201
|
Galmarini CM, Jordheim L, Dumontet C. Role of IMP-selective 5'-nucleotidase (cN-II) in hematological malignancies. Leuk Lymphoma 2003; 44:1105-11. [PMID: 12916861 DOI: 10.1080/1042819031000077142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytotoxic nucleoside analogs (NA) are important in the treatment of hematologic malignancies. The NA in routine clinical use include the pyrimidine analog cytosine arabinoside (ara-c), which is extensively used in the treatment of acute leukemias, and the purine analogs, cladribine and fludarabine. These drugs have mostly been used in the treatment of low grade hematological malignancies. NA become therapeutically effective only after phosporylation to the triphosphate level. The 5'-nucleotidases (5'-NTs) dephosphorylate the monophosphate form of NA and, therefore, may affect the pharmacological activity of these antimetabolites in the clinic. Several 5'-NTs attached to membranes or present in the cytosol or in mitochondria are present in mammalian cells. cN-II, an IMP-selective 5'-NT, participates in the regulation of purine deoxyribonucleotide metabolism. cN-II opposes the action of the salvage enzymes by dephosphorylating purine nucleoside mononphosphates to purine nucleosides. Due to its phosphotransferase activity, cN-II can also phosphorylate inosine and 2',3'-dideoxyribonucleosides utilizing IMP as a phosphate donor. The observation that cytosolic cN-II is able to phosphorylate purine nucleosides has initiated studies on its potential participation in the metabolism of anticancer agents and in the development of cN-II inhibitory substances. In this review, we highlight the current knowledge concerning cN-II activity and regulation of intracellular deoxyribonucleotide pools and it role in hematological malignancies.
Collapse
|
202
|
Burchmore RJS, Wallace LJM, Candlish D, Al-Salabi MI, Beal PR, Barrett MP, Baldwin SA, de Koning HP. Cloning, heterologous expression, and in situ characterization of the first high affinity nucleobase transporter from a protozoan. J Biol Chem 2003; 278:23502-7. [PMID: 12707261 DOI: 10.1074/jbc.m301252200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While multiple nucleoside transporters, some of which can also transport nucleobases, have been cloned in recent years from many different organisms, no sequence information is available for the high affinity, nucleobase-selective transporters of metazoa, parazoa, or protozoa. We have identified a gene, TbNBT1, from Trypanosoma brucei brucei that encodes a 435-residue protein of the equilibrative nucleoside transporter superfamily. The gene was expressed in both the procyclic and bloodstream forms of the organism. Expression of TbNBT1 in a Saccharomyces cerevisiae strain lacking an endogenous purine transporter allowed growth on adenine as sole purine source and introduced a high affinity transport activity for adenine and hypoxanthine, with Km values of 2.1 +/- 0.6 and 0.66 +/- 0.22 microm, respectively, as well as high affinity for xanthine, guanine, guanosine, and allopurinol and moderate affinity for inosine. A transporter with an indistinguishable kinetic profile was identified in T. b. brucei procyclics and designated H4. RNA interference of TbNBT1 in procyclics reduced cognate mRNA levels by approximately 80% and H4 transport activity by approximately 90%. Expression of TbNBT1 in Xenopus oocytes further confirmed that this gene encodes the first high affinity nucleobase transporter from protozoa or animals to be identified at the molecular level.
Collapse
Affiliation(s)
- Richard J S Burchmore
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Loewen SK, Ng AML, Mohabir NN, Baldwin SA, Cass CE, Young JD. Functional characterization of a H+/nucleoside co-transporter (CaCNT) from Candida albicans, a fungal member of the concentrative nucleoside transporter (CNT) family of membrane proteins. Yeast 2003; 20:661-75. [PMID: 12794928 DOI: 10.1002/yea.1000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and other mammalian concentrative (Na(+)-linked) nucleoside transport proteins belong to a membrane protein family (CNT, TC 2.A.41) that also includes Escherichia coli H(+)-dependent nucleoside transport protein NupC. Here, we report the cDNA cloning and functional characterization of a CNT family member from the pathogenic yeast Candida albicans. This 608 amino acid residue H(+)/nucleoside symporter, designated CaCNT, contains 13 predicted transmembrane domains (TMs), but lacks the exofacial, glycosylated carboxyl-terminus of its mammalian counterparts. When produced in Xenopus oocytes, CaCNT exhibited transport activity for adenosine, uridine, inosine and guanosine but not cytidine, thymidine or the nucleobase hypoxanthine. Apparent K(m) values were in the range 16-64 micro M, with V(max) : K(m) ratios of 0.58-1.31. CaCNT also accepted purine and uridine analogue nucleoside drugs as permeants, including cordycepin (3'-deoxyadenosine), a nucleoside analogue with anti-fungal activity. Electrophysiological measurements under voltage clamp conditions gave a H(+) to [(14)C]uridine coupling ratio of 1 : 1. CaCNT, obtained from logarithmically growing cells, is the first described cation-coupled nucleoside transporter in yeast, and the first member of the CNT family of proteins to be characterized from a unicellular eukaryotic organism.
Collapse
Affiliation(s)
- Shaun K Loewen
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
204
|
Clarke ML, Mackey JR, Baldwin SA, Young JD, Cass CE. The role of membrane transporters in cellular resistance to anticancer nucleoside drugs. Cancer Treat Res 2003; 112:27-47. [PMID: 12481710 DOI: 10.1007/978-1-4615-1173-1_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Marilyn L Clarke
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
205
|
Mangravite LM, Xiao G, Giacomini KM. Localization of human equilibrative nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. Am J Physiol Renal Physiol 2003; 284:F902-10. [PMID: 12527552 DOI: 10.1152/ajprenal.00215.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside transporters are important in the disposition of nucleosides and nucleoside analogs in the kidney. Two human equilibrative nucleoside transporters have been cloned and characterized, hENT1 and hENT2. The primary goal of this study was to localize these transporters in polarized renal epithelia. hENT1 and hENT2 were tagged with green fluorescence protein, stably expressed in renal epithelial cells, and localized by immunofluorescence and functional analysis. Our data demonstrated that both transporters are expressed on the basolateral membrane. hENT1 is also present on the apical membrane. Additionally, we examined the importance to basolateral targeting of two COOH-terminal targeting motifs: a RXXV motif for hENT1 and a dileucine repeat for hENT2. Neither motif appeared to affect targeting, but the dileucine repeat was implicated in surface expression of hENT2. In addition, a splice variant of hENT2 was identified that is predicted to result in a 156-residue COOH-terminal truncation. This variant had a tissue distribution similar to wild-type hENT2 but was retained intracellularly. These data suggest that hENT1 and hENT2 on the basolateral membrane function with concentrative nucleoside transporters on the apical membrane to mediate active reabsorption of nucleosides within the kidney.
Collapse
Affiliation(s)
- Lara M Mangravite
- Department of Biopharmaceutical Sciences, University of California, San Francisco, San Francisco, California 94143-0446, USA.
| | | | | |
Collapse
|
206
|
Abstract
Xenobiotic transport in the mammary gland has tremendous clinical, toxicological and nutritional implications. Mechanisms such as passive diffusion, carrier-mediated transport, and transcytosis mediate xenobiotic transfer into milk. In vivo animal and human studies suggest the functional expression of both xenobiotic and nutrient transporters in the lactating mammary gland and the potential involvement of such systems in the significant accumulation of certain compounds in milk. In vitro cell culture systems provide further evidence for carrier-mediated transport across the lactating mammary epithelium. Additionally, molecular characterization studies indicate the expression of various members of the organic cation transporter, organic anion transporter, organic anion polypeptide transporter, oligopeptide transporter, nucleoside and nucleobase transporter, multidrug resistant transporter, and multidrug resistant-like protein transporter families at the lactating mammary epithelium. The in vivo relevance of the expression of such xenobiotic and nutrient transporters and their involvement in drug disposition at the mammary gland requires investigation.
Collapse
Affiliation(s)
- Shinya Ito
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, 555 University Avenue, Ont., M5G 1X8, Toronto, Canada.
| | | |
Collapse
|
207
|
Vickers MF, Kumar R, Visser F, Zhang J, Charania J, Raborn RT, Baldwin SA, Young JD, Cass CE. Comparison of the interaction of uridine, cytidine, and other pyrimidine nucleoside analogues with recombinant human equilibrative nucleoside transporter 2 (hENT2) produced in Saccharomyces cerevisiae. Biochem Cell Biol 2003; 80:639-44. [PMID: 12440703 DOI: 10.1139/o02-148] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human equilibrative nucleoside transporters I and 2 (hENT1, hENT2) share 50% amino acid identity and exhibit broad selectivities, accepting purine and pyrimidine nucleosides as permeants. The permeant selectivity of hENT2 is less well understood because of the low abundance of the native transporter in cells amenable to functional analysis. Recent studies of hENT2 produced in recombinant form in functional expression systems have shown that it differs from hENT1 in that it transports nucleobases. To further understand the structural requirements for permeant interaction with hENT2, we compared the relative abilities of uridine, cytidine, and their analogues to inhibit transport of [3H]uridine by recombinant hENT1 and hENT2 produced in yeast. hENT1 and hENT2 tolerated halogen modification at the 5 position of the base and the 2' and 5' positions of the ribose moieties of uridine whereas removal of the hydroxyl group at the 3' position of the ribose moiety of uridine eliminated interaction with both transporters. hENT2 displayed a lower ability, compared with hENT1, to interact with cytidine and cytidine analogues, suggesting a low tolerance for the presence of the amino group at the 4 position of the base.
Collapse
Affiliation(s)
- Mark F Vickers
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Cabrita MA, Baldwin SA, Young JD, Cass CE. Molecular biology and regulation of nucleoside and nucleobase transporter proteins in eukaryotes and prokaryotes. Biochem Cell Biol 2003; 80:623-38. [PMID: 12440702 DOI: 10.1139/o02-153] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular cloning of cDNAs encoding nucleoside transporter proteins has greatly advanced understanding of how nucleoside permeants are translocated across cell membranes. The nucleoside transporter proteins identified thus far have been categorized into five distinct superfamilies. Two of these superfamilies, the equilibrative and concentrative nucleoside transporters, have human members and these will be examined in depth in this review. The human equilibrative nucleoside transporters translocate nucleosides and nucleobases bidirectionally down their concentration gradients and are important in the uptake of anticancer and antiviral nucleoside drugs. The human concentrative nucleoside transporters cotranslocate nucleosides and sodium unidirectionally against the nucleoside concentration gradients and play a vital role in certain tissues. The regulation of nucleoside and nucleobase transporters is being studied more intensely now that more tools are available. This review provides an overview of recent advances in the molecular biology and regulation of the nucleoside and nucleobase transporters.
Collapse
Affiliation(s)
- Miguel A Cabrita
- Department of Biochemistry, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
209
|
Ackley MA, Governo RJM, Cass CE, Young JD, Baldwin SA, King AE. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1. J Physiol 2003; 548:507-17. [PMID: 12611914 PMCID: PMC2342870 DOI: 10.1113/jphysiol.2002.038091] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adenosine modulates nociceptive processing in the superficial dorsal horn of the spinal cord. In other tissues, membrane transporters influence profoundly the extracellular levels of adenosine. To investigate the putative role of nucleoside transporters in the regulation of excitatory synaptic transmission in the dorsal horn, we employed immunohistochemistry and whole-cell patch-clamp recording of substantia gelatinosa neurons in slices of rat spinal cord in vitro. The rat equilibrative nucleoside transporter (rENT1) was revealed by antibody staining to be abundant in neonatal and mature dorsal horn, especially within laminae I-III. This was confirmed by immunoblots of dorsal horn homogenate. Nitrobenzylthioinosine (NBMPR), a potent non-transportable inhibitor of rENT1, attenuated synaptically evoked EPSCs onto lamina II neurons in a concentration-dependent manner. Application of an adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine produced a parallel rightward shift in the NBMPR concentration-effect curve. The effects of NBMPR were partially reversed by adenosine deaminase, which facilitates the metabolic degradation of adenosine. The modulation by NBMPR of evoked EPSCs was mimicked by exogenous adenosine or the selective A1 receptor agonist, 2-chloro-N6-cyclopentyl adenosine. NBMPR reduced the frequency but not the amplitude of spontaneous miniature EPSCs and increased the paired-pulse ratio of evoked currents, an effect that is consistent with presynaptic modulation. These data provide the first direct evidence that nucleoside transporters are able to critically modulate glutamatergic synaptic transmission.
Collapse
|
210
|
Szkotak AJ, Ng AML, Man SFP, Baldwin SA, Cass CE, Young JD, Duszyk M. Coupling of CFTR-mediated anion secretion to nucleoside transporters and adenosine homeostasis in Calu-3 cells. J Membr Biol 2003; 192:169-79. [PMID: 12820662 DOI: 10.1007/s00232-002-1073-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to characterize the role of adenosine-dependent regulation of anion secretion in Calu-3 cells. RT-PCR studies showed that Calu-3 cells expressed mRNA for A2A and A2B but not A1 or A3 receptors, and for hENT1, hENT2 and hCNT3 but not hCNT1 or hCNT2 nucleoside transporters. Short-circuit current measurements indicated that A2B receptors were present in both apical and basolateral membranes, whereas A2A receptors were detected only in basolateral membranes. Uptake studies demonstrated that the majority of adenosine transport was mediated by hENT1, which was localized to both apical and basolateral membranes, with a smaller hENT2-mediated component in basolateral membranes. Whole-cell current measurements showed that application of extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR), a selective inhibitor of hENT1-mediated transport, had similar effects on whole-cell currents as the application of exogenous adenosine. Inhibitors of adenosine kinase and 5'-nucleotidase increased and decreased, respectively, whole-cell currents, whereas inhibition of adenosine deaminase had no effect. Single-channel studies showed that NBMPR and adenosine kinase inhibitors activated CFTR Cl- channels. These results suggested that the equilibrative nucleoside transporters (hENT1, hENT2) together with adenosine kinase and 5'-nucleotidase play a crucial role in the regulation of CFTR through an adenosine-dependent pathway in human airway epithelia.
Collapse
Affiliation(s)
- A J Szkotak
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
211
|
Martinussen J, Wadskov-Hansen SLL, Hammer K. Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol 2003; 185:1503-8. [PMID: 12591866 PMCID: PMC148060 DOI: 10.1128/jb.185.5.1503-1508.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method for measuring internal nucleoside triphosphate pools of lactococci was optimized and validated. This method is based on extraction of (33)P-labeled nucleotides with formic acid and evaluation by two-dimensional chromatography with a phosphate buffer system for the first dimension and with an H(3)BO(3)-LiOH buffer for separation in the second dimension. We report here the sizes of the ribo- and deoxyribonucleotide pools in laboratory strain MG1363 during growth in a defined medium. We found that purine- and pyrimidine-requiring strains may be used to establish physiological conditions in batch fermentations with altered nucleotide pools and growth rates by addition of nucleosides in different combinations. Addition of cytidine together with inosine to a purine-requiring strain leads to a reduction in the internal purine nucleotide pools and a decreased growth rate. This effect was not seen if cytidine was replaced by uridine. A similar effect was observed if cytidine and inosine were added to a pyrimidine-requiring strain; the UTP pool size was significantly decreased, and the growth rate was reduced. To explain the observed inhibition, the nucleoside transport systems in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K(m) for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition was found between uridine and either cytidine or inosine. These findings suggest that there are two different high-affinity nucleoside transporters, one system responsible for uridine uptake and another system responsible for the uptake of all purine nucleosides and cytidine.
Collapse
Affiliation(s)
- Jan Martinussen
- Microbial Physiology and Genetics, Biocentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | |
Collapse
|
212
|
Forrester T. A Purine Signal for Functional Hyperemia in Skeletal and Cardiac Muscle. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
213
|
Casado FJ, Lostao MP, Aymerich I, Larráyoz IM, Duflot S, Rodríguez-Mulero S, Pastor-Anglada M. Nucleoside transporters in absorptive epithelia. J Physiol Biochem 2002; 58:207-16. [PMID: 12744303 DOI: 10.1007/bf03179858] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are two families of nucleoside transporters, concentrative (termed CNTs) and equilibrative (called ENTs). The members of both families mediate the transmembrane transport of natural nucleosides and some drugs whose structure is based on nucleosides. CNT transporters show a high affinity for their natural substrates (with Km values in the low micromolar range) and are substrate selective. In contrast, ENT transporters show lower affinity and are more permissive regarding the substrates they accept. Both types of transporters are tightly regulated in all cell types studied so far, both by endocrine and growth factors and by substrate availability. The degree of cell differentiation and the proliferation status of a cell also affect the pattern of expressed transporters. Although the presence of both types of transporters in the cells of absortive epithelia suggested the possibility of a transepithelial flux of nucleosides, their exact localization in the different plasma membrane domains of epithelial cells had not been demonstrated until recently. Concentrative transporters are found in the apical membrane while equlibrative transporters are located in the basolateral membrane, thus strengthening the hypothesis of a transepithelial flux of nucleosides.
Collapse
Affiliation(s)
- F J Casado
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
214
|
Acimovic Y, Coe IR. Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. Mol Biol Evol 2002; 19:2199-210. [PMID: 12446811 DOI: 10.1093/oxfordjournals.molbev.a004044] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins which enable the movement of hydrophilic nucleosides and nucleoside analogs down their concentration gradients across cell membranes. ENTs were only recently characterized at the molecular level, and little is known about the tertiary structure or distribution of these proteins in nonmammalian organisms. To identify conserved regions, residues, and motifs of ENTs that may indicate functionally important parts of the protein and to better understand the evolutionary history of this protein family, we conducted an exhaustive analysis to characterize and compare ENTs in taxonomically diverse organisms. We have identified novel ENT family members in humans, mice, fish, tunicates, slime molds, and bacteria. This greatly extends our knowledge on the distribution of the ENTs in eukaryotes, and we have identified, for the first time, family members in bacteria. The prokaryote ENTs are attractive models for future studies on transporter tertiary structure and mechanism of substrate translocation. Using sequence similarities, we have identified regions, residues, and motifs that are conserved across all family members. These areas are presumably correlated with function and therefore are important targets for future analysis. Finally, we propose an evolutionary history for the ENT family which clarifies the origin(s) of multiple isoforms in different taxa.
Collapse
Affiliation(s)
- Yugo Acimovic
- The Centre for Computational Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
215
|
Sankar N, Machado J, Abdulla P, Hilliker AJ, Coe IR. Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity. Nucleic Acids Res 2002; 30:4339-50. [PMID: 12384580 PMCID: PMC137128 DOI: 10.1093/nar/gkf564] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Revised: 08/19/2002] [Accepted: 08/19/2002] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are a recently characterized and poorly understood group of membrane proteins that are important in the uptake of endogenous nucleosides required for nucleic acid and nucleoside triphosphate synthesis. Despite their central importance in cellular metabolism and nucleoside analog chemotherapy, no human ENT gene has been described and nothing is known about gene structure and function. To gain insight into the ENT gene family, we used experimental and in silico comparative genomic approaches to identify ENT genes in three evolutionarily diverse organisms with completely (or almost completely) sequenced genomes, Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster. We describe the chromosomal location, the predicted ENT gene structure and putative structural topologies of predicted ENT proteins derived from the open reading frames. Despite variations in genomic layout and limited ortholog protein sequence identity (< or =27.45%), predicted topologies of ENT proteins are strikingly similar, suggesting an evolutionary conservation of a prototypic structure. In addition, a similar distribution of protein domains on exons is apparent in all three taxa. These data demonstrate that comparative sequence analyses should be combined with other approaches (such as genomic and proteomic analyses) to fully understand structure, function and evolution of protein families.
Collapse
Affiliation(s)
- Narendra Sankar
- Department of Biology, York University, 4700 Keele Street, Toronto M3J 1P3, Canada
| | | | | | | | | |
Collapse
|
216
|
Wyatt AW, Steinert JR, Wheeler‐Jones CPD, Morgan AJ, Sugden D, Pearson JD, Sobrevia L, Mann GE. Early activation of the p42/p44
MAPK
pathway mediates adenosine‐induced nitric oxide production in human endothelial cells: a novel calcium‐insensitive mechanism. FASEB J 2002. [DOI: 10.1096/fasebj.16.12.1584] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amanda W. Wyatt
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| | - Joern R. Steinert
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| | | | - Anthony J. Morgan
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| | - David Sugden
- Endocrinology and Reproduction Research Group, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| | - Jeremy D. Pearson
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Faculty of Biological SciencesUniversity of Concepción Concepción Chile
| | - Giovanni E. Mann
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical SciencesKing's College London Guy's Campus London SE1 1UL UK
| |
Collapse
|
217
|
Reiman T, Graham KA, Wong J, Belch AR, Coupland R, Young J, Cass CE, Mackey JR. Mechanisms of resistance to nucleoside analogue chemotherapy in mantle cell lymphoma: a molecular case study. Leukemia 2002; 16:1886-7. [PMID: 12200718 DOI: 10.1038/sj.leu.2402579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Accepted: 04/09/2002] [Indexed: 11/09/2022]
|
218
|
Yao SYM, Ng AML, Vickers MF, Sundaram M, Cass CE, Baldwin SA, Young JD. Functional and molecular characterization of nucleobase transport by recombinant human and rat equilibrative nucleoside transporters 1 and 2. Chimeric constructs reveal a role for the ENT2 helix 5-6 region in nucleobase translocation. J Biol Chem 2002; 277:24938-48. [PMID: 12006583 DOI: 10.1074/jbc.m200966200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human (h) and rat (r) equilibrative (Na(+)-independent) nucleoside transporters (ENTs) hENT1, rENT1, hENT2, and rENT2 belong to a family of integral membrane proteins with 11 transmembrane domains (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine and coronary vasoactive drugs. Structurally, the proteins have a large glycosylated loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, hENT1, rENT1, hENT2, and rENT2 were produced in Xenopus laevis oocytes and investigated for their ability to transport pyrimidine and purine nucleobases. hENT2 and rENT2 efficiently transported radiolabeled hypoxanthine, adenine, guanine, uracil, and thymine (apparent K(m) values 0.7-2.6 mm), and hENT2, but not rENT2, also transported cytosine. These findings were independently confirmed by hypoxanthine transport experiments with recombinant hENT2 produced in purine-cytosine permease (FCY2)-deficient Saccharomyces cerevisiae and provide the first direct demonstration that the ENT2 isoform is a dual mechanism for the cellular uptake of nucleosides and nucleobases, both of which are physiologically important salvage metabolites. In contrast, recombinant hENT1 and rENT1 mediated negligible oocyte fluxes of hypoxanthine relative to hENT2 and rENT2. Chimeric experiments between rENT1 and rENT2 using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) identified TMs 5-6 of rENT2 (amino acid residues 172-231) as a determinant of nucleobase transport activity, suggesting that this domain forms part(s) of the ENT2 substrate translocation channel.
Collapse
Affiliation(s)
- Sylvia Y M Yao
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
219
|
Yao SY, Ng AM, Loewen SK, Cass CE, Baldwin SA, Young JD. An ancient prevertebrate Na+-nucleoside cotransporter (hfCNT) from the Pacific hagfish (Eptatretus stouti). Am J Physiol Cell Physiol 2002; 283:C155-68. [PMID: 12055084 DOI: 10.1152/ajpcell.00587.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human concentrative (Na+-linked) plasma membrane transport proteins hCNT1, hCNT2, and hCNT3 are pyrimidine nucleoside-selective (system cit), purine nucleoside-selective (system cif), or broadly selective for both pyrimidine and purine nucleosides (system cib), respectively. All have orthologs in other mammalian species and belong to a gene family (CNT) that has members in insects, nematodes, pathogenic yeast, and bacteria. Here, we report the cDNA cloning and functional characterization of a CNT family member from an ancient marine prevertebrate, the Pacific hagfish (Eptatretus stouti). This Na+-nucleoside symporter, designated hfCNT, is the first transport protein to be characterized in detail in hagfish and is a 683-amino acid residue protein with 13 predicted transmembrane helical segments (TMs). hfCNT was 52, 50, and 57% identical in sequence to hCNT1, hCNT2, and hCNT3, respectively. Similarity to hCNT3 was particularly marked in the TM 4-13 region. When produced in Xenopus oocytes, hfCNT exhibited the transport properties of system cib, with uridine, thymidine, and inosine apparent K(m) values of 10-45 microM. The antiviral nucleoside drugs 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, and 2',3'-dideoxyinosine were also transported. Simultaneous measurement of uridine-evoked currents and radiolabeled uridine uptake under voltage-clamp conditions gave a Na+-to-uridine coupling ratio of 2:1 (cf. 2:1 for hCNT3 and 1:1 for hCNT1/2). The apparent K50 value for Na+ activation was >100 mM. A 50:50 chimera between hfCNT and hCNT1 (TMs 7-13 of hfCNT replaced by those of hCNT1) exhibited hCNT1-like cation interactions, establishing that the structural determinants of cation stoichiometry and binding affinity were located within the carboxy-terminal half of the protein. The high degree of sequence similarity between hfCNT and hCNT3 may indicate functional constraints on the primary structure of the transporter and suggests that cib-type CNTs fulfill important physiological functions.
Collapse
Affiliation(s)
- Sylvia Y Yao
- Department of Physiology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
220
|
Vyas S, Ahmadi B, Hammond JR. Complex effects of sulfhydryl reagents on ligand interactions with nucleoside transporters: evidence for multiple populations of ENT1 transporters with differential sensitivities to N-ethylmaleimide. Arch Biochem Biophys 2002; 403:92-102. [PMID: 12061806 DOI: 10.1016/s0003-9861(02)00210-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional studies have implicated cysteines in the interaction of ligands with the ENT1 nucleoside transporter. To better define these interactions, N-ethylmaleimide (NEM) and p-chloromercuribenzylsulfonate (pCMBS) were tested for their effects on ligand interactions with the [(3)H] nitrobenzylthioinosine (NBMPR) binding site of the ENT1 transporters of mouse Ehrlich ascites cells and human erythrocytes. NEM had biphasic, concentration-dependent effects on NBMPR binding to intact Ehrlich cells, plasma membranes, and detergent-solubilized membranes, with about 35% of the binding activity being relatively insensitive to NEM inhibition. NBMPR binding to human erythrocyte membranes also displayed heterogeneity in that about 33% of the NBMPR binding sites remained, albeit with lower affinity for NBMPR, even after treatment with NEM at concentrations in excess of 1 mM. However, unlike that seen for Ehrlich cells, no "reversal" in NBMPR binding to human erythrocyte membranes was observed at the higher concentrations of NEM. pCMBS inhibited 100% of the NBMPR binding to both Ehrlich cell and human erythrocyte membranes, but had no effect on the binding of NBMPR to intact cells. The effects of NEM on NBMPR binding could be prevented by coincubation of membranes with nonradiolabeled NBMPR, adenosine, or uridine. Treatment with NEM and pCMBS also decreased the affinity of other nucleoside transport inhibitors for the NBMPR binding site, but enhanced the affinities of nucleoside substrates. These data support the existence of at least two populations of ENT1 in both erythrocyte and Ehrlich cell membranes with differential sensitivities to NEM. The interaction of NEM with the mouse ENT1 protein may also involve additional sulphydryl groups not present in the human ENT1.
Collapse
Affiliation(s)
- Satyen Vyas
- Department of Pharmacology and Toxicology, M275 Medical Sciences Building, University of Western Ontario, London, Ont., Canada N6A 5C1
| | | | | |
Collapse
|
221
|
Lu X, Gong S, Monks A, Zaharevitz D, Moscow JA. Correlation of nucleoside and nucleobase transporter gene expression with antimetabolite drug cytotoxicity. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2002; 2:200-12. [PMID: 12416024 DOI: 10.1046/j.1359-4117.2002.01035.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antimetabolite drugs that inhibit nucleic acid metabolism are widely used in cancer chemotherapy. Nucleoside and nucleobase transporters are important for the cellular uptake of nucleic acids and their corresponding anticancer analogue drugs. Thus, these transporters may play a role both in antimetabolite drug sensitivity, by mediating the uptake of nucleoside analogues, and in antimetabolite drug resistance, by mediating the uptake of endogenous nucleosides that may rescue cells from toxicity. Therefore, we examined the relation of the expression of nucleoside and nucleobase transporters to antimetabolite cytotoxicity. We measured the RNA levels of all eight known nucleoside and nucleobase transporters in 50 cell lines included in the National Cancer Institute's Anticancer Drug Screen panel. RNA levels of concentrative nucleoside transporters (CNTs), equilibrative nucleoside transporters (ENTs) and nucleobase transporters (NCBTs) were determined by quantitative RT-PCR using real-time fluorescence acquisition. This method was validated by measuring the expression of the MDR1 gene, and correlating our results with independently determined measurements of MDR1 RNA levels and protein function in these cell lines. We then correlated the pattern of RNA levels to the pattern of cytotoxicity of anticancer drugs in the NCI drug screen database using the COMPARE analysis. Several hypothesized relations between transporter gene expression and cytotoxicity, based upon known interactions between certain nucleoside analogues and transporter proteins, were not observed, suggesting that expression of individual transporters may not be a significant determinant of the cytotoxicity of these drugs. The most closely correlated drug cytotoxicity patterns to transporter gene expression patterns (where increased expression corresponds to increase sensitivity) included those between CNT1 and O6-methylguanine and between ENT2 and hydroxyurea. We also observed that p53 status influenced correlations between ENT1 transporter gene RNA levels and sensitivity to the drugs tiazafurin, AZQ and 3-deazauridine. One of three drugs identified by correlation of cytotoxicity patterns with ENT1 RNA levels, 3-deazauridine, inhibited uptake of the classic ENT1 substrate uridine, demonstrating a physical interaction between an identified drug and the transporter. These studies demonstrate that it is possible to correlate genetic information to functional databases to determine the influence of transport gene expression on drug sensitivity and to identify transporter-drug interactions.
Collapse
Affiliation(s)
- Xin Lu
- Division of Hematology and Oncology, Department of Pediatrics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
222
|
Li N, Cook L, Santos C, Cass CE, Mackey JR, Dovichi NJ. Use of a small reporter molecule to determine cell-surface proteins by capillary electrophoresis and laser-induced fluorescence: use of 5-SAENTA-x8f for quantitation of the human equilibrative nucleoside transporter 1 protein. Anal Chem 2002; 74:2573-7. [PMID: 12069239 DOI: 10.1021/ac025559r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human equilibrative nucleoside transporter 1 protein (hENT1) is a major mediator of cellular entry of nucleosides and anticancer nucleoside drugs; its assay is important in understanding and diagnosing chemotherapy resistance. Here we present a novel assay for quantifying hENT1 using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). A cellular population is treated with 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine-x8-fluorescein (5-SAENTA-x8f), which binds with high affinity and specificity to the hENT1 protein. The cells are washed to remove excess reagent, lysed, and centrifuged, and the supernatant is analyzed by CE-LIF with the use of an internal standard. Accuracy was evaluated by comparing the capillary electrophoresis results with those obtained by flow cytometry; the results were highly correlated, r = 0.96. The relative standard deviation of the hENT1 assay was 10%, determined from nine independent assays of the same cell line, which is 3 times superior to results obtained in a flow cytometry assay. The detection limit for 5-SAENTA-x8f was 4300 molecules injected into the capillary.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
223
|
Coe I, Zhang Y, McKenzie T, Naydenova Z. PKC regulation of the human equilibrative nucleoside transporter, hENT1. FEBS Lett 2002; 517:201-5. [PMID: 12062437 DOI: 10.1016/s0014-5793(02)02622-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of nucleoside transporters is poorly understood. We show that acute stimulation of protein kinase C (PKC) causes a rapid increase in S-(4-nitrobenzyl)-6-thioinosine-sensitive (human equilibrative nucleoside transporter 1, hENT1) nucleoside uptake, in human cultured cells, which is not due to increased metabolism and which can be blocked by PKC inhibitors. Use of isoform-specific inhibitors indicates that PKC delta and/or epsilon (but not alpha, beta or gamma) are responsible for the acute effects. Down-regulation of PKC decreases hENT1-dependent uridine uptake. These are the first data to show rapid PKC delta/epsilon-dependent stimulation of hENT1 transport by a mechanism that may involve activation of transporters at the membrane possibly by post-translational modification of the protein.
Collapse
Affiliation(s)
- Imogen Coe
- Department of Biology, York University, Toronto, Canada.
| | | | | | | |
Collapse
|
224
|
Parodi J, Flores C, Aguayo C, Rudolph MI, Casanello P, Sobrevia L. Inhibition of nitrobenzylthioinosine-sensitive adenosine transport by elevated D-glucose involves activation of P2Y2 purinoceptors in human umbilical vein endothelial cells. Circ Res 2002; 90:570-7. [PMID: 11909821 DOI: 10.1161/01.res.0000012582.11979.8b] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic incubation with elevated D-glucose reduces adenosine transport in endothelial cells. In this study, exposure of human umbilical vein endothelial cells to 25 mmol/L D-glucose or 100 micromol/L ATP, ATP-gamma-S, or UTP, but not ADP or alpha,beta-methylene ATP, reduced adenosine transport with no change in transport affinity. Inhibition of transport by D-glucose, ATP, and ATP-gamma-S was associated with reduced maximal binding, with no changes in the apparent dissociation constant for nitrobenzylthioinosine (NBMPR). A significant reduction (approximately 60+/-10%, P<0.05; n=6) in the number of human equilibrative NBMPR-sensitive nucleoside transporters (hENT1s) per cell (1.8+/-0.1x10(6) in 5 mmol/L D-glucose) and in hENT1 mRNA levels was observed in cells exposed to D-glucose or ATP-gamma-S. Incubation with elevated D-glucose, but not with D-mannitol, increased the ATP release by 3+/-0.2-fold. The effects of D-glucose and nucleotides on the number and activity of hENT1 and hENT1 mRNA were blocked by reactive blue 2 (nonspecific P2Y purinoceptor antagonist), suramin (Galpha(s) protein inhibitor), or hexokinase but not by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (nonselective P2 purinoceptor antagonist). Our findings demonstrate that inhibition of adenosine transport via hENT1 in endothelial cells cultured in 25 mmol/L D-glucose could be due to stimulation of P2Y2 purinoceptors by ATP, which is released from these cells in response to D-glucose. This could be a mechanism to explain in part the vasodilatation observed in the early stages of diabetes mellitus or in response to D-glucose infusion.
Collapse
Affiliation(s)
- Jorge Parodi
- Cellular and Molecular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
225
|
Musa H, Dobrzynski H, Berry Z, Abidi F, Cass CE, Young JD, Baldwin SA, Boyett MR. Immunocytochemical demonstration of the equilibrative nucleoside transporter rENT1 in rat sinoatrial node. J Histochem Cytochem 2002; 50:305-9. [PMID: 11850433 DOI: 10.1177/002215540205000302] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine exerts multiple receptor-mediated effects in the heart, including a negative chronotropic effect on the sinoatrial node. The aim of this study was to investigate the distribution of the equilibrative nucleoside transporter rENT1 in rat sinoatrial node and atrial muscle. Immunocytochemistry and/or immunoblotting revealed abundant expression of this protein in plasma membranes of sinoatrial node and in atrial and ventricular cells. Because rENT1-mediated transport is likely to regulate the local concentrations of adenosine in the sinoatrial node and other parts of the heart, it represents a potential pharmacological target that might be exploited to ameliorate ischemic damage during heart surgery.
Collapse
Affiliation(s)
- H Musa
- School of Biomedical Sciences, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Koshiba M, Kosaka H, Nakazawa T, Hayashi N, Saura R, Kitamura N, Kumagai S. 2-Chloroadenosine but not adenosine induces apoptosis in rheumatoid fibroblasts independently of cell surface adenosine receptor signalling. Br J Pharmacol 2002; 135:1477-86. [PMID: 11906961 PMCID: PMC1573274 DOI: 10.1038/sj.bjp.0704612] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The apoptotic effect of adenosine and its analogues was studied in fibroblast-like synoviocytes derived from rheumatoid arthritis patients (RA-FLSs). Evoked cell death was quantitatively examined by assessing DNA fragmentation using an enzyme-liked immunosorbent assay and by measuring phosphatidylserine exposure through flow cytometric analysis of annexin V binding. 2. Exposing cells for 24 h to 2-chloroadenosine (2-CADO), a nonspecific, adenosine deaminase (ADA)-resistant, adenosine receptor (AdoR) agonist, induced DNA fragmentation, and thus apoptosis, in RA-FLSs at concentrations > or =50 microM. By contrast, incubation with adenosine for up to 72 h did not evoke DNA fragmentation, even in the presence of ADA inhibitor coformycin and nucleoside transporter inhibitor nitrobenzylmercaptopurin (NBMPR). Transcription of all four AdoR isoforms was detected in RA-FLSs; nevertheless selective AdoR agonists similarly failed to induce DNA fragmentation. 3. DNA fragmentation evoked by 2-CADO was inhibited by NBMPR and by 5'-iodotubercidin, an adenosine kinase inhibitor, but not by xanthine amine congener, an A(1) and A(2) receptor antagonist, or by selective AdoR antagonists. 4. The nonspecific caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone abolished the apoptotic effect of 2-CADO. 5. These results suggest that 2-CADO induces apoptosis in RA-FLSs independently of AdoR-mediated signalling. Instead, 2-CADO, but not adenosine, is taken up into RA-FLSs via human equilibrative nucleoside transporter-1, where it is phosphorylated by adenosine kinase. The resultant phospho-2-CADO induces DNA fragmentation by activating a caspase pathway.
Collapse
Affiliation(s)
- Masahiro Koshiba
- Clinical Pathology and Immunology, Department of Biomedical Informatics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
227
|
Visser F, Vickers MF, Ng AML, Baldwin SA, Young JD, Cass CE. Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sensitivity to inhibition of transport by dilazep and dipyridamole. J Biol Chem 2002; 277:395-401. [PMID: 11689555 DOI: 10.1074/jbc.m105324200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human equilibrative nucleoside transporters (hENT) 1 and 2 differ in that hENT1 is inhibited by nanomolar concentrations of dipyridamole and dilazep, whereas hENT2 is 2 and 3 orders of magnitude less sensitive, respectively. When a yeast expression plasmid containing the hENT1 cDNA was randomly mutated and screened by phenotypic complementation in Saccharomyces cerevisiae to identify mutants with reduced sensitivity to dilazep, clones with a point mutation that converted Met33 to Ile (hENT1-M33I) were obtained. Characterization of the mutant protein in S. cerevisiae and Xenopus laevis oocytes revealed that the mutant had less than one-tenth the sensitivity to dilazep and dipyridamole than wild type hENT1, with no change in nitrobenzylmercaptopurine ribonucleoside (NBMPR) sensitivity or apparent uridine affinity. To determine whether the reciprocal mutation in hENT2 (Ile33 to Met) also altered sensitivity to dilazep and dipyridamole, hENT2-I33M was created by site-directed mutagenesis. Although the resulting mutant (hENT2-I33M) displayed >10-fold higher dilazep and dipyridamole sensitivity and >8-fold higher uridine affinity compared with wild type hENT2, it retained insensitivity to NBMPR. These data established that mutation of residue 33 (Met versus Ile) of hENT1 and hENT2 altered the dilazep and dipyridamole sensitivities in both proteins, suggesting that a common region of inhibitor interaction has been identified.
Collapse
Affiliation(s)
- Frank Visser
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | |
Collapse
|
228
|
Sakumura T, Fujii Z, Umemoto S, & TM, Kawata Y, Fujii K, Minami M, Sasaki K, Matsuzaki M. Dilazep, a nucleoside transporter inhibitor, modulates cell cycle progression and DNA synthesis in rat mesangial cells in vitro. Cell Prolif 2001; 33:19-28. [PMID: 10741641 PMCID: PMC6622404 DOI: 10.1046/j.1365-2184.2000.00145.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The direct effects of the nucleoside transporter inhibitor dilazep on the cell cycle of mesangial cells have not before been investigated. The purpose of this study was to elucidate whether dilazep can inhibit the proliferation of mesangial cells and how it interferes with the cell cycle of these cells. DNA histograms were used and BrdUrd uptake rate was measured by flow cytometry. There was no significant difference in the cell numbers among the untreated group and the 10(-5) M, 10(-6) M or 10(-7) M dilazep-treated groups at 24 h of incubation. However, at 48 and 72 h, the cell numbers in the dilazep-treated groups were significantly lower compared with that of the untreated group (P < 0.005). The DNA histograms of cultured rat mesangial cells at 12, 24, and 48 h of incubation with 10(-5) M dilazep showed that the ratio of the S phase population in the dilazep-treated group decreased by 2.2% at 12 h, by 9.6% at 24 h, and by 18.9% at 48 h compared with the untreated group. The ratio of the G0/G1 phase population in the dilazep-treated group significantly increased: 6.8% at 12h (P < 0.05), 13.9% at 24 h (P < 0.001), and 76.5% at 48 h (P < 0.001) compared with the untreated group. A flow cytometric measurement of bivariate DNA/BrdUrd distribution demonstrated that the DNA synthesis rate in the S phase decreased after 6 h (P < 0.005) and 12 h (P < 0.05) of incubation compared with the untreated group. These results suggest that dilazep inhibits the proliferation of cultured rat mesangial cells by suppressing the G1/S transition by prolonging G2/M and through decreasing the DNA synthesis rate.
Collapse
Affiliation(s)
- T. Sakumura
- The Second Department of Internal Medicine and
| | - Z. Fujii
- The Second Department of Internal Medicine and
| | - S. Umemoto
- The Second Department of Internal Medicine and
| | | | - Dagger
- The Second Department of Internal Medicine and
| | - Y. Kawata
- The Second Department of Internal Medicine and
| | - K. Fujii
- The Second Department of Internal Medicine and
| | - M. Minami
- The Second Department of Internal Medicine and
| | - K. Sasaki
- The Department of Pathophysiology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan; and ‡The Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, Japan
| | | |
Collapse
|
229
|
Szkotak AJ, Ng AM, Sawicka J, Baldwin SA, Man SF, Cass CE, Young JD, Duszyk M. Regulation of K(+) current in human airway epithelial cells by exogenous and autocrine adenosine. Am J Physiol Cell Physiol 2001; 281:C1991-2002. [PMID: 11698258 DOI: 10.1152/ajpcell.2001.281.6.c1991] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory actions of adenosine on ion channel function are mediated by four distinct membrane receptors. The concentration of adenosine in the vicinity of these receptors is controlled, in part, by inwardly directed nucleoside transport. The purpose of this study was to characterize the effects of adenosine on ion channels in A549 cells and the role of nucleoside transporters in this regulation. Ion replacement and pharmacological studies showed that adenosine and an inhibitor of human equilibrative nucleoside transporter (hENT)-1, nitrobenzylthioinosine, activated K(+) channels, most likely Ca(2+)-dependent intermediate-conductance K(+) (I(K)) channels. A(1) but not A(2) receptor antagonists blocked the effects of adenosine. RT-PCR studies showed that A549 cells expressed mRNA for I(K)-1 channels as well as A(1), A(2A), and A(2B) but not A(3) receptors. Similarly, mRNA for equilibrative (hENT1 and hENT2) but not concentrative (hCNT1, hCNT2, and hCNT3) nucleoside transporters was detected, a result confirmed in functional uptake studies. These studies showed that adenosine controls the function of K(+) channels in A549 cells and that hENTs play a crucial role in this process.
Collapse
Affiliation(s)
- A J Szkotak
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Sundaram M, Yao SY, Ingram JC, Berry ZA, Abidi F, Cass CE, Baldwin SA, Young JD. Topology of a human equilibrative, nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter (hENT1) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem 2001; 276:45270-5. [PMID: 11584005 DOI: 10.1074/jbc.m107169200] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.
Collapse
Affiliation(s)
- M Sundaram
- Membrane Transport Research Group, Departments of Physiology and Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Rager N, Mamoun CB, Carter NS, Goldberg DE, Ullman B. Localization of the Plasmodium falciparum PfNT1 nucleoside transporter to the parasite plasma membrane. J Biol Chem 2001; 276:41095-9. [PMID: 11682491 DOI: 10.1074/jbc.m107037200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient transporters play critical roles in parasite metabolism, but the membranes in which they reside have not been clearly defined. The transport of purine nutrients is crucial to the survival of the malaria parasite Plasmodium falciparum, and nucleoside transport activity has been associated with a number of different membrane components within the parasitized erythrocyte. To determine the location of the PfNT1 nucleoside transporter, the first component of the nucleoside permeation pathway to be studied at the molecular level in P. falciparum (Carter, N. S., Ben Mamoun, C., Liu, W., Silva, E. O., Landfear, S. M., Goldberg, D. E., and Ullman, B. (2000) J. Biol. Chem. 275, 10683-10691), polyclonal antisera against the NH2-terminal 36 amino acids of PfNT1 were raised in rabbits. Western blot analysis of parasite lysates revealed that the antibodies were specific for PfNT1 and that the level of PfNT1 protein in the infected erythrocyte is regulated in a stage-specific fashion. The amount of PfNT1 polypeptide increases dramatically during the early trophozoite stage and reaches its maximal level in the late trophozoite and schizont stages. Deconvolution and immunoelectron microscopy using these monospecific antibodies revealed that PfNT1 localizes predominantly, if not exclusively, to the plasma membrane of the parasite and not to the parasitophorous vacuolar or erythrocyte membranes.
Collapse
Affiliation(s)
- N Rager
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
232
|
Sinclair CJD, Powell AE, Xiong W, LaRivière CG, Baldwin SA, Cass CE, Young JD, Parkinson FE. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors. Br J Pharmacol 2001; 134:1037-44. [PMID: 11682452 PMCID: PMC1573041 DOI: 10.1038/sj.bjp.0704349] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5' iodotubercidin (ITU) and 5-amino-5'-deoxyadenosine (NH(2)dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells. 3. Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters. 3. We tested the effects of ITU and NH(2)dAdo on [(3)H]-adenosine uptake and conversion to [(3)H]-adenine nucleotides in the three cell types. NH(2)dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [(3)H]-adenosine uptake and [(3)H]-adenine nucleotide formation at concentrations < or =100 nM in rENT1-C6 cells, while concentrations > or =3 microM were required for C6 or rCNT2-C6 cells. 4. Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells. 5. This study demonstrates that the effects of ITU, but not NH(2)dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors.
Collapse
Affiliation(s)
- C J D Sinclair
- Department of Pharmacology and Therapeutics, University of Manitoba; Winnipeg, Canada R3E 0T6
| | - A E Powell
- Department of Pharmacology and Therapeutics, University of Manitoba; Winnipeg, Canada R3E 0T6
| | - W Xiong
- Department of Pharmacology and Therapeutics, University of Manitoba; Winnipeg, Canada R3E 0T6
| | - C G LaRivière
- Department of Pharmacology and Therapeutics, University of Manitoba; Winnipeg, Canada R3E 0T6
| | - S A Baldwin
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT
| | - C E Cass
- Membrane Transport Group, University of Alberta, Edmonton, Canada T6G 2H7
| | - J D Young
- Membrane Transport Group, University of Alberta, Edmonton, Canada T6G 2H7
| | - F E Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba; Winnipeg, Canada R3E 0T6
- Author for correspondence:
| |
Collapse
|
233
|
Abstract
Gemcitabine is a pyrimidine analogue that showed significant activity in solid malignancies. Gemcitabine acts by inhibiting DNA synthesis through chain termination and ribonucleotide reductase inhibition. During initial phase I and II studies, gemcitabine had a low toxicity profile and was well tolerated as a single agent and in combination therapy. Recently, there has been more interest in studying the activity of gemcitabine in hematologic malignancies. Gemcitabine demonstrated good activity in refractory Hodgkin disease patients, non-Hodgkin lymphoma, cutaneous T-cell lymphoma, and acute leukemias. There is a preponderance of evidence on the activity of gemcitabine in vitro in myeloma and leukemic cell lines. The activity of gemcitabine in these disorders will pave the way for incorporating this agent into the early phases of therapy.
Collapse
Affiliation(s)
- C Nabhan
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
234
|
Lang TT, Selner M, Young JD, Cass CE. Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol Pharmacol 2001; 60:1143-52. [PMID: 11641443 DOI: 10.1124/mol.60.5.1143] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CEM-ARAC leukemia cells with resistance to cytarabine were shown to lack equilibrative transporter (hENT1) expression and activity. Stable transfer of hCNT2 cDNA into CEM-ARAC enabled Na(+)-dependent transport of purine and pyrimidine nucleoside analogs and provided a unique in vitro model for studying hCNT2. Analysis of [(3)H]uridine inhibitory activity by test substances in hCNT2 transfectant ARAC/D2 revealed structural requirements for interaction with hCNT2: 1) ribosyl and 2'-deoxyribosyl nucleosides were better inhibitors than 3'-deoxyribosyl, 2',3'-dideoxyribosyl or arabinosyl nucleosides; 2) uridine analogs with halogens at position 5 were better inhibitors than 5-methyluridine or thymidine; 3) 2-chloroadenosine was a better inhibitor than 2-chloro-2'-deoxyadenosine (cladribine); and 4) cytosine-containing nucleosides, 7-deazaadenosine and nucleobases were not inhibitors. Quantification of inhibitory capacity yielded K(i) values of 34-50 microM (5-halogenated uridine analogs, 2'-deoxyuridine), 82 microM (5-fluoro-2'-deoxyuridine), 197-246 microM (5-methyluridine < 5-bromo-2'-deoxyuridine < 5-iodo-2'-deoxyuridine), and 411 microM (5-fluoro-5'-deoxyuridine, capecitabine metabolite). Comparisons of hCNT2-mediated transport rates indicated halogenated uridine analogs were transported more rapidly than halogenated adenosine analogs, even though hCNT2 exhibited preference for physiologic purine nucleosides over uridine. Kinetics of hCNT2-mediated transport of 5-fluorouridine and uridine were similar (K(m) values, 43-46 microM). The impact of hCNT2-mediated transport on chemosensitivity was assessed by comparing antiproliferative activity of nucleoside analogs against hCNT2-containing cells with transport-defective, drug-resistant cells. Chemosensitivity was restored partially for cladribine, completely for 5-fluorouridine and 5-fluoro-2'-deoxyuridine, whereas there was little effect on chemosensitivity for fludarabine, 7-deazaadenosine, or cytarabine. These studies, which demonstrated hCNT2 uptake of halogenated uridine analogs, suggested that hCNT2 is an important determinant of cytotoxicity of this class of compounds in vivo.
Collapse
Affiliation(s)
- T T Lang
- Canadian Institute of Health Research Membrane Protein Research Group, University of Alberta
| | | | | | | |
Collapse
|
235
|
Marzo I, Pérez-Galán P, Giraldo P, Rubio-Félix D, Anel A, Naval J. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria. Biochem J 2001; 359:537-46. [PMID: 11672427 PMCID: PMC1222174 DOI: 10.1042/0264-6021:3590537] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the role of caspases and mitochondria in apoptosis induced by 2-chloro-2'-deoxyadenosine (cladribine) in several human leukaemic cell lines. Cladribine treatment induced mitochondrial transmembrane potential (DeltaPsi(m)) loss, phosphatidylserine exposure, caspase activation and development of typical apoptotic morphology in JM1 (pre-B), Jurkat (T) and U937 (promonocytic) cells. Western-blot analysis of cell extracts revealed the activation of at least caspases 3, 6, 8 and 9. Co-treatment with Z-VAD-fmk (benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone), a general caspase inhibitor, significantly prevented cladribine-induced death in JM1 and Jurkat cells for the first approximately 40 h, but not for longer times. Z-VAD-fmk also partly prevented some morphological and biochemical features of apoptosis in U937 cells, but not cell death. Co-incubation with selective caspase inhibitors Ac-DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-aldehyde), Ac-LEHD-CHO (N-acetyl-Leu-Glu-His-Asp-aldehyde) or Z-IETD-fmk (benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone), inhibition of protein synthesis with cycloheximide or cell-cycle arrest with aphidicolin did not prevent cell death. Overexpression of Bcl-2, but not CrmA, efficiently prevented death in Jurkat cells. In all cell lines, death was always preceded by Delta Psi(m) loss and accompanied by the translocation of the protein apoptosis-inducing factor (AIF) from mitochondria to the nucleus. These results suggest that caspases are differentially involved in induction and execution of apoptosis depending on the leukaemic cell lineage. In any case, Delta Psi(m) loss marked the point of no return in apoptosis and may be caused by two different pathways, one caspase-dependent and the other caspase-independent. Execution of apoptosis was always performed after Delta Psi(m) loss by a caspase-9-triggered caspase cascade and the action of AIF.
Collapse
Affiliation(s)
- I Marzo
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
236
|
Abstract
Nucleoside transporters play central roles in the biochemistry of parasitic protozoa such as Leishmania and African trypanosomes, because these parasites cannot synthesize purines de novo and are absolutely reliant upon purine salvage from their hosts. Furthermore, nucleoside transporters are important to the pharmacology of these significant human pathogens, because they mediate the uptake of purine analogs, as well as some non-purine drugs, that are selectively cytotoxic to the parasites. Recent advances in molecular biology and genomics have allowed the cloning and functional expression of several nucleoside transporter genes from Leishmania donovani and Trypanosoma brucei, providing molecular reagents for a detailed functional examination of these permeases and their role in the delivery of nutrients and drugs to the parasites. Furthermore, the molecular basis of drug-resistant mutants that are deficient in nucleoside transport functions can now be fathomed.
Collapse
Affiliation(s)
- S M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA.
| |
Collapse
|
237
|
Sundaram M, Yao SY, Ng AM, Cass CE, Baldwin SA, Young JD. Equilibrative nucleoside transporters: mapping regions of interaction for the substrate analogue nitrobenzylthioinosine (NBMPR) using rat chimeric proteins. Biochemistry 2001; 40:8146-51. [PMID: 11434784 DOI: 10.1021/bi0101805] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rat equilibrative nucleoside transporters rENT1 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine (NBMPR). Structurally, the proteins have a large glycosylated extracellular loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, we have generated chimeras between NBMPR-sensitive rENT1 and NBMPR-insensitive rENT2, using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) to identify structural domains of rENT1 responsible for transport inhibition by NBMPR. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 NBMPR-insensitive. Domain swaps within the amino-terminal halves of rENT1 and rENT2 identified two contiguous regions, TMs 3-4 (rENT1 residues 100-171) and TMs 5-6 (rENT1 residues 172-231), as the major sites of NBMPR interaction. Since NBMPR is a nucleoside analogue and functions as a competitive inhibitor of zero-trans nucleoside influx, TMs 3-6 are likely to form parts of the substrate translocation channel.
Collapse
Affiliation(s)
- M Sundaram
- Membrane Transport Research Group, Departments of Physiology and Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
238
|
Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001; 15:875-90. [PMID: 11417472 DOI: 10.1038/sj.leu.2402114] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nucleoside analogues (NA) are essential components of AML induction therapy (cytosine arabinoside), effective treatments of lymphoproliferative disorders (fludarabine, cladribine) and are also used in the treatment of some solid tumors (gemcitabine). These important compounds share some general common characteristics, namely in terms of requiring transport by specific membrane transporters, metabolism and interaction with intracellular targets. However, these compounds differ in regard to the types of transporters that most efficiently transport a given compound, and their preferential interaction with certain targets which may explain why some compounds are more effective against rapidly proliferating tumors and others on neoplasia with a more protracted evolution. In this review, we analyze the available data concerning mechanisms of action of and resistance to NA, with particular emphasis on recent advances in the characterization of nucleoside transporters and on the potential role of activating or inactivating enzymes in the induction of clinical resistance to these compounds. We performed an extensive search of published in vitro and clinical data in which the levels of expression of nucleoside-activating or inactivating enzymes have been correlated with tumor response or patient outcome. Strategies aiming to increase the intracellular concentrations of active compounds are presented.
Collapse
Affiliation(s)
- C M Galmarini
- Unité INSERM 453, Laboratoire de Cytologie Analytique, Faculté de Médécine Rockefeller, Lyon, France
| | | | | |
Collapse
|
239
|
Dhalla AK, Dodam JR, Jones AW, Rubin LJ. Characterization of an NBTI-sensitive equilibrative nucleoside transporter in vascular smooth muscle. J Mol Cell Cardiol 2001; 33:1143-52. [PMID: 11444919 DOI: 10.1006/jmcc.2001.1374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine plays a significant role in various physiological and regulatory processes including coronary vasodilatation. In the current study, a high-affinity adenosine transporter in freshly dissociated porcine coronary smooth muscle (PCSM) cells and cultured human coronary smooth muscle (HCSM) cells was characterized. Kinetic analysis of the transport process revealed a V(max) of 82+/-17 pm/mg protein/min and a K(m) of 4.3+/-2.1 microm for PCSM cells, whereas a K(m) of 4.8 microm and V(max) of 254 pm/mg/min was observed for cultured HCSM. Concentration-dependent inhibition of adenosine uptake by S-(4-nitrobenzyl)-6-thioinosine (NBTI) was observed in both PCSM (IC(50), 0.08 microm) and HCSM (0.1 microm) cells. Both cell types also demonstrate a high-affinity, single binding site for NBTI (PCSM, B(max) 144.8+/-23 fmol/mg protein and K(d) 1.1+/-0.35 nm; HCSM, B(max) 672+/-62 fmol/mg protein and K(d) 0.45+/-0.14 nm). Adenosine uptake in these cells was not affected by extracellular sodium concentration. RT-PCR analysis of mRNA from individually selected PCSM and HCSM cells demonstrated expression of an NBTI-sensitive equilibrative transporter. Smooth muscle cells isolated from porcine brachial and femoral arteries also transported adenosine at levels similar to that of coronaries. These data demonstrate that vascular coronary smooth muscle possess an NBTI-sensitive equilibrative transporter for adenosine which could function in regulation of vasodilation.
Collapse
Affiliation(s)
- A K Dhalla
- Department of Veterinary Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
240
|
Takechi T, Koizumi K, Tsujimoto H, Fukushima M. Screening of differentially expressed genes in 5-fluorouracil-resistant human gastrointestinal tumor cells. Jpn J Cancer Res 2001; 92:696-703. [PMID: 11429060 PMCID: PMC5926762 DOI: 10.1111/j.1349-7006.2001.tb01150.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To identify genes differentially expressed in association with resistance to 5-fluorouracil (5FU), an mRNA differential display (DD) analysis was used to compare transcripts from the NUGC-3 human gastric tumor cell line and the NUGC-3 / 5FU / L line, which had acquired 208-fold resistance as a consequence of repeated exposure to escalating concentrations of 5FU. The 110 cDNA fragments differentially expressed in the DD analysis of either the NUGC-3 or NUGC-3 / 5FU / L cells were sequenced and subjected to a homology search, and 29 overexpressed and 22 underexpressed genes were identified in NUGC-3 / 5FU / L as a result. To confirm whether the changes in the gene expression levels in the NUGC-3 / 5FU / L cells were shared by other 5FU-resistant cells, 35 genes were analyzed by northern hybridization in 3 pairs of parent / 5FU-resistant human gastrointestinal tumor cell lines. The analysis revealed 20 overexpressed and 10 underexpressed genes in at least one of the three 5FU-resistant cells as compared with those in the parent cells. Among them, P-glycoprotein, equilibrative nucleoside transporter 1, and methylenetetrahydrofolate dehydrogenase were highly expressed in two of the three 5FU-resistant cells and cytidine deaminase and integrin alpha3 were underexpressed. The acquisition of resistance to 5FU by tumor cells may result from multiple changes in cellular functions.
Collapse
Affiliation(s)
- T Takechi
- The Second Cancer Research Laboratory, Taiho Pharmaceutical Co., Ltd., 1-27 Misugidai, Hanno, Saitama 357-8527, Japan.
| | | | | | | |
Collapse
|
241
|
Vasudevan G, Ullman B, Landfear SM. Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity. Proc Natl Acad Sci U S A 2001; 98:6092-7. [PMID: 11353834 PMCID: PMC33427 DOI: 10.1073/pnas.101537298] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine K(m) values, the severe impairment in transport resulted from drastically ( approximately 20-fold) reduced V(max) values. Because these transporters were correctly targeted to the plasma membrane, the reduction in V(max) apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1
Collapse
Affiliation(s)
- G Vasudevan
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | |
Collapse
|
242
|
Leung GP, Ward JL, Wong PY, Tse CM. Characterization of nucleoside transport systems in cultured rat epididymal epithelium. Am J Physiol Cell Physiol 2001; 280:C1076-82. [PMID: 11287319 DOI: 10.1152/ajpcell.2001.280.5.c1076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na(+) dependent, while 30% was Na(+) independent. The Na(+)-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na(+)-dependent [(3)H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na(+)-dependent [(3)H]guanosine uptake was inhibited by thymidine by 20% and Na(+)-dependent [(3)H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na(+)-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma.
Collapse
Affiliation(s)
- G P Leung
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
243
|
Jennings LL, Hao C, Cabrita MA, Vickers MF, Baldwin SA, Young JD, Cass CE. Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neuropharmacology 2001; 40:722-31. [PMID: 11311901 DOI: 10.1016/s0028-3908(00)00207-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nucleoside transport processes play an important role in human cells in salvage of nucleosides used in the biosynthesis of nucleic acids and in regulating endogenous adenosine concentrations in the human central nervous system (CNS). By altering the levels of adenosine available to interact with cell-surface receptors, nucleoside transporters have profound effects on the ability of adenosine to modulate neurotransmission, vascular tone and other physiological events. Although the human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) are believed to play a crucial role in modulating brain function, their distribution within the major divisions of the human CNS is not known. In this work, antibodies specific for hENT1 and hENT2 were produced against fragments of the transporter proteins and used for immunoblot analysis of enriched membrane fractions prepared from several regions of the human brain. While hENT1 was most prevalent in the frontal and parietal lobes of the cerebral cortex, thalamus, midbrain and basal ganglia, hENT2 was concentrated in the cerebellum and brainstem regions, particularly the pons. The apparent reciprocal distribution of hENT1 and hENT2 in human brain suggests that these nucleoside transporter proteins are produced in distinct regions of the CNS where they function in nucleoside salvage and/or regulation of exogenous adenosine. Within the brain regions that were investigated, the pattern of hENT1 distribution correlated well with adenosine A(1) receptor abundance. The regional co-localization of hENT1 and A(1) receptor protein suggests an important role of hENT1-mediated transport process in the control of neuromodulatory actions mediated by adenosine A(1) receptors in human brain.
Collapse
Affiliation(s)
- L L Jennings
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
A comprehensive classification system for transmembrane molecular transporters has been proposed. This system is based on (i) mode of transport and energy-coupling mechanism, (ii) protein phylogenetic family, (iii) phylogenetic cluster, and (iv) substrate specificity. The proposed "Transport Commission" (TC) system is superficially similar to that implemented decades ago by the Enzyme Commission for enzymes, but it differs from the latter system in that it uses phylogenetic and functional data for classification purposes. Very few families of transporters include members that do not function exclusively in transport. Analyses reported reveal that channels, primary carriers, secondary carriers (uni-, sym-, and antiporters), and group translocators comprise distinct categories of transporters, and that transport mode and energy coupling are relatively immutable characteristics. By contrast, substrate specificity and polarity of transport are often readily mutable. Thus, with very few exceptions, a unified family of transporters includes members that function by a single transport mode and energy-coupling mechanism although a variety of substrates may be transported with either inwardly or outwardly directed polarity. The TC system allows cross-referencing according to substrates transported and protein sequence database accession numbers. Thus, familial assignments of newly sequenced transport proteins are facilitated. In this article I examine families of transporters that are eukaryotic specific. These families include (i) channel proteins, mostly from animals; (ii) facilitators and secondary active transport carriers; (iii) a few ATP-dependent primary active transporters; and (iv) transporters of unknown mode of action or energy-coupling mechanism. None of the several ATP-independent primary active transport energy-coupling mechanisms found in prokaryotes is represented within the eukaryotic-specific families. The analyses reported provide insight into transporter families that may have arisen in eukaryotes after the separation of eukaryotes from archaea and bacteria. On the basis of the reported analyses, it is suggested that the horizontal transfer of genes encoding transport proteins between eukaryotes and members of the other two domains of life occurred very infrequently during evolutionary history.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
245
|
Abstract
Protozoan parasites are incapable of synthesizing purine nucleotides de novo and so must salvage preformed purines from their hosts. This process of purine acquisition is initiated by the translocation of preformed host purines across parasite or host membranes. Here, we report upon the identification and isolation of DNAs encoding parasite nucleoside transporters and the functional characterization of these proteins in various expression systems. These potential approaches provide a powerful approach for a thorough molecular and biochemical dissection of nucleoside transport in protozoan parasites.
Collapse
Affiliation(s)
- N S Carter
- Dept of Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|
246
|
Marshman E, Taylor GA, Thomas HD, Newell DR, Curtin NJ. Hypoxanthine transport in human tumour cell lines: relationship to the inhibition of hypoxanthine rescue by dipyridamole. Biochem Pharmacol 2001; 61:477-84. [PMID: 11226382 DOI: 10.1016/s0006-2952(00)00574-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxanthine (HPX) uptake was investigated in four human tumour cell lines previously characterised as being sensitive (ds: A549 and MCF7) or insensitive (di: COR-L23 and T-47D) to dipyridamole (DP)-induced inhibition of HPX rescue from antipurine antifolate-induced growth inhibition. The aim of the study was to determine the mechanism underlying the differential sensitivity of HPX rescue to DP. The time-course of HPX uptake in the two ds cell lines was different in comparison to the two di cell lines. The initial rate of HPX uptake in the di cell lines was more rapid than in the ds cell lines such that at 60 sec the amount of HPX taken up by the former was 2-6 times higher than that taken up by the later. The K(t) and T(max) for HPX transport in di COR-L23 cells were 870 microM and 4.75 microM/10(6) cells/min and 1390 microM and 1.78 microM/10(6) cells/min in ds A549 cells. HPX transport was not sodium-dependent in these cells. Equilibrative nucleoside transporter 2 (ENT2)-mediated thymidine transport was also higher in di cells. DP inhibited HPX uptake into ds cell lines by > or =48% and by < or =20% in the di cell lines. Competition studies with HPX and thymidine transport via ENT2 indicated an overlap between nucleoside and nucleobase transport transporters in the breast cancer cell lines (MCF7 and T-47D). These studies showed that more rapid and extensive HPX uptake, as well as reduced sensitivity to DP inhibition, is associated with the inability of DP to prevent HPX rescue from antipurine antifolate-induced growth inhibition in certain human tumour cell lines.
Collapse
Affiliation(s)
- E Marshman
- Cancer Research Unit, Medical School, University of Newcastle upon Tyne, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
247
|
Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM, Ritzel RG, Mowles DA, Carpenter P, Chen XZ, Karpinski E, Hyde RJ, Baldwin SA, Cass CE, Young JD. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 2001; 276:2914-27. [PMID: 11032837 DOI: 10.1074/jbc.m007746200] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human concentrative (Na(+)-linked) plasma membrane transport proteins hCNT1 and hCNT2 are selective for pyrimidine nucleosides (system cit) and purine nucleosides (system cif), respectively. Both have homologs in other mammalian species and belong to a gene family (CNT) that also includes hfCNT, a newly identified broad specificity pyrimidine and purine Na(+)-nucleoside symporter (system cib) from the ancient marine vertebrate, the Pacific hagfish (Eptatretus stouti). We now report the cDNA cloning and characterization of cib homologs of hfCNT from human mammary gland, differentiated human myeloid HL-60 cells, and mouse liver. The 691- and 703-residue human and mouse proteins, designated hCNT3 and mCNT3, respectively, were 79% identical in amino acid sequence and contained 13 putative transmembrane helices. hCNT3 was 48, 47, and 57% identical to hCNT1, hCNT2, and hfCNT, respectively. When produced in Xenopus oocytes, both proteins exhibited Na(+)-dependent cib-type functional activities. hCNT3 was electrogenic, and a sigmoidal dependence of uridine influx on Na(+) concentration indicated a Na(+):uridine coupling ratio of at least 2:1 for both hCNT3 and mCNT3 (cf 1:1 for hCNT1/2). Phorbol myristate acetate-induced differentiation of HL-60 cells led to the parallel appearance of cib-type activity and hCNT3 mRNA. Tissues containing hCNT3 transcripts included pancreas, bone marrow, trachea, mammary gland, liver, prostate, and regions of intestine, brain, and heart. The hCNT3 gene mapped to chromosome 9q22.2 and included an upstream phorbol myristate acetate response element.
Collapse
Affiliation(s)
- M W Ritzel
- Membrane Transport Research Group, Departments of Physiology, Oncology, and Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Yao SY, Sundaram M, Chomey EG, Cass CE, Baldwin SA, Young JD. Identification of Cys140 in helix 4 as an exofacial cysteine residue within the substrate-translocation channel of rat equilibrative nitrobenzylthioinosine (NBMPR)-insensitive nucleoside transporter rENT2. Biochem J 2001; 353:387-93. [PMID: 11139404 PMCID: PMC1221582 DOI: 10.1042/0264-6021:3530387] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human and rat equilibrative nucleoside transporter proteins hENT1, rENT1, hENT2 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs), and are distinguished functionally by differences in transport of nucleobases and sensitivity to inhibition by nitrobenzylthioinosine (NBMPR) and vasoactive drugs. In the present study, we have produced recombinant hENT1, rENT1, hENT2 and rENT2 in Xenopus oocytes and investigated uridine transport following exposure to the impermeant thiol-reactive reagent p-chloromercuriphenyl sulphonate (PCMBS). PCMBS caused reversible inhibition of uridine influx by rENT2, but had no effect on hENT1, hENT2 or rENT1. This difference correlated with the presence in rENT2 of a unique Cys residue (Cys(140)) in the outer half of TM4 that was absent from the other ENTs. Mutation of Cys(140) to Ser produced a functional protein (rENT2/C140S) that was insensitive to inhibition by PCMBS, identifying Cys(140) as the exofacial Cys residue in rENT2 responsible for PCMBS inhibition. Uridine protected wild-type rENT2 against PCMBS inhibition, suggesting that Cys(140) in TM4 lies within or is closely adjacent to the substrate-translocation channel of the transporter. TM4 has been shown previously to be within a structural domain (TMs 3-6) responsible for interactions with NBMPR, vasoactive drugs and nucleobases.
Collapse
Affiliation(s)
- S Y Yao
- Membrane Transport Research Group, University of Alberta, Edmonton, Alberta, Canada T6G 2H7 and Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
249
|
Guieu R, Brunet P, Sampol J, Bechis G, Fenouillet E, Mege JL, Capo C, Vitte J, Ibrahim Z, Carrega L, Lerda D, Rochat H, Berland Y, Dussol B. Adenosine and hemodialysis in humans. J Investig Med 2001; 49:56-67. [PMID: 11217148 DOI: 10.2310/6650.2001.34091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infections and hypotension are serious complications that develop during hemodialysis (HD) treatment. Adenosine (ADO), a strong hypotensive and immunosuppressive agent, may participate in these two HD complications, because high concentrations of ADO metabolites are found in dialyzed human plasma. ADO, which is released by endothelial cells, is quickly transformed into inosine (INO) by plasmatic ADO deaminase (ADA) and mononuclear cell ADO deaminase (MCADA). In plasma, the degradation of ADO into INO and its uptake by red blood cells (RBC) are both very rapid, resulting in the short half-life of ADO in blood. METHODS Using liquid chromatography, we evaluated ADO and INO plasma concentrations before and after HD session. RESULTS Before the HD session, ADO and INO plasma concentrations were higher in hemodialyzed patients than in controls and in peritoneally dialyzed patients. At the end of the HD session, ADO plasma concentration was increased. ADO plasma concentration for the undialyzed patients was in the same range as that of the controls. Before HD, ADA activity was higher in hemodialyzed patients (559 +/- 349 IU) than in controls (219 +/- 48 IU), and the activity rose during the session (665 +/- 135 IU). ADA activity in the undialyzed patients (222 +/- 80 IU) was in the same range as that of the controls (219 +/- 48 IU). Before the HD session, the MCADA activity (247 +/- 144 IU) was lower than in controls (624 +/- 99 IU). HD did not modify ADO RBC uptake. ADO inhibited mononuclear cell proliferation and interferon-gamma production in humans. Finally, as much as 50 microM INO does not inhibit ADO uptake by RBC and does not modify ADA and MCADA activities. CONCLUSIONS These data indicate that chronic HD inhibited MCADA activity and increased ADO plasma concentration. Both high ADO plasma concentration and low MCADA activity may be involved in dialysis-induced immune system failure and thereby favor infectious diseases.
Collapse
Affiliation(s)
- R Guieu
- UMR CNRS 6560, Faculté de Médecine, Secteur Nord, Bd P. Dramard, 13015 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Pastor-Anglada M, Baldwin SA. Recent advances in the molecular biology and physiology of nucleoside and nucleobase transporters. Drug Dev Res 2001. [DOI: 10.1002/ddr.1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|