201
|
Acerbi E, Viganò E, Poidinger M, Mortellaro A, Zelante T, Stella F. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans. Sci Rep 2016; 6:23128. [PMID: 26976045 PMCID: PMC4791550 DOI: 10.1038/srep23128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023] Open
Abstract
T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4(+) naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments.
Collapse
Affiliation(s)
- Enzo Acerbi
- Singapore Centre on Environmental Life Sciences Engineering (Nanyang Technological University), Singapore 637551
- Singapore Immunology Network (SIgN), ASTAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648
| | - Elena Viganò
- Singapore Immunology Network (SIgN), ASTAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), ASTAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), ASTAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648
| | - Teresa Zelante
- Singapore Immunology Network (SIgN), ASTAR, 8A Biomedical Grove, Immunos #04-06, Singapore 138648
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Fabio Stella
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, Building U14, 20126 Milan, Italy
| |
Collapse
|
202
|
Wu H, Chen Y, Liu H, Xu LL, Teuscher P, Wang S, Lu S, Dent AL. Follicular regulatory T cells repress cytokine production by follicular helper T cells and optimize IgG responses in mice. Eur J Immunol 2016; 46:1152-61. [PMID: 26887860 DOI: 10.1002/eji.201546094] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/06/2016] [Accepted: 02/10/2016] [Indexed: 11/08/2022]
Abstract
Follicular helper T (Tfh) cells provide crucial help to germinal center B (GCB) cells for proper antibody production, and a specialized subset of regulatory T cells, follicular regulatory T (Tfr) cells, modulate this process. However, Tfr-cell function in the GC is not well understood. Here, we define Tfr cells as a CD4(+) Foxp3(+) CXCR5(hi) PD-1(hi) CD25(low) TIGIT(high) T-cell population. Furthermore, we have used a novel mouse model ("Bcl6FC") to delete the Bcl6 gene in Foxp3(+) T cells and thus specifically deplete Tfr cells. Following immunization, Bcl6FC mice develop normal Tfh- and GCB-cell populations. However, Bcl6FC mice produce altered antigen-specific antibody responses, with reduced titers of IgG and significantly increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV-1 gp120 "prime-boost" vaccine model. In an autoimmune lupus model, we observed strongly elevated anti-DNA IgA titers in Bcl6FC mice. Additionally, Tfh cells from Bcl6FC mice consistently produce higher levels of Interferon-γ, IL-10 and IL-21. Loss of Tfr cells therefore leads to highly abnormal Tfh-cell and GCB-cell responses. Overall, our study has uncovered unique regulatory roles for Tfr cells in the GC response.
Collapse
Affiliation(s)
- Hao Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lin-Lin Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula Teuscher
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
203
|
Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomater Sci 2016; 4:785-802. [PMID: 26891972 DOI: 10.1039/c5bm00507h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.
Collapse
Affiliation(s)
- Liu Yang
- College of Light Industry and Food Sciences, South China University of Technology, Uangzhou 510640, China.
| | | | | | | | | |
Collapse
|
204
|
Genome-wide Analysis Identifies Bcl6-Controlled Regulatory Networks during T Follicular Helper Cell Differentiation. Cell Rep 2016; 14:1735-1747. [PMID: 26876184 DOI: 10.1016/j.celrep.2016.01.038] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/29/2015] [Accepted: 01/10/2016] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cell is a unique T cell subset specialized in promoting humoral immunity. B-cell lymphoma 6 protein (Bcl6) has been identified as an obligatory transcription factor in Tfh cells; however, the molecular mechanism underlying Bcl6 function remains largely unknown. Here, we defined Bcl6 target genes in Tfh cells by analyzing genome-wide Bcl6 occupancy together with transcriptome profiling. With consensus sequences being different from those in Th9, B cells, and macrophages, Bcl6 binding in Tfh cell was closely associated with a decrease in 5-hydroxymethylcytosine (5hmC). Importantly, Bcl6 promoted Tfh cell differentiation through antagonizing IL-7R (CD127)/signal transducer and activator of transcription (STAT) 5 axis; deletion of the Bcl6 gene in T cells resulted in enhanced IL-7R-STAT5 signaling and substantial expansion of CD127(hi) non-Tfh cells. Thus, our study systemically examines Bcl6-controlled regulatory networks and provides important insights into Bcl6's biological functions in Tfh cells.
Collapse
|
205
|
Hojyo S, Sarkander J, Männe C, Mursell M, Hanazawa A, Zimmel D, Zhu J, Paul WE, Fillatreau S, Löhning M, Radbruch A, Tokoyoda K. B Cells Negatively Regulate the Establishment of CD49b(+)T-bet(+) Resting Memory T Helper Cells in the Bone Marrow. Front Immunol 2016; 7:26. [PMID: 26870041 PMCID: PMC4735404 DOI: 10.3389/fimmu.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
During an immune reaction, some antigen-experienced CD4 T cells relocate from secondary lymphoid organs (SLOs) to the bone marrow (BM) in a CD49b-dependent manner and reside and rest there as professional memory CD4 T cells. However, it remains unclear how the precursors of BM memory CD4 T cells are generated in the SLOs. While several studies have so far shown that B cell depletion reduces the persistence of memory CD4 T cells in the spleen, we here show that B cell depletion enhances the establishment of memory CD4 T cells in the BM and that B cell transfer conversely suppresses it. Interestingly, the number of antigen-experienced CD4 T cells in the BM synchronizes the number of CD49b+T-bet+ antigen-experienced CD4 T cells in the spleen. CD49b+T-bet+ antigen-experienced CD4 T cells preferentially localize in the red pulp area of the spleen and the BM in a T-bet-independent manner. We suggest that B cells negatively control the generation of CD49b+T-bet+ precursors of resting memory CD4 T cells in the spleen and may play a role in bifurcation of activated effector and resting memory CD4 T cell lineages.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Jana Sarkander
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Christian Männe
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Mathias Mursell
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Asami Hanazawa
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - David Zimmel
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| |
Collapse
|
206
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
207
|
McQueen B, Trace K, Whitman E, Bedsworth T, Barber A. Natural killer group 2D and CD28 receptors differentially activate mammalian/mechanistic target of rapamycin to alter murine effector CD8+ T-cell differentiation. Immunology 2016; 147:305-20. [PMID: 26661515 DOI: 10.1111/imm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Memory CD8+ T cells are an essential component of anti-tumour and anti-viral immunity. Activation of the mammalian/mechanistic target of rapamycin (mTOR) pathway has been implicated in regulating the differentiation of effector and memory T cells. However, the mechanisms that control mTOR activity during immunity to tumours and infections are not well known. Activation of co-stimulatory receptors, including CD28 and natural killer group 2D (NKG2D), activate phosphatidylinositol-3 kinase and subsequently may activate the mTOR pathway in CD8+ T cells. This study compared the activation of the mTOR signalling pathway after co-stimulation through CD28 or NKG2D receptors in murine effector CD8+ T cells. Compared with CD28 co-stimulation, activation through CD3 and NKG2D receptors had weaker activation of mTORc1, as shown by decreased phosphorylation of mTORc1 targets S6K1, ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1. NKG2D co-stimulation also showed increased gene expression of tuberous sclerosis protein 2, a negative regulator of mTORc1, whereas CD28 co-stimulation increased gene expression of Ras homologue enriched in brain, an activator of mTORc1, and hypoxia-inducible factor-1α and vascular endothelial growth factor-α, pro-angiogenic factors downstream of mTORc1. Strong mTORc1 activation in CD28-co-stimulated cells also increased expression of transcription factors that support effector cell differentiation, namely T-bet, B lymphocyte-induced maturation protein (BLIMP-1), interferon regulatory factor 4, and inhibitor of DNA binding 2, whereas low levels of mTORc1 activation allowed for the expression of Eomes, B-cell lymphoma 6 (BCL6), and inhibitor of DNA binding 3 during NKG2D stimulation, and increased expression of memory markers CD62 ligand and CD127. These data show that compared with CD28, co-stimulation through the NKG2D receptor leads to the differential activation of the mTOR signalling pathway and potentially supports memory CD8+ T-cell differentiation.
Collapse
Affiliation(s)
- Bryan McQueen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Trace
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Whitman
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Taylor Bedsworth
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
208
|
McDonald PW, Read KA, Baker CE, Anderson AE, Powell MD, Ballesteros-Tato A, Oestreich KJ. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun 2016; 7:10285. [PMID: 26743592 PMCID: PMC4729877 DOI: 10.1038/ncomms10285] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023] Open
Abstract
The transcriptional repressor Bcl-6 is linked to the development of both CD4+ T follicular helper (TFH) and central memory T (TCM) cells. Here, we demonstrate that in response to decreased IL-2 signalling, T helper 1 (TH1) cells upregulate Bcl-6 and co-initiate TFH- and TCM-like gene programs, including expression of the cytokine receptors IL-6Rα and IL-7R. Exposure of this potentially bi-potent cell population to IL-6 favours the TFH gene program, whereas IL-7 signalling represses TFH-associated genes including Bcl6 and Cxcr5, but not the TCM-related genes Klf2 and Sell. Mechanistically, IL-7-dependent activation of STAT5 contributes to Bcl-6 repression. Importantly, antigen-specific IL-6Rα+IL-7R+ CD4+ T cells emerge from the effector population at late time points post influenza infection. These data support a novel role for IL-7 in the repression of the TFH gene program and evoke a divergent regulatory mechanism by which post-effector TH1 cells may contribute to long-term cell-mediated and humoral immunity. It remains incompletely understood how cytokines shape TH1 cell differentiation to central memory T (TCM) and follicular T helper (TFH) cells. Here the authors show that TH1 cells can co-initiate the expression of both TFH and TCM gene programs and that IL-7 signalling represses TFH-associated but not TCM-associated genes.
Collapse
Affiliation(s)
- Paul W McDonald
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Kaitlin A Read
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Chandra E Baker
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Ashlyn E Anderson
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Michael D Powell
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | | | - Kenneth J Oestreich
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016, USA
| |
Collapse
|
209
|
High-dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells by mass cytometry. Mucosal Immunol 2016; 9:68-82. [PMID: 25899688 PMCID: PMC4618273 DOI: 10.1038/mi.2015.36] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/07/2015] [Indexed: 02/04/2023]
Abstract
In-depth phenotyping of human intestinal antibody secreting cells (ASCs) and their precursors is important for developing improved mucosal vaccines. We used single-cell mass cytometry to simultaneously analyze 34 differentiation and trafficking markers on intestinal and circulating B cells. In addition, we labeled rotavirus (RV) double-layered particles with a metal isotope and characterized B cells specific to the RV VP6 major structural protein. We describe the heterogeneity of the intestinal B-cell compartment, dominated by ASCs with some phenotypic and transcriptional characteristics of long-lived plasma cells. Using principal component analysis, we visualized the phenotypic relationships between major B-cell subsets in the intestine and blood, and revealed that IgM(+) memory B cells (MBCs) and naive B cells were phenotypically related as were CD27(-) MBCs and switched MBCs. ASCs in the intestine and blood were highly clonally related, but associated with distinct trajectories of phenotypic development. VP6-specific B cells were present among diverse B-cell subsets in immune donors, including naive B cells, with phenotypes representative of the overall B-cell pool. These data provide a high dimensional view of intestinal B cells and the determinants regulating humoral memory to a ubiquitous, mucosal pathogen at steady-state.
Collapse
|
210
|
Kang S, Keener AB, Jones SZ, Benschop RJ, Caro-Maldonado A, Rathmell JC, Clarke SH, Matsushima GK, Whitmire JK, Vilen BJ. IgG-Immune Complexes Promote B Cell Memory by Inducing BAFF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:196-206. [PMID: 26621863 PMCID: PMC4684997 DOI: 10.4049/jimmunol.1402527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/28/2015] [Indexed: 01/10/2023]
Abstract
Memory B cell responses are vital for protection against infections but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high-affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG-immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice. We found that early secretion of IgG in response to immunization with a T-dependent Ag leads to IC-FcγR interactions that induce dendritic cells to secrete BAFF, which acts at or upstream of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell-derived BAFF, or blocking IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B cells, and secondary Ab responses. BAFF also contributed to the maintenance and/or expansion of the follicular helper T cell population, although it was dispensable for their formation. Thus, early Ab responses contribute to the optimal formation of B cell memory through IgG-ICs and BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses.
Collapse
Affiliation(s)
- SunAh Kang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amanda B Keener
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shannon Z Jones
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | - Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Glenn K Matsushima
- Neuroscience Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Jason K Whitmire
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
211
|
Carpio VH, Opata MM, Montañez ME, Banerjee PP, Dent AL, Stephens R. IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection. PLoS One 2015; 10:e0144654. [PMID: 26646149 PMCID: PMC4672895 DOI: 10.1371/journal.pone.0144654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL-21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineage-associated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+IFN-γ+IL-21+IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+IL-21+CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.
Collapse
Affiliation(s)
- Victor H. Carpio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marelle E. Montañez
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinaki P. Banerjee
- Center for Human Immunobiology of Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
212
|
Cubas R, van Grevenynghe J, Wills S, Kardava L, Santich BH, Buckner CM, Muir R, Tardif V, Nichols C, Procopio F, He Z, Metcalf T, Ghneim K, Locci M, Ancuta P, Routy JP, Trautmann L, Li Y, McDermott AB, Koup RA, Petrovas C, Migueles SA, Connors M, Tomaras GD, Moir S, Crotty S, Haddad EK. Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:5625-36. [PMID: 26546609 DOI: 10.4049/jimmunol.1501524] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022]
Abstract
Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2-responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART.
Collapse
Affiliation(s)
- Rafael Cubas
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval H7V 1B7, Quebec, Canada
| | - Saintedym Wills
- Department of Immunology and the Duke Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Brian H Santich
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Roshell Muir
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Virginie Tardif
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Carmen Nichols
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Francesco Procopio
- Service d'Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Zhong He
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Talibah Metcalf
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Khader Ghneim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Michela Locci
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Petronella Ancuta
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H3H 2R9, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec H3H 2R9, Canada; Division of Hematology, McGill University Health Centre, Montreal, Quebec H3H 2R9, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987
| | - Yuxing Li
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Adrian B McDermott
- Immunology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rick A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven A Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Georgia D Tomaras
- Department of Immunology and the Duke Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093; and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037
| | - Elias K Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987;
| |
Collapse
|
213
|
Mathieu C, Beltra JC, Charpentier T, Bourbonnais S, Di Santo JP, Lamarre A, Decaluwe H. IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are dispensable for protective recall responses. Eur J Immunol 2015; 45:3324-38. [PMID: 26426795 DOI: 10.1002/eji.201546000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/11/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022]
Abstract
The ability to mount effective secondary responses is a cardinal feature of memory CD8(+) T cells. An understanding of the factors that regulate the generation and recall capacities of memory T cells remains to be ascertained. Several cues indicate that two highly related cytokines, IL-2 and IL-15, share redundant functions in this process. To establish their combined roles in memory CD8(+) T-cell development, maintenance, and secondary responses, we compared the outcome of adoptively transferred IL2Rβ(+/-) or IL2Rβ(-/-) CD8(+) T cells after an acute viral infection in mice. Our results demonstrate that both IL-2 and IL-15 signals condition the differentiation of primary and secondary short-lived effector cells by altering the transcriptional network governing lineage choices. These two cytokines also regulate the homeostasis of the memory T-cell pool, with effector memory CD8(+) T cells being the most sensitive to these two interleukins. Noticeably, the inability to respond to both cytokines limits the proliferation and survival of primary and secondary effectors cells, whereas it does not preclude potent cytotoxic functions and viral control either initially or upon rechallenge. Globally, these results indicate that lack of IL-2 and IL-15 signaling modulates the CD8(+) T-cell differentiation program but does not impede adequate effector functions.
Collapse
Affiliation(s)
- Cédric Mathieu
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Tania Charpentier
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - James P Di Santo
- Innate Immunity Unit, INSERM U668, Institut Pasteur, Paris, France
| | - Alain Lamarre
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
214
|
Hara Y, Tashiro Y, Murakami A, Nishimura M, Shimizu T, Kubo M, Burrows PD, Azuma T. High affinity IgM(+) memory B cells are generated through a germinal center-dependent pathway. Mol Immunol 2015; 68:617-27. [PMID: 26514429 DOI: 10.1016/j.molimm.2015.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
Abstract
During a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis. SHM was evident by day 7 postimmunization and increased with time, such that high affinity IgM(+) as well as IgG(+) memory B cells continued to be generated up to day 42. In contrast, class-switch recombination (CSR) was almost completed by day 7 and then the ratio of IgG1(+)/IgM(+) GC B cells remained unchanged. Together these findings suggest that IgM(+) B cells undergo SHM in the GC to generate high affinity IgM(+) memory cells and that this process continues even after CSR is accomplished.
Collapse
Affiliation(s)
- Yasushi Hara
- Laboratory for Structural Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Yasuyuki Tashiro
- Laboratory for Structural Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan; Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Akikazu Murakami
- Laboratory for Structural Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Miyuki Nishimura
- Laboratory for Structural Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8505, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan; Laboratory for Cytokine Regulation, Riken Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, UAB 406 SHEL, 1530 Third Avenue South, Birmingham, AL 35294, USA; Department of Genetics, University of Alabama at Birmingham, UAB 406 SHEL, 1530 Third Avenue South, Birmingham, AL 35294, USA
| | - Takachika Azuma
- Laboratory for Structural Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan; Antibody Technology Research Center, Co., Ltd., 2361-1-S401 Yamazaki, Noda, Chiba 278-0022, Japan.
| |
Collapse
|
215
|
Trans-presentation of IL-15 modulates STAT5 activation and Bcl-6 expression in TH1 cells. Sci Rep 2015; 5:15722. [PMID: 26500048 PMCID: PMC4620557 DOI: 10.1038/srep15722] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
During infection, naïve CD4+ T helper cells differentiate into specialized effector subsets based upon environmental signals propagated by the cytokine milieu. Recently, this paradigm has been complicated by the demonstration that alterations in the cytokine environment can result in varying degrees of plasticity between effector T helper cell populations. Therefore, elucidation of the mechanisms by which cytokines regulate T helper cell differentiation decisions is increasingly important. The gamma common cytokine IL-15 is currently undergoing clinical trials for the treatment of malignancies, due to its well-established role in the regulation of natural killer and CD8+ T cell immune responses. However, the effect of IL-15 signaling on CD4+ T cell activity is incompletely understood. One mechanism by which IL-15 activity is conferred is through trans-presentation via the IL-15 receptor alpha subunit. Here, we demonstrate that differentiated TH1 cells are responsive to trans-presented IL-15. Importantly, while trans-presentation of IL-15 results in STAT5 activation and maintenance of the TH1 gene program, IL-15 treatment alone allows for increased Bcl-6 expression and the upregulation of a TFH-like profile. Collectively, these findings describe a novel role for IL-15 in the modulation of CD4+ T cell responses and provide valuable insight for the use of IL-15 in immunotherapeutic approaches.
Collapse
|
216
|
T Helper Lymphocyte Subsets and Plasticity in Autoimmunity and Cancer: An Overview. BIOMED RESEARCH INTERNATIONAL 2015; 2015:327470. [PMID: 26583100 PMCID: PMC4637008 DOI: 10.1155/2015/327470] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/16/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022]
Abstract
In response to cytokine signalling and other factors, CD4-positive T lymphocytes differentiate into distinct populations that are characterized by the production of certain cytokines and are controlled by different master transcription factors. The spectrum of such populations, which was initially limited to Th1 and Th2 subsets, is currently broadened to include Th17 and Treg subsets, as well as a number of less studied subtypes, such as Tfh, Th9, and Th22. Although these subsets appear to be relatively stable, certain plasticity exists that allows for transition between the subsets and formation of hybrid transition forms. This provides the immune system flexibility needed for adequate response to pathogens but, at the same time, can play a role in the pathogenic processes in cases of deregulation. In this review, we will discuss the properties of T lymphocyte subsets and their plasticity, as well as its implications for cancer and autoimmune diseases.
Collapse
|
217
|
Bcl6 middle domain repressor function is required for T follicular helper cell differentiation and utilizes the corepressor MTA3. Proc Natl Acad Sci U S A 2015; 112:13324-9. [PMID: 26460037 DOI: 10.1073/pnas.1507312112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T follicular helper (Tfh) cells are essential providers of help to B cells. The transcription factor B-cell CLL/lymphoma 6 (Bcl6) is a lineage-defining regulator of Tfh cells and germinal center B cells. In B cells, Bcl6 has the potential to recruit distinct transcriptional corepressors through its BTB domain or its poorly characterized middle domain (also known as RDII), but in Tfh cells the roles of the Bcl6 middle domain have yet to be clarified. Mimicked acetylation of the Bcl6 middle domain (K379Q) in CD4 T cells results in significant reductions in Tfh differentiation in vivo. Blimp1 (Prdm1) is a potent inhibitor of Tfh cell differentiation. Although Bcl6 K379Q still bound to the Prdm1 cis-regulatory elements in Tfh cells, Prdm1 expression was derepressed. This was a result of the failure of Bcl6 K379Q to recruit metastasis-associated protein 3 (MTA3). The loss of Bcl6 function in Bcl6 K379Q-expressing CD4 T cells could be partially rescued by abrogating Prdm1 expression. In addition to Prdm1, we found that Bcl6 recruits MTA3 to multiple genes involved in Tfh cell biology, including genes important for cell migration, cell survival, and alternative differentiation pathways. Thus, Bcl6 middle domain mediated repression is a major mechanism of action by which Bcl6 controls CD4 T-cell fate and function.
Collapse
|
218
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
219
|
Epeldegui M, Lee JY, Martínez AC, Widney DP, Magpantay LI, Regidor D, Mitsuyasu R, Sparano JA, Ambinder RF, Martínez-Maza O. Predictive Value of Cytokines and Immune Activation Biomarkers in AIDS-Related Non-Hodgkin Lymphoma Treated with Rituximab plus Infusional EPOCH (AMC-034 trial). Clin Cancer Res 2015; 22:328-36. [PMID: 26384320 DOI: 10.1158/1078-0432.ccr-14-0466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/31/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The aims of this study were to determine whether pretreatment plasma levels of cytokines and immune activation-associated molecules changed following treatment for AIDS-NHL with rituximab plus infusional EPOCH, and to determine whether pretreatment levels of these molecules were associated with response to treatment and/or survival. EXPERIMENTAL DESIGN We quantified plasma levels of B-cell activation-associated molecules (sCD27, sCD30, and sCD23) and cytokines (IL6, IL10, and CXCL13) before and after the initiation of treatment in persons with AIDS-NHL (n = 69) in the AIDS Malignancies Consortium (AMC) 034 study, which evaluated treatment of AIDS-NHL with EPOCH chemotherapy and rituximab. RESULTS Treatment resulted in decreased plasma levels of some of these molecules (CXCL13, sCD27, and sCD30), with decreased levels persisting for one year following the completion of treatment. Lower levels of CXCL13 before treatment were associated with complete responses following lymphoma therapy. Elevated levels of IL6 pretreatment were associated with decreased overall survival, whereas higher IL10 levels were associated with shorter progression-free survival (PFS), in multivariate analyses. Furthermore, patients with CXCL13 or IL6 levels higher than the median levels for the NHL group, as well as those who had detectable IL10, had lower overall survival and PFS, in Kaplan-Meier analyses. CONCLUSIONS These results indicate that CXCL13, IL6, and IL10 have significant potential as prognostic biomarkers for AIDS-NHL.
Collapse
Affiliation(s)
- Marta Epeldegui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. UCLA AIDS Institute, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Jeannette Y Lee
- Department of Biostatistics, College of Medicine, University of Arkansas, Little Rock, Arizona
| | - Anna C Martínez
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel P Widney
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. UCLA AIDS Institute, Los Angeles, California
| | - Larry I Magpantay
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. UCLA AIDS Institute, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Deborah Regidor
- UCLA AIDS Institute, Los Angeles, California. Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Ronald Mitsuyasu
- UCLA AIDS Institute, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California. Department of Biostatistics, College of Medicine, University of Arkansas, Little Rock, Arizona
| | - Joseph A Sparano
- Division of Oncology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Richard F Ambinder
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Otoniel Martínez-Maza
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. UCLA AIDS Institute, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California. Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
220
|
Chen J, Tian J, Tang X, Rui K, Ma J, Mao C, Liu Y, Lu L, Xu H, Wang S. MiR-346 regulates CD4⁺CXCR5⁺ T cells in the pathogenesis of Graves' disease. Endocrine 2015; 49:752-60. [PMID: 25666935 DOI: 10.1007/s12020-015-0546-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are increasingly recognized as participants in various autoimmune diseases, including Graves' disease. Although many transcription factors and cytokines are known to regulate Tfh cells, the role of noncoding RNA in Tfh cells development and function is poorly understood. Twenty-three patients with GD, eleven patients with remitting GD, and twenty-four healthy controls were enrolled in the current study. The interaction of miRNA and target gene was predicted through software analysis and then validated by luciferase assay and Western blot. The levels of miR-346 in circulating CD4(+) T cells and plasma were measured by qRT-PCR. The correlation of miR-346 levels with the percentages of CD4(+)CXCR5(+)T cells and autoantibody levels were also analyzed. Up-regulation of Bcl-6 and down-regulation of miR-346 in GD patients were observed, and miR-346 could inhibit Bcl-6 at both transcriptional and translational levels. Overexpression of miR-346 led to attenuating CD4(+)CXCR5(+) T cells. The abnormal expression of miR-346 restored in GD patients after treatment. A negative correlation between levels of miR-346 and percentages of CD4(+)CXCR5(+) T cells was confirmed in GD patients. Additionally, negative correlations between the levels of miR-346 in circulating CD4(+) T cells and serum concentrations of TR-Ab, TG-Ab, and TPO-Ab were also revealed in GD patients. MiR-346 regulates CD4(+)CXCR5(+) T cells by targeting Bcl-6, a positive regulator of Tfh cells, and might play an important role in the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Juan Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Wu H, Xu LL, Teuscher P, Liu H, Kaplan MH, Dent AL. An Inhibitory Role for the Transcription Factor Stat3 in Controlling IL-4 and Bcl6 Expression in Follicular Helper T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2080-9. [PMID: 26188063 DOI: 10.4049/jimmunol.1500335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
The transcription factor Bcl6 is required for development of follicular helper T (TFH) cells. Cytokines that activate Stat3 promote Bcl6 expression and TFH cell differentiation. Previous studies with an acute virus infection model showed that TFH cell differentiation was decreased but not blocked in the absence of Stat3. In this study, we further analyzed the role of Stat3 in TFH cells. In Peyer's patches, we found that compared with wild-type, Stat3-deficient TFH cells developed at a 25% lower rate and expressed increased IFN-γ and IL-4. Whereas Peyer's patch germinal center B cells developed at normal numbers with Stat3-deficient TFH cells, IgG1 class switching was greatly increased. Following immunization with sheep RBCs, splenic Stat3-deficient TFH cells developed at a slower rate than in control mice, and splenic germinal center B cells were markedly decreased. Stat3-deficient TFH cells developed poorly in a competitive bone marrow chimera environment. Under all conditions tested, Stat3-deficient TFH cells overexpressed both IL-4 and Bcl6, a pattern specific for the TFH cell population. Finally, we found in vitro that repression of IL-4 expression in CD4 T cells by Bcl6 required Stat3 function. Our data indicate that Stat3 can repress the expression of Bcl6 and IL-4 in TFH cells, and that Stat3 regulates the ability of Bcl6 to repress target genes. Overall, we conclude that Stat3 is required to fine-tune the expression of multiple key genes in TFH cells, and that the specific immune environment determines the function of Stat3 in TFH cells.
Collapse
Affiliation(s)
- Hao Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Lin-Lin Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Paulla Teuscher
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Hong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| |
Collapse
|
222
|
Mould AW, Morgan MAJ, Nelson AC, Bikoff EK, Robertson EJ. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation. PLoS Genet 2015; 11:e1005375. [PMID: 26158850 PMCID: PMC4497732 DOI: 10.1371/journal.pgen.1005375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022] Open
Abstract
The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. The transcriptional repressor Blimp1/Prdm1 plays a pivotal role in the metabolic switch that occurs in the small intestine during the suckling to weaning transition. Notably, expression profiling of perinatal Blimp1-deficient small intestine revealed premature activation of metabolic genes normally restricted to post-weaning enterocytes. To further elucidate the function of Blimp1 in intestinal development, we engineered a novel Blimp1-eGFP-fusion knock-in mouse strain to perform ChIP-seq analysis. In addition to identifying which metabolic genes are direct Blimp1 targets, ChIP-seq analysis revealed a highly conserved Blimp1/Irf-1 overlapping sites that function to control MHC class I antigen processing during acquisition of neonatal tolerance in the first weeks after birth during early colonization of the intestinal tract by commensal microorganisms. Moreover, immunohistochemical analysis of human fetal intestine suggests that a BLIMP1/IRF-1 axis may also function in human intestinal epithelium development.
Collapse
Affiliation(s)
- Arne W. Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew C. Nelson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| |
Collapse
|
223
|
Chisolm DA, Weinmann AS. TCR-Signaling Events in Cellular Metabolism and Specialization. Front Immunol 2015; 6:292. [PMID: 26106392 PMCID: PMC4459085 DOI: 10.3389/fimmu.2015.00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Engaging the T cell receptor (TCR) with peptide:MHC complexes initiates a cascade of signaling events that activates T cells in an antigen-specific manner. It is now clear that multiple inputs, including the strength of TCR signaling, co-stimulation, and the cytokine environment, impact T cell specialization decisions in the context of specific pathogenic encounters. Additionally, it is now appreciated that these same stimuli direct cellular metabolism programs. In this review, we will discuss how TCR-signaling events coordinate cellular metabolism and specialization gene programs in T cells.
Collapse
Affiliation(s)
- Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
224
|
Andersson KME, Cavallini NF, Hu D, Brisslert M, Cialic R, Valadi H, Erlandsson MC, Silfverswärd S, Pullerits R, Kuchroo VK, Weiner HL, Bokarewa MI. Pathogenic Transdifferentiation of Th17 Cells Contribute to Perpetuation of Rheumatoid Arthritis during Anti-TNF Treatment. Mol Med 2015; 21:536-43. [PMID: 26062018 DOI: 10.2119/molmed.2015.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022] Open
Abstract
T-helper cells producing interleukin (IL)-17A and IL-17F cytokines (Th17 cells) are considered the source of autoimmunity in rheumatoid arthritis (RA). In this study, we characterized specific pathogenic features of Th17 cells in RA. By using nano-string technology, we analyzed transcription of 419 genes in the peripheral blood CCR6(+)CXCR3(-) CD4(+) cells of 14 RA patients and 6 healthy controls and identified 109 genes discriminating Th17 cells of RA patients from the controls. Th17 cells of RA patients had an aggressive pathogenic profile and in addition to signature cytokines IL-17, IL-23 and IL-21, and transcriptional regulators RAR-related orphan receptor gamma of T cells (RORγt) and Janus kinase 2 (JAK2), they produced high levels of IL-23R, C-C chemokine ligand type 20 (CCL20), granulocyte-monocyte colony-stimulating factor (GM-CSF ) and transcription factor Tbet required for synovial homing. We showed that Th17 cells are enriched with Helios-producing Foxp3- and IL2RA-deficient cells, indicating altered regulatory profile. The follicular T-helper (Tfh) cells presented a functional profile of adaptor molecules, transcriptional regulator Bcl-6 and B-cell activating cytokines IL-21, IL-31 and leukemia inhibitory factor (LIF ). We observed that anti-tumor necrosis factor (TNF) treatment had a limited effect on the transcription signature of Th17 cells. Patients in remission retained the machinery of receptors (IL-23R and IL-1R1), proinflammatory cytokines (IL-17F, IL-23, IL-21 and TNF ) and adaptor molecules (C-X-C chemokine receptor 5 [CXCR5] and cytotoxic T-lymphocyte-associated protein 4 [CTLA-4]), essential for efficient transdifferentiation and accumulation of Th17 cells. This study convincingly shows that the peripheral blood CCR6(+)CXCR3(-) CD4(+) cells of RA patients harbor pathogenic subsets of Th17 and Tfh cells, which may transdifferentiate from Tregs and contribute to perpetuation of the disease.
Collapse
Affiliation(s)
- Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Nicola Filluelo Cavallini
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Dan Hu
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Ron Cialic
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Sofia Silfverswärd
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L Weiner
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
225
|
Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich PY, Derouazi M, Walker PR. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol 2015; 45:2263-75. [PMID: 25929785 PMCID: PMC7163737 DOI: 10.1002/eji.201445284] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022]
Abstract
CD8(+) T cells controlling pathogens or tumors must function at sites where oxygen tension is frequently low, and never as high as under atmospheric culture conditions. However, T-cell function in vivo is generally analyzed indirectly, or is extrapolated from in vitro studies under nonphysiologic oxygen tensions. In this study, we delineate the role of physiologic and pathologic oxygen tension in vitro during reactivation and differentiation of tumor-specific CD8(+) T cells. Using CD8(+) T cells from pmel-1 mice, we observed that the generation of CTLs under 5% O2, which corresponds to physioxia in lymph nodes, gave rise to a higher effector signature than those generated under atmospheric oxygen fractions (21% O2). Hypoxia (1% O2) did not modify cytotoxicity, but decreasing O2 tensions during CTL and CD8(+) tumor-infiltrating lymphocyte reactivation dose-dependently decreased proliferation, induced secretion of the immunosuppressive cytokine IL-10, and upregulated the expression of CD137 (4-1BB) and CD25. Overall, our data indicate that oxygen tension is a key regulator of CD8(+) T-cell function and fate and suggest that IL-10 release may be an unanticipated component of CD8(+) T cell-mediated immune responses in most in vivo microenvironments.
Collapse
Affiliation(s)
| | - Laura Ducimetière
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Madiha Derouazi
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
226
|
Jiang W, Li X. Molecular Analysis of Inflammatory Bowel Disease: Clinically Useful Tools for Diagnosis, Response Prediction, and Monitoring of Targeted Therapy. Mol Diagn Ther 2015; 19:141-58. [DOI: 10.1007/s40291-015-0142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
227
|
Ogbe A, Miao T, Symonds ALJ, Omodho B, Singh R, Bhullar P, Li S, Wang P. Early Growth Response Genes 2 and 3 Regulate the Expression of Bcl6 and Differentiation of T Follicular Helper Cells. J Biol Chem 2015; 290:20455-65. [PMID: 25979336 PMCID: PMC4536451 DOI: 10.1074/jbc.m114.634816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
T follicular helper (Tfh) cells support differentiation of B cells to plasma cells and high affinity antibody production in germinal centers (GCs), and Tfh differentiation requires the function of B cell lymphoma 6 (BCL6). We have now discovered that early growth response gene 2 (EGR2) and EGR3 directly regulate the expression of Bcl6 in Tfh cells, which is required for their function in regulation of GC formation. In the absence of EGR2 and -3, the expression of BCL6 in Tfh cells is defective, leading to impaired differentiation of Tfh cells, resulting in a failure to form GCs following virus infection and defects in production of antiviral antibodies. Enforced expression of BCL6 in EGR2/3-deficient CD4 T cells partially restored Tfh differentiation and GC formation in response to virus infection. Our findings demonstrate a novel function of EGR2/3 that is important for Tfh cell development and Tfh cell-mediated B cell immune responses.
Collapse
Affiliation(s)
- Ane Ogbe
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Tizong Miao
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Alistair L J Symonds
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Becky Omodho
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Randeep Singh
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Punamdip Bhullar
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Suling Li
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Ping Wang
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| |
Collapse
|
228
|
Opata MM, Carpio VH, Ibitokou SA, Dillon BE, Obiero JM, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5346-54. [PMID: 25911759 DOI: 10.4049/jimmunol.1403216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
Abstract
CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.
Collapse
Affiliation(s)
- Michael M Opata
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Victor H Carpio
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Samad A Ibitokou
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Brian E Dillon
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Joshua M Obiero
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
229
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
230
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
231
|
Abstract
Humoral immunity depends on the germinal centre (GC) reaction during which somatically mutated high-affinity memory B cells and plasma cells are generated. Recent studies have uncovered crucial cues that are required for the formation and the maintenance of GCs and for the selection of high-affinity antibody mutants. In addition, it is now clear that these events are promoted by the dynamic movements of cells within and between GCs. These findings have resolved the complexities of the GC reaction in greater detail than ever before. This Review focuses on these recent advances and discusses their implications for the establishment of humoral immunity.
Collapse
Affiliation(s)
- Nilushi S De Silva
- Herbert Irving Comprehensive Cancer Center and Departments of Pathology and Cell Biology, and Microbiology and Immunology, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | - Ulf Klein
- Herbert Irving Comprehensive Cancer Center and Departments of Pathology and Cell Biology, and Microbiology and Immunology, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| |
Collapse
|
232
|
Abstract
In celebration of the 50th anniversary of the discovery of B cells, I take a look back at the history of T cell help to B cells, which was discovered 47 years ago. In addition, I summarize and categorize the distinct molecules that are expressed by CD4(+) T cells that constitute 'help' to B cells, and particularly the molecules expressed by T follicular helper (TFH) cells, which are the specialized providers of help to B cells.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, California 92037, USA
| |
Collapse
|
233
|
Abstract
Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.
Collapse
Affiliation(s)
- David J Gasper
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melba Marie Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
234
|
Kaczmarek Michaels K, Natarajan M, Euler Z, Alter G, Viglianti G, Henderson AJ. Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3267-74. [PMID: 25710909 DOI: 10.4049/jimmunol.1402581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD4(+) T cell subsets differentially support HIV-1 replication. For example, quiescent CD4(+) memory T cells are susceptible to HIV-1 infection but do not support robust HIV-1 transcription and have been implicated as the primary reservoir of latent HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 transcription and mediate the establishment and maintenance of HIV-1 latency. We report that B lymphocyte-induced maturation protein-1 (Blimp-1), a critical regulator of B and T cell differentiation, is highly expressed in memory CD4(+) T cells compared with naive CD4(+) T cells and represses basal and Tat-mediated HIV-1 transcription. Blimp-1 binds an IFN-stimulated response element within HIV-1 provirus, and it is displaced following T cell activation. Reduction of Blimp-1 in infected primary T cells including CD4(+) memory T cells increases RNA polymerase II processivity, histone acetylation, and baseline HIV-1 transcription. Therefore, the transcriptional repressor, Blimp-1, is an intrinsic factor that predisposes CD4(+) memory T cells to latent HIV-1 infection.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Zelda Euler
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Andrew J Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
235
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
236
|
The elephant and the blind men: making sense of the seemingly multifaceted role of Blimp-1 in HIV-1 infection. AIDS 2015; 29:134-6. [PMID: 25562500 DOI: 10.1097/qad.0000000000000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
237
|
Different expression of Blimp-1 in HIV infection may be used to monitor disease progression and provide a clue to reduce immune activation and viral reservoirs. AIDS 2015; 29:133-4. [PMID: 25562499 DOI: 10.1097/qad.0000000000000514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
238
|
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast RE, Mortazavi Y. Involvement of MicroRNA in T-Cell Differentiation and Malignancy. Int J Hematol Oncol Stem Cell Res 2015; 9:33-49. [PMID: 25802699 PMCID: PMC4369232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/17/2014] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs are 19-22 nucleotide RNAs involved in such important processes as development, proliferation, differentiation and apoptosis. Different miRNAs are uniquely expressed in lymphoid T cells, and play a role indevelopment and differentiation of various subtypes by targeting their target genes. Recent studies have shown that aberrant miRNA expression may be involved in T cell leukemogenesis and lymphogenesis, and may function as tumor suppressor (such as miR-451, miR-31, miR-150, and miR-29a) or oncogene (e.g. miR-222, miR-223, miR-17-92, miR-155). MiRNAs can be used as new biomarkers for prognosis and diagnosis or as an index of disease severity in T-cell leukemia and lymphoma. This article presents a review of studies in recent years on the role of miRNAs in T-cell development and their aberrant expression in pathogenesis of T-cell leukemia and lymphoma. Characterizing miRNAs can help recognize their role as new important molecules with prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Najmaldin Saki
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Corresponding author: Saeid Abroun, Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran., Tel: +982182883860,
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeideh Hajizamani
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Yousef Mortazavi
- Department of Pathology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
239
|
|
240
|
Dang AK, Jain RW, Craig HC, Kerfoot SM. B cell recognition of myelin oligodendrocyte glycoprotein autoantigen depends on immunization with protein rather than short peptide, while B cell invasion of the CNS in autoimmunity does not. J Neuroimmunol 2015; 278:73-84. [DOI: 10.1016/j.jneuroim.2014.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
|
241
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
242
|
Ramon S, Baker SF, Sahler JM, Kim N, Feldsott EA, Serhan CN, Martínez-Sobrido L, Topham DJ, Phipps RP. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:6031-40. [PMID: 25392529 PMCID: PMC4258475 DOI: 10.4049/jimmunol.1302795] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.
Collapse
Affiliation(s)
- Sesquile Ramon
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Julie M Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Eric A Feldsott
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642;
| |
Collapse
|
243
|
Leavenworth JW, Verbinnen B, Yin J, Huang H, Cantor H. A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat Immunol 2014; 16:96-106. [PMID: 25436971 PMCID: PMC4405167 DOI: 10.1038/ni.3050] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/07/2014] [Indexed: 12/15/2022]
Abstract
Follicular helper T cells (TFH cells) and follicular regulatory T cells (TFR cells) regulate the quantity and quality of humoral immunity. Although both cell types express the costimulatory receptor ICOS and require the transcription factor Bcl-6 for their differentiation, the ICOS-dependent pathways that coordinate their responses are not well understood. Here we report that activation of ICOS in CD4(+) T cells promoted interaction of the p85α regulatory subunit of the signaling kinase PI(3)K and intracellular osteopontin (OPN-i), followed by translocation of OPN-i to the nucleus, its interaction with Bcl-6 and protection of Bcl-6 from ubiquitin-dependent proteasome degradation. Post-translational protection of Bcl-6 by OPN-i was essential for sustained responses of TFH cells and TFR cells and regulation of the germinal center B cell response to antigen. Thus, the p85α-OPN-i axis represents a molecular bridge that couples activation of ICOS to Bcl-6-dependent functional differentiation of TFH cells and TFR cells; this suggests new therapeutic avenues to manipulate the responses of these cells.
Collapse
Affiliation(s)
- Jianmei W Leavenworth
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology &Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bert Verbinnen
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology &Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jie Yin
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huicong Huang
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Parasitology, Wenzhou Medical College, Wenzhou, China
| | - Harvey Cantor
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology &Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
244
|
Schaefer AS, Jochens A, Dommisch H, Graetz C, Jockel-Schneider Y, Harks I, Staufenbiel I, Meyle J, Eickholz P, Folwaczny M, Laine M, Noack B, Wijmenga C, Lieb W, Bruckmann C, Schreiber S, Jepsen S, Loos BG. A large candidate-gene association study suggests genetic variants at IRF5 and PRDM1 to be associated with aggressive periodontitis. J Clin Periodontol 2014; 41:1122-31. [PMID: 25263394 DOI: 10.1111/jcpe.12314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 12/17/2022]
Abstract
AIM Epidemiological and clinical studies indicated a relationship of periodontitis with rheumatoid arthritis (RA). We aimed to identify shared genetic susceptibility loci of RA and periodontitis. MATERIALS AND METHODS Forty-seven risk genes of genome-wide significance of RA and SLE were genotyped in a German case-control sample of aggressive periodontitis (AgP), using Immunochip genotyping arrays (Illumina, 600 cases, 1440 controls) and Affymetrix 500 K Genotyping Arrays (280 cases and 983 controls). Significant associations were replicated in 168 Dutch AgP cases and 679 controls and adjusted for the confounders smoking and sex. RESULTS Variants at IRF5 and PRDM1 showed association with AgP. Upon covariate adjustment for smoking and sex, the most strongly associated variant at IRF5 was the rare variant rs62481981 (ppooled = 0.0012, odds ratio [OR] = 3.1, 95% confidence interval [95% CI] = 1.6-6.1; 801 cases, 1476 controls).Within PRDM1 it was rs6923419 (ppooled = 0.004, OR = 0.7, 95% CI = 0.6-0.9; 833 cases, 1440 controls). The associations lost significance after correction for multiple testing in the replication. Both genes are implicated in beta-interferon signalling and are also genome-wide associated with SLE and inflammatory bowel disease. CONCLUSION The study gives no definite evidence for a pathogenic genetic link of periodontitis and RA but suggests IRF5 and PRDM1 as shared susceptibility factors.
Collapse
Affiliation(s)
- Arne S Schaefer
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
FOXO1 repression contributes to block of plasma cell differentiation in classical Hodgkin lymphoma. Blood 2014; 124:3118-29. [DOI: 10.1182/blood-2014-07-590570] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Key Points
FOXO1 directly activates PRDM1α, the master regulator of PC differentiation, and it enriches a PC signature in cHL cell lines. PRDM1α is a tumor suppressor in cHL.
Collapse
|
246
|
White CA, Pone EJ, Lam T, Tat C, Hayama KL, Li G, Zan H, Casali P. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:5933-50. [PMID: 25392531 DOI: 10.4049/jimmunol.1401702] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require activation-induced cytidine deaminase (AID), and plasma cell differentiation, which requires B lymphocyte-induced maturation protein-1 (Blimp-1), are critical for the generation of class-switched and hypermutated (mature) Ab and autoantibody responses. We show that histone deacetylase inhibitors valproic acid and butyrate dampened AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp-1) mRNAs by upregulating miR-155, miR-181b, and miR-361 to silence AICDA/Aicda, and miR-23b, miR-30a, and miR-125b to silence PRDM1/Prdm1, in human and mouse B cells. This led to downregulation of AID, Blimp-1, and X-box binding protein 1, thereby inhibiting CSR, SHM, and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of histone deacetylase inhibitor-mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2, or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a, and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell-intrinsic epigenetic mechanisms, valproic acid blunted class-switched and hypermutated T-dependent and T-independent Ab responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease, and extended survival in lupus MRL/Fas(lpr/lpr) mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and X-box binding protein 1) that are critical to the B cell differentiation processes that underpin Ab and autoantibody responses. They also provide therapeutic proof-of-principle in autoantibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Clayton A White
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| | - Egest J Pone
- Institute for Immunology, University of California, Irvine, CA 92697
| | - Tonika Lam
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| | - Connie Tat
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| | - Ken L Hayama
- Institute for Immunology, University of California, Irvine, CA 92697
| | - Guideng Li
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| | - Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Institute for Immunology, University of California, Irvine, CA 92697
| |
Collapse
|
247
|
Parodi C, Badano MN, Galassi N, Coraglia A, Baré P, Malbrán A, Bracco MMDED. Follicular helper T lymphocytes in health and disease. World J Hematol 2014; 3:118-127. [DOI: 10.5315/wjh.v3.i4.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/12/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
A correct antibody response requires the participation of both B and T lymphocytes and antigen presenting cells. In this review we address the role of follicular helper T lymphocytes (TFH) in this reaction. We shall focus on the regulation of their development and function in health and disease. TFH can be characterized on the basis of their phenotype and the pattern of secretion of cytokines. This fact is useful to study their participation in the generation of antibody deficiency in primary immunodeficiency diseases such as common variable immunodeficiency, X-linked hyper IgM syndrome or X-linked lymphoproliferative disease. Increased numbers of TFH have been demonstrated in several autoimmune diseases and are thought to play a role in the development of autoantibodies. In chronic viral infections caused by the human immunodeficiency virus, hepatitis B or C virus, increased circulating TFH have been observed, but their role in the protective immune response to these agents is under discussion. Likewise, an important role of TFH in the control of some experimental protozoan infections has been proposed, and it will be important to assess their relevance in order to design effective vaccination strategies.
Collapse
|
248
|
Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A, Männel DN, Edinger M, Hutchinson JA, Hoffmann P, Ritter U. Langerhans cells promote early germinal center formation in response toLeishmania-derived cutaneous antigens. Eur J Immunol 2014; 44:2955-67. [DOI: 10.1002/eji.201344263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole Zimara
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Christian Florian
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Maximilian Schmid
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique Unité Mixte de Recherche; Aix Marseille Université; Marseille France
| | - Adrien Kissenpfennig
- Centre for Infection and Immunity; School of Medicine; Dentistry & Biomedical Sciences; Queens University; Belfast UK
| | - Daniela N. Männel
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Matthias Edinger
- Internal Medicine III; University Hospital Regensburg; Regensburg Germany
| | - James A. Hutchinson
- Laboratory for Transplantation Research; Department of Surgery; University Hospital Regensburg; Regensburg Germany
| | - Petra Hoffmann
- Internal Medicine III; University Hospital Regensburg; Regensburg Germany
| | - Uwe Ritter
- Institute of Immunology; University of Regensburg; Regensburg Germany
| |
Collapse
|
249
|
Park HY, Go H, Song HR, Kim S, Ha GH, Jeon YK, Kim JE, Lee H, Cho H, Kang HC, Chung HY, Kim CW, Chung DH, Lee CW. Pellino 1 promotes lymphomagenesis by deregulating BCL6 polyubiquitination. J Clin Invest 2014; 124:4976-88. [PMID: 25295537 DOI: 10.1172/jci75667] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022] Open
Abstract
The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs. PELI1 directly interacted with the oncoprotein B cell chronic lymphocytic leukemia (BCL6) and induced lysine 63-mediated BCL6 polyubiquitination. In samples from patients with diffuse large B cell lymphomas (DLBCLs), PELI1 expression levels positively correlated with BCL6 expression, and PELI1 overexpression was closely associated with poor prognosis in DLBCLs. Together, these results suggest that increased PELI1 expression and subsequent induction of BCL6 promotes lymphomagenesis and that this pathway may be a potential target for therapeutic strategies to treat B cell lymphomas.
Collapse
|
250
|
Oestreich KJ, Read KA, Gilbertson SE, Hough KP, McDonald PW, Krishnamoorthy V, Weinmann AS. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat Immunol 2014; 15:957-64. [PMID: 25194422 PMCID: PMC4226759 DOI: 10.1038/ni.2985] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Despite the increasing knowledge of the molecular events that induce the glycolysis pathway in effector T cells, very little is known about the transcriptional mechanisms that dampen the glycolysis program in quiescent cell populations such as memory T cells. Here we found that the transcription factor Bcl-6 directly repressed genes encoding molecules involved in the glycolysis pathway, including Slc2a1, Slc2a3, Pkm and Hk2, in type 1 helper T cells (TH1 cells) exposed to low concentrations of interleukin 2 (IL-2). Thus, Bcl-6 had a role opposing the IL-2-sensitive glycolytic transcriptional program that the transcription factors c-Myc and HIF-1α promote in effector T cells. Additionally, the TH1 lineage-specifying factor T-bet functionally antagonized the Bcl-6-dependent repression of genes encoding molecules in the glycolysis pathway, which links the molecular balance of these two factors to regulation of the metabolic gene program.
Collapse
Affiliation(s)
- Kenneth J Oestreich
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2] Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA. [3] Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Kaitlin A Read
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Sarah E Gilbertson
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kenneth P Hough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W McDonald
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Veena Krishnamoorthy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amy S Weinmann
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2] Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|