treatment groups supplemented with 500, 1,000, and 2,000 mg/kg of ELE, respectively. The primary active constituents of ELE include flavonoids, polysaccharides, terpenoids, and phenolic acids. Dietary supplementation with ELE at 1,000 mg/kg (ELE1000) significantly improved laying performance and egg quality compared to the other groups. ELE1000 stimulated the maturation of intestinal epithelial cells, increased villus height, and reduced crypt depth. It also influenced the levels of proteins associated with tight junctions (claudin-1 and claudin-2) and intestinal inflammatory factors (IL-6, IL-1β, and IL-2) in different intestinal sections. Integrative analysis of serum metabolomics and gut microbiota revealed that ELE1000 improved nutrient metabolism by modulating amino acid and ubiquinone biosynthesis and influenced the abundance of intestinal microbiota by enriching pivotal genera such as Bacteroides and Rikenellaceae_RC9_gut_group. We identified 15 metabolites significantly correlated with both gut microbiota and laying performance, e.g., DL-methionine sulfoxide, THJ2201 N-valerate metabolite, tetracarbonic acid, etc. In conclusion, ELE1000 improved laying performance in elderly laying hens by affecting intestinal morphology, barrier function, microbiota, and serum metabolite profiles. These findings suggest that ELE can be a beneficial feed additive for extending the peak producing period in aged laying hens.
Collapse
Affiliation(s)
- Xiaoxiao Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Hongxun Shi
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Ruxia Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Yulong Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
244
|
Zhou X, Wu X, Wu Y, Yang L, Shi E, Ding W, Chen L, Shi X, Feng X, Su C, You Z, Xia J, Chen C, Yeliseyev V, Bry L, Xia S, Huang P, Meng J, Houle T, Akeju O, Mao J, Gerszten R, Chen Q, Xie Z, Shen S. Indole-3-Propionic Acid, a Gut Microbiota Metabolite, Protects Against the Development of Postoperative Delirium. Ann Surg 2023; 278:e1164-e1174. [PMID: 37185230 PMCID: PMC10603211 DOI: 10.1097/sla.0000000000005886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The aim was to determine preoperative gut microbiota metabolites that may be associated with postoperative delirium (POD) development in patients and further study in rodents. SUMMARY BACKGROUND DATA POD occurs in 9% to 50% of older patients undergoing anesthesia/surgery but lacks effective treatments or prevention. High-throughput metabolomics using liquid chromatography with tandem mass spectrometry has accelerated disease-related biomarkers discovery. We performed metabolomic studies in humans to identify potential metabolite biomarkers linked to POD and examined potential mechanisms in rodents. METHODS We performed a prospective observational cohort study to examine the metabolomic changes that were associated with the development of POD. Then the gut microbiota-related metabolomic changes were recapitulated by gut microbiota perturbation in rodents. POD was assessed in mice using a battery of behavioral tests including novel objective test, Y-maze test, open-field test, and buried food test. The mechanisms through which gut microbiota-related metabolomic changes influenced POD were examined using chemogenetics. RESULTS Indole-3-propionic acid (IPA) is a gut microbiota metabolite that belongs to the indole family. Baseline plasma levels of IPA were significantly inversely correlated with the onset of POD in 103 (17 cases) human individuals. This relationship was validated in preclinical mouse models for POD: reducing IPA levels through gut microbiota perturbation promoted POD-like behavior. More importantly, IPA administration deterred POD-like behavior. Colonization of germ-free mice with mutant Clostridium sporogenes that did not produce IPA-promoted POD-like behavior. Chemogenetic studies revealed that the protective effect of IPA in mice was mediated, in part, by peroxisome proliferator-activated receptor gamma coactivator 1-alpha in hippocampal interneurons. CONCLUSIONS Gut microbiota-derived IPA is an important molecule implicated in the pathogenesis of POD, which could potentially be harnessed for POD prevention.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xinbo Wu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Orthopedics, Shanghai Tenth Hospital, Tongji University School of Medicine, Shanghai
| | - Yan Wu
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Eleanor Shi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Health Care, Nutley, NJ
| | - Xu Shi
- Department of Cardiovascular Medicine, Beth Israel Deaconess Medical Center
| | - Xia Feng
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chienwen Su
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zerong You
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jianguo Xia
- Department of Parasitology, McGill University, Montreal, Canada
| | - Cynthia Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Lynn Bry
- Department of Pathology, Brigham and Women’s Hospital
| | - Suyun Xia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Peigen Huang
- The Steele Lab, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jiawei Meng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Timothy Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert Gerszten
- Department of Cardiovascular Medicine, Beth Israel Deaconess Medical Center
| | - Qian Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
245
|
Hu Y, Li J, Wang B, Zhu L, Li Y, Ivey KL, Lee KH, Eliassen AH, Chan A, Huttenhower C, Hu FB, Qi Q, Rimm EB, Sun Q. Interplay between diet, circulating indolepropionate concentrations and cardiometabolic health in US populations. Gut 2023; 72:2260-2271. [PMID: 37739776 PMCID: PMC10841831 DOI: 10.1136/gutjnl-2023-330410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES To identify indolepropionate (IPA)-predicting gut microbiota species, investigate potential diet-microbiota interactions, and examine the prospective associations of circulating IPA concentrations with type 2 diabetes (T2D) and coronary heart disease (CHD) risk in free-living individuals. DESIGN We included 287 men from the Men's Lifestyle Validation Study, a substudy of the Health Professionals Follow-Up Study (HPFS), who provided up to two pairs of faecal samples and two blood samples. Diet was assessed using 7-day diet records. Associations between plasma concentrations of tryptophan metabolites and T2D CHD risk were examined in 13 032 participants from Nurses' Health Study (NHS), NHSII and HPFS. RESULTS We identified 17 microbial species whose abundance was significantly associated with plasma IPA concentrations. A significant association between higher tryptophan intake and higher IPA concentrations was only observed among men who had higher fibre intake and a higher microbial species score consisting of the 17 species (p-interaction<0.01). Dietary and plasma concentrations of tryptophan and most kynurenine pathway metabolites were positively associated with T2D risk (HRQ5 vs Q1 ranged from 1.17 to 1.46) while a significant inverse association was found for IPA (HRQ5 vs Q1 (95% CI) 0.70 (0.56 to 0.88)). No associations were found in CHD for any plasma tryptophan metabolites. CONCLUSIONS Specific microbial species and dietary fibre jointly predicted significantly higher circulating IPA concentrations at higher tryptophan intake. Dietary and plasma tryptophan, as well as its kynurenine pathway metabolites, demonstrated divergent associations from those for IPA, which was significantly predictive of lower risk of T2D.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Biqi Wang
- Department of Medicine, UMASS Medical School, Worcester, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Yanping Li
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
- Eli and Edythe L. Broad Institute of Harvard and MIT, Flinders University College of Nursing and Health Sciences, Cambridge, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
246
|
Hou Y, Li J, Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023; 13:1166. [PMID: 37999261 PMCID: PMC10673612 DOI: 10.3390/metabo13111166] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health.
Collapse
Affiliation(s)
- Yingjian Hou
- Target Discovery Center, China Pharmaceutical University, Nanjing 211198, China;
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, China
| | - Shuhuan Ying
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Bocimed Pharmaceutical Research Co., Ltd., Shanghai 201203, China
| |
Collapse
|
247
|
Xia Y, Liu C, Li R, Zheng M, Feng B, Gao J, Long X, Li L, Li S, Zuo X, Li Y. Lactobacillus-derived indole-3-lactic acid ameliorates colitis in cesarean-born offspring via activation of aryl hydrocarbon receptor. iScience 2023; 26:108279. [PMID: 38026194 PMCID: PMC10656274 DOI: 10.1016/j.isci.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Cesarean section (CS) delivery is known to disrupt the transmission of maternal microbiota to offspring, leading to an increased risk of inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly characterized. Here, we demonstrate that CS birth renders mice susceptible to dextran sulfate sodium (DSS)-induced colitis and impairs group 3 innate lymphoid cell (ILC3) development. Additionally, CS induces a sustained decrease in Lactobacillus abundance, which subsequently contributes to the colitis progression and ILC3 deficiency. Supplementation with a probiotic strain, L. acidophilus, or its metabolite, indole-3-lactic acid (ILA), can attenuate intestinal inflammation and restore ILC3 frequency and interleukin (IL)-22 level in CS offspring. Mechanistically, we indicate that ILA activates ILC3 through the aryl hydrocarbon receptor (AhR) signaling. Overall, our findings uncover a detrimental role of CS-induced gut dysbiosis in the pathogenesis of colitis and suggest L. acidophilus and ILA as potential targets to re-establish intestinal homeostasis in CS offspring.
Collapse
Affiliation(s)
- Yanan Xia
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruijia Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bingcheng Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiahui Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
248
|
Zhou Y, Chen Y, He H, Peng M, Zeng M, Sun H. The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology 2023; 239:109690. [PMID: 37619773 DOI: 10.1016/j.neuropharm.2023.109690] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
At present, a large number of relevant studies have suggested that the changes in gut microbiota are related to the course of nervous system diseases, and the microbiota-gut-brain axis is necessary for the proper functioning of the nervous system. Indole and its derivatives, as the products of the gut microbiota metabolism of tryptophan, can be used as ligands to regulate inflammation and autoimmune response in vivo. In recent years, some studies have found that the levels of indole and its derivatives differ significantly between patients with central nervous system diseases and healthy individuals, suggesting that they may be important mediators for the involvement of the microbiota-gut-brain axis in the disease course. Tryptophan metabolites produced by gut microbiota are involved in multiple physiological reactions, take indole for example, it participates in the process of inflammation and anti-inflammatory effects through various cellular physiological activities mediated by aromatic hydrocarbon receptors (AHR), which can influence a variety of neurological and neuropsychiatric diseases. This review mainly explores and summarizes the relationship between indoles and human neurological and neuropsychiatric disorders, including ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, cognitive impairment, depression and anxiety, and puts forward that the level of indoles can be regulated through various direct or indirect ways to improve the prognosis of central nervous system diseases and reverse the dysfunction of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Yi Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yue Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
249
|
Dai D, Wang J, Zhang H, Wu S, Qi G. Uterine microbial communities and their potential role in the regulation of epithelium cell cycle and apoptosis in aged hens. MICROBIOME 2023; 11:251. [PMID: 37951950 PMCID: PMC10638742 DOI: 10.1186/s40168-023-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alterations of the uterine microbiome are closely associated with various intrauterine diseases and physiological conditions, which are well-established in mammals. However, as representative oviparous animals, the research on the uterine microbial ecosystem and its functions with physiological homeostasis is limited in chickens. Additionally, continuous egg-laying disrupts the oviducal immune defenses of aged hens, susceptible to pathogen invasion, causing poor egg quality and food-borne infections in humans. Here, we investigated aging-related changes in the oviduct microbial colonization and transmission from the gut to eggs and their roles in a hen model. RESULTS The results of 16S rDNA sequencing showed significant differences in the oviduct microbial composition between young (38 weeks) and aged (77 weeks) laying hens. SourceTracker analysis further revealed differences in the effects of microbial transmission on the oviducal microbiota between young and aged hens. Enhanced barrier defense with cell apoptosis suppression and cell cycle arrest of the uterus were observed in aged hens reducing microbial transmission from the lower to upper reproductive tract. In addition, a total of 361 significantly differential metabolites were identified using metabolomics in the aged uterine microbiota, especially in products of amino acid metabolism and biosynthesis of various secondary metabolites, which might have essential effects on cell apoptosis by regulating immune responses and cell cycle. Notably, antibiotics disrupted uterine microbiota by dietary intervention and direct perfusion did not retard aging-related physiological changes but further aggravated aging processes by disrupting the cell cycle and apoptosis. CONCLUSIONS The microbiota continuum along the reproductive tract in aged birds differs from that in young birds, especially with a significant shift in the uterus. The aged uterine microbiota probably contributes to the regulation of cell cycle and apoptosis by microbial metabolites primarily involved in amino acid metabolism and biosynthesis of various secondary metabolites. These findings provide new insights into the roles of the reproductive tract microbiota in regulating the cell programming of the aged host, contributing to the exploration of the microbiome as a target for diagnosing aging health status and therapy for gynecological diseases in women. Video Abstract.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China.
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| |
Collapse
|
250
|
Li ML, Sun SP, Sun K, Lv B, Fan YH. Role of tryptophan metabolism in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:896-903. [DOI: 10.11569/wcjd.v31.i21.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is comprised of ulcerative colitis and Crohn's disease, the pathogenesis of which is closely related to intestinal flora disorders. Abnormalities in the intestinal microenvironment caused by intestinal flora disorders affect amino acid metabolism. Tryptophan is an essential amino acid, and its metabolites are involved in the regulation of immunity, neuronal function, intestinal homeostasis, etc. The development of IBD disease is accompanied by tryptophan deficiency or metabolic abnormalities. This review focuses on the relationship between the intestinal flora metabolite tryptophan and its metabolites and the occurrence and development of IBD disease, and provides new ideas for future diagnostic methods for predicting IBD disease activity and protocols for treating IBD.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Shao-Peng Sun
- Zhejiang Provincial Key Laboratory of Pathophysiology of Gastrointestinal Diseases, Hangzhou 310053, Zhejiang Province, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|