201
|
Mir RH, Mohi-Ud-Din R, Al-Keridis LA, Ahmad B, Alshammari N, Patel M, Adnan M, Masoodi MH. Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches. Inflammopharmacology 2024; 32:1593-1606. [PMID: 38308794 DOI: 10.1007/s10787-023-01419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Jammu and Kashmir, Srinagar, 190001, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Bilal Ahmad
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| |
Collapse
|
202
|
Hoxha A, Perin N, Lovisotto M, Calligaro A, Del Ross T, Favaro M, Tonello M, Doria A, Simioni P. Risk factors for damage accrual in primary antiphospholipid syndrome: A retrospective single-center cohort study. J Autoimmun 2024; 144:103180. [PMID: 38368768 DOI: 10.1016/j.jaut.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Despite anticoagulant therapy, a antiphospholipid syndrome (APS) has a higher rate of recurrent events, which can lead to damage accrual and a negative impact on life quality. OBJECTIVES To evaluate the risk factors and APS subsets associated with damage accrual. PATIENTS/METHODS We conducted a retrospective single-center study. We reviewed the medical records of 282 APS patients, with a median age of 36 (IQR 30-46) years and a median of 195 (IQR 137-272) months. The primary endpoint was damage accrual during follow-up, defined as organ/tissue impairment present for at least six months or causing permanent loss. The secondary endpoints were early organ damage within six months of disease onset and death. RESULTS Eighty (28.4%) patients presented damage accrual; 52.5% developed damage within six months of APS onset, and 41.3% had more than one organ involved. Neuropsychiatric involvement, affecting 38.8% of the patients, was the most frequent, followed by peripheral vasculopathy and renal involvement, 35% either. Death happened in 7 (2.5 %) patients; damage accrual was associated with a 6-fold risk of death [OR 6.7 (95% CI 1.3-35.1), p = 0.03]. Microangiopathy and non-criteria manifestations were independent risk factors for damage accrual with 5-fold and 4-fold higher risk, respectively [(OR 4.9 (95% CI 2.1-11.7), p < 0.0001 and (OR 3.8 (95% CI 1.5-10.1), p = 0.007]. The cumulative incidence of damage accrual increased by 5.7-fold and 3.6-fold in patients with microangiopathy and non-criteria manifestations. CONCLUSIONS APS patients had a higher frequency of damage accrual. Microangiopathy and non-criteria manifestations were independent risk factors for damage accrual.
Collapse
Affiliation(s)
- Ariela Hoxha
- Internal Medicine Unit, Thrombotic and Hemorrhagic Center, Department of Medicine, University of Padua, Italy.
| | - Nicola Perin
- Internal Medicine Unit, Thrombotic and Hemorrhagic Center, Department of Medicine, University of Padua, Italy
| | - Marco Lovisotto
- Internal Medicine Unit, Thrombotic and Hemorrhagic Center, Department of Medicine, University of Padua, Italy
| | - Antonia Calligaro
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Teresa Del Ross
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Maria Favaro
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Marta Tonello
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Paolo Simioni
- Internal Medicine Unit, Thrombotic and Hemorrhagic Center, Department of Medicine, University of Padua, Italy
| |
Collapse
|
203
|
Xiao J, Xie Y, Liu J, Liu T, Ye R, Duan X, Le Z, Deng N, Duan Q. Assessing Mailuoning injection in wound healing and thrombophlebitis management: A rat model study. Int Wound J 2024; 21:e14527. [PMID: 38095110 PMCID: PMC10961041 DOI: 10.1111/iwj.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/25/2024] Open
Abstract
Thrombophlebitis is the inflammatory condition characterized by obstruction of one or more vessels, commonly in the legs, due to the formation of blood clots. It has been reported that traditional Chinese medicine, including Mailuoning injection, is advantageous for treating inflammatory and blood disorders. This research assessed the therapeutic efficacy of Mailuoning injection in the treatment of thrombophlebitis in rodents, as well as investigated its impact on fibrinolysis, inflammation, and coagulation. An experimental setup for thrombophlebitis was established in rodents via modified ligation technique. Five groups comprised the animals: sham operation group, model group, and three Mailuoning treatment groups (low, medium, and high dosages). The pain response, edema, coagulation parameters (PT, APTT, TT, FIB), serum inflammatory markers (IL-6, TNF-α, CRP), and expression levels of endothelial markers (ICAM-1, VCAM-1, NF-κB) were evaluated. Blood flow and vascular function were further assessed by measuring hemorheological parameters and the concentrations of TXB2, ET, and 6-k-PGF1α. In contrast to the sham group, model group demonstrated statistically significant increases in endothelial expression levels, coagulation latencies, and inflammatory markers (p < 0.05). The administration of mailing, specifically at high and medium dosages, resulted in a substantial reduction in inflammatory markers, enhancement of coagulation parameters, suppression of ICAM-1 and VCAM-1 expression, and restoration of hemorheological measurements to baseline (p < 0.05). Significantly higher concentrations of 6-k-PGF1α and lower levels of TXB2 and ET were observed in high-dose group, suggesting that pro- and anti-thrombotic factors were restored to equilibrium. Utilization of Mailuoning injection in rat model of thrombophlebitis exhibited significant therapeutic impact. This effect was manifested through pain alleviation, diminished inflammation, enhanced blood viscosity and facilitation of fibrinolysis. The study indicated that Mailuoning injection may serve as a viable therapeutic option for thrombophlebitis, potentially aiding in the improvement of wound healing by virtue of its anti-inflammatory and blood flow-enhancing characteristics.
Collapse
Affiliation(s)
- Junqi Xiao
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yang Xie
- Department of Thyroid Surgerythe First Affiliated Hospital of Gannan Medical CollegeGanzhouChina
| | - Jianping Liu
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tao Liu
- Medical Big Data CenterThe First Affiliated Hospital of Gannan Medical CollegeGanzhouChina
| | - Rong Ye
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Xunhong Duan
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Zhibiao Le
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Nan Deng
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Qing Duan
- Department of Vascular SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| |
Collapse
|
204
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
205
|
Xin S, Zhang M, Li P, Wang L, Zhang X, Zhang S, Mu Z, Lin H, Li X, Liu K. Marine-Fungus-Derived Natural Compound 4-Hydroxyphenylacetic Acid Induces Autophagy to Exert Antithrombotic Effects in Zebrafish. Mar Drugs 2024; 22:148. [PMID: 38667765 PMCID: PMC11051058 DOI: 10.3390/md22040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Marine natural products are important sources of novel drugs. In this study, we isolated 4-hydroxyphenylacetic acid (HPA) from the marine-derived fungus Emericellopsis maritima Y39-2. The antithrombotic activity and mechanism of HPA were reported for the first time. Using a zebrafish model, we found that HPA had a strong antithrombotic activity because it can significantly increase cardiac erythrocytes, blood flow velocity, and heart rate, reduce caudal thrombus, and reverse the inflammatory response caused by Arachidonic Acid (AA). Further transcriptome analysis and qRT-PCR validation demonstrated that HPA may regulate autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to exert antithrombotic effects.
Collapse
Affiliation(s)
- Shaoshuai Xin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China;
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Medicine Delivery System & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 410331, China;
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| |
Collapse
|
206
|
Cheng MD, Zheng YY, Zhang XY, Ruzeguli T, Sureya Y, Didaer Y, Ailiman M, Zhang JY. The Simplified Thrombo-Inflammatory Score as a Novel Predictor of All-Cause Mortality in Patients with Heart Failure: A Retrospective Cohort Study. J Inflamm Res 2024; 17:1845-1855. [PMID: 38523685 PMCID: PMC10961063 DOI: 10.2147/jir.s452544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Background The simplified thrombo-inflammatory score (sTIPS) has recently emerged as a novel prognostic score. Hence, we investigated the prognostic value of sTIPS for predicting long-term mortality in patients with heart failure (HF). Methods A total of 3741 patients were analyzed in this study. The sTIPS was calculated based on the white blood cell count (WBC) and the mean platelet volume to platelet count (MPV/PC) ratio at admission. The mean follow-up time was 22.75 months. Multivariable Cox regression analyses were used to investigate the associations between the sTIPS and all-cause mortality (ACM). Results In the whole study population, multivariate Cox regression analysis showed that patients in both the sTIPS 2 and sTIPS 1 groups had significantly increased risk of ACM as compared with patients in the sTIPS 0 group (hazard ratio [HR]=1.706, 95% confidence interval [CI]: 1.405-2.072, P<0.001 and HR = 1.431, 95% CI 1.270-1.612, P<0.001). The same significant trend was observed in heart failure with preserved ejection fraction (HFpEF) patients (sTIPS1 vs sTIPS0: HR = 1.366, 95% CI 1.100-1.697, P = 0.005; sTIPS2 vs sTIPS0: HR = 1.995, 95% CI 1.460-2.725, P<0.001). However, only sTIPS 1 group had a significantly increased the risk of ACM compared to the sTIPS 0 group among patients with HFmrEF (sTIPS1 vs sTIPS0: HR = 1.648, 95% CI 1.238-2.194, P = 0.001) and HFrEF (sTIPS1 vs sTIPS0: HR = 1.322, 95% CI 1.021-1.712, P = 0.035). Conclusion sTIPS is useful in predicting risk for long-term mortality in patients with HF.
Collapse
Affiliation(s)
- Meng-Die Cheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Ying-Ying Zheng
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Xing-Yan Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Tuersun Ruzeguli
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Yisimayili Sureya
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Yisha Didaer
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Mahemuti Ailiman
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People’s Republic of China
| | - Jin-Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
207
|
Zhang B, Li J, Zeng C, Tao C, He Q, Liu C, Zheng Z, Zhao Z, Mou S, Sun W, Wang J, Zhang Q, Wang R, Zhang Y, Ge P, Zhang D. Nonalcoholic fatty liver disease is an independent risk factor for ischemic stroke after revascularization in patients with Moyamoya disease: a prospective cohort study. Lipids Health Dis 2024; 23:80. [PMID: 38494486 PMCID: PMC10944598 DOI: 10.1186/s12944-024-02065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The study aimed to investigate the association between nonalcoholic fatty liver disease (NAFLD) and ischemic stroke events after revascularization in patients with Moyamoya disease (MMD). METHODS This study prospectively enrolled 275 MMD patients from September 2020 to December 2021. Patients with alcoholism and other liver diseases were excluded. NAFLD was confirmed by CT imaging or abdominal ultrasonography. Stroke events and modified Rankin Scale (mRS) scores at the latest follow-up were compared between the two groups. RESULTS A total of 275 patients were enrolled in the study, among which 65 were diagnosed with NAFLD. Univariate logistic regression analysis showed that NAFLD (P = 0.029) was related to stroke events. Multivariate logistic regression analysis showed that NAFLD is a predictor of postoperative stroke in MMD patients (OR = 27.145, 95% CI = 2.031-362.81, P = 0.013). Kaplan-Meier analysis showed that compared with MMD patients with NAFLD, patients in the control group had a longer stroke-free time (P = 0.004). Univariate Cox analysis showed that NAFLD (P = 0.016) was associated with ischemic stroke during follow-up in patients with MMD. Multivariate Cox analysis showed that NAFLD was an independent risk factor for stroke in patients with MMD (HR = 10.815, 95% CI = 1.259-92.881, P = 0.030). Furthermore, fewer patients in the NAFLD group had good neurologic status (mRS score ≤ 2) than the control group (P = 0.005). CONCLUSION NAFLD was an independent risk factor for stroke in patients with MMD after revascularization and worse neurological function outcomes.
Collapse
Affiliation(s)
- Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
208
|
Jia R, He Y, Liang J, Duan L, Ma C, Lu T, Liu W, Li S, Wu H, Cao H, Li T, He Y. Preparation of biocompatibility coating on magnesium alloy surface by sodium alginate and carboxymethyl chitosan hydrogel. iScience 2024; 27:109197. [PMID: 38433902 PMCID: PMC10904997 DOI: 10.1016/j.isci.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Magnesium alloy is an excellent material for biodegradable cerebrovascular stents. However, the rapid degradation rate of magnesium alloy will make stent unstable. To improve the biocompatibility of magnesium alloy, in this study, biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) was used to coat onto hydrothermally treated the surface of magnesium alloy by a dipping coating method. The results show that the SA/CMCS coating facilitates the growth, proliferation, and migration of endothelial cells and promotes neovascularization. Moreover, the SA/CMCS coating suppresses macrophage activation while promoting their transformation into M2 type macrophages. Overall, the SA/CMCS coating demonstrates positive effects on the safety and biocompatibility of magnesium alloy after implantation, and provide a promising therapy for the treatment of intracranial atherosclerotic stenosis in the future.
Collapse
Affiliation(s)
- Rufeng Jia
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Yanyan He
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Jia Liang
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Lin Duan
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Chi Ma
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Wenbo Liu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Shikai Li
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Yingkun He
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan 450003, China
| |
Collapse
|
209
|
Nazari I, Feinstein MJ. Evolving mechanisms and presentations of cardiovascular disease in people with HIV: implications for management. Clin Microbiol Rev 2024; 37:e0009822. [PMID: 38299802 PMCID: PMC10938901 DOI: 10.1128/cmr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
People with HIV (PWH) are at elevated risk for cardiovascular diseases (CVDs), including myocardial infarction, heart failure, and sudden cardiac death, among other CVD manifestations. Chronic immune dysregulation resulting in persistent inflammation is common among PWH, particularly those with sustained viremia and impaired CD4+ T cell recovery. This inflammatory milieu is a major contributor to CVDs among PWH, in concert with common comorbidities (such as dyslipidemia and smoking) and, to a lesser extent, off-target effects of antiretroviral therapy. In this review, we discuss the clinical and mechanistic evidence surrounding heightened CVD risks among PWH, implications for specific CVD manifestations, and practical guidance for management in the setting of evolving data.
Collapse
Affiliation(s)
- Ilana Nazari
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Feinstein
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
210
|
Samarelli F, Graziano G, Gambacorta N, Graps EA, Leonetti F, Nicolotti O, Altomare CD. Small Molecules for the Treatment of Long-COVID-Related Vascular Damage and Abnormal Blood Clotting: A Patent-Based Appraisal. Viruses 2024; 16:450. [PMID: 38543815 PMCID: PMC10976273 DOI: 10.3390/v16030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Nicola Gambacorta
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Elisabetta Anna Graps
- ARESS Puglia—Agenzia Regionale Strategica per la Salute ed il Sociale, I-70121 Bari, Italy;
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | | |
Collapse
|
211
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
212
|
Peluso MJ, Abdel-Mohsen M, Henrich TJ, Roan NR. Systems analysis of innate and adaptive immunity in Long COVID. Semin Immunol 2024; 72:101873. [PMID: 38460395 DOI: 10.1016/j.smim.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
Since the onset of the COVID-19 pandemic, significant progress has been made in developing effective preventive and therapeutic strategies against severe acute SARS-CoV-2 infection. However, the management of Long COVID (LC), an infection-associated chronic condition that has been estimated to affect 5-20% of individuals following SARS-CoV-2 infection, remains challenging due to our limited understanding of its mechanisms. Although LC is a heterogeneous disease that is likely to have several subtypes, immune system disturbances appear common across many cases. The extent to which these immune perturbations contribute to LC symptoms, however, is not entirely clear. Recent advancements in multi-omics technologies, capable of detailed, cell-level analysis, have provided valuable insights into the immune perturbations associated with LC. Although these studies are largely descriptive in nature, they are the crucial first step towards a deeper understanding of the condition and the immune system's role in its development, progression, and resolution. In this review, we summarize the current understanding of immune perturbations in LC, covering both innate and adaptive immune responses, and the cytokines and analytes involved. We explore whether these findings support or challenge the primary hypotheses about LC's underlying mechanisms. We also discuss the crosstalk between various immune system components and how it can be disrupted in LC. Finally, we emphasize the need for more tissue- and subtype-focused analyses of LC, and for enhanced collaborative efforts to analyze common specimens from large cohorts, including those undergoing therapeutic interventions. These collective efforts are vital to unravel the fundaments of this new disease, and could also shed light on the prevention and treatment of the larger family of chronic illnesses linked to other microbial infections.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | | | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA; Department of Urology, University of California, San Francisco, USA.
| |
Collapse
|
213
|
Deng R, Ma X, Zhang H, Chen J, Liu M, Chen L, Xu H. Role of HIF-1α in hypercoagulable state of COPD in rats. Arch Biochem Biophys 2024; 753:109903. [PMID: 38253248 DOI: 10.1016/j.abb.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To explore the role of HIF-1α in hypercoagulable state of COPD induced by lipopolysaccharide plus smoking in rats. It also has to explore the regulatory mechanism of HIF-1α-EPO/EDN-1/VEGF pathway by using its activator and inhibitor. METHODS 60 Sprague-Dawley rats (SD rats) were randomly divided into healthy control group, COPD hypercoagulable control group, activator group, and inhibitor group with 15 rats in each group. The healthy control group was fed freely. The other groups were given smoke and lipopolysaccharide by tracheal instillation to establish the experimental animal model of COPD hypercoagulability. After successful modeling, each experimental group was given 0.9 % sodium chloride solution and corresponding drugs by intraperitoneal injection for 7 days. Lung function was detected after drug administration. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. Enzyme-linked immunosorbent assay was used to detect serum D-D,F (1 + 2),IL-6,TNF-α. The mRNA expressions of HIF-1α, EPO, EDN-1, and VEGF were detected by RT-PCR. Western-Blot and IHC were used to detect the expression of HIF-1α, EPO, EDN-1, and VEGF in lung tissue of rats. RESULTS Compared with the healthy control group, rats in COPD hypercoagulable control group had COPD symptoms/signs, decreased lung function, increased the expression of serum D-D and F (1 + 2), increased the expression of inflammatory factors IL-6,TNF-α, and increased the expression of proteins HIF-1α, EPO, EDN-1 and VEGF. Compared with COPD hypercoagulable control group, lung function in activator group and inhibitor group had no obvious changes. The expressions of serum D-D,F (1 + 2),IL-6,TNF-α in activator group have increased noticeably. The expressions of proteins HIF-1α, EPO, EDN-1, and VEGF have further increased. Compared with COPD hypercoagulable control group, the expression of serum D-D, F (1 + 2), HIF-1α, EPO, EDN-1, and VEGF in the inhibitor group decreased. CONCLUSION HIF-1α-EPO/EDN-1/VEGF pathway plays an important role in the hypercoagulable state of COPD. HIF-1α inhibitor can improve airway inflammation and reduce hypercoagulability in COPD model rats.
Collapse
Affiliation(s)
- Ruicheng Deng
- The Second Clinical Medicine School of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China
| | - Xiaoyong Ma
- Department of Traditional Chinese Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, Ningxia, China
| | - Huifang Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China
| | - Juanxia Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China
| | - Meifang Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China
| | - Lijun Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China.
| | - Haiyang Xu
- Department of Hematology, The Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), 750001, Yinchuan, Ningxia, China
| |
Collapse
|
214
|
Deng C, Tang H, Li J, Li Z, Shen K, Zhang Z, Jiang B, Tan L. Development and validation of a prediction model for postoperative ischemic stroke following total arch replacement and frozen elephant trunk under mild hypothermia. Heliyon 2024; 10:e25925. [PMID: 38390179 PMCID: PMC10881848 DOI: 10.1016/j.heliyon.2024.e25925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Background Early identification of postoperative ischemic stroke among patients with acute DeBakey type I aortic dissection (ADIAD) is of great significance to taking timely effective treatment. We aimed to develop and validate a prediction model for postoperative ischemic stroke in ADIAD patients who underwent total arch replacement (TAR) and frozen elephant trunk (FET) under mild hypothermia. Methods ADIAD patients who underwent TAR and FET between January 2017 and April 2023 were enrolled in our study. Preoperative and intraoperative variables were selected using pairwise comparisons, the Least Absolute Shrinkage and Selection Operator (LASSO), and logistic regression to construct a prediction model for postoperative ischemic stroke. The accuracy and calibration of the model were assessed using 1000 bootstrap resamples for internal validation, with the area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow test. The AUC was also used to evaluate the model's accuracy in the validation cohort. Results The development cohort included 246 patients. The mean [standard deviation (SD)] age of patients in the cohort was 50.7 (11.2) years, 196 (79.7%) were men, and 22 (8.9%) were diagnosed with postoperative ischemic stroke. The validation cohort included 73 patients with a mean (SD) age of 52.5 (11.9) years, 58 (79.5%) were men and 3 (4.1%) were diagnosed with postoperative ischemic stroke. Three variables out of the initial 40 potential predictors were included in the final prediction model: the platelet count [odd ratio (OR), 0.992; 95% confidence interval (CI), 0.983-1.000], the presence of innominate artery dissection (OR, 3.400; 95% CI, 1.027-11.260), and the flow of selective cerebral perfusion (OR, 0.147; 95% CI, 0.046-0.469). The mean AUC in the development cohort was 0.77 (95% CI, 0.68-0.87), and calibration was checked with the Hosmer-Lemeshow test (P = 0.78). In the validation cohort, the AUC was 0.98 (95% CI, 0.94-1.00). A prediction model and a clinical impact curve were developed for practical purposes. Conclusions In this study, we have developed a prediction model with competent discriminative ability and calibration. This model can be used for early assessment of the risk of postoperative ischemic stroke in patients with ADIAD following TAR and FET under mild hypothermia.
Collapse
Affiliation(s)
- Chao Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jingyu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhenxiong Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Kangjun Shen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhiwei Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bo Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
215
|
Marriott E, Singanayagam A, El-Awaisi J. Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Front Cardiovasc Med 2024; 11:1362564. [PMID: 38450367 PMCID: PMC10915015 DOI: 10.3389/fcvm.2024.1362564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), particularly following acute exacerbations (AE-COPD), significantly heightens the risks and mortality associated with acute myocardial infarction (AMI). The intersection of COPD and AMI is characterised by a considerable overlap in inflammatory mechanisms, which play a crucial role in the development of both conditions. Although extensive research has been conducted on individual inflammatory pathways in AMI and COPD, the understanding of thrombo-inflammatory crosstalk in comorbid settings remains limited. The effectiveness of various inflammatory components in reducing AMI infarct size or slowing COPD progression has shown promise, yet their efficacy in the context of comorbidity with COPD and AMI is not established. This review focuses on the critical importance of both local and systemic inflammation, highlighting it as a key pathophysiological connection between AMI and COPD/AE-COPD.
Collapse
Affiliation(s)
- Eloise Marriott
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aran Singanayagam
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Juma El-Awaisi
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
216
|
Chen Z, Liu P, Xia X, Cao C, Ding Z, Li X. Low ambient temperature exposure increases the risk of ischemic stroke by promoting platelet activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169235. [PMID: 38097078 DOI: 10.1016/j.scitotenv.2023.169235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Accumulating epidemiological evidence suggests the association between low ambient temperature exposure and the risk of ischemic stroke, but the underlying mechanisms remain unclear. OBJECTIVE Given the crucial role of platelet activation and thrombosis in ischemic stroke, this study aims to investigate the effect of ambient temperature on platelet activation through multi-center clinical data in Tianjin as well as animal experiments. METHODS From 2018 to 2020, nearly 3000 ischemic stroke patients from three stroke centers in Tianjin were included in the analysis, among them the ADP induced platelet aggregation rate was available. Meteorological data from the same period had also been collected. After controlling for confounding factors, the generalized additive mixed model (GAMM) was used to evaluate the correlation between environmental temperature and platelet aggregation rate. In further animal experiments, platelet function assessments were conducted on mice from the cold exposure group and the normal temperature group, including platelet aggregation, spreading, and clot retraction. Additionally, tail bleeding and mesentery thrombosis were also tested to monitor hemostasis and thrombosis in vivo. RESULT A nonlinear "S" shaped relationship between outdoor temperature and platelet aggregation was found. Each 1 °C decrease of mean temperature was associated with an increase of 7.77 % (95 % CI: 2.06 % - 13.48 %) in platelet aggregation. The ambient temperature is not related to other platelet parameters. Subgroup analysis found that males, people aged ≥65 years, and hypertensive individuals are more susceptible to temperature changes. Furthermore, animal experiments demonstrated that the increased CIRBP levels and subsequent activation of p-AKT/p-ERK may be one of the reasons for cold exposure induced platelets activation. CONCLUSION Both clinical data and basic research support that low ambient temperature exposure has the potential to increase platelet activation. These results provide a basis for understanding the potential mechanism of temperature variations on the pathogenesis of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Chen Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongren Ding
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; School of Pharmacy, Tianjin Medical University, China.
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
217
|
Kalsi J, Suffredini JM, Koh S, Liu J, Khalid MU, Denktas A, Alam M, Kayani W, Jia X. Intravascular Ultrasound-Guided versus Angiography-Guided Percutaneous Coronary Intervention for Stent Thrombosis Elevation Myocardial Infarction: An Updated Systematic Review and Meta-Analysis. Cardiology 2024; 149:196-204. [PMID: 38350431 DOI: 10.1159/000537682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Intravascular ultrasound (IVUS) provides intra-procedural guidance in optimizing percutaneous coronary interventions (PCI) and has been shown to improve clinical outcomes in stent implantation. However, current data on the benefit of IVUS during PCI in ST-elevation myocardial infarction (STEMI) patients is mixed. We performed meta-analysis pooling available data assessing IVUS-guided versus angiography-guided PCI in STEMI patients. METHODS We conducted a systematic search on PubMed and Embase for studies comparing IVUS versus angiography-guided PCI in STEMI. Mantel-Haenszel random effects model was used to calculate risk ratios (RRs) with 95% confidence intervals (CIs) for outcomes of major adverse cardiovascular events (MACEs), death, myocardial infarction (MI), target vessel revascularization (TVR), stent thrombosis (ST) and in-hospital mortality. RESULTS A total of 8 studies including 336,649 individuals presenting with STEMI were included for the meta-analysis. Follow-up ranged from 11 to 60 months. We found significant association between IVUS-guided PCI with lower risk for MACE (RR 0.82, 95% CI 0.76-0.90) compared with angiography-guided PCI. We also found significant association between IVUS-guided PCI with lower risk for death, MI, TVR, and in-hospital mortality but not ST. CONCLUSION In our meta-analysis, IVUS-guided compared with angiography-guided PCI was associated with improved long-term and short-term clinical outcomes in STEMI patients.
Collapse
Affiliation(s)
- Jasmeet Kalsi
- Department of Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - John M Suffredini
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Stephanie Koh
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jing Liu
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Mirza U Khalid
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Ali Denktas
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Mahboob Alam
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Waleed Kayani
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoming Jia
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
218
|
Schrottmaier WC, Assinger A. The Concept of Thromboinflammation. Hamostaseologie 2024; 44:21-30. [PMID: 38417802 DOI: 10.1055/a-2178-6491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Inflammation and thrombosis are intricate and closely interconnected biological processes that are not yet fully understood and lack effective targeted therapeutic approaches. Thrombosis initiated by inflammatory responses, known as immunothrombosis, can confer advantages to the host by constraining the spread of pathogens within the bloodstream. Conversely, platelets and the coagulation cascade can influence inflammatory responses through interactions with immune cells, endothelium, or complement system. These interactions can lead to a state of heightened inflammation resulting from thrombotic processes, termed as thromboinflammation. This review aims to comprehensively summarize the existing knowledge of thromboinflammation and addressing its significance as a challenging clinical issue.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
219
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
220
|
Prater MC, Scheurell AR, Paton CM, Cooper JA. No Observed Difference in Inflammatory and Coagulation Markers Following Diets Rich in n-6 Polyunsaturated Fat vs Monounsaturated Fat in Adults With Untreated Hypercholesterolemia: A Randomized Trial. J Acad Nutr Diet 2024; 124:205-214.e1. [PMID: 37619782 DOI: 10.1016/j.jand.2023.08.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Inflammatory and prothrombotic responses are hallmark to the progression of cardiovascular disease and may be influenced by the type of dietary fat. Cottonseed oil (CSO) is rich in n-6 polyunsaturated fats and improves traditional cardiovascular disease risk factors such as cholesterol profiles. However, some clinicians are still hesitant to promote n-6 polyunsaturated fats consumption despite growing evidence suggesting they may not be independently pro-inflammatory. OBJECTIVE To investigate the inflammatory and coagulation marker responses to an 8-week diet intervention rich in either CSO or olive oil (OO) (OO is rich in monounsaturated fat) in adults with untreated hypercholesterolemia. DESIGN This was a secondary analysis of a parallel-arm randomized clinical trial with the main outcome of cholesterol measures. PARTICIPANTS/SETTING Participants included in this analysis were 42 sedentary adults aged 30 to 75 years (62% women) in the Athens, GA, area, between May 2018 and June 2021, with untreated hypercholesterolemia or elevated blood lipids and body mass index >18.5. Hypercholesterolemia was defined as at least two blood lipid levels in a borderline undesirable/at risk range (total cholesterol level ≥180 mg/dL, low-density lipoprotein cholesterol level ≥110 mg/dL, high-density lipoprotein cholesterol level <50 mg/dL, or triglyceride level ≥130 mg/dL), or at least one in an undesirable range (total cholesterol level ≥240 mg/dL, low-density lipoprotein cholesterol level ≥160 mg/dL, high-density lipoprotein cholesterol level <40 mg/dL, or triglyceride level ≥200 mg/dL). INTERVENTION Participants were randomly assigned to either the CSO or OO group in a partial outpatient feeding trial. Meals from the study provided approximately 60% of their energy needs with 30% of energy needs from either CSO or OO for 8 weeks. Participants fulfilled their remaining energy needs with meals of their choosing. MAIN OUTCOME MEASURES Fasting plasma concentrations of inflammatory markers, including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β were measured at baseline and 8 weeks. Markers of coagulation potential, including plasminogen activator inhibitor-1, and tissue factor were measured at the same time points. STATISTICAL ANALYSES PERFORMED Repeated measures linear mixed models were used with treatment and visit in the model for analyses of all biochemical markers. RESULTS There were no significant differences in fasting C-reactive protein (P = 0.70), tumor necrosis factor-α (P = 0.98), interleukin-6 (P = 0.21), interleukin-1β (P = 0.13), plasminogen activator inhibitor-1 (P = 0.29), or tissue factor (P = 0.29) between groups across the intervention. CONCLUSIONS Inflammation and coagulation marker responses to diets rich in CSO vs OO were not significantly different between groups, and neither group showed changes in these markers in adults with untreated hypercholesterolemia. This provides additional evidence suggesting that dietary n-6 polyunsaturated fats may not promote inflammation compared with monounsaturated fatty acids, even in adults at increased risk for cardiovascular disease.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia
| | - Alexis R Scheurell
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia; Department of Food Science and Technology, University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, Athens, Georgia.
| |
Collapse
|
221
|
Müller L, Dabbiru VAS, Schönborn L, Greinacher A. Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT). Expert Opin Pharmacother 2024; 25:281-294. [PMID: 38465524 DOI: 10.1080/14656566.2024.2328241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.
Collapse
Affiliation(s)
- Luisa Müller
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Venkata A S Dabbiru
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Linda Schönborn
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
222
|
Buch MH. What is Surveillance teaching us (and what it is not?). Semin Arthritis Rheum 2024; 64S:152334. [PMID: 38129283 DOI: 10.1016/j.semarthrit.2023.152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University Manchester, Manchester M13 9PL, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
223
|
Fu X, Lei T, Chen C, Fu G. Construction and study of blood purification membrane modified with PDE inhibitor: Investigation of antiplatelet activity and hemocompatibility. Colloids Surf B Biointerfaces 2024; 234:113725. [PMID: 38157764 DOI: 10.1016/j.colsurfb.2023.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The recent "cell-based theory" of coagulation suggests that platelets serve as the site of coagulation factor reactions, making platelets an effective target for inhibiting membrane thrombosis. Unfortunately, there is limited research on how blood purification membranes affect platelet intracellular signaling. In this study, we modified polyethersulfone (PES) membranes with the platelet phosphodiesterase (PDE) inhibitor dipyridamole (DIP) and investigated the effects of the DIP/PES (DP) membranes on platelet adhesion, activation, aggregation, and secretion, as well as the role of the PDE-cyclic adenosine monophosphate (cAMP) intracellular signaling pathway. Additionally, we evaluated the hemocompatibility and preliminary in vivo safety of DP membranes. Our results demonstrate that the modified DP membranes effectively inhibited platelet adhesion, membrane CD62P expression, and plasma soluble P-selectin activation levels. Furthermore, we confirmed that DP membranes achieved platelet aggregation inhibition and reduced platelet factor 4 and β-thromoglobulin secretion levels by inhibiting platelet intracellular PDE-cAMP signaling. Moreover, the modified DP membranes exhibited good anticoagulant and red blood cell membrane stability and complement resistance and demonstrated preliminary biocompatibility in mouse experiments. Collectively, these findings highlight the potential application of DP dialysis membranes in blood purification for critically ill patients.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Ting Lei
- Powder Metallurgy Institute of Central South University, China
| | - Cong Chen
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Gan Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| |
Collapse
|
224
|
Shaked I, Foo C, Mächler P, Liu R, Cui Y, Ji X, Broggini T, Kaminski T, Suryakant Jadhav S, Sundd P, Firer M, Devor A, Friedman B, Kleinfeld D. A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical venules. J Cereb Blood Flow Metab 2024; 44:252-271. [PMID: 37737093 PMCID: PMC10993879 DOI: 10.1177/0271678x231203023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.
Collapse
Affiliation(s)
- Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Mächler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Yingying Cui
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tomasz Kaminski
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Prithu Sundd
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Firer
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
225
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int J Mol Sci 2024; 25:1560. [PMID: 38338837 PMCID: PMC10855638 DOI: 10.3390/ijms25031560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
226
|
Krychtiuk KA, Bräu K, Schauer S, Sator A, Galli L, Baierl A, Hengstenberg C, Gangl C, Lang IM, Roth C, Berger R, Speidl WS. Association of Periprocedural Inflammatory Activation With Increased Risk for Early Coronary Stent Thrombosis. J Am Heart Assoc 2024; 13:e032300. [PMID: 38214300 PMCID: PMC10926812 DOI: 10.1161/jaha.122.032300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Stent thrombosis is a rare but deleterious event. Routine coronary angiography with percutaneous coronary intervention (PCI) is often deferred in the presence of laboratory markers of acute inflammation to prevent complications. The aim of this study was to investigate whether an acute inflammatory state is associated with an increased risk of early stent thrombosis. METHODS AND RESULTS Within a prospective single-center registry, the association between preprocedural acute inflammatory activation, defined as C-reactive protein plasma levels >50 mg/L or a leukocyte count >12 g/L, and occurrence of early (≤30 days) stent thrombosis was evaluated. In total, 11 327 patients underwent PCI and of those, 6880 patients had laboratory results available. 49.6% of the study population received PCI for an acute coronary syndrome and 50.4% for stable ischemic heart disease. In patients with signs of acute inflammatory activation (24.9%), PCI was associated with a significantly increased risk for stent thrombosis (hazard ratio, 2.89; P<0.00001), independent of age, sex, kidney function, number and type of stents, presence of multivessel disease, choice of P2Y12 inhibitor, and clinical presentation. Elevated laboratory markers of acute inflammation were associated with the occurrence of stent thrombosis in both patients with acute coronary syndrome (hazard ratio, 2.63; P<0.001) and in patients with stable ischemic heart disease (hazard ratio, 3.57; P<0.001). CONCLUSIONS An acute inflammatory state at the time of PCI was associated with a significantly increased risk of early stent thrombosis. Evidence of acute inflammation should result in deferred PCI in elective patients, while future studies are needed for patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Konstantin A. Krychtiuk
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Konstantin Bräu
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Stephanie Schauer
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Alexander Sator
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Lukas Galli
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Andreas Baierl
- Department of Statistics and Operations ResearchUniversity of ViennaViennaAustria
| | - Christian Hengstenberg
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Clemens Gangl
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Irene M. Lang
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Christian Roth
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
| | - Rudolf Berger
- Department of Internal Medicine ICardiology and Nephrology, Hospital of St. John of GodEisenstadtAustria
| | - Walter S. Speidl
- Department of Internal Medicine II–Division of CardiologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| |
Collapse
|
227
|
Şen F, Kurtul A, Bekler Ö. Pan-Immune-Inflammation Value Is Independently Correlated to Impaired Coronary Flow After Primary Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction. Am J Cardiol 2024; 211:153-159. [PMID: 37944774 DOI: 10.1016/j.amjcard.2023.10.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Immune-inflammatory biomarkers have been shown to be correlated with impaired coronary flow (ICF) in ST-segment elevation myocardial infarction. In this study, we assessed the relation between a novel comprehensive biomarker, pan-immune-inflammation value (PIV), and ICF after primary percutaneous coronary intervention (pPCI) in ST-segment elevation myocardial infarction. A total of 687 patients who underwent pPCI between 2019 and 2023 were retrospectively analyzed. Blood samples were collected at admission. PIV and other inflammation parameters were compared. PIV was calculated as (neutrophil count × platelet count × monocyte count)/lymphocyte count. Postprocedural coronary flow was assessed by thrombolysis in myocardial infarction (TIMI) classification. Patients were divided into 2 groups: a group with ICF defined as postprocedural TIMI 0 to 2 and a group with normal coronary flow defined as postprocedural TIMI flow grade of 3. The mean age was 61 ± 12 years, and 22.4% of the patients were women. Compared with the normal coronary flow group (median 492, interquartile range 275 to 931), the ICF group (median 1,540, interquartile range 834 to 2,909) showed significantly increased PIV (p <0.001). The optimal cutoff for the PIV was 804, as determined by receiver operating characteristic curve. The incidence of ICF was 17.0% in all patients, 6.4% in low-PIV group (<804), and 34.2% in high-PIV group (≥804). Multivariate analyses revealed that a baseline PIV ≥804 was independently associated with post-pPCI ICF (odds ratio 5.226, p <0.001). PIV was superior to neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in determining ICF. In conclusion, a high-PIV was significantly associated with an increased risk of ICF after pPCI. Moreover, PIV was a better indicator of ICF than were other inflammatory markers.
Collapse
Affiliation(s)
- Fatih Şen
- Hatay Mustafa Kemal University Faculty of Medicine, Department of Cardiology, Hatay, Turkey
| | - Alparslan Kurtul
- Hatay Mustafa Kemal University Faculty of Medicine, Department of Cardiology, Hatay, Turkey.
| | - Özkan Bekler
- Hatay Mustafa Kemal University Faculty of Medicine, Department of Cardiology, Hatay, Turkey
| |
Collapse
|
228
|
Chen WJ, Du H, Hu HF, Lian JQ, Jiang H, Li J, Chen YP, Zhang Y, Wang PZ. Levels of peripheral blood routine, biochemical and coagulation parameters in patients with hemorrhagic fever with renal syndrome and their relationship with prognosis: an observational cohort study. BMC Infect Dis 2024; 24:75. [PMID: 38212688 PMCID: PMC10782698 DOI: 10.1186/s12879-023-08777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Hantaan virus (HTNV), Seoul virus (SEOV) and Puumala virus (PUUV) are major serotypes of the Hantavirus, which can cause hemorrhagic fever with renal syndrome (HFRS). The pathophysiology of HFRS in humans is complex and the determinants associated with mortality, especially the coagulation and fibrinolysis disorders, are still not been fully elucidated. Severe patients usually manifest multiple complications except for acute kidney injury (AKI). The aim of this study was to observe the levels of peripheral blood routine, biochemical and coagulation parameters during the early stage, so as to find independent risk factors closely related to the prognosis, which may provide theoretical basis for targeted treatment and evaluation. METHODS A total of 395 HFRS patients from December 2015 to December 2018 were retrospectively enrolled. According to prognosis, they were divided into a survival group (n = 368) and a death group (n = 27). The peripheral blood routine, biochemical and coagulation parameters were compared between the two groups on admission. The relationship between the parameters mentioned above and prognosis was analyzed, and the dynamic changes of the coagulation and fibrinolysis parameters during the first week after admission were further observed. RESULTS In addition to AKI, liver injury was also common among the enrolled patients. Patients in the death group manifested higher levels of white blood cell counts (WBC) on admission. 27.30% (107/392) of the patients enrolled presented with disseminated intravascular coagulation (DIC) on admission and DIC is more common in the death group; The death patients manifested longer prothrombin time (PT) and activated partial thromboplastin time (APTT), higher D-dimer and fibrinogen degradation product (FDP), and lower levels of platelets (PLT) and fibrinogen (Fib) compared with those of the survival patients. The proportion of D-dimer and FDP abnormalities are higher than PT, APTT and Fib. Prolonged PT, low level of Fib and elevated total bilirubin (TBIL) on admission were considered as independent risk factors for prognosis (death). CONCLUSIONS Detection of PT, Fib and TBIL on admission is necessary, which might be benefit to early predicting prognosis. It is also important to pay attention to the dynamic coagulation disorders and hyperfibrinolysis during the early stage in the severe HFRS patients.
Collapse
Affiliation(s)
- Wen-Jing Chen
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Hong Du
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China.
| | - Hai-Feng Hu
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Jian-Qi Lian
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Hong Jiang
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Jing Li
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yan-Ping Chen
- Department of Infectious Diseases, the Second Affiliated People's Hospital of Yan 'an University, Yan'an, Shaanxi, China.
| | - Ying Zhang
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China.
| | - Ping-Zhong Wang
- Center for Infectious Diseases, the Second Affiliated Hospital of Air Force Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
229
|
Liu L, Yu H, Wang L, Zhou D, Duan X, Zhang X, Yin J, Luan S, Shi H. Heparin-network-mediated long-lasting coatings on intravascular catheters for adaptive antithrombosis and antibacterial infection. Nat Commun 2024; 15:107. [PMID: 38167880 PMCID: PMC10761715 DOI: 10.1038/s41467-023-44478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria-associated infections and thrombosis, particularly catheter-related bloodstream infections and catheter-related thrombosis, are life-threatening complications. Herein, we utilize a concise assembly of heparin sodium with organosilicon quaternary ammonium surfactant to fabricate a multifunctional coating complex. In contrast to conventional one-time coatings, the complex attaches to medical devices with arbitrary shapes and compositions through a facile dipping process and further forms robust coatings to treat catheter-related bloodstream infections and thrombosis simultaneously. Through their robustness and adaptively dissociation, coatings not only exhibit good stability under extreme conditions but also significantly reduce thrombus adhesion by 60%, and shows broad-spectrum antibacterial activity ( > 97%) in vitro and in vivo. Furthermore, an ex vivo rabbit model verifies that the coated catheter has the potential to prevent catheter-related bacteremia during implantation. This substrate-independent and portable long-lasting multifunctional coating can be employed to meet the increasing clinical demands for combating catheter-related bloodstream infections and thrombosis.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
230
|
Lai J, Wu S, Fan Z, Jia M, Yuan Z, Yan X, Teng H, Zhuge L. Comparative study of two models predicting the risk of deep vein thrombosis progression in spinal trauma patients after operation. Clin Neurol Neurosurg 2024; 236:108072. [PMID: 38061157 DOI: 10.1016/j.clineuro.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Patients with preoperative deep vein thrombosis (DVT) exhibit a notable incidence of postoperative deep vein thrombosis progression (DVTp), which bears a potential for silent, severe consequences. Consequently, the development of a predictive model for the risk of postoperative DVTp among spinal trauma patients is important. METHODS Data of 161 spinal traumatic patients with preoperative DVT, who underwent spine surgery after admission, were collected from our hospital between January 2016 and December 2022. The least absolute shrinkage and selection operator (LASSO) combined with multivariable logistic regression analysis was applied to select variables for the development of the predictive logistic regression models. One logistic regression model was formulated simply with the Caprini risk score (Model A), while the other model incorporated not only the previously screened variables but also the age variable (Model B). The model's capability was evaluated using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, F1 score, and receiver operating characteristic (ROC) curve. Nomograms simplified and visually presented Model B for the clinicians and patients to understand the predictive model. The decision curve was used to analyze the clinical value of Model B. RESULTS A total of 161 DVT patients were enrolled in this study. Postoperative DVTp occurred in 48 spinal trauma patients, accounting for 29.81% of the total patient enrolled. Model A inadequately predicted postoperative DVTp in spinal trauma patients, with ROC AUC values of 0.595 for the training dataset and 0.593 for the test dataset. Through the application of LASSO regression and multivariable logistic regression, a screening process was conducted for seven risk factors: D-dimer, blood platelet, hyperlipidemia, blood group, preoperative anticoagulant, spinal cord injury, lower extremity varicosities. Model B demonstrated superior and consistent predictive performance, with ROC AUC values of 0.809 for the training dataset and 0.773 for the test dataset. According to the calibration curves and decision curve analysis, Model B could accurately predict the probability of postoperative DVTp after spine surgery. The nomograms enhanced the interpretability of Model B in charts and graphs. CONCLUSIONS In summary, we established a logistic regression model for the accurate predicting of postoperative deep vein thrombosis progression in spinal trauma patients, utilizing D-dimer, blood platelet, hyperlipidemia, blood group, preoperative anticoagulant, spinal cord injury, lower extremity varicosities, and age as predictive factors. The proposed model outperformed a logistic regression model based simply on CRS. The proposed model has the potential to aid frontline clinicians and patients in identifying and intervening in postoperative DVTp among traumatic patients undergoing spinal surgery.
Collapse
Affiliation(s)
- Jiaxin Lai
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiyang Wu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongjie Yuan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Yan
- Department of Orthopedics (Spine Surgery), Jinhua Municipal Central Hospital, Zhejiang University, Jinhua 321099, Zhejiang Province, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linmin Zhuge
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
231
|
Kumar S, Schroeder JA, Shi Q. Platelet-targeted gene therapy induces immune tolerance in hemophilia and beyond. J Thromb Haemost 2024; 22:23-34. [PMID: 37558132 PMCID: PMC11249137 DOI: 10.1016/j.jtha.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Blood platelets have unique storage and delivery capabilities. Platelets play fundamental roles in hemostasis, inflammatory reactions, and immune responses. Beyond their functions, platelets have been used as a target for gene therapy. Platelet-targeted gene therapy aims to deliver a sustained expression of neo-protein in vivo by genetically modifying the target cells, resulting in a cure for the disease. Even though there has been substantial progress in the field of gene therapy, the potential development of immune responses to transgene products or vectors remains a significant concern. Of note, multiple preclinical studies using platelet-specific lentiviral gene delivery to hematopoietic stem cells in hemophilia have demonstrated promising results with therapeutic levels of neo-protein that rescue the hemorrhagic bleeding phenotype and induce antigen-specific immune tolerance. Further studies using ovalbumin as a surrogate protein for platelet gene therapy have shown robust antigen-specific immune tolerance induced via peripheral clonal deletions of antigen-specific CD4- and CD8-T effector cells and induction of antigen-specific regulatory T (Treg) cells. This review discusses platelet-targeted gene therapy, focusing on immune tolerance induction.
Collapse
Affiliation(s)
- Saurabh Kumar
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA
| | - Jocelyn A Schroeder
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qizhen Shi
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA; Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center Milwaukee, Wisconsin, USA.
| |
Collapse
|
232
|
Waksman R, Merdler I, Case BC, Waksman O, Porto I. Targeting inflammation in atherosclerosis: overview, strategy and directions. EUROINTERVENTION 2024; 20:32-44. [PMID: 38165117 PMCID: PMC10756224 DOI: 10.4244/eij-d-23-00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a chronic condition characterised by the build-up of plaque in the inner lining of the blood vessels and it is the main underlying cause of cardiovascular disease. The development of atherosclerosis is associated with the accumulation of cholesterol and inflammation. Although effective therapies exist to lower low-density lipoprotein cholesterol (LDL-C) levels, some patients still experience cardiovascular events due to persistent inflammation, known as residual inflammatory risk (RIR). Researchers have conducted laboratory and animal studies to investigate the measurement and targeting of the inflammatory cascade associated with atherosclerosis, which have yielded promising results. In addition to guideline-directed lifestyle modifications and optimal medical therapy focusing on reducing LDL-C levels, pharmacological interventions targeting inflammation may provide further assistance in preventing future cardiac events. This review aims to explain the mechanisms of inflammation in atherosclerosis, identifies potential biomarkers, discusses available therapeutic options and their strengths and limitations, highlights future advancements, and summarises notable clinical studies. Finally, an evaluation and management algorithm for addressing RIR is presented.
Collapse
Affiliation(s)
- Ron Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ilan Merdler
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Brian C Case
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ori Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| |
Collapse
|
233
|
Yang Y, Bi C, Li B, Li Y, Song Y, Zhang M, Peng L, Fan D, Duan R, Li Z. Exploring the Molecular Mechanism of HongTeng Decoction against Inflammation based on Network Analysis and Experiments Validation. Curr Comput Aided Drug Des 2024; 20:170-182. [PMID: 37309760 PMCID: PMC10641852 DOI: 10.2174/1573409919666230612103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND HongTeng Decoction (HTD) is a traditional Chinese medicine that is widely used to treat bacterial infections and chronic inflammation. However, its pharmacological mechanism is not clear. Here, network pharmacology and experimental verification were applied to investigate the drug targets and potential mechanisms of HTD in inflammation treatment. METHODS The active ingredients of HTD were collected from the multi-source databases and clarified by Q Exactive Orbitrap analysis in the treatment of inflammation. Then, molecular docking technology was used to explore the binding ability of key active ingredients and targets in HTD. In vitro experiments, the inflammatory factors and MAPK signaling pathways are detected to verify the anti-inflammatory effect of HTD on the RAW264.7 cells. Finally, the anti-inflammatory effect of HTD was evaluated in LPS induced mice model. RESULTS A total of 236 active compounds and 492 targets of HTD were obtained through database screening, and 954 potential targets of inflammation were identified. Finally, 164 possible targets of HTD acting on inflammation were obtained. The PPI analysis and KEGG enrichment analyses showed that the targets of HTD in inflammation were mostly related to the MAPK signaling pathway, the IL-17 signaling pathway, and the TNF signaling pathway. By integrating the results of the network analysis, the core targets of HTD in inflammation mainly include MAPK3, TNF, MMP9, IL6, EGFR, and NFKBIA. The molecular docking results indicated solid binding activity between MAPK3-naringenin and MAPK3-paeonol. It has been shown that HTD could inhibit the levels of inflammatory factors, IL6 and TNF-α, as well as the splenic index in the LPS-stimulated mice. Moreover, HTD could regulate protein expression levels of p-JNK1/2, and p-ERK1/2, which reflects the inhibitory effect of HTD on the MAPKS signaling pathway. CONCLUSION Our study is expected to provide the pharmacological mechanisms by which HTD may be a promising anti-inflammatory drug for future clinical trials.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Chongwen Bi
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Bin Li
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Yun Li
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Yin Song
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Minghui Zhang
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Longxi Peng
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Dongmei Fan
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, China
| | - Rong Duan
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Zhengxiang Li
- Tianjin Medical University, General Hospital, Tianjin, 300052, China
| |
Collapse
|
234
|
Luu CH, Nguyen N, Ta HT. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv Healthc Mater 2024; 13:e2301039. [PMID: 37725037 PMCID: PMC11468451 DOI: 10.1002/adhm.202301039] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
Collapse
Affiliation(s)
- Cuong Hung Luu
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Hang Thu Ta
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| |
Collapse
|
235
|
Cheng XD, Zhang CX, Zhang Q, Zhou S, Jia LJ, Wang LR, Wang JH, Yu NW, Li BH. Predictive Role of Pre-Thrombolytic Neutrophil-Platelet Ratio on Hemorrhagic Transformation After Intravenous Thrombolysis in Acute Ischemic Stroke. Clin Appl Thromb Hemost 2024; 30:10760296231223192. [PMID: 38166411 PMCID: PMC10768614 DOI: 10.1177/10760296231223192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
To investigate the predictive role of the neutrophil-platelet ratio (NPR) before intravenous thrombolysis (IVT) on hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS). AIS patients treated with IVT without endovascular therapy between June 2019 and February 2023 were included. Patients were divided into high NPR (>35) and low NPR (≤35) groups according to the optimal threshold NPR value for identifying high-risk patients before IVT. The baseline data and the incidence of HT and symptomatic intracranial hemorrhage (sICH) were compared between the two groups. The predictive role of the NPR and other related factors on HT after IVT was analyzed by multivariate logistic regression. A total of 247 patients were included, with an average age of 67.5 ± 12.4 years. Post-thrombolytic HT was observed in 18.6% of the patients, and post-thrombolytic sICH was observed in 1.2% of the patients. There were 69 patients in the high NPR group and 178 patients in the low NPR group. The incidence of HT in the high NPR group was significantly higher than that in the low NPR group (30.4% vs 16.3%, P < .05). The incidence of sICH was significantly higher in the high NPR group than in the low NPR group (14.5% vs 1.7%, P < .001). Multivariate logistic regression analysis showed that NPR > 35 was positively correlated with HT (odds ratio (OR) = 3.236, 95% confidence interval (CI): 1.481-7.068, P = .003) and sICH (OR = 13.644, 95% CI: 2.392-77.833, P = .003). A high NPR (>35) before IVT may be a predictor of HT in AIS patients. This finding may help clinicians make clinical decisions before IVT in AIS patients.
Collapse
Affiliation(s)
- Xu-Dong Cheng
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chun-Xi Zhang
- Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Zhou
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Li-Jun Jia
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Li-Rong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Hong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Bing-Hu Li
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
236
|
Jakobsen SS, Frøkjaer JB, Fisker RV, Kristensen SR, Thorlacius-Ussing O, Larsen AC. Monocyte recruitment in venous pulmonary embolism at time of cancer diagnosis in upper gastrointestinal cancer patients. J Thromb Thrombolysis 2024; 57:11-20. [PMID: 37792208 PMCID: PMC10830795 DOI: 10.1007/s11239-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Upper gastrointestinal cancer is frequently complicated by venous thromboembolisms (VTE), especially pulmonary embolisms (PE) increase the mortality rate. Monocytes are a part of the innate immune system and up-regulation may indicate an ongoing inflammatory response or infectious disease and has lately been associated with a moderate risk of suffering from VTE. This prospectively study aims to compare the incidence of pulmonary embolism with markers of coagulation and compare it to the absolute monocyte count. A consecutive cohort of 250 patients with biopsy proven upper gastrointestinal cancer (i.e. pancreas, biliary tract, esophagus and gastric cancer) where included at the time of cancer diagnosis and before treatment. All patients underwent bilateral compression ultrasonography for detection of deep vein thrombosis (DVT). Of these 143 had an additionally pulmonary angiografi (CTPA) with the staging computer tomography. 13 of 250 patients (5.2%) had a DVT and 11 of 143 (7.7%) had CTPA proven PE. PE was significantly more common among patients with elevated D-dimer (OR 11.62, 95%CI: 1.13-119, P = 0.039) and elevated absolute monocyte count (OR 7.59, 95%CI: 1.37-41.98, P = 0.020). Only patients with pancreatic cancer had a significantly higher risk of DVT (OR 11.03, 95%CI: 1.25-97.43, P = 0.031). The sensitivity of absolute monocyte count was 63.6 (95%CI: 30.8-89.1) and specificity 80.3 (95%CI: 72.5-86.7), with a negative predictive value of 96.4 (95%CI: 91-99) in PE. An increased absolute monocyte count was detected in patients suffering from PE but not DVT, suggesting a possible interaction with the innate immune system.
Collapse
Affiliation(s)
- Sarah S Jakobsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Jens B Frøkjaer
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Rune V Fisker
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Søren R Kristensen
- Department of Biochemistry, Aalborg University Hospital, 9000, Aalborg, Denmark
- Cardiovascular Research Center, Aalborg University, 9000, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Anders C Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark.
| |
Collapse
|
237
|
Qiuyue L, Gulin D, Hong X, Jiazhen Y, Rukui Y, Xinwu H, Guochun L. Zhilong Huoxue Tongyu Capsule Ameliorates Platelet Aggregation and Thrombus Induced by Aspirin in Rats by Regulating Lipid Metabolism and MicroRNA Pathway. Comb Chem High Throughput Screen 2024; 27:854-862. [PMID: 37438906 DOI: 10.2174/1386207326666230712110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Zhilong Huoxue Tongyu capsule (ZLHX) is a traditional Chinese medicinal compound preparation, which exhibits obvious therapeutic effects on aspirin resistance (AR). However, the mechanism of ZLHX on AR is rarely reported. OBJECTIVES This study aimed to explore the therapeutic effects of AR and the underlying mechanisms of ZLHX on AR rats. METHODS An AR model was established through treatment with a high-fat, high-sugar, and highsalt diet for 12 weeks and oral administration of aspirin (27 mg/kg/day) and ibuprofen (36 mg/kg/day) in weeks 9-12. The rats were administrated with ZLHX (225, 450, and 900 mg/kg) from week 12 to week 16. Blood samples were collected after the experiment. Thromboelastography analysis was performed, and the levels of triglyceride (TG), total cholesterol (TC), lowdensity lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined. Furthermore, the levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6- keto-PGF1α) were determined with commercial ELISA kits. Finally, the gene expressions of microRNA- 126-3p (miRNA-126-3p) and miRNA-34b-3p were detected through a real-time quantitative polymerase chain reaction. RESULTS Results demonstrated that ZLHX significantly inhibited platelet aggregation in the AR rats. Moreover, ZLHX markedly decreased the levels of TC, TG, and LDL-C and increased the level of HDL-C. Meanwhile, ELISA results confirmed that ZLHX can elevate the expression levels of TXB2 and 6-keto-PGF1α. Further studies suggested that ZLHX significantly downregulated the expression levels of miRNA-126-3p and miRNA-34b-3p. CONCLUSION This study revealed that the therapeutic effect of ZLHX might be related to the regulation of lipid metabolism and the miRNA pathway.
Collapse
Affiliation(s)
- Li Qiuyue
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Deng Gulin
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Xu Hong
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yin Jiazhen
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yuan Rukui
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Huang Xinwu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Li Guochun
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
238
|
Salzmann M, Gibler P, Haider P, Brekalo M, Plasenzotti R, Filip T, Nistelberger R, Hartmann B, Wojta J, Hengstenberg C, Podesser BK, Kral-Pointner JB, Hohensinner PJ. Neutrophil extracellular traps induce persistent lung tissue damage via thromboinflammation without altering virus resolution in a mouse coronavirus model. J Thromb Haemost 2024; 22:188-198. [PMID: 37748582 DOI: 10.1016/j.jtha.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND During infection, neutrophil extracellular traps (NETs) are associated with severity of pulmonary diseases such as acute respiratory disease syndrome. NETs induce subsequent immune responses, are directly cytotoxic to pulmonary cells, and are highly procoagulant. Anticoagulation treatment was shown to reduce in-hospital mortality, indicating thromboinflammatory complications. However, data are sparsely available on the involvement of NETs in secondary events after virus clearance, which can lead to persistent lung damage and postacute sequelae with chronic fatigue and dyspnea. OBJECTIVES This study focuses on late-phase events using a murine model of viral lung infection with postacute sequelae after virus resolution. METHODS C57BL/6JRj mice were infected intranasally with the betacoronavirus murine coronavirus (MCoV, strain MHV-A95), and tissue samples were collected after 2, 4, and 10 days. For NET modulation, mice were pretreated with OM-85 or GSK484 and DNase I were administered intraperitoneally between days 2 to 5 and days 4 to 7, respectively. RESULTS Rapid, platelet-attributed thrombus formation was followed by a second, late phase of thromboinflammation. This phase was characterized by negligible virus titers but pronounced tissue damage, apoptosis, oxidative DNA damage, and presence of NETs. Inhibition of NETs during the acute phase did not impact virus burden but decreased lung cell apoptosis by 67% and oxidative stress by 94%. Prevention of neutrophil activation by immune training before virus infection reduced damage by 75%, NETs by 31%, and pulmonary thrombi by 93%. CONCLUSION NETs are detrimental inducers of tissue damage during respiratory virus infection but do not contribute to virus clearance.
Collapse
Affiliation(s)
- Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrizia Gibler
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Rebecca Nistelberger
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Boris Hartmann
- Institute of Veterinary Disease Control, AGES, Mödling, Austria
| | - Johann Wojta
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
239
|
Imiela AM, Mikołajczyk TP, Pruszczyk P. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0021. [PMID: 39466143 DOI: 10.2478/aite-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024]
Abstract
Accumulating data have shown a pathophysiological association between inflammatory pathways and thrombosis. Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and acute pulmonary embolism (APE), is a significant health burden. It involves not only hemodynamic disturbances due to the emboli occluding the pulmonary arteries, but also platelet activation, endothelial dysfunction, and "firing up" of the inflammatory cascade. In humans, the systemic inflammatory state can also be evaluated using plasma levels of C-reactive protein (CRP) and interleukin (IL)-6, which correlate with venous obstruction, thrombus extension, and clinical VTE complications such as postthrombotic syndrome, recurrent thromboembolism, worse quality of life, and functional impairment. The exaggerated inflammatory state during postthrombotic syndrome aligns with severe alterations in endothelial function, such as activation of intercellular adhesion molecule (ICAM)-1 and E-selectin, as well as vascular proteolysis and fibrinolysis. Moreover, a hypercoagulable state, indicated by higher levels of von Willebrand factor (vWF) and factor VIII, is closely associated with the inflammatory response. We aimed to describe the role of basic inflammatory markers in daily clinical practice as well as the most important cytokines (IL-1β, IL-6, IL-8, tumor necrosis factor-a [TNF-α], growth differentiation factor-15 [GDF-15]). These markers could provide valuable insight into the interplay between thrombosis and inflammation, helping inform better management and treatment strategies.
Collapse
Affiliation(s)
- Anna M Imiela
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College
| | - Piotr Pruszczyk
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
240
|
Rydenfelt K, Kjøsen G, Horneland R, Krey Ludviksen J, Jenssen TG, Line PD, Tønnessen TI, Mollnes TE, Haugaa H, Pischke SE. Local Postoperative Graft Inflammation in Pancreas Transplant Patients With Early Graft Thrombosis. Transplant Direct 2024; 10:e1567. [PMID: 38094132 PMCID: PMC10715763 DOI: 10.1097/txd.0000000000001567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Graft thrombosis is the main cause of early graft loss following pancreas transplantation, and is more frequent in pancreas transplant alone (PTA) compared with simultaneous pancreas-kidney (SPK) recipients. Ischemia-reperfusion injury during transplantation triggers a local thromboinflammatory response. We aimed to evaluate local graft inflammation and its potential association with early graft thrombosis. METHODS In this observational study, we monitored 67 pancreas-transplanted patients using microdialysis catheters placed on the pancreatic surface during the first postoperative week. We analyzed 6 cytokines, interleukin-1 receptor antagonist (IL-1ra), IL-6, IL-8, interferon gamma-induced protein 10 (IP-10), macrophage inflammatory protein 1β (MIP-1β), IL-10, and the complement activation product complement activation product 5a (C5a) in microdialysis fluid. We compared the dynamic courses between patients with pancreas graft thrombosis and patients without early complications (event-free) and between PTA and SPK recipients. Levels of the local inflammatory markers, and plasma markers C-reactive protein, pancreas amylase, and lipase were evaluated on the day of thrombosis diagnosis compared with the first week in event-free patients. RESULTS IL-10 and C5a were not detectable. Patients with no early complications (n = 34) demonstrated high IL-1ra, IL-6, IL-8, IP-10, and MIP-1β concentrations immediately after surgery, which decreased to steady low levels during the first 2 postoperative days (PODs). Patients with early graft thrombosis (n = 17) demonstrated elevated IL-6 (P = 0.003) concentrations from POD 1 and elevated IL-8 (P = 0.027) concentrations from POD 2 and throughout the first postoperative week compared with patients without complications. IL-6 (P < 0.001) and IL-8 (P = 0.003) were higher on the day of thrombosis diagnosis compared with patients without early complications. No differences between PTA (n = 35) and SPK (n = 32) recipients were detected. CONCLUSIONS Local pancreas graft inflammation was increased in patients experiencing graft thrombosis, with elevated postoperative IL-6 and IL-8 concentrations, but did not differ between PTA and SPK recipients. Investigating the relationship between the local cytokine response and the formation of graft thrombosis warrants further research.
Collapse
Affiliation(s)
- Kristina Rydenfelt
- Division of Emergencies and Critical Care, Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gisle Kjøsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section of Transplantation Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Trond Geir Jenssen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Oslo, Norway
| | - Pål-Dag Line
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Section of Transplantation Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Inge Tønnessen
- Division of Emergencies and Critical Care, Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Haugaa
- Division of Emergencies and Critical Care, Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
- Department of Intensive Care Nursing, Lovisenberg University College, Oslo, Norway
| | - Søren Erik Pischke
- Division of Emergencies and Critical Care, Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
241
|
Fortuna L, Syme HM. Factors associated with thrombotic disease in dogs with renal proteinuria: A retrospective of 150 cases. J Vet Intern Med 2024; 38:228-237. [PMID: 38147488 PMCID: PMC10800230 DOI: 10.1111/jvim.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Knowledge of additional risk factors for thrombotic disease (TD) among dogs with renal proteinuria is limited; these might differ for TD affecting the systemic arterial (AT), systemic venous (VT), and pulmonary circulation (PT). HYPOTHESIS/OBJECTIVES To compare signalment and clinicopathological data between dogs with renal proteinuria with or without TD, and between dogs with AT, VT, and PT. ANIMALS One hundred fifty client-owned dogs with renal proteinuria, 50 of which had TD. METHODS Retrospective case-controlled study. A database search (2004-2021) identified proteinuric dogs (UPC > 2) with and without TD. Clinicopathological data were obtained from the records. TD and non-TD (NTD) groups were compared by binary logistic regression, and AT, VT, and PT groups by multinomial regression. Normal data presented as mean ± SD, non-normal data presented as median [25th, 75th percentiles]. RESULTS Cavalier King Charles Spaniels were overrepresented in the TD group (OR = 98.8, 95% CI 2.09-4671, P = .02). Compared to NTD cases, TD cases had higher concentration of neutrophils (11.06 [8.92, 16.58] × 109 /L vs 7.31 [5.63, 11.06] × 109 /L, P = .02), and lower concentration of eosinophils (0 [0, 0.21] × 109 /L vs 0.17 [0.04, 0.41] × 109 /L, P = .002) in blood, and lower serum albumin (2.45 ± 0.73 g/dL vs 2.83 ± 0.73 g/dL, P = .04). AT cases had higher serum albumin concentrations than VT cases (2.73 ± 0.48 g/dL vs 2.17 ± 0.49 g/dL, P = .03) and were older than PT cases (10.6 ± 2.6 years vs 7.0 ± 4.3 years, P = .008). VT cases were older (9.1 ± 4.2 years vs 7.0 ± 4.3 years, P = .008) and had higher serum cholesterol concentration (398 [309-692 mg/dL] vs 255 [155-402 mg/dL], P = .03) than PT cases. CONCLUSIONS AND CLINICAL IMPORTANCE Differences between thrombus locations could reflect differences in pathogenesis.
Collapse
Affiliation(s)
- Luca Fortuna
- Department of Clinical Science and ServicesThe Royal Veterinary CollegeHatfieldUnited Kingdom
| | - Harriet M. Syme
- Department of Clinical Science and ServicesThe Royal Veterinary CollegeHatfieldUnited Kingdom
| |
Collapse
|
242
|
Dungan GD, Kantarcioglu B, Odeh A, Hoppensteadt D, Siddiqui F, Rohde L, Fareed J, Syed MA. Vascular Endothelial Dysfunction and Immunothrombosis in the Pathogenesis of Atrial Fibrillation. Clin Appl Thromb Hemost 2024; 30:10760296241296138. [PMID: 39654486 PMCID: PMC11629412 DOI: 10.1177/10760296241296138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Atrial Fibrillation (AF) induces proinflammatory processes which incite vascular endothelial activation and dysfunction. This study seeks to examine the potential relationship between various endothelial, inflammatory, thrombotic, and renin-angiotensin-system (RAS) biomarkers in AF patients.Blood samples were from AF patients (n = 110) prospectively enrolled in this study prior to their first AF ablation. Control plasma samples (n = 100) were used as reference. All samples were analyzed for endothelial (NO, ICAM-1, VEGF, TF, TFPI, TM, Annexin V), inflammatory (IL-6, TNFα, CRP), thrombotic (vWF, tPA, PAI-1, TAFI, D-dimer), and RAS (Renin, Ang-II) biomarkers using ELISA methods. Biomarker average comparisons and Spearman correlations were performed.AF patients showed varying levels of biomarker increase compared to controls. We observed a significant decrease of Ang-II in the AF population relative to controls when stratified for the use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) upon study enrollment. AF patients showed statistically significant correlations between the following biomarkers: TNFα vs IL-6 (rs = 0.317, p = .004), ICAM-1 vs TNFα (rs = 0.527, p = .012), Annexin V vs VEGF (rs = 0.620, p < .001), CRP vs VEGF (rs = 0.342, p = .031), Ang-II vs tPA (rs = -0.592, p = .010), and tPA vs PAI-1 (rs = 0.672, p < .001).Our study demonstrated significant elevation of endothelial, inflammatory, and thrombotic biomarkers in AF patients compared to controls, with significant correlations between these biomarkers in the AF population. Future investigations are required to better elucidate the mechanistic pathways that lead to endothelial dysfunction and thromboinflammation in AF. This may provide novel therapeutic targets, that in addition to current anticoagulation practices, can best curtail thrombogenicity in AF.
Collapse
Affiliation(s)
- Gabriel D. Dungan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Ameer Odeh
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
- Program in Health Sciences, UCAM- Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Luke Rohde
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Mushabbar A. Syed
- Department of Medicine, Division of Cardiology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
243
|
Yang Z, Wen J, Erus G, Govindarajan ST, Melhem R, Mamourian E, Cui Y, Srinivasan D, Abdulkadir A, Parmpi P, Wittfeld K, Grabe HJ, Bülow R, Frenzel S, Tosun D, Bilgel M, An Y, Yi D, Marcus DS, LaMontagne P, Benzinger TL, Heckbert SR, Austin TR, Waldstein SR, Evans MK, Zonderman AB, Launer LJ, Sotiras A, Espeland MA, Masters CL, Maruff P, Fripp J, Toga A, O’Bryant S, Chakravarty MM, Villeneuve S, Johnson SC, Morris JC, Albert MS, Yaffe K, Völzke H, Ferrucci L, Bryan NR, Shinohara RT, Fan Y, Habes M, Lalousis PA, Koutsouleris N, Wolk DA, Resnick SM, Shou H, Nasrallah IM, Davatzikos C. Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300642. [PMID: 38234857 PMCID: PMC10793523 DOI: 10.1101/2023.12.29.23300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.
Collapse
Affiliation(s)
- Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sindhuja T. Govindarajan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randa Melhem
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Paraskevi Parmpi
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R. Austin
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shari R. Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Michele K. Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B. Zonderman
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Lenore J. Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute of Informatics, Washington University in St. Luis, St. Luis, MO63110, USA
| | - Mark A. Espeland
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Colin L. Masters
- Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Paul Maruff
- Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, Queensland, Australia
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Sid O’Bryant
- Institute for Translational Research University of North Texas Health Science Center Fort Worth Texas USA
| | - Mallar M. Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Yaffe
- Departments of Neurology, Psychiatry and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, USA
| | - Nick R. Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Biggs Alzheimer’s Institute, University of Texas San Antonio Health Science Center, USA
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M. Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
244
|
Bian X, He J, Zhang R, Yuan S, Dou K. The Combined Effect of Systemic Immune-Inflammation Index and Type 2 Diabetes Mellitus on the Prognosis of Patients Undergoing Percutaneous Coronary Intervention: A Large-Scale Cohort Study. J Inflamm Res 2023; 16:6415-6429. [PMID: 38164165 PMCID: PMC10758317 DOI: 10.2147/jir.s445479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Background Chronic low-grade inflammation is the common mechanism of both atherosclerosis and type 2 diabetes mellitus (T2DM), and systemic immune-inflammation index (SII) has been emerged as a novel and simple inflammatory biomarker. However, the association between SII and glycemic metabolism and their synergetic effect on the prognosis of coronary artery disease (CAD) patients remains unclear. Methods A total of 8602 patients hospitalized for percutaneous coronary intervention (PCI) were included. The primary endpoint was major adverse cardiovascular events (MACE), including all-cause death, myocardial infarction (MI), and target vessel revascularization. According to the optimal cut-off value of SII for MACEs, patients were grouped into higher levels of SII (SII-H) and lower levels of SII (SII-L) and further divided by the concomitance of T2DM into four groups: SII-H/T2DM, SII-H/Non-T2DM, SII-L/T2DM, SII-L/Non-T2DM. Results During a median 2.4-year follow-up, 522 MACEs occurred. The optimal cut-off value of SII for MACEs was 502.5. A 1-unit increase of SII (transformed by natural logarithm) was associated with a 29% increase of MACE risks in the T2DM cohort [adjusted hazard ratio (HR): 1.29, 95% confidence interval (CI): 1.03 to 1.61, P = 0.024], while had no effect in the non-T2DM cohort (HR: 1.03, 95% CI: 0.80 to 1.34, P = 0.800). Compared to those in SII-H/T2DM group, patients in SII-H/Non-T2DM, SII-L/T2DM, SII-L/Non-T2DM had significantly decreased risk of MACEs [adjusted HR: 0.77, 95% CI: 0.61 to 0.98, P = 0.036; adjusted HR: 0.66, 95% CI: 0.50 to 0.87, P = 0.003; adjusted HR: 0.58, 95% CI: 0.45 to 0.74, P < 0.001; respectively]. Multivariable Cox regression analysis also indicated the highest risk in T2DM patients with higher levels of SII than others (P for trend < 0.001). Conclusion In this large-scale real-world study, diabetic patients with elevated SII levels were associated with worse clinical outcomes after PCI.
Collapse
Affiliation(s)
- Xiaohui Bian
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Jining He
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
245
|
Ghani H, Pepke-Zaba J. Chronic Thromboembolic Pulmonary Hypertension: A Review of the Multifaceted Pathobiology. Biomedicines 2023; 12:46. [PMID: 38255153 PMCID: PMC10813488 DOI: 10.3390/biomedicines12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.
Collapse
Affiliation(s)
- Hakim Ghani
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | | |
Collapse
|
246
|
Yong J, Toh CH. Rethinking coagulation: from enzymatic cascade and cell-based reactions to a convergent model involving innate immune activation. Blood 2023; 142:2133-2145. [PMID: 37890148 DOI: 10.1182/blood.2023021166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Advancements in the conceptual thinking of hemostasis and thrombosis have been catalyzed by major developments within health research over several decades. The cascade model of coagulation was first described in the 1960s, when biochemistry gained prominence through innovative experimentation and technical developments. This was followed by the cell-based model, which integrated cellular coordination to the enzymology of clot formation and was conceptualized during the growth period in cell biology at the turn of the millennium. Each step forward has heralded a revolution in clinical therapeutics, both in procoagulant and anticoagulant treatments to improve patient care. In current times, the COVID-19 pandemic may also prove to be a catalyst: thrombotic challenges including the mixed responses to anticoagulant treatment and the vaccine-induced immune thrombotic thrombocytopenia have exposed limitations in our preexisting concepts while simultaneously demanding novel therapeutic approaches. It is increasingly clear that innate immune activation as part of the host response to injury is not separate but integrated into adaptive clot formation. Our review summarizes current understanding of the major molecules facilitating such a cross talk between immunity, inflammation and coagulation. We demonstrate how such effects can be layered upon the cascade and cell-based models to evolve conceptual understanding of the physiology of immunohemostasis and the pathology of immunothrombosis.
Collapse
Affiliation(s)
- Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
247
|
Tateishi K, Hmoud H, De Gregorio L, De Gregorio I, Asselin CY, De Gregorio J. Impact of Cardiac and Cerebrovascular Complications During Hospitalization on Long-Term Prognosis in Patients With COVID-19. Am J Cardiol 2023; 209:114-119. [PMID: 37839464 DOI: 10.1016/j.amjcard.2023.09.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The impact of cardiac and cerebrovascular events during COVID-19 hospitalization on long-term prognosis remains uncertain. We aimed to evaluate the effect of myocardial infarction (MI), cerebrovascular accident (CVA), and pulmonary embolism (PE) during hospitalization on the long-term prognosis in patients who survived COVID-19 hospitalization. A retrospective observational analysis was performed on a cohort of 2,389 patients who survived COVID-19 hospitalization in our institution between January and June 2020. The patients were divided into MI (n = 111) and non-MI (n = 2,278) groups according to the presence of MI during hospitalization. As a subanalysis, the patients were assigned to CVA (n = 97) and non-CVA (n = 2,292) and PE (n = 54) and non-PE (n = 2,335) groups. The primary outcome was long-term survival after discharge. During a median follow-up period of 2.4 years after discharge, 30 patients (27.0%) in the MI group and 140 patients (6.2%) in the non-MI group died (p <0.001). The Kaplan-Meier survival curve analysis demonstrated that the MI group was significantly associated with an increased incidence of all-cause death after discharge (log-rank p <0.001), as supported by the multivariate Cox proportional hazards model analysis (hazard ratio [HR] 2.45, 95% confidence interval [CI] 1.61 to 3.74, p <0.001). However, the presence of CVA (HR 1.46, 95% CI 0.91 to 2.34, p = 0.113) or PE (HR 0.94, 95% CI 0.23 to 3.84, p = 0.937) were not associated with an increased incidence of all-cause death after discharge. In conclusion, among the cardiovascular and cerebrovascular complications associated with COVID-19 hospitalization, the presence of MI during hospitalization was proved to be a significant independent predictor of long-term mortality in patients who survived COVID-19 hospitalization.
Collapse
Affiliation(s)
- Kazuya Tateishi
- Department of Cardiovascular Services, Englewood Hospital and Medical Center, Englewood, New Jersey.
| | - Hosam Hmoud
- Department of Cardiology, Lenox Hill Hospital Northwell Health, New York, New York
| | | | | | - Chantal Y Asselin
- Department of Internal Medicine, Morristown Medical Center, Morristown, New Jersey
| | - Joseph De Gregorio
- Department of Cardiovascular Services, Englewood Hospital and Medical Center, Englewood, New Jersey
| |
Collapse
|
248
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
249
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
250
|
Rijk MH, Platteel TN, Geersing GJ, Hollander M, Dalmolen BLGP, Little P, Rutten FH, van Smeden M, Venekamp RP. Predicting adverse outcomes in adults with a community-acquired lower respiratory tract infection: a protocol for the development and validation of two prediction models for (i) all-cause hospitalisation and mortality and (ii) cardiovascular outcomes. Diagn Progn Res 2023; 7:23. [PMID: 38057921 DOI: 10.1186/s41512-023-00161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Community-acquired lower respiratory tract infections (LRTI) are common in primary care and patients at particular risk of adverse outcomes, e.g., hospitalisation and mortality, are challenging to identify. LRTIs are also linked to an increased incidence of cardiovascular diseases (CVD) following the initial infection, whereas concurrent CVD might negatively impact overall prognosis in LRTI patients. Accurate risk prediction of adverse outcomes in LRTI patients, while considering the interplay with CVD, can aid general practitioners (GP) in the clinical decision-making process, and may allow for early detection of deterioration. This paper therefore presents the design of the development and external validation of two models for predicting individual risk of all-cause hospitalisation or mortality (model 1) and short-term incidence of CVD (model 2) in adults presenting to primary care with LRTI. METHODS Both models will be developed using linked routine electronic health records (EHR) data from Dutch primary and secondary care, and the mortality registry. Adults aged ≥ 40 years with a GP-diagnosis of LRTI between 2016 and 2019 are eligible for inclusion. Relevant patient demographics, medical history, medication use, presenting signs and symptoms, and vital and laboratory measurements will be considered as candidate predictors. Outcomes of interest include 30-day all-cause hospitalisation or mortality (model 1) and 90-day CVD (model 2). Multivariable elastic net regression techniques will be used for model development. During the modelling process, the incremental predictive value of CVD for hospitalisation or all-cause mortality (model 1) will also be assessed. The models will be validated through internal-external cross-validation and external validation in an equivalent cohort of primary care LRTI patients. DISCUSSION Implementation of currently available prediction models for primary care LRTI patients is hampered by limited assessment of model performance. While considering the role of CVD in LRTI prognosis, we aim to develop and externally validate two models that predict clinically relevant outcomes to aid GPs in clinical decision-making. Challenges that we anticipate include the possibility of low event rates and common problems related to the use of EHR data, such as candidate predictor measurement and missingness, how best to retrieve information from free text fields, and potential misclassification of outcome events.
Collapse
Affiliation(s)
- Merijn H Rijk
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Tamara N Platteel
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Geersing
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Monika Hollander
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Paul Little
- Primary Care Research Center, Primary Care Population Sciences and Medical Education Unit, University of Southampton, Southampton, United Kingdom
| | - Frans H Rutten
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten van Smeden
- Department of Epidemiology & Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roderick P Venekamp
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|