201
|
Zhang Y, Chen G, Deng L, Gao B, Yang J, Ding C, Zhang Q, Ouyang W, Guo M, Wang W, Liu B, Zhang Q, Sung WK, Yan J, Li G, Li X. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Res 2023; 51:9001-9018. [PMID: 37572350 PMCID: PMC10516653 DOI: 10.1093/nar/gkad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Photoperiods integrate with the circadian clock to coordinate gene expression rhythms and thus ensure plant fitness to the environment. Genome-wide characterization and comparison of rhythmic genes under different light conditions revealed delayed phase under constant darkness (DD) and reduced amplitude under constant light (LL) in rice. Interestingly, ChIP-seq and RNA-seq profiling of rhythmic genes exhibit synchronous circadian oscillation in H3K9ac modifications at their loci and long non-coding RNAs (lncRNAs) expression at proximal loci. To investigate how gene expression rhythm is regulated in rice, we profiled the open chromatin regions and transcription factor (TF) footprints by time-series ATAC-seq. Although open chromatin regions did not show circadian change, a significant number of TFs were identified to rhythmically associate with chromatin and drive gene expression in a time-dependent manner. Further transcriptional regulatory networks mapping uncovered significant correlation between core clock genes and transcription factors involved in light/temperature signaling. In situ Hi-C of ZT8-specific expressed genes displayed highly connected chromatin association at the same time, whereas this ZT8 chromatin connection network dissociates at ZT20, suggesting the circadian control of gene expression by dynamic spatial chromatin conformation. These findings together implicate the existence of a synchronization mechanism between circadian H3K9ac modifications, chromatin association of TF and gene expression, and provides insights into circadian dynamics of spatial chromatin conformation that associate with gene expression rhythms.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenxia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Beibei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
202
|
Hu H, Ho D, Tan DS, MacCarthy C, Yu CH, Weng M, Schöler H, Jauch R. Evaluation of the determinants for improved pluripotency induction and maintenance by engineered SOX17. Nucleic Acids Res 2023; 51:8934-8956. [PMID: 37607832 PMCID: PMC10516664 DOI: 10.1093/nar/gkad597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023] Open
Abstract
An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.
Collapse
Affiliation(s)
- Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Derek Hoi Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Cheng-han Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| | | | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| |
Collapse
|
203
|
Sockell A, Wong W, Longwell S, Vu T, Karlsson K, Mokhtari D, Schaepe J, Lo YH, Cornelius V, Kuo C, Van Valen D, Curtis C, Fordyce PM. A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. Cell Syst 2023; 14:764-776.e6. [PMID: 37734323 DOI: 10.1016/j.cels.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/24/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Organoids are powerful experimental models for studying the ontogeny and progression of various diseases including cancer. Organoids are conventionally cultured in bulk using an extracellular matrix mimic. However, bulk-cultured organoids physically overlap, making it impossible to track the growth of individual organoids over time in high throughput. Moreover, local spatial variations in bulk matrix properties make it difficult to assess whether observed phenotypic heterogeneity between organoids results from intrinsic cell differences or differences in the microenvironment. Here, we developed a microwell-based method that enables high-throughput quantification of image-based parameters for organoids grown from single cells, which can further be retrieved from their microwells for molecular profiling. Coupled with a deep learning image-processing pipeline, we characterized phenotypic traits including growth rates, cellular movement, and apical-basal polarity in two CRISPR-engineered human gastric organoid models, identifying genomic changes associated with increased growth rate and changes in accessibility and expression correlated with apical-basal polarity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Alexandra Sockell
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wing Wong
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Scott Longwell
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Thy Vu
- Department of Biochemistry, UT Austin, Austin, TX 78712, USA
| | - Kasper Karlsson
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Vincent Cornelius
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Calvin Kuo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
204
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Matsui H, Silva NS, Joshua IN, Luchessi AD, Young Greenwald WW, D'Antonio M, Pera MF, Frazer KA. Analysis of regulatory network modules in hundreds of human stem cell lines reveals complex epigenetic and genetic factors contribute to pluripotency state differences between subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541447. [PMID: 37292794 PMCID: PMC10245835 DOI: 10.1101/2023.05.20.541447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.
Collapse
|
205
|
Blackshaw S, Lyu P, Zhai Y, Qian J, Iribarne M, Serjanov D, Campbell L, Boyd P, Hyde D, Palazzo I, Hoang T, Nagashima M, Silva N, Hitchcock P. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. RESEARCH SQUARE 2023:rs.3.rs-3294233. [PMID: 37790324 PMCID: PMC10543505 DOI: 10.21203/rs.3.rs-3294233/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
Affiliation(s)
| | | | - Yijie Zhai
- Johns Hopkins University School of Medicine
| | - Jiang Qian
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Jatzlau J, Mendez PL, Altay A, Raaz L, Zhang Y, Mähr S, Sesver A, Reichenbach M, Mundlos S, Vingron M, Knaus P. Fluid shear stress-modulated chromatin accessibility reveals the mechano-dependency of endothelial SMAD1/5-mediated gene transcription. iScience 2023; 26:107405. [PMID: 37680470 PMCID: PMC10481294 DOI: 10.1016/j.isci.2023.107405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and fluid shear stress (FSS) mediate complementary functions in vascular homeostasis and disease development. It remains to be shown whether altered chromatin accessibility downstream of BMP and FSS offers a crosstalk level to explain changes in SMAD-dependent transcription. Here, we employed ATAC-seq to analyze arterial endothelial cells stimulated with BMP9 and/or FSS. We found that BMP9-sensitive regions harbor non-palindromic GC-rich SMAD-binding elements (GGCTCC) and 69.7% of these regions become BMP-insensitive in the presence of FSS. While GATA and KLF transcription factor (TF) motifs are unique to BMP9- and FSS-sensitive regions, respectively, SOX motifs are common to both. Finally, we show that both SOX(13/18) and GATA(2/3/6) family members are directly upregulated by SMAD1/5. These findings highlight the mechano-dependency of SMAD-signaling by a sequential mechanism of first elevated pioneer TF expression, allowing subsequent chromatin opening to eventually providing accessibility to novel SMAD binding sites.
Collapse
Affiliation(s)
- Jerome Jatzlau
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Paul-Lennard Mendez
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lion Raaz
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Yufei Zhang
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sophia Mähr
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Akin Sesver
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Maria Reichenbach
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| |
Collapse
|
207
|
Ma Z, Zhang X, Zhong W, Yi H, Chen X, Zhao Y, Ma Y, Song E, Xu T. Deciphering early human pancreas development at the single-cell level. Nat Commun 2023; 14:5354. [PMID: 37660175 PMCID: PMC10475098 DOI: 10.1038/s41467-023-40893-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/15/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding pancreas development can provide clues for better treatments of pancreatic diseases. However, the molecular heterogeneity and developmental trajectory of the early human pancreas are poorly explored. Here, we performed large-scale single-cell RNA sequencing and single-cell assay for transposase accessible chromatin sequencing of human embryonic pancreas tissue obtained from first-trimester embryos. We unraveled the molecular heterogeneity, developmental trajectories and regulatory networks of the major cell types. The results reveal that dorsal pancreatic multipotent cells in humans exhibit different gene expression patterns than ventral multipotent cells. Pancreato-biliary progenitors that generate ventral multipotent cells in humans were identified. Notch and MAPK signals from mesenchymal cells regulate the differentiation of multipotent cells into trunk and duct cells. Notably, we identified endocrine progenitor subclusters with different differentiation potentials. Although the developmental trajectories are largely conserved between humans and mice, some distinct gene expression patterns have also been identified. Overall, we provide a comprehensive landscape of early human pancreas development to understand its lineage transitions and molecular complexity.
Collapse
Affiliation(s)
- Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Wen Zhong
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, 581 83, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Xiaowei Chen
- Center for High Throughput Sequencing, Core Facility for Protein Research, Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinsuo Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China.
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
208
|
Zhong J, Qiu M, Meng Y, Wang P, Chen S, Wang L. Single-cell multi-omics sequencing reveals the immunological disturbance underlying STAT3-V637M Hyper-IgE syndrome. Int Immunopharmacol 2023; 122:110624. [PMID: 37480751 DOI: 10.1016/j.intimp.2023.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by, among others, the excessive production of IgE and repetitive bacterial/fungal infections. Mutations in STAT3, a transcription factor that orchestrates immune responses, may cause HIES, but the underlying mechanisms are not fully understood. Here, we used multi-omic approaches to comprehensively decipher the immune disturbance in a male HIES patient harboring STAT3-V637M. In his peripheral blood mononuclear cell (PBMC) we found significant clonal expansion of CD8 T cells (with increased CD8 subunits expression, potentially enhancing responsiveness to MHC I molecules), but not in his CD4 T cells and B cells. Although his B cells exhibited a higher potential in producing immunoglobulin, elevated SPIC binding might bias the products toward IgE isotype. Immune checkpoint inhibitors, including CTLA4, LAG3, were overexpressed in his PBMC-CD4 T cells, accompanied by reduced CD28 and IL6ST (gp130) expression. In his CD4 T cells, integrative analyses predicted upstream transcription factors (including ETV6, KLF13, and RORA) for LAG3, IL6ST, and CD28, respectively. The down-regulation of phagocytosis and nitric oxide synthesis-related genes in his PBMC-monocytes seem to be the culprit of his disseminated bacterial/fungal infection. Counterintuitively, in his PBMC we predicted increased STAT3 binding in both naïve and mature CD4 compartments, although this was not observed in most of his PBMC. In his bronchoalveolar lavage fluid (BALF), we found two macrophage subtypes with anti-bacterial properties, which were identified by CXCL8/S100A8/S100A9, or SOD2, respectively. Together, we described how the immune cell landscape was disturbed in STAT3-V637M HIES, providing a resource for further studies.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China
| | - Minzhi Qiu
- Health Management Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yu Meng
- Department of Quality Control, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China
| | - Peizhong Wang
- Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shanze Chen
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| | - Lingwei Wang
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
209
|
Lara-Astiaso D, Goñi-Salaverri A, Mendieta-Esteban J, Narayan N, Del Valle C, Gross T, Giotopoulos G, Beinortas T, Navarro-Alonso M, Aguado-Alvaro LP, Zazpe J, Marchese F, Torrea N, Calvo IA, Lopez CK, Alignani D, Lopez A, Saez B, Taylor-King JP, Prosper F, Fortelny N, Huntly BJP. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat Genet 2023; 55:1542-1554. [PMID: 37580596 PMCID: PMC10484791 DOI: 10.1038/s41588-023-01471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- David Lara-Astiaso
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| | | | | | - Nisha Narayan
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Cynthia Del Valle
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Tumas Beinortas
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Mar Navarro-Alonso
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Jon Zazpe
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Marchese
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Natalia Torrea
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Isabel A Calvo
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cecile K Lopez
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Diego Alignani
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Aitziber Lopez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Borja Saez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Felipe Prosper
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Nikolaus Fortelny
- Department of Biosciences & Medical Biology, University of Salzburg, Salzburg, Austria.
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
210
|
Zhu W, Li H, Dong P, Ni X, Fan M, Yang Y, Xu S, Xu Y, Qian Y, Chen Z, Lü P. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. PLANT PHYSIOLOGY 2023; 193:855-873. [PMID: 37279567 PMCID: PMC10469544 DOI: 10.1093/plphys/kiad322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.
Collapse
Affiliation(s)
- Wenjun Zhu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Li
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xueting Ni
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minlei Fan
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbing Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangwen Qian
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Zhuo Chen
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
211
|
Schmidt C, Cohen S, Gudenas BL, Husain S, Carlson A, Westelman S, Wang L, Phillips JJ, Northcott PA, Weiss WA, Schwer B. PRDM6 promotes medulloblastoma by repressing chromatin accessibility and altering gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555389. [PMID: 37693484 PMCID: PMC10491178 DOI: 10.1101/2023.08.29.555389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
SNCAIP duplication may promote Group 4 medulloblastoma via induction of PRDM6, a poorly characterized member of the PRDF1 and RIZ1 homology domain-containing (PRDM) family of transcription factors. Here, we investigated the function of PRDM6 in human hindbrain neuroepithelial stem cells and tested PRDM6 as a driver of Group 4 medulloblastoma. We report that human PRDM6 localizes predominantly to the nucleus, where it causes widespread repression of chromatin accessibility and complex alterations of gene expression patterns. Genome-wide mapping of PRDM6 binding reveals that PRDM6 binds to chromatin regions marked by histone H3 lysine 27 trimethylation that are located within, or proximal to, genes. Moreover, we show that PRDM6 expression in neuroepithelial stem cells promotes medulloblastoma. Surprisingly, medulloblastomas derived from PRDM6-expressing neuroepithelial stem cells match human Group 3, but not Group 4, medulloblastoma. We conclude that PRDM6 expression has oncogenic potential but is insufficient to drive Group 4 medulloblastoma from neuroepithelial stem cells. We propose that both PRDM6 and additional factors, such as specific cell-of-origin features, are required for Group 4 medulloblastoma. Given the lack of PRDM6 expression in normal tissues and its oncogenic potential shown here, we suggest that PRDM6 inhibition may have therapeutic value in PRDM6-expressing medulloblastomas.
Collapse
|
212
|
Favaro P, Glass DR, Borges L, Baskar R, Reynolds W, Ho D, Bruce T, Tebaykin D, Scanlon VM, Shestopalov I, Bendall SC. Unravelling human hematopoietic progenitor cell diversity through association with intrinsic regulatory factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555623. [PMID: 37693547 PMCID: PMC10491219 DOI: 10.1101/2023.08.30.555623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Pathology, Stanford University
- These authors contributed equally
| | - David R. Glass
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Present address: Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Luciene Borges
- Department of Pathology, Stanford University
- Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
- These authors contributed equally
| | - Reema Baskar
- Department of Pathology, Stanford University
- Present address: Genome Institute of Singapore
| | | | - Daniel Ho
- Department of Pathology, Stanford University
| | | | | | - Vanessa M. Scanlon
- Department of Laboratory Medicine, Yale School of Medicine
- Present address: Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health
| | | | - Sean C. Bendall
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Lead author
| |
Collapse
|
213
|
Xu Z, He L, Wu Y, Yang L, Li C, Wu H. PTEN regulates hematopoietic lineage plasticity via PU.1-dependent chromatin accessibility. Cell Rep 2023; 42:112967. [PMID: 37561626 DOI: 10.1016/j.celrep.2023.112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Collapse
Affiliation(s)
- Zihan Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China
| | - Libing He
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
214
|
Lyu P, Iribarne M, Serjanov D, Zhai Y, Hoang T, Campbell LJ, Boyd P, Palazzo I, Nagashima M, Silva NJ, HItchcock PF, Qian J, Hyde DR, Blackshaw S. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552451. [PMID: 37609307 PMCID: PMC10441373 DOI: 10.1101/2023.08.08.552451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
|
215
|
Saha D, Hailu S, Hada A, Lee J, Luo J, Ranish JA, Lin YC, Feola K, Persinger J, Jain A, Liu B, Lu Y, Sen P, Bartholomew B. The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming. Nat Commun 2023; 14:4682. [PMID: 37542049 PMCID: PMC10403523 DOI: 10.1038/s41467-023-40386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The SWI/SNF ATP-dependent chromatin remodeler is a master regulator of the epigenome, controlling pluripotency and differentiation. Towards the C-terminus of the catalytic subunit of SWI/SNF is a motif called the AT-hook that is evolutionary conserved. The AT-hook is present in many chromatin modifiers and generally thought to help anchor them to DNA. We observe however that the AT-hook regulates the intrinsic DNA-stimulated ATPase activity aside from promoting SWI/SNF recruitment to DNA or nucleosomes by increasing the reaction velocity a factor of 13 with no accompanying change in substrate affinity (KM). The changes in ATP hydrolysis causes an equivalent change in nucleosome movement, confirming they are tightly coupled. The catalytic subunit's AT-hook is required in vivo for SWI/SNF remodeling activity in yeast and mouse embryonic stem cells. The AT-hook in SWI/SNF is required for transcription regulation and activation of stage-specific enhancers critical in cell lineage priming. Similarly, growth assays suggest the AT-hook is required in yeast SWI/SNF for activation of genes involved in amino acid biosynthesis and metabolizing ethanol. Our findings highlight the importance of studying SWI/SNF attenuation versus eliminating the catalytic subunit or completely shutting down its enzymatic activity.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Solomon Hailu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
- Illumina, 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Arjan Hada
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jeff A Ranish
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yuan-Chi Lin
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
- BioAgilytix, Durham, NC, 27713, USA
| | - Kyle Feola
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jim Persinger
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA.
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA.
| |
Collapse
|
216
|
Owen LJ, Rainger J, Bengani H, Kilanowski F, FitzPatrick DR, Papanastasiou AS. Characterization of an eye field-like state during optic vesicle organoid development. Development 2023; 150:dev201432. [PMID: 37306293 PMCID: PMC10445745 DOI: 10.1242/dev.201432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Specification of the eye field (EF) within the neural plate marks the earliest detectable stage of eye development. Experimental evidence, primarily from non-mammalian model systems, indicates that the stable formation of this group of cells requires the activation of a set of key transcription factors. This crucial event is challenging to probe in mammals and, quantitatively, little is known regarding the regulation of the transition of cells to this ocular fate. Using optic vesicle organoids to model the onset of the EF, we generate time-course transcriptomic data allowing us to identify dynamic gene expression programmes that characterize this cellular-state transition. Integrating this with chromatin accessibility data suggests a direct role of canonical EF transcription factors in regulating these gene expression changes, and highlights candidate cis-regulatory elements through which these transcription factors act. Finally, we begin to test a subset of these candidate enhancer elements, within the organoid system, by perturbing the underlying DNA sequence and measuring transcriptomic changes during EF activation.
Collapse
Affiliation(s)
- Liusaidh J. Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jacqueline Rainger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hemant Bengani
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew S. Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
217
|
Rogerson C, Sciacovelli M, Maddalena LA, Pouikli A, Segarra-Mondejar M, Valcarcel-Jimenez L, Schmidt C, Yang M, Ivanova E, Kent J, Mora A, Cheeseman D, Carroll JS, Kelsey G, Frezza C. FOXA2 controls the anti-oxidant response in FH-deficient cells. Cell Rep 2023; 42:112751. [PMID: 37405921 PMCID: PMC10391629 DOI: 10.1016/j.celrep.2023.112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.
Collapse
Affiliation(s)
- Connor Rogerson
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Marco Sciacovelli
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Lucas A Maddalena
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Andromachi Pouikli
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
| | - Marc Segarra-Mondejar
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
| | - Lorea Valcarcel-Jimenez
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
| | - Christina Schmidt
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
| | - Elena Ivanova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Joshua Kent
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, University of Queensland, Molecular Biosciences Building 76, St Lucia, QLD 4072, Australia
| | - Danya Cheeseman
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, Cambridge, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD).
| |
Collapse
|
218
|
Barnett KR, Mobley RJ, Diedrich JD, Bergeron BP, Bhattarai KR, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Mullighan CG, Relling MV, Yang JJ, Evans WE, Savic D. Epigenomic mapping in B-cell acute lymphoblastic leukemia identifies transcriptional regulators and noncoding variants promoting distinct chromatin architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528493. [PMID: 36824825 PMCID: PMC9949063 DOI: 10.1101/2023.02.14.528493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.
Collapse
Affiliation(s)
- Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan D. Diedrich
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kristine R. Crews
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christopher S. Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabeth Paietta
- Department of Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, IL 60637, USA
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Charles G. Mullighan
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mary V. Relling
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jun J. Yang
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| |
Collapse
|
219
|
Dinh DT, Breen J, Nicol B, Foot NJ, Bersten DC, Emery A, Smith KM, Wong YY, Barry SC, Yao HC, Robker RL, Russell DL. Progesterone receptor mediates ovulatory transcription through RUNX transcription factor interactions and chromatin remodelling. Nucleic Acids Res 2023; 51:5981-5996. [PMID: 37099375 PMCID: PMC10325896 DOI: 10.1093/nar/gkad271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Progesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates mammalian fertility. In the ovary, rapid acute induction of PGR is the key determinant of ovulation through transcriptional control of a unique set of genes that culminates in follicle rupture. However, the molecular mechanisms for this specialized PGR function in ovulation is poorly understood. We have assembled a detailed genomic profile of PGR action through combined ATAC-seq, RNA-seq and ChIP-seq analysis in wildtype and isoform-specific PGR null mice. We demonstrate that stimulating ovulation rapidly reprograms chromatin accessibility in two-thirds of sites, correlating with altered gene expression. An ovary-specific PGR action involving interaction with RUNX transcription factors was observed with 70% of PGR-bound regions also bound by RUNX1. These transcriptional complexes direct PGR binding to proximal promoter regions. Additionally, direct PGR binding to the canonical NR3C motif enable chromatin accessibility. Together these PGR actions mediate induction of essential ovulatory genes. Our findings highlight a novel PGR transcriptional mechanism specific to ovulation, providing new targets for infertility treatments or new contraceptives that block ovulation.
Collapse
Affiliation(s)
- Doan T Dinh
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Natalie J Foot
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - David C Bersten
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Alaknanda Emery
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Kirsten M Smith
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Ying Y Wong
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Simon C Barry
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Humphrey H C Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| | - Darryl L Russell
- Robinson Research Institute, School of Biomedicine, Faculty of Health & Medical Sciences, University of Adelaide, Australia
| |
Collapse
|
220
|
de la O S, Yao X, Chang S, Liu Z, Sneddon JB. Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs. Mol Metab 2023; 73:101735. [PMID: 37178817 PMCID: PMC10230264 DOI: 10.1016/j.molmet.2023.101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Collapse
Affiliation(s)
- Sean de la O
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xinkai Yao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sean Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
221
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
222
|
Guetta-Terrier C, Karambizi D, Akosman B, Zepecki JP, Chen JS, Kamle S, Fajardo JE, Fiser A, Singh R, Toms SA, Lee CG, Elias JA, Tapinos N. Chi3l1 Is a Modulator of Glioma Stem Cell States and a Therapeutic Target in Glioblastoma. Cancer Res 2023; 83:1984-1999. [PMID: 37101376 PMCID: PMC10267676 DOI: 10.1158/0008-5472.can-21-3629] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/24/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Chitinase 3-like 1 (Chi3l1) is a secreted protein that is highly expressed in glioblastoma. Here, we show that Chi3l1 alters the state of glioma stem cells (GSC) to support tumor growth. Exposure of patient-derived GSCs to Chi3l1 reduced the frequency of CD133+SOX2+ cells and increased the CD44+Chi3l1+ cells. Chi3l1 bound to CD44 and induced phosphorylation and nuclear translocation of β-catenin, Akt, and STAT3. Single-cell RNA sequencing and RNA velocity following incubation of GSCs with Chi3l1 showed significant changes in GSC state dynamics driving GSCs towards a mesenchymal expression profile and reducing transition probabilities towards terminal cellular states. ATAC-seq revealed that Chi3l1 increases accessibility of promoters containing a Myc-associated zinc finger protein (MAZ) transcription factor footprint. Inhibition of MAZ downregulated a set of genes with high expression in cellular clusters that exhibit significant cell state transitions after treatment with Chi3l1, and MAZ deficiency rescued the Chi3L-induced increase of GSC self-renewal. Finally, targeting Chi3l1 in vivo with a blocking antibody inhibited tumor growth and increased the probability of survival. Overall, this work suggests that Chi3l1 interacts with CD44 on the surface of GSCs to induce Akt/β-catenin signaling and MAZ transcriptional activity, which in turn upregulates CD44 expression in a pro-mesenchymal feed-forward loop. The role of Chi3l1 in regulating cellular plasticity confers a targetable vulnerability to glioblastoma. SIGNIFICANCE Chi3l1 is a modulator of glioma stem cell states that can be targeted to promote differentiation and suppress growth of glioblastoma.
Collapse
Affiliation(s)
- Charlotte Guetta-Terrier
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - David Karambizi
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Bedia Akosman
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - John P. Zepecki
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Jia-Shu Chen
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Suchitra Kamle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - J. Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Steven A. Toms
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Rhode Island Hospital, Providence, Rhode Island
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
223
|
Sandoval L, Mohammed Ismail W, Mazzone A, Dumbrava M, Fernandez J, Munankarmy A, Lasho T, Binder M, Simon V, Kim KH, Chia N, Lee JH, Weroha SJ, Patnaik M, Gaspar-Maia A. Characterization and Optimization of Multiomic Single-Cell Epigenomic Profiling. Genes (Basel) 2023; 14:1245. [PMID: 37372428 PMCID: PMC10297939 DOI: 10.3390/genes14061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The snATAC + snRNA platform allows epigenomic profiling of open chromatin and gene expression with single-cell resolution. The most critical assay step is to isolate high-quality nuclei to proceed with droplet-base single nuclei isolation and barcoding. With the increasing popularity of multiomic profiling in various fields, there is a need for optimized and reliable nuclei isolation methods, mainly for human tissue samples. Herein we compared different nuclei isolation methods for cell suspensions, such as peripheral blood mononuclear cells (PBMC, n = 18) and a solid tumor type, ovarian cancer (OC, n = 18), derived from debulking surgery. Nuclei morphology and sequencing output parameters were used to evaluate the quality of preparation. Our results show that NP-40 detergent-based nuclei isolation yields better sequencing results than collagenase tissue dissociation for OC, significantly impacting cell type identification and analysis. Given the utility of applying such techniques to frozen samples, we also tested frozen preparation and digestion (n = 6). A paired comparison between frozen and fresh samples validated the quality of both specimens. Finally, we demonstrate the reproducibility of scRNA and snATAC + snRNA platform, by comparing the gene expression profiling of PBMC. Our results highlight how the choice of nuclei isolation methods is critical for obtaining quality data in multiomic assays. It also shows that the measurement of expression between scRNA and snRNA is comparable and effective for cell type identification.
Collapse
Affiliation(s)
- Leticia Sandoval
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - Wazim Mohammed Ismail
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - Amelia Mazzone
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - Mihai Dumbrava
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jenna Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.F.); (T.L.)
| | - Amik Munankarmy
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.F.); (T.L.)
| | - Moritz Binder
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.F.); (T.L.)
| | - Vernadette Simon
- Medical Genome Facility, Genome Analysis Core, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kwan Hyun Kim
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jeong-Heon Lee
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| | - S. John Weroha
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Mrinal Patnaik
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.F.); (T.L.)
| | - Alexandre Gaspar-Maia
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.S.); (W.M.I.); (A.M.); (M.D.); (A.M.); (J.-H.L.)
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.B.); (K.H.K.); (M.P.)
| |
Collapse
|
224
|
Wang W, Chen K, Chen N, Gao J, Zhang W, Gong J, Tong S, Chen Y, Li Y, Feng Y, Jiang Y, Ma T. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. TREE PHYSIOLOGY 2023; 43:1023-1041. [PMID: 36851850 DOI: 10.1093/treephys/tpad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/11/2023]
Abstract
Perennial trees develop and coordinate endogenous response signaling pathways, including their crosstalk and convergence, to cope with various environmental stresses which occur simultaneously in most cases. These processes are involved in gene transcriptional regulations that depend on dynamic interactions between regulatory proteins and corresponding chromatin regions, but the mechanisms remain poorly understood in trees. In this study, we detected chromatin regulatory landscapes of poplar under abscisic acid, methyl jasmonate, salicylic acid and sodium chloride (NaCl) treatment, through integrating ATAC-seq and RNA-seq data. Our results showed that the degree of chromatin accessibility for a given gene is closely related to its expression level. However, unlike the gene expression that shows treatment-specific response patterns, changes in chromatin accessibility exhibit high similarities under these treatments. We further proposed and experimentally validated that a homologous gene copy of RESPONSIVE TO DESICCATION 26 mediates the crosstalk between jasmonic acid and NaCl signaling pathways by directly regulating the stress-responsive genes and that circadian clock-related transcription factors like REVEILLE8 play a central role in response of poplar to these treatments. Overall, our study provides a chromatin insight into the molecular mechanism of transcription regulatory networks in response to different environmental stresses and raises the key roles of the circadian clock of poplar to adapt to adverse environments.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kai Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinwen Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenyan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jue Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanlin Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
225
|
Kshirsagar A, Doroshev SM, Gorelik A, Olender T, Sapir T, Tsuboi D, Rosenhek-Goldian I, Malitsky S, Itkin M, Argoetti A, Mandel-Gutfreund Y, Cohen SR, Hanna JH, Ulitsky I, Kaibuchi K, Reiner O. LIS1 RNA-binding orchestrates the mechanosensitive properties of embryonic stem cells in AGO2-dependent and independent ways. Nat Commun 2023; 14:3293. [PMID: 37280197 DOI: 10.1038/s41467-023-38797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Lissencephaly-1 (LIS1) is associated with neurodevelopmental diseases and is known to regulate the molecular motor cytoplasmic dynein activity. Here we show that LIS1 is essential for the viability of mouse embryonic stem cells (mESCs), and it governs the physical properties of these cells. LIS1 dosage substantially affects gene expression, and we uncovered an unexpected interaction of LIS1 with RNA and RNA-binding proteins, most prominently the Argonaute complex. We demonstrate that LIS1 overexpression partially rescued the extracellular matrix (ECM) expression and mechanosensitive genes conferring stiffness to Argonaute null mESCs. Collectively, our data transforms the current perspective on the roles of LIS1 in post-transcriptional regulation underlying development and mechanosensitive processes.
Collapse
Affiliation(s)
- Aditya Kshirsagar
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Svetlana Maslov Doroshev
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daisuke Tsuboi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
226
|
Wolpe JB, Martins AL, Guertin MJ. Correction of transposase sequence bias in ATAC-seq data with rule ensemble modeling. NAR Genom Bioinform 2023; 5:lqad054. [PMID: 37274120 PMCID: PMC10236359 DOI: 10.1093/nargab/lqad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Chromatin accessibility assays have revolutionized the field of transcription regulation by providing single-nucleotide resolution measurements of regulatory features such as promoters and transcription factor binding sites. ATAC-seq directly measures how well the Tn5 transposase accesses chromatinized DNA. Tn5 has a complex sequence bias that is not effectively scaled with traditional bias-correction methods. We model this complex bias using a rule ensemble machine learning approach that integrates information from many input k-mers proximal to the ATAC sequence reads. We effectively characterize and correct single-nucleotide sequence biases and regional sequence biases of the Tn5 enzyme. Correction of enzymatic sequence bias is an important step in interpreting chromatin accessibility assays that aim to infer transcription factor binding and regulatory activity of elements in the genome.
Collapse
Affiliation(s)
- Jacob B Wolpe
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - André L Martins
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
227
|
Meng Y, Carrelha J, Drissen R, Ren X, Zhang B, Gambardella A, Valletta S, Thongjuea S, Jacobsen SE, Nerlov C. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat Cell Biol 2023; 25:812-822. [PMID: 37127714 DOI: 10.1038/s41556-023-01137-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Haematopoietic stem cells (HSCs) are multipotent, but individual HSCs can show restricted lineage output in vivo. Currently, the molecular mechanisms and physiological role of HSC fate restriction remain unknown. Here we show that lymphoid fate is epigenetically but not transcriptionally primed in HSCs. In multi-lineage HSCs that produce lymphocytes, lymphoid-specific upstream regulatory elements (LymUREs) but not promoters are preferentially accessible compared with platelet-biased HSCs that do not produce lymphoid cell types, providing transcriptionally silent lymphoid lineage priming. Runx3 is preferentially expressed in multi-lineage HSCs, and reinstating Runx3 expression increases LymURE accessibility and lymphoid-primed multipotent progenitor 4 (MPP4) output in old, platelet-biased HSCs. In contrast, platelet-biased HSCs show elevated levels of epigenetic platelet-lineage priming and give rise to MPP2 progenitors with molecular platelet bias. These MPP2 progenitors generate platelets with faster kinetics and through a more direct cellular pathway compared with MPP2s derived from multi-lineage HSCs. Epigenetic programming therefore predicts both fate restriction and differentiation kinetics in HSCs.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joana Carrelha
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Roy Drissen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xiying Ren
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bowen Zhang
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adriana Gambardella
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simona Valletta
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sten Eirik Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
228
|
Stewart KS, Gonzales KAU, Yuan S, Tierney MT, Bonny AR, Yang Y, Infarinato NR, Cowley CJ, Levorse JM, Pasolli HA, Ghosh S, Rothlin CV, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541773. [PMID: 37293114 PMCID: PMC10245816 DOI: 10.1101/2023.05.22.541773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Macrophages and dendritic cells have long been appreciated for their ability to migrate to and engulf dying cells and debris, including some of the billions of cells that are naturally eliminated from our body daily. However, a substantial number of these dying cells are cleared by 'non-professional phagocytes', local epithelial cells that are critical to organismal fitness. How non-professional phagocytes sense and digest nearby apoptotic corpses while still performing their normal tissue functions is unclear. Here, we explore the molecular mechanisms underlying their multifunctionality. Exploiting the cyclical bouts of tissue regeneration and degeneration during the hair cycle, we show that stem cells can transiently become non-professional phagocytes when confronted with dying cells. Adoption of this phagocytic state requires both local lipids produced by apoptotic corpses to activate RXRα, and tissue-specific retinoids for RARγ activation. This dual factor dependency enables tight regulation of the genes requisite to activate phagocytic apoptotic clearance. The tunable phagocytic program we describe here offers an effective mechanism to offset phagocytic duties against the primary stem cell function of replenishing differentiated cells to preserve tissue integrity during homeostasis. Our findings have broad implications for other non-motile stem or progenitor cells which experience cell death in an immune-privileged niche.
Collapse
Affiliation(s)
- Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Kevin AU Gonzales
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Shaopeng Yuan
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Alain R Bonny
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Nicole R Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Christopher J Cowley
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - John M Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| |
Collapse
|
229
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
230
|
Zúñiga-Hernández JM, Olivares GH, Olguín P, Glavic A. Low-nutrient diet in Drosophila larvae stage causes enhancement in dopamine modulation in adult brain due epigenetic imprinting. Open Biol 2023; 13:230049. [PMID: 37161288 PMCID: PMC10170216 DOI: 10.1098/rsob.230049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.
Collapse
Affiliation(s)
- J M Zúñiga-Hernández
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Gonzalo H Olivares
- Escuela de Kinesiología, Facultad de Medicina, Center of Integrative Biology (CIB), Universidad Mayor, Chile
| | - Patricio Olguín
- Programa de Genética Humana, ICBM, Biomedical Neuroscience Institute, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile
| | - Alvaro Glavic
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| |
Collapse
|
231
|
Zhong Z, Xue Y, Harris CJ, Wang M, Li Z, Ke Y, Liu M, Zhou J, Jami-Alahmadi Y, Feng S, Wohlschlegel JA, Jacobsen SE. MORC proteins regulate transcription factor binding by mediating chromatin compaction in active chromatin regions. Genome Biol 2023; 24:96. [PMID: 37101218 PMCID: PMC10131428 DOI: 10.1186/s13059-023-02939-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The microrchidia (MORC) proteins are a family of evolutionarily conserved GHKL-type ATPases involved in chromatin compaction and gene silencing. Arabidopsis MORC proteins act in the RNA-directed DNA methylation (RdDM) pathway, where they act as molecular tethers to ensure the efficient establishment of RdDM and de novo gene silencing. However, MORC proteins also have RdDM-independent functions although their underlying mechanisms are unknown. RESULTS In this study, we examine MORC binding regions where RdDM does not occur in order to shed light on the RdDM-independent functions of MORC proteins. We find that MORC proteins compact chromatin and reduce DNA accessibility to transcription factors, thereby repressing gene expression. We also find that MORC-mediated repression of gene expression is particularly important under conditions of stress. MORC-regulated transcription factors can in some cases regulate their own transcription, resulting in feedback loops. CONCLUSIONS Our findings provide insights into the molecular mechanisms of MORC-mediated chromatin compaction and transcription regulation.
Collapse
Affiliation(s)
- Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yan Xue
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yunqing Ke
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Mukun Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Jessica Zhou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
232
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
233
|
Marlétaz F, Couloux A, Poulain J, Labadie K, Da Silva C, Mangenot S, Noel B, Poustka AJ, Dru P, Pegueroles C, Borra M, Lowe EK, Lhomond G, Besnardeau L, Le Gras S, Ye T, Gavriouchkina D, Russo R, Costa C, Zito F, Anello L, Nicosia A, Ragusa MA, Pascual M, Molina MD, Chessel A, Di Carlo M, Turon X, Copley RR, Exposito JY, Martinez P, Cavalieri V, Ben Tabou de Leon S, Croce J, Oliveri P, Matranga V, Di Bernardo M, Morales J, Cormier P, Geneviève AM, Aury JM, Barbe V, Wincker P, Arnone MI, Gache C, Lepage T. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. CELL GENOMICS 2023; 3:100295. [PMID: 37082140 PMCID: PMC10112332 DOI: 10.1016/j.xgen.2023.100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/24/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Albert J. Poustka
- Evolution and Development Group, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
- Dahlem Center for Genome Research and Medical Systems Biology (Environmental and Phylogenomics Group), 12489 Berlin, Germany
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Cinta Pegueroles
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - Marco Borra
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Elijah K. Lowe
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guy Lhomond
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Stéphanie Le Gras
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Tao Ye
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, 904-0495 Onna-son, Japan
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Letizia Anello
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Aldo Nicosia
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Marta Pascual
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - M. Dolores Molina
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Aline Chessel
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Marta Di Carlo
- Institute for Biomedical Research and Innovation (CNR), 90146 Palermo, Italy
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB, CSIC), 17300 Blanes, Spain
| | - Richard R. Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 69367 Lyon, France
| | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Smadar Ben Tabou de Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, 31095 Haifa, Israel
| | - Jenifer Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Paola Oliveri
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 90146 Palermo, Italy
| | - Julia Morales
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Patrick Cormier
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Anne-Marie Geneviève
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650 Banyuls/Mer, France
| | - Jean Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Christian Gache
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Thierry Lepage
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| |
Collapse
|
234
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529579. [PMID: 37090616 PMCID: PMC10120690 DOI: 10.1101/2023.02.22.529579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| |
Collapse
|
235
|
Li D, Zhan Y, Wang N, Tang F, Lee CJ, Bayshtok G, Moore AR, Wong EW, Pachai MR, Xie Y, Sher J, Zhao JL, Khudoynazarova M, Gopalan A, Chan J, Khurana E, Shepherd P, Navone NM, Chi P, Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. SCIENCE ADVANCES 2023; 9:eadc9446. [PMID: 37018402 PMCID: PMC10075989 DOI: 10.1126/sciadv.adc9446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.
Collapse
Affiliation(s)
- Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elissa W. P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jimmy L. Zhao
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Makhzuna Khudoynazarova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Peter Shepherd
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nora M. Navone
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
236
|
Yang BA, Larouche JA, Sabin KM, Fraczek PM, Parker SCJ, Aguilar CA. Three-dimensional chromatin re-organization during muscle stem cell aging. Aging Cell 2023; 22:e13789. [PMID: 36727578 PMCID: PMC10086523 DOI: 10.1111/acel.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline A. Larouche
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Kaitlyn M. Sabin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paula M. Fraczek
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen C. J. Parker
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Carlos A. Aguilar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
237
|
Puerto M, Shukla M, Bujosa P, Perez-Roldan J, Tamirisa S, Solé C, de Nadal E, Posas F, Azorin F, Rowley MJ. Somatic chromosome pairing has a determinant impact on 3D chromatin organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534693. [PMID: 37034722 PMCID: PMC10081234 DOI: 10.1101/2023.03.29.534693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the nucleus, chromatin is intricately structured into multiple layers of 3D organization important for genome activity. How distinct layers influence each other is not well understood. In particular, the contribution of chromosome pairing to 3D chromatin organization has been largely neglected. Here, we address this question in Drosophila, an organism that shows robust chromosome pairing in interphasic somatic cells. The extent of chromosome pairing depends on the balance between pairing and anti-pairing factors, with the anti-pairing activity of the CAP-H2 condensin II subunit being the best documented. Here, we identify the zinc-finger protein Z4 as a strong anti-pairer that interacts with and mediates the chromatin binding of CAP-H2. We also report that hyperosmotic cellular stress induces fast and reversible chromosome unpairing that depends on Z4/CAP-H2. And, most important, by combining Z4 depletion and osmostress, we show that chromosome pairing reinforces intrachromosomal 3D interactions. On the one hand, pairing facilitates RNAPII occupancy that correlates with enhanced intragenic gene-loop interactions. In addition, acting at a distance, pairing reinforces chromatin-loop interactions mediated by Polycomb (Pc). In contrast, chromosome pairing does not affect which genomic intervals segregate to active (A) and inactive (B) compartments, with only minimal effects on the strength of A-A compartmental interactions. Altogether, our results unveil the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions, unraveling the interwoven relationship between different layers of chromatin organization and the essential contribution of chromosome pairing.
Collapse
|
238
|
Itkin T, Houghton S, Schreiner R, Lin Y, Badwe CR, Voisin V, Murison A, Seyedhassantehrani N, Kaufmann KB, Garcia-Prat L, Booth GT, Geng F, Liu Y, Gomez-Salinero JM, Shieh JH, Redmond D, Xiang JZ, Josefowicz SZ, Trapnell C, Spencer JA, Zangi L, Hadland B, Dick JE, Xie SZ, Rafii S. Transcriptional Activation of Regenerative Hematopoiesis via Vascular Niche Sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534417. [PMID: 37034724 PMCID: PMC10081204 DOI: 10.1101/2023.03.27.534417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.
Collapse
|
239
|
Hu Y, Ma S, Kartha VK, Duarte FM, Horlbeck M, Zhang R, Shrestha R, Labade A, Kletzien H, Meliki A, Castillo A, Durand N, Mattei E, Anderson LJ, Tay T, Earl AS, Shoresh N, Epstein CB, Wagers A, Buenrostro JD. Single-cell multi-scale footprinting reveals the modular organization of DNA regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.533945. [PMID: 37034577 PMCID: PMC10081223 DOI: 10.1101/2023.03.28.533945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cis-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time1-3. Here we sought to connect the structural changes at cis-regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover wide-spread changes to the structure and function of candidate cis-regulatory elements (cCREs) across hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. Activity segmentation using the co-variance across cell states identifies "sub-cCREs" as modular cCRE subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, highlighting changes to gene regulation at single-cell and single-base-pair resolution.
Collapse
Affiliation(s)
- Yan Hu
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Sai Ma
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Current address: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Vinay K. Kartha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Fabiana M. Duarte
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Max Horlbeck
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Ruochi Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Rojesh Shrestha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Ajay Labade
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115
| | - Alia Meliki
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Andrew Castillo
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Neva Durand
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Eugenio Mattei
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Lauren J. Anderson
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Tristan Tay
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Andrew S. Earl
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| | - Noam Shoresh
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Charles B. Epstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
| | - Amy Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115
| | - Jason D. Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA
| |
Collapse
|
240
|
Liu Q, Li C, Deng B, Gao P, Wang L, Li Y, Shiri M, Alkaifi F, Zhao J, Stephens JM, Simintiras CA, Francis J, Sun J, Fu X. Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Rep 2023; 42:112166. [PMID: 36857185 PMCID: PMC10208561 DOI: 10.1016/j.celrep.2023.112166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Distinct locations of different white adipose depots suggest anatomy-specific developmental regulation, a relatively understudied concept. Here, we report a population of Tcf21 lineage cells (Tcf21 LCs) present exclusively in visceral adipose tissue (VAT) that dynamically contributes to VAT development and expansion. During development, the Tcf21 lineage gives rise to adipocytes. In adult mice, Tcf21 LCs transform into a fibrotic or quiescent state. Multiomics analyses show consistent gene expression and chromatin accessibility changes in Tcf21 LC, based on which we constructed a gene-regulatory network governing Tcf21 LC activities. Furthermore, single-cell RNA sequencing (scRNA-seq) identifies the heterogeneity of Tcf21 LCs. Loss of Tcf21 promotes the adipogenesis and developmental progress of Tcf21 LCs, leading to improved metabolic health in the context of diet-induced obesity. Mechanistic studies show that the inhibitory effect of Tcf21 on adipogenesis is at least partially mediated via Dlk1 expression accentuation.
Collapse
Affiliation(s)
- Qianglin Liu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Chaoyang Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Buhao Deng
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peidong Gao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Leshan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Yuxia Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Mohammad Shiri
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Fozi Alkaifi
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Junxing Zhao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA.
| | - Xing Fu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
241
|
Zhuo B, Zhang Q, Xie T, Wang Y, Chen Z, Zuo D, Guo B. Integrative epigenetic analysis reveals AP-1 promotes activation of tumor-infiltrating regulatory T cells in HCC. Cell Mol Life Sci 2023; 80:103. [PMID: 36941472 PMCID: PMC11071886 DOI: 10.1007/s00018-023-04746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Regulatory T (Treg) cells that infiltrate human tumors exhibit stronger immunosuppressive activity compared to peripheral blood Treg cells (PBTRs), thus hindering the induction of effective antitumor immunity. Previous transcriptome studies have identified a set of genes that are conserved in tumor-infiltrating Treg cells (TITRs). However, epigenetic profiles of TITRs have not yet been completely deciphered. Here, we employed ATAC-seq and CUT&Tag assays to integrate transcriptome profiles and identify functional regulatory elements in TITRs. We observed a global difference in chromatin accessibility and enhancer landscapes between TITRs and PBTRs. We identified two types of active enhancer formation in TITRs. The H3K4me1-predetermined enhancers are poised to be activated in response to tumor microenvironmental stimuli. We found that AP-1 family motifs are enriched at the enhancer regions of TITRs. Finally, we validated that c-Jun binds at regulatory regions to regulate signature genes of TITRs and AP-1 is required for Treg cells activation in vitro. High c-Jun expression is correlated with poor survival in human HCC. Overall, our results provide insights into the mechanism of AP-1-mediated activation of TITRs and can hopefully be used to develop new therapeutic strategies targeting TITRs in liver cancer treatment.
Collapse
Affiliation(s)
- Baowen Zhuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Qifan Zhang
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tingyan Xie
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Yidan Wang
- Department of Laboratory Medicine, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Bo Guo
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China.
| |
Collapse
|
242
|
Qiu H, Makarov V, Bolzenius JK, Halstead A, Parker Y, Wang A, Iyer GV, Wise H, Kim D, Thayaparan V, Lindner DJ, Haber GP, Ting AH, Ren B, Chan TA, Arora V, Solit DB, Lee BH. KDM6A Loss Triggers an Epigenetic Switch That Disrupts Urothelial Differentiation and Drives Cell Proliferation in Bladder Cancer. Cancer Res 2023; 83:814-829. [PMID: 36638328 PMCID: PMC10015223 DOI: 10.1158/0008-5472.can-22-1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Disruption of KDM6A, a histone lysine demethylase, is one of the most common somatic alternations in bladder cancer. Insights into how KDM6A mutations affect the epigenetic landscape to promote carcinogenesis could help reveal potential new treatment approaches. Here, we demonstrated that KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and induces a neoplastic state characterized by increased cell proliferation. In bladder cancer cells with intact KDM6A, FOXA1 interacted with KDM6A to activate genes instructing urothelial differentiation. KDM6A-deficient cells displayed simultaneous loss of FOXA1 target binding and genome-wide redistribution of the bZIP transcription factor ATF3, which in turn repressed FOXA1-target genes and activated cell-cycle progression genes. Importantly, ATF3 depletion reversed the cell proliferation phenotype induced by KDM6A deficiency. These data establish that KDM6A loss engenders an epigenetic state that drives tumor growth in an ATF3-dependent manner, creating a potentially targetable molecular vulnerability. SIGNIFICANCE A gain-of-function epigenetic switch that disrupts differentiation is triggered by inactivating KDM6A mutations in bladder cancer and can serve as a potential target for novel therapies.
Collapse
Affiliation(s)
- Hong Qiu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer K. Bolzenius
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Angela Halstead
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, California
| | - Gopakumar V. Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Wise
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Kim
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Varna Thayaparan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Daniel J. Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Georges-Pascal Haber
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Angela H. Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bing Ren
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California
- Ludwig Institute for Cancer Research, La Jolla, California
| | - Timothy A. Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Vivek Arora
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - David B. Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Byron H. Lee
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
243
|
Murakami S, White SM, McIntosh AT, Nguyen CDK, Yi C. Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas. Nat Commun 2023; 14:1443. [PMID: 36922511 PMCID: PMC10017707 DOI: 10.1038/s41467-023-37147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Lineage plasticity has been proposed as a major source of intratumoral heterogeneity and therapeutic resistance. Here, by employing an inducible genetic engineered mouse model, we illustrate that lineage plasticity enables advanced Pancreatic Ductal Adenocarcinoma (PDAC) tumors to develop spontaneous relapse following elimination of the central oncogenic driver - Yap. Transcriptomic and immunohistochemistry analysis of a large panel of PDAC tumors reveals that within high-grade tumors, small niches of PDAC cells gradually evolve to re-activate pluripotent transcription factors (PTFs), which lessen their dependency on Yap. Comprehensive Cut&Tag analysis demonstrate that although acquisition of PTF expression is coupled with the process of epithelial-to-mesenchymal transition (EMT), PTFs form a core transcriptional regulatory circuitry (CRC) with Jun to overcome Yap dependency, which is distinct from the classic TGFb-induced EMT-TF network. A chemical-genetic screen and follow-up functional studies establish Brd4 as an epigenetic gatekeeper for the PTF-Jun CRC, and strong synergy between BET and Yap inhibitors in blocking PDAC growth.
Collapse
Affiliation(s)
- Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Alec T McIntosh
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
244
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
245
|
Li Z, Kuo CC, Ticconi F, Shaigan M, Gehrmann J, Gusmao EG, Allhoff M, Manolov M, Zenke M, Costa IG. RGT: a toolbox for the integrative analysis of high throughput regulatory genomics data. BMC Bioinformatics 2023; 24:79. [PMID: 36879236 PMCID: PMC9990262 DOI: 10.1186/s12859-023-05184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Massive amounts of data are produced by combining next-generation sequencing with complex biochemistry techniques to characterize regulatory genomics profiles, such as protein-DNA interaction and chromatin accessibility. Interpretation of such high-throughput data typically requires different computation methods. However, existing tools are usually developed for a specific task, which makes it challenging to analyze the data in an integrative manner. RESULTS We here describe the Regulatory Genomics Toolbox (RGT), a computational library for the integrative analysis of regulatory genomics data. RGT provides different functionalities to handle genomic signals and regions. Based on that, we developed several tools to perform distinct downstream analyses, including the prediction of transcription factor binding sites using ATAC-seq data, identification of differential peaks from ChIP-seq data, and detection of triple helix mediated RNA and DNA interactions, visualization, and finding an association between distinct regulatory factors. CONCLUSION We present here RGT; a framework to facilitate the customization of computational methods to analyze genomic data for specific regulatory genomics problems. RGT is a comprehensive and flexible Python package for analyzing high throughput regulatory genomics data and is available at: https://github.com/CostaLab/reg-gen . The documentation is available at: https://reg-gen.readthedocs.io.
Collapse
Affiliation(s)
- Zhijian Li
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabio Ticconi
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Mina Shaigan
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Eduardo Gade Gusmao
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Manuel Allhoff
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Martin Manolov
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| |
Collapse
|
246
|
Blank T, Prinz M. Objection non-responsive! How maternal immune activation in pregnancy weakens subsequent microglial immune response. Cell Res 2023; 33:193-194. [PMID: 36446893 PMCID: PMC9977840 DOI: 10.1038/s41422-022-00756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
247
|
Feigin C, Li S, Moreno J, Mallarino R. The GRN concept as a guide for evolutionary developmental biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:92-104. [PMID: 35344632 PMCID: PMC9515236 DOI: 10.1002/jez.b.23132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
Organismal phenotypes result largely from inherited developmental programs, usually executed during embryonic and juvenile life stages. These programs are not blank slates onto which natural selection can draw arbitrary forms. Rather, the mechanisms of development play an integral role in shaping phenotypic diversity and help determine the evolutionary trajectories of species. Modern evolutionary biology must, therefore, account for these mechanisms in both theory and in practice. The gene regulatory network (GRN) concept represents a potent tool for achieving this goal whose utility has grown in tandem with advances in "omic" technologies and experimental techniques. However, while the GRN concept is widely utilized, it is often less clear what practical implications it has for conducting research in evolutionary developmental biology. In this Perspective, we attempt to provide clarity by discussing how experiments and projects can be designed in light of the GRN concept. We first map familiar biological notions onto the more abstract components of GRN models. We then review how diverse functional genomic approaches can be directed toward the goal of constructing such models and discuss current methods for functionally testing evolutionary hypotheses that arise from them. Finally, we show how the major steps of GRN model construction and experimental validation suggest generalizable workflows that can serve as a scaffold for project design. Taken together, the practical implications that we draw from the GRN concept provide a set of guideposts for studies aiming at unraveling the molecular basis of phenotypic diversity.
Collapse
Affiliation(s)
- Charles Feigin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA,School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jorge Moreno
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
248
|
Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M, Mortimer K, Luscombe NM, Hejnol A, Marlétaz F, Martín-Durán JM. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 2023; 615:105-110. [PMID: 36697830 PMCID: PMC9977687 DOI: 10.1038/s41586-022-05636-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.
Collapse
Affiliation(s)
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kate Mortimer
- Department of Natural Sciences, Amgueddfa Cymru-Museum Wales, Cardiff, UK
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
249
|
Säisä-Borreill S, Davidson G, Kleiber T, Thevenot A, Martin E, Mondot S, Blottière H, Helleux A, Mengus G, Plateroti M, Duluc I, Davidson I, Freund JN. General transcription factor TAF4 antagonizes epigenetic silencing by Polycomb to maintain intestine stem cell functions. Cell Death Differ 2023; 30:839-853. [PMID: 36639541 PMCID: PMC9984434 DOI: 10.1038/s41418-022-01109-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Taf4 (TATA-box binding protein-associated factor 4) is a subunit of the general transcription factor TFIID, a component of the RNA polymerase II pre-initiation complex that interacts with tissue-specific transcription factors to regulate gene expression. Properly regulated gene expression is particularly important in the intestinal epithelium that is constantly renewed from stem cells. Tissue-specific inactivation of Taf4 in murine intestinal epithelium during embryogenesis compromised gut morphogenesis and the emergence of adult-type stem cells. In adults, Taf4 loss impacted the stem cell compartment and associated Paneth cells in the stem cell niche, epithelial turnover and differentiation of mature cells, thus exacerbating the response to inflammatory challenge. Taf4 inactivation ex vivo in enteroids prevented budding formation and maintenance and caused broad chromatin remodeling and a strong reduction in the numbers of stem and progenitor cells with a concomitant increase in an undifferentiated cell population that displayed high activity of the Ezh2 and Suz12 components of Polycomb Repressive Complex 2 (PRC2). Treatment of Taf4-mutant enteroids with a specific Ezh2 inhibitor restored buddings, cell proliferation and the stem/progenitor compartment. Taf4 loss also led to increased PRC2 activity in cells of adult crypts associated with modification of the immune/inflammatory microenvironment that potentiated Apc-driven tumorigenesis. Our results reveal a novel function of Taf4 in antagonizing PRC2-mediated repression of the stem cell gene expression program to assure normal development, homeostasis, and immune-microenvironment of the intestinal epithelium.
Collapse
Affiliation(s)
- Susanna Säisä-Borreill
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Thomas Kleiber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
- Orphazyme, Ole Maaloes 3, 2200, Copenhagen, Denmark
| | - Andréa Thevenot
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Elisabeth Martin
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Stanislas Mondot
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hervé Blottière
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Alexandra Helleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Michelina Plateroti
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Isabelle Duluc
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Jean-Noel Freund
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France.
| |
Collapse
|
250
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|