201
|
Wang N, Li Y, Wang L, Yu X. Photocatalytic Applications of ReS2-Based Heterostructures. Molecules 2023; 28:molecules28062627. [PMID: 36985599 PMCID: PMC10051642 DOI: 10.3390/molecules28062627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
ReS2-based heterostructures, which involve the coupling of a narrow band-gap semiconductor ReS2 with other wide band-gap semiconductors, have shown promising performance in energy conversion and environmental pollution protection in recent years. This review focuses on the preparation methods, encompassing hydrothermal, chemical vapor deposition, and exfoliation techniques, as well as achievements in correlated applications of ReS2-based heterostructures, including type-I, type-II heterostructures, and Z-scheme heterostructures for hydrogen evolution, reduction of CO2, and degradation of pollutants. We believe that this review provides an overview of the most recent advances to guide further research and development of ReS2-based heterostructures for photocatalysis.
Collapse
|
202
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
203
|
Qu J, Liu C, Zubair M, Zeng Z, Liu B, Yang X, Luo Z, Yi X, Chen Y, Chen S, Pan A. A universal growth method for high-quality phase-engineered germanium chalcogenide nanosheets. NANOSCALE 2023; 15:4438-4447. [PMID: 36752096 DOI: 10.1039/d2nr05657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Low-dimensional group IV-VI metal chalcogenide-based semiconductors hold great promise for opto-electronic device applications owing to their diverse crystalline phases and intriguing properties related to thermoelectric and ferroelectric effects. Herein, we demonstrate a universal chemical vapor deposition (CVD) growth method to synthesize stable germanium chalcogenide-based (GeS, GeS2, GeSe, GeSe2) nanosheets, which increases the library of the p-type semiconductor. The phase transition between different crystalline polytypes can be deterministically controlled by hydrogen concentration in the reaction chamber. Structural characterization and synthesis experiments identify the behavior, where the higher hydrogen concentration promotes the transiton from germanium dichalcogenides to germanium monochalcogenides. The angle-polarized and temperature-dependent Raman spectra demonstrate the strong interlayer coupling and lattice orientation. Based on the optimized growth scheme and systematic comparison of electrical properties, GeSe nanosheet photodetectors were demonstrated, which exhibit superior device performance on SiO2/Si and HfO2/Si substrate with a high photoresponsivity up to 104 A W-1, fast response time less than 15 ms, and high mobility of 3.2 cm2 V-1 s-1, which is comparable to the mechanically exfoliated crystals. Our results manifest the hydrogen-mediated deposition strategy as a facile control knob to engineer crystalline phases of germanium chalcogenides for high performance optoelectronic devices.
Collapse
Affiliation(s)
- Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Chenxi Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Muhammad Zubair
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Zhouxiaosong Zeng
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| |
Collapse
|
204
|
Lu X, Cai M, Wu X, Zhang Y, Li S, Liao S, Lu X. Controllable Synthesis of 2D Materials by Electrochemical Exfoliation for Energy Storage and Conversion Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206702. [PMID: 36513389 DOI: 10.1002/smll.202206702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers-including graphene, black phosphorene, transition metal dichalcogenides and MXene-are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.
Collapse
Affiliation(s)
- Xueyi Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mohang Cai
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuemin Wu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongfei Zhang
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuai Li
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Physics and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shijun Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 501641, China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
205
|
Symonowicz J, Polyushkin D, Mueller T, Di Martino G. Fully Optical in Operando Investigation of Ambient Condition Electrical Switching in MoS 2 Nanodevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209968. [PMID: 36539947 DOI: 10.1002/adma.202209968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
MoS2 nanoswitches have shown superb ultralow switching energies without excessive leakage currents. However, the debate about the origin and volatility of electrical switching is unresolved due to the lack of adequate nanoimaging of devices in operando. Here, three optical techniques are combined to perform the first noninvasive in situ characterization of nanosized MoS2 devices. This study reveals volatile threshold resistive switching due to the intercalation of metallic atoms from electrodes directly between Mo and S atoms, without the assistance of sulfur vacancies. A "semi-memristive" effect driven by an organic adlayer adjacent to MoS2 is observed, which suggests that nonvolatility can be achieved by careful interface engineering. These findings provide a crucial understanding of nanoprocess in vertically biased MoS2 nanosheets, which opens new routes to conscious engineering and optimization of 2D electronics.
Collapse
Affiliation(s)
- Joanna Symonowicz
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| | - Dmitry Polyushkin
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Thomas Mueller
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Giuliana Di Martino
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| |
Collapse
|
206
|
Khan U, Nairan A, Khan K, Li S, Liu B, Gao J. Salt-Assisted Low-Temperature Growth of 2D Bi 2 O 2 Se with Controlled Thickness for Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206648. [PMID: 36538737 DOI: 10.1002/smll.202206648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Bi2 O2 Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2 O2 Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2 O2 Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2 O2 Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm-1 . Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2 O2 Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2 O2 Se flake represents decent carrier mobility (≈287 cm2 V-1 s-1 ) and an ON/OFF ratio of up to 107 . This report indicates a technique to grow large-domain thickness controlled Bi2 O2 Se single crystals for electronics.
Collapse
Affiliation(s)
- Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
207
|
Yuan J, Zhang X, Zhou D, Ge F, Zhong J, Zhao S, Ou Z, Zhan G, Zhang X, Li C, Tang J, Bai Q, Zhang J, Zhu C, Wang T, Ruan L, Zhu C, Song X, Huang W, Wang L. Excessive Iodine Enabled Ultrathin Inorganic Perovskite Growth at the Liquid-Air Interface. Angew Chem Int Ed Engl 2023; 62:e202218546. [PMID: 36853171 DOI: 10.1002/anie.202218546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.
Collapse
Affiliation(s)
- Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Sihan Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Junran Zhang
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Longfei Ruan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
208
|
Zhao Z, Fang Z, Han X, Yang S, Zhou C, Zeng Y, Zhang B, Li W, Wang Z, Zhang Y, Zhou J, Zhou J, Ye Y, Hou X, Zhao X, Gao S, Hou Y. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat Commun 2023; 14:958. [PMID: 36810290 PMCID: PMC9944324 DOI: 10.1038/s41467-023-36619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices.
Collapse
Affiliation(s)
- Zijing Zhao
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Zhi Fang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Xiaocang Han
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Shiqi Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Cong Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yi Zeng
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Biao Zhang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Wei Li
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Zhan Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Zhang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jian Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jiadong Zhou
- grid.43555.320000 0000 8841 6246Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Ye
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Xinmei Hou
- grid.69775.3a0000 0004 0369 0705Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| | - Song Gao
- grid.79703.3a0000 0004 1764 3838Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
209
|
Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. NANOSCALE 2023; 15:3079-3105. [PMID: 36723394 DOI: 10.1039/d2nr05447g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical sensors worn on the body could make possible the continuous, noninvasive, and accurate monitoring of vital human signals, which is necessary for remote health monitoring and telemedicine. Attractive for creating high-performance, wearable chemical sensors are atomically thin materials with intriguing physical features, abundant chemistry, and high surface-to-volume ratios. These advantages allow for appropriate material-analyte interactions, resulting in a high level of sensitivity even at trace analyte concentrations. Previous review articles covered the material and device elements of 2D material-based wearable devices extensively. In contrast, little research has addressed the existing state, future outlook, and promise of 2D materials for wearable chemical sensors. We provide an overview of recent advances in 2D-material-based wearable chemical sensors to overcome this deficiency. The structure design, manufacturing techniques, and mechanisms of 2D material-based wearable chemical sensors will be evaluated, as well as their applicability in human health monitoring. Importantly, we present a thorough review of the current state of the art and the technological gaps that would enable the future design and nanomanufacturing of 2D materials and wearable chemical sensors. Finally, we explore the challenges and opportunities associated with designing and implementing 2D wearable chemical sensors.
Collapse
Affiliation(s)
- Ruifang Zhang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jing Jiang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- The Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
210
|
Li F, Li J, Zheng J, Tong Y, Zhu H, Wang P, Li L. Fast Fabrication of WS 2/Bi 2Se 3 Heterostructures for High-Performance Photodetection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10098-10108. [PMID: 36751031 DOI: 10.1021/acsami.2c17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half-wet poly(dimethylsiloxane) (PDMS) transfer process utilizing the change of adhesion energy with the help of micron-sized water droplets. Using this method, a vertical stacking of the WS2/Bi2Se3 heterostructure with a straddling band configuration is successfully assembled on a fluorophlogopite substrate. Thanks to the complementary band gaps and high efficiency of interfacial charge transfer, the photodetector based on the heterostructure exhibits a superior responsivity of 109.9 A W-1 for a visible incident light at 473 nm and 26.7 A W-1 for a 1064 nm near-infrared illumination. Such high photoresponsivity of the heterostructure demonstrates that our transfer method not only owns time efficiency but also ensures high quality of the heterointerface. Our study may open new pathways to the fast and massive fabrication of various vertical 2D heterostructures for applications in twistronics/valleytronics and other band engineering devices.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Junsheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Huanfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
211
|
Yu M, Hu Z, Zhou J, Lu Y, Guo W, Zhang Z. Retrieving Grain Boundaries in 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205593. [PMID: 36461686 DOI: 10.1002/smll.202205593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The coalescence of randomly distributed grains with different crystallographic orientations can result in pervasive grain boundaries (GBs) in 2D materials during their chemical synthesis. GBs not only are the inherent structural imperfection that causes influential impacts on structures and properties of 2D materials, but also have emerged as a platform for exploring unusual physics and functionalities stemming from dramatic changes in local atomic organization and even chemical makeup. Here, recent advances in studying the formation mechanism, atomic structures, and functional properties of GBs in a range of 2D materials are reviewed. By analyzing the growth mechanism and the competition between far-field strain and local chemical energies of dislocation cores, a complete understanding of the rich GB morphologies as well as their dependence on lattice misorientations and chemical compositions is presented. Mechanical, electronic, and chemical properties tied to GBs in different materials are then discussed, towards raising the concept of using GBs as a robust atomic-scale scaffold for realizing tailored functionalities, such as magnetism, luminescence, and catalysis. Finally, the future opportunities in retrieving GBs for making functional devices and the major challenges in the controlled formation of GB structures for designed applications are commented.
Collapse
Affiliation(s)
- Maolin Yu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhili Hu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
212
|
Tunability of the Superconductivity of NbSe 2 Films Grown by Two-Step Vapor Deposition. Molecules 2023; 28:molecules28031059. [PMID: 36770735 PMCID: PMC9921890 DOI: 10.3390/molecules28031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Layered metallic transition-metal dichalcogenides (TMDCs) are ideal platforms for exploring their fascinating electronic properties at two-dimensional limits, such as their charge density wave (CDW) and superconductivity. Therefore, developing ways to improve the crystallization quality of TMDCs is urgently needed. Here we report superconductively tunable NbSe2 grown by a two-step vapor deposition method. By optimizing the sputtering conditions, superconducting NbSe2 films were prepared from highly crystalline Nb films. The bilayer NbSe2 films showed a superconducting transition temperature that was up to 3.1 K. Similar to the salt-assisted chemical vapor deposition (CVD) method, superconducting monolayer NbSe2 crystals were also grown from a selenide precursor, and the growth strategy is suitable for many other TMDCs. Our growth method not only provides a way to improve the crystalline quality of TMDC films, but also gives new insight into the growth of monolayer TMDCs. It holds promise for exploring two-dimensional TMDCs in fundamental research and device applications.
Collapse
|
213
|
Qin B, Saeed MZ, Li Q, Zhu M, Feng Y, Zhou Z, Fang J, Hossain M, Zhang Z, Zhou Y, Huangfu Y, Song R, Tang J, Li B, Liu J, Wang D, He K, Zhang H, Wu R, Zhao B, Li J, Liao L, Wei Z, Li B, Duan X, Duan X. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat Commun 2023; 14:304. [PMID: 36658123 PMCID: PMC9852450 DOI: 10.1038/s41467-023-35983-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Most of the current methods for the synthesis of two-dimensional materials (2DMs) require temperatures not compatible with traditional back-end-of-line (BEOL) processes in semiconductor industry (450 °C). Here, we report a general BiOCl-assisted chemical vapor deposition (CVD) approach for the low-temperature synthesis of 27 ultrathin 2DMs. In particular, by mixing BiOCl with selected metal powders to produce volatile intermediates, we show that ultrathin 2DMs can be produced at 280-500 °C, which are ~200-300 °C lower than the temperatures required for salt-assisted CVD processes. In-depth characterizations and theoretical calculations reveal the low-temperature processes promoting 2D growth and the oxygen-inhibited synthetic mechanism ensuring the formation of ultrathin nonlayered 2DMs. We demonstrate that the resulting 2DMs exhibit electrical, magnetic and optoelectronic properties comparable to those of 2DMs grown at much higher temperatures. The general low-temperature preparation of ultrathin 2DMs defines a rich material platform for exploring exotic physics and facile BEOL integration in semiconductor industry.
Collapse
Affiliation(s)
- Biao Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Muhammad Zeeshan Saeed
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiuqiu Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Manli Zhu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ya Feng
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jingzhi Fang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Mongur Hossain
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zucheng Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yucheng Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Rong Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingmei Tang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bailing Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jialing Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Di Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kun He
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hongmei Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bei Zhao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Liao
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bo Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China.
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
214
|
Ye Z, Tan C, Huang X, Ouyang Y, Yang L, Wang Z, Dong M. Emerging MoS 2 Wafer-Scale Technique for Integrated Circuits. NANO-MICRO LETTERS 2023; 15:38. [PMID: 36652150 PMCID: PMC9849648 DOI: 10.1007/s40820-022-01010-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
As an outstanding representative of layered materials, molybdenum disulfide (MoS2) has excellent physical properties, such as high carrier mobility, stability, and abundance on earth. Moreover, its reasonable band gap and microelectronic compatible fabrication characteristics makes it the most promising candidate in future advanced integrated circuits such as logical electronics, flexible electronics, and focal-plane photodetector. However, to realize the all-aspects application of MoS2, the research on obtaining high-quality and large-area films need to be continuously explored to promote its industrialization. Although the MoS2 grain size has already improved from several micrometers to sub-millimeters, the high-quality growth of wafer-scale MoS2 is still of great challenge. Herein, this review mainly focuses on the evolution of MoS2 by including chemical vapor deposition, metal-organic chemical vapor deposition, physical vapor deposition, and thermal conversion technology methods. The state-of-the-art research on the growth and optimization mechanism, including nucleation, orientation, grain, and defect engineering, is systematically summarized. Then, this review summarizes the wafer-scale application of MoS2 in a transistor, inverter, electronics, and photodetectors. Finally, the current challenges and future perspectives are outlined for the wafer-scale growth and application of MoS2.
Collapse
Affiliation(s)
- Zimeng Ye
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaolei Huang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yi Ouyang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
215
|
Lu M, Ji H, Zhao Y, Chen Y, Tao J, Ou Y, Wang Y, Huang Y, Wang J, Hao G. Machine Learning-Assisted Synthesis of Two-Dimensional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1871-1878. [PMID: 36574361 DOI: 10.1021/acsami.2c18167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials have intriguing physical and chemical properties, which exhibit promising applications in the fields of electronics, optoelectronics, as well as energy storage. However, the controllable synthesis of 2D materials is highly desirable but remains challenging. Machine learning (ML) facilitates the development of insights and discoveries from a large amount of data in a short time for the materials synthesis, which can significantly reduce the computational costs and shorten the development cycles. Based on this, taking the 2D material MoS2 as an example, the parameters of successfully synthesized materials by chemical vapor deposition (CVD) were explored through four ML algorithms: XGBoost, Support Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP). Recall, specificity, accuracy, and other metrics were used to assess the performance of these four models. By comparison, XGBoost was the best performing model among all the models, with an average prediction accuracy of over 88% and a high area under the receiver operating characteristic (AUROC) reaching 0.91. And these findings showed that the reaction temperature (T) had a crucial influence on the growth of MoS2. Furthermore, the importance of the features in the growth mechanism of MoS2 was optimized, such as the reaction temperature (T), Ar gas flow rate (Rf), reaction time (t), and so on. The results demonstrated that ML assisted materials preparation can significantly minimize the time spent on exploration and trial-and-error, which provided perspectives in the preparation of 2D materials.
Collapse
Affiliation(s)
- Mingying Lu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Haining Ji
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yong Zhao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yongxing Chen
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jundong Tao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yangyong Ou
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yi Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yan Huang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Junlong Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guolin Hao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
216
|
Dong J, Ding D, Jin C, Liu Y, Ding F. Edge Reconstruction-Dependent Growth Kinetics of MoS 2. ACS NANO 2023; 17:127-136. [PMID: 36534396 DOI: 10.1021/acsnano.2c05397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the growth mechanisms of multielement two-dimensional (2D) crystals is challenging because of the unbalanced stoichiometry and possible reconstruction of their edges. Here, we present a systematic theoretical study on the chemical vapor deposition (CVD) growth mechanism of MoS2. We found that the growth kinetics of MoS2 highly depends on its edge reconstruction determined by concentrations of Mo and S in the growth environment. Based on the calculated energies of nucleation and propagation of various MoS2 edges, we predicted the transition of a MoS2 island growth from a regime of a triangle enclosed by Mo-terminated zigzag edges that are passivated by 50% S (Mo-II edges), to a regime of continuous evolution within a triangle, hexagon, and inverted triangle with 75%-S-terminated edges (S-III edges) and Mo-II edges, and finally to a regime of triangles with Mo-terminated zigzag edges that are passivated by 100% S (Mo-III edges) by tuning the growth condition from Mo-rich to S-rich, which provides a reasonable explanation to many experimental observations. This study provides a general guideline on theoretical studies of 2D crystals' growth mechanisms, deepens our understanding on the growth mechanism of multielement 2D crystals, and is beneficial for the controllable synthesis of various 2D crystals.
Collapse
Affiliation(s)
- Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan44919, Republic of Korea
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Degong Ding
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, People's Republic of China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, People's Republic of China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
217
|
Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y. Epitaxial Growth of High-Quality Monolayer MoS 2 Single Crystals on Low-Symmetry Vicinal Au(101) Facets with Different Miller Indices. ACS NANO 2023; 17:312-321. [PMID: 36573957 DOI: 10.1021/acsnano.2c07978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Epitaxial growth of wafer-scale monolayer semiconducting transition metal dichalcogenide single crystals is essential for advancing their applications in next-generation transistors and highly integrated circuits. Several efforts have been made for the growth of monolayer MoS2 single crystals on high-symmetry Au(111) and sapphire substrates, while more prototype growth systems still need to be discovered for clarifying the internal mechanisms. Herein, we report the epitaxial growth of unidirectionally aligned monolayer MoS2 domains and single-crystal films on low-symmetry Au(101) vicinal facets via a facile chemical vapor deposition method. On-site scanning tunneling microscopy observations reveal the formation of a specific rectangular Moiré pattern along the [101̅] step edge of Au(101) and along its perpendicular direction. The perfect lattice constant matching of MoS2/Au(101) along the substrate high-symmetry directions (i.e., Au[101̅], Au [010]) as well as the step-edge-guiding effect are proposed to facilitate the robust epitaxy. Multiscale characterizations further confirm the domain-boundary-free feature of the monolayer MoS2 films merged by unidirectionally aligned monolayer domains. This work hereby puts forward a symmetry mismatched epitaxial system for the direct synthesis of monolayer MoS2 single crystals, which should deepen our understanding about the epitaxy of 2D layered materials and propel their applications in various fields.
Collapse
Affiliation(s)
- Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fangfang Cui
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fachen Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Shuangyuan Pan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fan Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Guanhua Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Peng Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yanfeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
218
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
219
|
Zhuo F, Wu J, Li B, Li M, Tan CL, Luo Z, Sun H, Xu Y, Yu Z. Modifying the Power and Performance of 2-Dimensional MoS 2 Field Effect Transistors. RESEARCH (WASHINGTON, D.C.) 2023; 6:0057. [PMID: 36939429 PMCID: PMC10016345 DOI: 10.34133/research.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Over the past 60 years, the semiconductor industry has been the core driver for the development of information technology, contributing to the birth of integrated circuits, Internet, artificial intelligence, and Internet of Things. Semiconductor technology has been evolving in structure and material with co-optimization of performance-power-area-cost until the state-of-the-art sub-5-nm node. Two-dimensional (2D) semiconductors are recognized by the industry and academia as a hopeful solution to break through the quantum confinement for the future technology nodes. In the recent 10 years, the key issues on 2D semiconductors regarding material, processing, and integration have been overcome in sequence, making 2D semiconductors already on the verge of application. In this paper, the evolution of transistors is reviewed by outlining the potential of 2D semiconductors as a technological option beyond the scaled metal oxide semiconductor field-effect transistors. We mainly focus on the optimization strategies of mobility (μ), equivalent oxide thickness (EOT), and contact resistance (RC ), which enables high ON current (Ion ) with reduced driving voltage (Vdd ). Finally, we prospect the semiconductor technology roadmap by summarizing the technological development of 2D semiconductors over the past decade.
Collapse
Affiliation(s)
- Fulin Zhuo
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Wu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Binhong Li
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Institute of Microelectronics,
Chinese Academy of Sciences, Beijing 100029, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Moyang Li
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chee Leong Tan
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Huabin Sun
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Yong Xu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Zhihao Yu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| |
Collapse
|
220
|
Wang Q, Wang S, Li J, Gan Y, Jin M, Shi R, Amini A, Wang N, Cheng C. Modified Spatially Confined Strategy Enabled Mild Growth Kinetics for Facile Growth Management of Atomically-Thin Tungsten Disulfides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205638. [PMID: 36446619 PMCID: PMC9875684 DOI: 10.1002/advs.202205638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to produce high quality 2D transitional metal dichalcogenides (2D TMDCs). However, violent evaporation and large diffusivity discrepancy of metal and chalcogen precursors at elevated temperatures often result in poor regulation on X:M molar ratio (M = Mo, W etc.; X = S, Se, and Te), and thus it is rather challenging to achieve the desired products of 2D TMDCs. Here, a modified spatially confined strategy (MSCS) is utilized to suppress the rising S vapor concentration between two aspectant substrates, upon which the lateral/vertical growth of 2D WS2 can be selectively regulated via proper S:W zones correspond to greatly broadened time/growth windows. An S:W-time (SW-T) growth diagram was thus proposed as a mapping guide for the general understanding of CVD growth of 2D WS2 and the design of growth routes for the desired 2D WS2 . Consequently, a comprehensive growth management of atomically thin WS2 is achieved, including the versatile controls of domain size, layer number, and lateral/vertical heterostructures (MoS2 -WS2 ). The lateral heterostructures show an enhanced hydrogen evolution reaction performance. This study advances the substantial understanding to the growth kinetics and provides an effective MSCS protocol for growth design and management of 2D TMDCs.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Shi Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Jingyi Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yichen Gan
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mengtian Jin
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Run Shi
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Abbas Amini
- Center for Infrastructure EngineeringWestern Sydney UniversityKingswoodNew South Wales2751Australia
| | - Ning Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Chun Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric PowerSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
221
|
You J, Pan J, Shang SL, Xu X, Liu Z, Li J, Liu H, Kang T, Xu M, Li S, Kong D, Wang W, Gao Z, Zhou X, Zhai T, Liu ZK, Kim JK, Luo Z. Salt-Assisted Selective Growth of H-phase Monolayer VSe 2 with Apparent Hole Transport Behavior. NANO LETTERS 2022; 22:10167-10175. [PMID: 36475688 DOI: 10.1021/acs.nanolett.2c04133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vanadium diselenide (VSe2) exhibits versatile electronic and magnetic properties in the trigonal prismatic (H-) and octahedral (T-) phases. Compared to the metallic T-phase, the H-phase with a tunable semiconductor property is predicted to be a ferrovalley material with spontaneous valley polarization. Herein we report an epitaxial growth of the monolayer 2D VSe2 on a mica substrate via the chemical vapor deposition (CVD) method by introducing salt in the precursor. Our first-principles calculations suggest that the monolayer H-phase VSe2 with a large lateral size is thermodynamically favorable. The honeycomb-like structure and the broken symmetry are directly observed by spherical aberration-corrected scanning transmission electron microscopy (STEM) and confirmed by giant second harmonic generation (SHG) intensity. The p-type transport behavior is further evidenced by the temperature-dependent resistance and field-effect device study. The present work introduces a new phase-stable 2D transition metal dichalcogenide, opening the prospect of novel electronic and spintronics device design.
Collapse
Affiliation(s)
- Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Jie Pan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Shun-Li Shang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Xiang Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, P. R. China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Jingwei Li
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Ting Kang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Mengyang Xu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Shaobo Li
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Deqi Kong
- State Key Laboratory of Luminescent Materials and Devices, Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wenliang Wang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong999777, P. R. China
- CUHK Shenzhen Research Institute, No.10, second, Yuexing Road, Nanshan, Shenzhen518057, P. R. China
| | - Xing Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, P. R. China
| | - Tianyou Zhai
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, P. R. China
| | - Zi-Kui Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, P. R. China
- The Hong Kong University of Science and Technology Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-tech Park, Nanshan, Shenzhen518057, China
| |
Collapse
|
222
|
Silva A, Cao J, Polcar T, Kramer D. Design Guidelines for Two-Dimensional Transition Metal Dichalcogenide Alloys. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10279-10290. [PMID: 36530938 PMCID: PMC9753562 DOI: 10.1021/acs.chemmater.2c01390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials and transition metal dichalcogenides (TMD) in particular are at the forefront of nanotechnology. To tailor their properties for engineering applications, alloying strategies-used successfully for bulk metals in the last century-need to be extended to this novel class of materials. Here we present a systematic analysis of the phase behavior of substitutional 2D alloys in the TMD family on both the metal and the chalcogenide site. The phase behavior is quantified in terms of a metastability metric and benchmarked against systematic computational screening of configurational energy landscapes from First-Principles. The resulting Pettifor maps can be used to identify broad trends across chemical spaces and as starting point for setting up rational search strategies in phase space, thus allowing for targeted computational analysis of properties on likely thermodynamically stable compounds. The results presented here also constitute a useful guideline for synthesis of binary metal 2D TMDs alloys via a range of synthesis techniques.
Collapse
Affiliation(s)
- Andrea Silva
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, United Kingdom
- National
Centre for Advanced Tribology Study, University Road, SO17 1BJ Southampton, United Kingdom
| | - Jiangming Cao
- Faculty
of Mechanical and Civil Engineering, Helmut-Schmidt-Univeristy, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Tomas Polcar
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, United Kingdom
- Advanced
Materials Group, Faculty of Electrical Engineering, Czech Technical University in Prague (CTU), Karlovo Náměstí
13, 12135 Prague, Czech Republic
| | - Denis Kramer
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, United Kingdom
- Faculty
of Mechanical and Civil Engineering, Helmut-Schmidt-Univeristy, Holstenhofweg 85, 22043 Hamburg, Germany
- Department
of Heterogeneous Catalysis, Helmholtz-Zentrum
Hereon, Max-Planck-Strasse
1, 21502 Geesthacht, Germany
| |
Collapse
|
223
|
Yao J, Zhou Z, Li L, Chen Y, Wang C, Wang X, Lu Z, Bai Z, Zhang Q, Huangfu X, Sun Y, Xu H, Zou G. Zero-Dimensional Cs 3BiX 6 (X = Br, Cl) Single Crystal Films with Second Harmonic Generation. NANOSCALE RESEARCH LETTERS 2022; 17:115. [PMID: 36478063 PMCID: PMC9729671 DOI: 10.1186/s11671-022-03759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The development of atomically thin single crystal films is necessary to potential applications in the 2D semiconductor field, and it is significant to explore new physical properties in low-dimensional semiconductors. Since, zero-dimensional (0D) materials without natural layering are connected by strong chemical bonds, it is challengeable to break symmetry and grow 0D Cs3BiX6 (X = Br, Cl) single crystal thin films. Here, we report the successful growth of 0D Cs3BiX6 (X = Br, Cl) single crystal films using a solvent evaporation crystallization strategy. Their phases and structures are both well evaluated to confirm 0D Cs3BiX6 (X = Br, Cl) single crystal films. Remarkably, the chemical potential dependent morphology evolution phenomenon is observed. It gives rise to morphology changes of Cs3BiBr6 films from rhombus to hexagon as BiBr3 concentration increased. Additionally, the robust second harmonic generation signal is detected in the Cs3BiBr6 single crystal film, demonstrating the broken symmetry originated from decreased dimension or shape change.
Collapse
Affiliation(s)
- Junjie Yao
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Zhicheng Zhou
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Lutao Li
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| | - Chen Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xiangyi Wang
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zheng Lu
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhongchao Bai
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Qiang Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xuefeng Huangfu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yinghui Sun
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hao Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, People's Republic of China
| | - Guifu Zou
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
224
|
Wang Y, Cao J, Liu Y. Bipolar Electrochemistry - A Powerful Tool for Micro/Nano-Electrochemistry. ChemistryOpen 2022; 11:e202200163. [PMID: 36229230 PMCID: PMC9716041 DOI: 10.1002/open.202200163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Indexed: 01/31/2023] Open
Abstract
The understanding of areas for "classical" electrochemistry (including catalysis, electrolysis and sensing) and bio-electrochemistry at the micro/nanoscale are focus on the continued performance facilitations or the exploration of new features. In the recent 20 years, a different mode for driving electrochemistry has been proposed, which is called as bipolar electrochemistry (BPE). BPE has garnered attention owing to the interesting properties: (i) its wireless nature facilitates electrochemical sensing and high throughput analysis; (ii) the gradient potential distribution on the electrodes surface is a useful tool for preparing gradient surfaces and materials. These permit BPE to be used for modification and analytical applications on a micro/nanoscale surface. This review aims to introduce the principle and classification of BPE and BPE at micro/nanoscale; sort out its applications in electrocatalysis, electrosynthesis, electrophoresis, power supply and so on; explain the confined BPE and summarize its analytical application for single entities (single cells, single particles and single molecules), and discuss finally the important direction of micro/nanoscale BPE.
Collapse
Affiliation(s)
- Yu‐Ling Wang
- College of Chemistry and Chemical EngineeringXinyang key laboratory of functional nanomaterials for bioanalysisXinyang Normal University464000XinyangP. R. China
| | - Jun‐Tao Cao
- College of Chemistry and Chemical EngineeringXinyang key laboratory of functional nanomaterials for bioanalysisXinyang Normal University464000XinyangP. R. China
| | - Yan‐Ming Liu
- College of Chemistry and Chemical EngineeringXinyang key laboratory of functional nanomaterials for bioanalysisXinyang Normal University464000XinyangP. R. China
| |
Collapse
|
225
|
Andreev M, Seo S, Jung KS, Park JH. Looking Beyond 0 and 1: Principles and Technology of Multi-Valued Logic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108830. [PMID: 35894513 DOI: 10.1002/adma.202108830] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Ever since the invention of solid-state transistors, binary devices have dominated the electronics industry. Although the binary technology links the natural property of devices to be in the ON or OFF state with two logic levels, it provides the least possible information content per interconnect. Multi-valued logic (MVL) has long been considered as a means of improving the computation efficiency and reducing the power consumption of modern chips. In view of the power density limits of the conventional complementary metal-oxide-semiconductor technology, MVL technologies have recently gained even more attention, and various MVL unit devices based on conventional and emerging materials have been proposed. Herein, the recent achievements toward the development of compact MVL unit devices are reviewed. First, basic principles of MVL technologies are introduced by describing methods of obtaining multiple logic states and discussing radix-related aspects of MVL computation. Next, MVL unit devices are classified and overviewed with emphasis on principles of operation, technologies, and applications. Finally, a comparative discussion of strengths and weaknesses is provided for each class of MVL devices, and the review concludes with the outlook for the MVL field.
Collapse
Affiliation(s)
- Maksim Andreev
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seunghwan Seo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kil-Su Jung
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
- Memory Technology Design Team, Samsung Electronics Co. Ltd, Hwasung, 18448, Korea
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
226
|
Wang S, Liu X, Zhou P. The Road for 2D Semiconductors in the Silicon Age. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106886. [PMID: 34741478 DOI: 10.1002/adma.202106886] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Continued reduction in transistor size can improve the performance of silicon integrated circuits (ICs). However, as Moore's law approaches physical limits, high-performance growth in silicon ICs becomes unsustainable, due to challenges of scaling, energy efficiency, and memory limitations. The ultrathin layers, diverse band structures, unique electronic properties, and silicon-compatible processes of 2D materials create the potential to consistently drive advanced performance in ICs. Here, the potential of fusing 2D materials with silicon ICs to minimize the challenges in silicon ICs, and to create technologies beyond the von Neumann architecture, is presented, and the killer applications for 2D materials in logic and memory devices to ease scaling, energy efficiency bottlenecks, and memory dilemmas encountered in silicon ICs are discussed. The fusion of 2D materials allows the creation of all-in-one perception, memory, and computation technologies beyond the von Neumann architecture to enhance system efficiency and remove computing power bottlenecks. Progress on the 2D ICs demonstration is summarized, as well as the technical hurdles it faces in terms of wafer-scale heterostructure growth, transfer, and compatible integration with silicon ICs. Finally, the promising pathways and obstacles to the technological advances in ICs due to the integration of 2D materials with silicon are presented.
Collapse
Affiliation(s)
- Shuiyuan Wang
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoxian Liu
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Frontier Institute of Chip and System, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| |
Collapse
|
227
|
Li J, Zhang Y, Zhang J, Chu J, Xie L, Yu W, Zhao X, Chen C, Dong Z, Huang L, Yang L, Yu Q, Ren Z, Wang J, Xu Y, Zhang K. Chemical Vapor Deposition of Quaternary 2D BiCuSeO p-Type Semiconductor with Intrinsic Degeneracy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207796. [PMID: 36222393 DOI: 10.1002/adma.202207796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
2D BiCuSeO is an intrinsic p-type degenerate semiconductor due to its self-doping effect, which possesses great potential to fabricate high-performance 2D-2D tunnel field-effect transistors (TFETs). However, the controllable synthesis of multinary 2D materials by chemical vapor deposition (CVD) is still a challenge due to the restriction of thermodynamics. Here, the CVD synthesis of quaternary 2D BiCuSeO nanosheets is realized. As-grown BiCuSeO nanosheets with thickness down to ≈6.1 nm (≈7 layers) and domain size of ≈277 µm show excellent ambient stability. Intrinsic p-type degeneracy of BiCuSeO, capable of maintaining even in a few layers, is comprehensively unveiled. By varying the thicknesses and temperatures, the carrier concentration of BiCuSeO nanosheets can be adjusted in the range of 1019 to 1021 cm-3 , and the Hall mobility of BiCuSeO is ≈191 cm2 V-1 s-1 (at 2 K). Furthermore, taking advantage of the p-type degeneracy of BiCuSeO, a prototypical BiCuSeO/MoS2 TFET is fabricated. The emergence of the negative differential resistance trend and multifunctional diodes by modulating the gate voltage and temperature reveal the great practical implementation potential of BiCuSeO nanosheets. These results pave way for the CVD synthesis of multinary 2D materials and rational design of high-performance tunnel devices.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junwei Chu
- Xi'an Institute of Applied Optics, No.9, West Section of Electron Third Road, Shaanxi, Xi'an, 710065, P. R. China
| | - Liu Xie
- Yangtze Memory Technologies Co., Ltd., Wuhan, 430074, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Guangdong, 523000, P. R. China
| | - Xinxin Zhao
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhuo Dong
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Liu Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zeqian Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Junyong Wang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yijun Xu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
228
|
Xue F, Zhang C, Ma Y, Wen Y, He X, Yu B, Zhang X. Integrated Memory Devices Based on 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201880. [PMID: 35557021 DOI: 10.1002/adma.202201880] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With the advent of the Internet of Things and big data, massive data must be rapidly processed and stored within a short timeframe. This imposes stringent requirements on memory hardware implementation in terms of operation speed, energy consumption, and integration density. To fulfill these demands, 2D materials, which are excellent electronic building blocks, provide numerous possibilities for developing advanced memory device arrays with high performance, smart computing architectures, and desirable downscaling. Over the past few years, 2D-material-based memory-device arrays with different working mechanisms, including defects, filaments, charges, ferroelectricity, and spins, have been increasingly developed. These arrays can be used to implement brain-inspired computing or sensing with extraordinary performance, architectures, and functionalities. Here, recent research into integrated, state-of-the-art memory devices made from 2D materials, as well as their implications for brain-inspired computing are surveyed. The existing challenges at the array level are discussed, and the scope for future research is presented.
Collapse
Affiliation(s)
- Fei Xue
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
229
|
Lin B, Ren X, Chen Z, Xiao H, Xu B, Chong B, Yang G. Uniform-embeddable-distributed Ni 3S 2 cocatalyst inside and outside a sheet-like ZnIn 2S 4 photocatalyst for boosting photocatalytic hydrogen evolution. NANOSCALE 2022; 14:16952-16960. [PMID: 36345991 DOI: 10.1039/d2nr05207e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rational cocatalyst design is considered a significant route to boost the solar-energy conversion efficiency for photocatalytic H2 generation. However, the traditional cocatalyst-loading on the surface of a photocatalyst easily leads to scarce exposed active sites induced by the agglomeration of cocatalysts and a hindrance of the light absorption of the photocatalyst, thus significantly limiting the enhancement of the photocatalytic H2-generation performance. Herein, a new concept of uniform-embeddable-distributed cocatalysts is put forward. Consequently, uniform-embeddable-distributed cocatalysts of Ni3S2 were designed and constructed inside and outside of the nanosheet-like ZnIn2S4 photocatalyst to form a Ni3S2/ZnIn2S4 binary system (UEDNiS/ZIS). The unique uniform-embeddable-distributed Ni3S2 cocatalyst (UEDNiS) could provide abundant exposed active sites, facilitate the spatial separation and ordered transfer of charges inside and outside of ZnIn2S4 nanosheets, and reduce the hydrogen-adsorption free energy for photocatalytic H2-generation reactions. As a result, UEDNiS/ZIS exhibited a high photocatalytic H2-generation rate of 60 μmol h-1 under visible-light irradiation, almost 7.8 and 2.8 times higher than pristine ZnIn2S4 and the traditional surface-loaded Ni3S2/ZnIn2S4 (TSLNiS/ZIS), respectively. This work represents a new cocatalyst-design approach to realize high-efficiency hydrogen evolution in binary heterostructured photocatalytic systems.
Collapse
Affiliation(s)
- Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin Ren
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zihao Chen
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hang Xiao
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Baorong Xu
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ben Chong
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
230
|
Hwang E, Choi J, Hong S. Emerging laser-assisted vacuum processes for ultra-precision, high-yield manufacturing. NANOSCALE 2022; 14:16065-16076. [PMID: 36278425 DOI: 10.1039/d2nr03649e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser technology is a cutting-edge process with a unique photothermal response, precise site selectivity, and remote controllability. Laser technology has recently emerged as a novel tool in the semiconductor, display, and thin film industries by providing additional capabilities to existing high-vacuum equipment. The in situ and in operando laser assistance enables using multiple process environments with a level of complexity unachievable with conventional vacuum equipment. This broadens the usable range of process parameters and directly improves material properties, product precision, and device performance. This review paper examines the recent research trends in laser-assisted vacuum processes (LAVPs) as a vital tool for innovation in next-generation manufacturing processing equipment and addresses the unique characteristics and mechanisms of lasers exclusively used in each study. All the findings suggest that the LAVP can lead to methodological breakthroughs in dry etching, 2D material synthesis, and chemical vapor deposition for optoelectronic devices.
Collapse
Affiliation(s)
- Eunseung Hwang
- Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Sukjoon Hong
- Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
231
|
Zhang X, Zhang Y, Yu H, Zhao H, Cao Z, Zhang Z, Zhang Y. Van der Waals-Interface-Dominated All-2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207966. [PMID: 36353883 DOI: 10.1002/adma.202207966] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The interface is the device. As the feature size rapidly shrinks, silicon-based electronic devices are facing multiple challenges of material performance decrease and interface quality degradation. Ultrathin 2D materials are considered as potential candidates in future electronics by their atomically flat surfaces and excellent immunity to short-channel effects. Moreover, due to naturally terminated surfaces and weak van der Waals (vdW) interactions between layers, 2D materials can be freely stacked without the lattice matching limit to form high-quality heterostructure interfaces with arbitrary components and twist angles. Controlled interlayer band alignment and optimized interfacial carrier behavior allow all-2D electronics based on 2D vdW interfaces to exhibit more comprehensive functionality and better performance. Especially, achieving the same computing capacity of multiple conventional devices with small footprint all-2D devices is considered to be the key development direction of future electronics. Herein, the unique properties of all-2D vdW interfaces and their construction methods are systematically reviewed and the main performance contributions of different vdW interfaces in 2D electronics are summarized, respectively. Finally, the recent progress and challenges for all-2D vdW electronics are discussed, and how to improve the compatibility of 2D material devices with silicon-based industrial technology is pointed out as a critical challenge.
Collapse
Affiliation(s)
- Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanzhe Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hang Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihong Cao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
232
|
Och M, Anastasiou K, Leontis I, Zemignani GZ, Palczynski P, Mostaed A, Sokolikova MS, Alexeev EM, Bai H, Tartakovskii AI, Lischner J, Nellist PD, Russo S, Mattevi C. Synthesis of mono- and few-layered n-type WSe 2 from solid state inorganic precursors. NANOSCALE 2022; 14:15651-15662. [PMID: 36189726 PMCID: PMC9631355 DOI: 10.1039/d2nr03233c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe2, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe2 flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm2 V-1 s-1. We also demonstrate the tuneability of doping to p-type transport with hole mobilities of 50 cm2 V-1 s-1 after annealing in air. n-Doping has been attributed to the presence of Zn adatoms on the WSe2 flakes as revealed by X-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe2 flakes. Monolayer WSe2 flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.
Collapse
Affiliation(s)
- Mauro Och
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | | | - Ioannis Leontis
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Giulia Zoe Zemignani
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
- Center for Nano Science and Technology, Milan, Italy
| | - Pawel Palczynski
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Ali Mostaed
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | | | - Evgeny M Alexeev
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Haoyu Bai
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | | | - Johannes Lischner
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Peter D Nellist
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Saverio Russo
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Cecilia Mattevi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
233
|
Wang L, Shirodkar SN, Zhang Z, Yakobson BI. Defining shapes of two-dimensional crystals with undefinable edge energies. NATURE COMPUTATIONAL SCIENCE 2022; 2:729-735. [PMID: 38177365 PMCID: PMC10766541 DOI: 10.1038/s43588-022-00347-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2024]
Abstract
The equilibrium shape of crystals is a fundamental property of both aesthetic appeal and practical importance: the shape and its facets control the catalytic, light-emitting, sensing, magnetic and plasmonic behaviors. It is also a visible macro-manifestation of the underlying atomic-scale forces and chemical makeup, most conspicuous in two-dimensional (2D) materials of keen current interest. If the crystal surface/edge energy is known for different directions, its shape can be obtained by the geometric Wulff construction, a tenet of crystal physics; however, if symmetry is lacking, the crystal edge energy cannot be defined or calculated and thus its shape becomes elusive, presenting an insurmountable problem for theory. Here we show how one can proceed with auxiliary edge energies towards a constructive prediction, through well-planned computations, of a unique crystal shape. We demonstrate it for challenging materials such as SnSe, which is of C2v symmetry, and even AgNO2 of C1, which has no symmetry at all.
Collapse
Affiliation(s)
- Luqing Wang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Sharmila N Shirodkar
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Zhuhua Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
234
|
Li J, Ma Y, Li Y, Li SS, An B, Li J, Cheng J, Gong W, Zhang Y. Interface Influence on the Photoelectric Performance of Transition Metal Dichalcogenide Lateral Heterojunctions. ACS OMEGA 2022; 7:39187-39196. [PMID: 36340091 PMCID: PMC9631909 DOI: 10.1021/acsomega.2c05151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ultrathin feature of two-dimensional (2D) transition metal dichalcogenides (TMDs) has brought special performance in electronic and optoelectronic fields. When vertical and lateral heterojunctions are made using different TMD combinations, the original properties of premier TMDs can be optimized. Especially for lateral heterojunctions, their sharp interface signifies a narrow space charge region, leading to a strong in-plane built-in electric field, which may contribute to high separation efficiency of photogenerated carriers, good rectification behavior, self-powered photoelectric device construction, etc. However, due to the poor controllability over the synthesis process, obtaining a clean and sharp interface of the lateral heterojunction is still a challenge. Herein, we propose a simple chemical vapor deposition (CVD) method, which can effectively separate the growth process of different TMDs, thus resulting in good regulation of the composition change at the junction region. By this method, MoS2-WS2 lateral heterojunctions with sharp interfaces have been obtained with good rectification characteristics, ∼105 on/off ratio, 1874% external quantum efficiency, and ∼120 ms photoresponse speed, exhibiting a better photoelectric performance than that of the lateral ones with graded junctions.
Collapse
Affiliation(s)
- Jingtao Li
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Yang Ma
- Faculty
of Information Technology, Key Laboratory of Opto-Electronics Technology,
Ministry of Education, Beijing University
of Technology, Beijing 100124, China
| | - Yufo Li
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Shao-Sian Li
- Institute
of Materials Science and Engineering, National
Taipei University of Technology, Taipei City 10608, Taiwan
| | - Boxing An
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Jingjie Li
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Jiangong Cheng
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Wei Gong
- Faculty
of Materials and Manufacturing, Key Laboratory of Advanced Functional
Materials, Ministry of Education, Beijing
University of Technology, Beijing 100124, China
| | - Yongzhe Zhang
- Faculty
of Information Technology, Key Laboratory of Opto-Electronics Technology,
Ministry of Education, Beijing University
of Technology, Beijing 100124, China
| |
Collapse
|
235
|
Sim Y, Chae Y, Kwon SY. Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. iScience 2022; 25:105098. [PMID: 36157572 PMCID: PMC9490594 DOI: 10.1016/j.isci.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Layered metallic transition metal dichalcogenides (MTMDs) exhibit distinctive electrical and catalytic properties to drive basal plane activity, and, therefore, they have emerged as promising alternative electrocatalysts for sustainable hydrogen evolution reactions (HERs). A key challenge for realizing MTMDs-based electrocatalysts is the controllable and scalable synthesis of high-quality MTMDs and the development of engineering strategies that allow tuning their electronic structures. However, the lack of a method for the direct synthesis of MTMDs retaining the structural stability limits optimizing the structural design for the next generation of robust electrocatalysts. In this review, we highlight recent advances in the synthesis of MTMDs comprising groups VB and VIB and various routes for structural engineering to enhance the HER catalytic performance. Furthermore, we provide insight into the potential future directions and the development of MTMDs with high durability as electrocatalysts to generate green hydrogen through water-splitting technology.
Collapse
Affiliation(s)
- Yeoseon Sim
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Yujin Chae
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
236
|
Avilés MO, Jelken J, Lagugné-Labarthet F. Periodic Spiral Ripples on VS 2 Flakes: A Tip-Enhanced Raman Investigation. J Phys Chem Lett 2022; 13:9771-9776. [PMID: 36226836 DOI: 10.1021/acs.jpclett.2c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using atmospheric-pressure chemical vapor deposition, we have synthesized vanadium disulfide (VS2) flakes with a metallic 1T phase that display nanoscale spiral surface ripples. To understand the origin of these chiral patterns in these transition metal dichalcogenides, tip-enhanced Raman spectroscopy and Kelvin probe force microscopies were jointly used to investigate their crystal structure, possible oxidation, and electronic properties, respectively. We found that the surface corrugation consists of small crystalline domains with distinct orientations. The change in local orientation is observed concomitantly with a spectral shift of the lattice modes of VS2 and results in the formation of grain boundaries between the domains with distinct orientation. Additionally, the periodic surface structure is modulating the work function of VS2 by 14 meV.
Collapse
Affiliation(s)
- María Olivia Avilés
- The Center for Advanced Materials and Biomaterials (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), London, OntarioN6A 5B7, Canada
| | - Joachim Jelken
- The Center for Advanced Materials and Biomaterials (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), London, OntarioN6A 5B7, Canada
| | - François Lagugné-Labarthet
- The Center for Advanced Materials and Biomaterials (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), London, OntarioN6A 5B7, Canada
| |
Collapse
|
237
|
Zhang B, Yun C, Wu H, Zhao Z, Zeng Y, Liang D, Shen T, Zhang J, Huang X, Song J, Xu J, Zhang Q, Tan PH, Gao S, Hou Y. Two-Dimensional Wedge-Shaped Magnetic EuS: Insight into the Substrate Step-Guided Epitaxial Synthesis on Sapphire. J Am Chem Soc 2022; 144:19758-19769. [PMID: 36257067 DOI: 10.1021/jacs.2c06023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rare earth chalcogenides (RECs) with novel luminescence and magnetic properties offer fascinating opportunities for fundamental research and applications. However, controllable synthesis of RECs down to the two-dimensional (2D) limit still has a great challenge. Herein, 2D wedge-shaped ferromagnetic EuS single crystals are successfully synthesized via a facile molten-salt-assisted chemical vapor deposition method on sapphire. Based on the theoretical simulations and experimental measurements, the mechanisms of aligned growth and wedge-shaped growth are systematically proposed. The wedge-shaped growth is driven by a dual-interaction mechanism, where the coupling between EuS and the substrate steps impedes the lateral growth, and the strong bonding of nonlayered EuS itself facilitates the vertical growth. Through temperature-dependent Raman and photoluminescence characterization, the nanoflakes show a large Raman temperature coefficient of -0.030 cm-1 K-1 and uncommon increasing band gap with temperature. More importantly, by low-temperature magnetic force microscopy characterization, thickness variation of the magnetic signal is revealed within one sample, indicating the great potential of the wedge-shaped nanoflake to serve as a platform for highly efficient investigation of thickness-dependent magnetic properties. This work sheds new light on 2D RECs and will offer a deep understanding of 2D wedge-shaped materials.
Collapse
Affiliation(s)
- Biao Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Chao Yun
- State Key Laboratory for Mesoscopic Physics, School of Physics, Beijing Key Laboratory for Magnetoeletric Materials and Devices, Peking University, Beijing100871, China
| | - Heng Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Zijing Zhao
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Yi Zeng
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Dong Liang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Beijing Key Laboratory for Magnetoeletric Materials and Devices, Peking University, Beijing100871, China
| | - Tong Shen
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Jine Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Junjie Xu
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Song Gao
- Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou510641, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| |
Collapse
|
238
|
Macha M, Ji HG, Tripathi M, Zhao Y, Thakur M, Zhang J, Kis A, Radenovic A. Wafer-scale MoS 2 with water-vapor assisted showerhead MOCVD. NANOSCALE ADVANCES 2022; 4:4391-4401. [PMID: 36321146 PMCID: PMC9552924 DOI: 10.1039/d2na00409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Among numerous thin film synthesis methods, metalorganic chemical vapor deposition performed in a showerhead reactor is the most promising one for broad use in scalable and commercially adaptable two-dimensional material synthesis processes. Adapting the most efficient monolayer growth methodologies from tube-furnace systems to vertical-showerhead geometries allows us to overcome the intrinsic process limitations and improve the overall monolayer yield quality. Here, we demonstrate large-area, monolayer molybdenum disulphide growth by combining gas-phase precursor supply with unique tube-furnace approaches of utilizing sodium molybdate pre-seeding solution spincoated on a substrate along with water vapor added during the growth step. The engineered process yields a high-quality, 4-inch scale monolayer film on sapphire wafers. The monolayer growth coverage, average crystal size and defect density were evaluated using Raman and photoluminescence spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and scanning transmission electron microscopy imaging. Our findings provide a direct step forward toward developing a reproducible and large-scale MoS2 synthesis with commercial showerhead reactors.
Collapse
Affiliation(s)
- Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Hyun Goo Ji
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Mukesh Tripathi
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Yanfei Zhao
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Mukeshchand Thakur
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Jing Zhang
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Andras Kis
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
239
|
Chen C, Zhang W, Duan P, Liu W, Shafi M, Hu X, Zhang C, Zhang C, Man B, Liu M. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe x nanosheets. OPTICS EXPRESS 2022; 30:37795-37814. [PMID: 36258361 DOI: 10.1364/oe.473965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Improving the photo-induced charge transfer (PICT) efficiency by adjusting the energy levels difference between adsorbed probe molecules and substrate materials is a key factor for boosting the surface enhanced Raman scattering (SERS) based on the chemical mechanism (CM). Herein, a new route to improve the SERS activity of two-dimensional (2D) selenium and tin compounds (SnSex, 1 ≤ x ≤ 2) by the hybrid phase materials is researched. The physical properties and the energy band structure of SnSex were analyzed. The enhanced SERS activity of 2D SnSex can be attribute to the coupling of the PICT resonance caused by the defect energy levels induced by Se vacancy and the molecular resonance Raman scattering (RRS). This established a relationship between the physical properties and SERS activity of 2D layered materials. The resonance probe molecule, rhodamine (R6G), which is used to detect the SERS performance of SnSex nanosheets. The enhancement factor (EF) of R6G on the optimized SnSe1.35 nanosheets can be as high as 2.6 × 106, with a detection limit of 10-10 M. The SERS result of the environmental pollution, thiram, shows that the SnSex nanosheets have a practical application in trace SERS detection, without the participation of metal particles. These results demonstrate that, through hybrid phase materials, the SERS sensitivity of 2D layered nanomaterials can be improved. It provides a kind of foreground non-metal SERS substrate in monitoring or detecting and provide a deep insight into the chemical SERS mechanism based on 2D layered materials.
Collapse
|
240
|
Xu X, Peng Z, Xu H, Cheng D. Computational screening of nonmetal dopants to active MoS2 basal-plane for hydrogen evolution reaction via structural descriptor. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
241
|
Shi J, Wu X, Wu K, Zhang S, Sui X, Du W, Yue S, Liang Y, Jiang C, Wang Z, Wang W, Liu L, Wu B, Zhang Q, Huang Y, Qiu CW, Liu X. Giant Enhancement and Directional Second Harmonic Emission from Monolayer WS 2 on Silicon Substrate via Fabry-Pérot Micro-Cavity. ACS NANO 2022; 16:13933-13941. [PMID: 35984986 DOI: 10.1021/acsnano.2c03033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) possess large second-order optical nonlinearity, making them ideal candidates for miniaturized on-chip frequency conversion devices, all-optical interconnection, and optoelectronic integration components. However, limited by subnanometer thickness, the monolayer TMD exhibits low second harmonic generation (SHG) conversion efficiency (<0.1%) and poor directionality, which hinders their practical applications. Herein, we proposed a Fabry-Pérot (F-P) cavity formed by coupling an atomically thin WS2 film with a silicon hole matrix to enhance the SH emission. A maximum enhancement (∼1580 times) is achieved by tuning the excitation wavelength to be resonant with the microcavity modes. The giant enhancement is attributed to the strong electric field enhancement in the F-P cavity and the oscillator strength enhancement of excitons from suspended WS2. Moreover, directional SH emission (divergence angle ∼5°) is obtained benefiting from the resonance of the F-P microcavity. Our research results can provide a practical sketch to develop both high-efficiency and directional nonlinear optical devices for silicon-based on-chip integration optics.
Collapse
Affiliation(s)
- Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinyu Sui
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuo Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Wenxiang Wang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Luqi Liu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
242
|
Cho K, Lee T, Chung S. Inkjet printing of two-dimensional van der Waals materials: a new route towards emerging electronic device applications. NANOSCALE HORIZONS 2022; 7:1161-1176. [PMID: 35894100 DOI: 10.1039/d2nh00162d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials are considered one of the most promising candidates to realize emerging electrical applications. Although until recently, much effort has been dedicated to demonstrating high-performance single 2D vdW devices, associated with rapid progress in 2D vdW materials, demands for their large-scale practical applications have noticeably increased from a manufacturing perspective. Drop-on-demand inkjet printing can be the most feasible solution by exploiting the advantages of layered 2D contacts and advanced 2D vdW ink formulations. This review presents recent achievements in inkjet-printed 2D vdW material-based device applications. A brief introduction to 2D vdW materials and inkjet printing principles, followed by various ink formulation methods, is first presented. Then, the state-of-the-art inkjet-printed 2D vdW device applications and their remaining technical issues are highlighted. Finally, prospects and challenges to be overcome to demonstrate fully inkjet-printed, high-performance 2D vdW devices are also discussed.
Collapse
Affiliation(s)
- Kyungjune Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
243
|
Synergy Effect of High-Stability of VS4 Nanorods for Sodium Ion Battery. Molecules 2022; 27:molecules27196303. [PMID: 36234839 PMCID: PMC9571770 DOI: 10.3390/molecules27196303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sodium-ion batteries (SIBs) have attracted increasing interest as promising candidates for large-scale energy storage due to their low cost, natural abundance and similar chemical intercalation mechanism with lithium-ion batteries. However, achieving superior rate capability and long-life for SIBs remains a major challenge owing to the limitation of favorable anode materials selection. Herein, an elegant one-step solvothermal method was used to synthesize VS4 nanorods and VS4 nanorods/reduced graphene oxide (RGO) nanocomposites. The effects of ethylene carbonate/diethyl carbonate(EC/DEC), ethylene carbonate/dimethyl carbonate(EC/DMC), and tetraethylene glycol dimethyl ether (TEGDME) electrolytes on the electrochemical properties of VS4 nanorods were investigated. The VS4 nanorods electrodes exhibit high specific capacity in EC/DMC electrolytes. A theoretical calculation confirms the advance of EC/DMC electrolytes for VS4 nanorods. Significantly, the discharge capacity of VS4/RGO nanocomposites remains 100 mAh/g after 2000 cycles at a large current density of 2 A/g, indicating their excellent cycling stability. The nanocomposites can improve the electronic conductivity and reduce the Na+ diffusion energy barrier, thereby effectively improving the sodium storage performance of the hybrid material. This work offers great potential for exploring promising anode materials for electrochemical applications.
Collapse
|
244
|
Huang CC, Wang H, Cao Y, Weatherby E, Richheimer F, Wood S, Jiang S, Wei D, Dong Y, Lu X, Wang P, Polcar T, Hewak DW. Facilitating Uniform Large-Scale MoS 2, WS 2 Monolayers, and Their Heterostructures through van der Waals Epitaxy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42365-42373. [PMID: 36082455 PMCID: PMC9501908 DOI: 10.1021/acsami.2c12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The fabrication process for the uniform large-scale MoS2, WS2 transition-metal dichalcogenides (TMDCs) monolayers, and their heterostructures has been developed by van der Waals epitaxy (VdWE) through the reaction of MoCl5 or WCl6 precursors and the reactive gas H2S to form MoS2 or WS2 monolayers, respectively. The heterostructures of MoS2/WS2 or WS2/MoS2 can be easily achieved by changing the precursor from WCl6 to MoCl5 once the WS2 monolayer has been fabricated or switching the precursor from MoCl5 to WCl6 after the MoS2 monolayer has been deposited on the substrate. These VdWE-grown MoS2, WS2 monolayers, and their heterostructures have been successfully deposited on Si wafers with 300 nm SiO2 coating (300 nm SiO2/Si), quartz glass, fused silica, and sapphire substrates using the protocol that we have developed. We have characterized these TMDCs materials with a range of tools/techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, photoluminescence (PL), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED). The band alignment and large-scale uniformity of MoS2/WS2 heterostructures have also been evaluated with PL spectroscopy. This process and resulting large-scale MoS2, WS2 monolayers, and their heterostructures have demonstrated promising solutions for the applications in next-generation nanoelectronics, nanophotonics, and quantum technology.
Collapse
Affiliation(s)
- Chung-Che Huang
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - He Wang
- nCAT, University
of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yameng Cao
- National
Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ed Weatherby
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Sebastian Wood
- National
Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Shan Jiang
- School
of Materials Science and Engineering, Harbin
Institute of Technology, 150001 Harbin, China
| | - Daqing Wei
- School
of Materials Science and Engineering, Harbin
Institute of Technology, 150001 Harbin, China
| | - Yongkang Dong
- National
Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, 150001 Harbin, China
| | - Xiaosong Lu
- School of
Physics and Electronic Engineering, Jiangsu
Normal University, 221116 Xuzhou, China
| | - Pengfei Wang
- Key
Laboratory of In-Fiber Integrated Optics of Ministry of Education,
College of Science, Harbin Engineering University, 150001 Harbin, China
| | - Tomas Polcar
- nCAT, University
of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Daniel W. Hewak
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
245
|
Cheng R, Yin L, Wen Y, Zhai B, Guo Y, Zhang Z, Liao W, Xiong W, Wang H, Yuan S, Jiang J, Liu C, He J. Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors. Nat Commun 2022; 13:5241. [PMID: 36068242 PMCID: PMC9448765 DOI: 10.1038/s41467-022-33017-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of magnetism in ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. Nevertheless, two-dimensional magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Ferrites with strongly correlated d-orbital electrons may be alternative candidates offering two-dimensional high-temperature magnetic ordering. This prospect is, however, hindered by their inherent three-dimensional bonded nature. Here, we develop a confined-van der Waals epitaxial approach to synthesizing air-stable semiconducting cobalt ferrite nanosheets with thickness down to one unit cell using a facile chemical vapor deposition process. The hard magnetic behavior and magnetic domain evolution are demonstrated by means of vibrating sample magnetometry, magnetic force microscopy and magneto-optical Kerr effect measurements, which shows high Curie temperature above 390 K and strong dimensionality effect. The addition of room-temperature magnetic semiconductors to two-dimensional material family provides possibilities for numerous novel applications in computing, sensing and information storage.
Collapse
Affiliation(s)
- Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Weitu Liao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
| |
Collapse
|
246
|
A non-two-dimensional van der Waals InSe semispherical array grown by vapor-liquid-solid method for hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
247
|
Zhou J, Zhang W, Lin YC, Cao J, Zhou Y, Jiang W, Du H, Tang B, Shi J, Jiang B, Cao X, Lin B, Fu Q, Zhu C, Guo W, Huang Y, Yao Y, Parkin SSP, Zhou J, Gao Y, Wang Y, Hou Y, Yao Y, Suenaga K, Wu X, Liu Z. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 2022; 609:46-51. [PMID: 36045238 DOI: 10.1038/s41586-022-05031-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.
Collapse
Affiliation(s)
- Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Wenjie Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Yung-Chang Lin
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jin Cao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Yao Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wei Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Huifang Du
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia Shi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Bingyan Jiang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bo Lin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuan Yao
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | - Jianhui Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| | - Xiaosong Wu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Singapore, Singapore.
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
248
|
Bian L, Ma J, Ai J, Wang Y, Wang N, Wang X, Guo G, Pu Q. NaCl Micro-Crystal as a Molecular Mold for Enhanced Synthesis of Planar Phenazines and Their Applications on Chemosensing and a Full-Color Fluorescent Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39441-39450. [PMID: 35993697 DOI: 10.1021/acsami.2c03602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
NaCl has been successfully used as a template for the synthesis of 2D nanomaterials, but it is seldom used for the construction of flat small organic molecules. Herein, a simple, low-cost, and highly efficient synthesis of phenazines with planar main frames, such as 5-phenyl-5,14-dihydro-5,7,12,14-tetraazapentacene, in the presence of NaCl micro-crystal as a kind of molecular mold is described. The reactants were mixed with NaCl powder and heated to 320 °C for 5 min. Yields >90% were readily achieved after a simple precipitation in water. The effectiveness of NaCl crystal as a mold with HCl was confirmed by comparison with common inorganic salts, SiO2, and γ-Al2O3 with HCl together with combinations including NaNO3 + HNO3, Na2SO4 + H2SO4, NaH2PO4 + H3PO4, and NaH2PO4 + polyphosphoric acid. The mechanism was deduced with the aid of computer simulation, which confirms the stabilization of 5,14-dihydro-5,7,12,14-tetraazapentacene by the NaCl surface. DMSO solution of a product, 1,3-dihydro-imidazo[4,5-b]phenazin-2-one, showed enhanced fluorescence in H2O, and it was used as a fluorescent probe for pH and Hg2+. A full-color material was prepared by mixing precursors of epoxy resin and phenazines, and its fluorescent color could be adjusted by the ratio of phenazines.
Collapse
Affiliation(s)
- Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Jiebing Ai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Naiyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
249
|
Xin X, Zhang Y, Chen J, Chen ML, Xin W, Ding M, Bao Y, Liu W, Xu H, Liu Y. Defect-suppressed submillimeter-scale WS 2 single crystals with high photoluminescence quantum yields by alternate-growth-etching CVD. MATERIALS HORIZONS 2022; 9:2416-2424. [PMID: 35822671 DOI: 10.1039/d2mh00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defects, such as uncontrollable vacancies, will intensively degrade the material properties and device performance of CVD-grown transition metal dichalcogenides (TMDs). Although vacancies can be repaired by some post-processing measures, these treatments are usually time-consuming, complicated and may introduce uncontrollable chemical contaminants into TMDs. How to efficiently suppress the uncontrollable defects during CVD growth and acquire intrinsic high-quality CVD-grown TMDs without any after-treatment remains a critical challenge, and has not yet been well resolved. Here, an alternate-growth-etching (AGE) CVD method was demonstrated to fabricate defect-suppressed submillimeter-scale monolayer WS2 single crystals. Compared with normal CVD, the grain size of the as-grown WS2 can be enlarged by 4-5 times (∼520 μm) and the growth rate of ∼14.4 μm min-1 is also at a high level compared to reported results. Moreover, AGE-CVD can efficiently suppress atomic vacancies in WS2. In every growth-etching cycle, the etching of WS2 occurs preferentially at the defective sites, which will be healed at the following growth stage. As a result, WS2 monolayers obtained by AGE-CVD possess higher crystal quality, carrier mobility (8.3 cm2 V-1 s-1) and PL quantum yield (QY, 52.6%) than those by normal CVD. In particular, such a PL QY is the highest value ever reported for in situ CVD-grown TMDs without any after-treatment, and is even comparable to the values of mechanically exfoliated samples. This AGE-CVD method is also appropriate for the synthesis of other high-quality TMD single crystals on a large-scale.
Collapse
Affiliation(s)
- Xing Xin
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Yanmei Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Jiamei Chen
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Mao-Lin Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 03006, China
| | - Wei Xin
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Mengfan Ding
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Youzhe Bao
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Weizhen Liu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Haiyang Xu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
250
|
Suleman M, Lee S, Kim M, Nguyen VH, Riaz M, Nasir N, Kumar S, Park HM, Jung J, Seo Y. NaCl-Assisted Temperature-Dependent Controllable Growth of Large-Area MoS 2 Crystals Using Confined-Space CVD. ACS OMEGA 2022; 7:30074-30086. [PMID: 36061644 PMCID: PMC9434612 DOI: 10.1021/acsomega.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Due to its semiconducting nature, controlled growth of large-area chemical vapor deposition (CVD)-grown two-dimensional (2D) molybdenum disulfide (MoS2) has a lot of potential applications in photodetectors, sensors, and optoelectronics. Yet the controllable, large-area, and cost-effective growth of highly crystalline MoS2 remains a challenge. Confined-space CVD is a very promising method for the growth of highly crystalline MoS2 in a controlled manner. Herein, we report the large-scale growth of MoS2 with different morphologies using NaCl as a seeding promoter for confined-space CVD. Changes in the morphologies of MoS2 are reported by variation in the amount of seeding promoter, precursor ratio, and the growth temperature. Furthermore, the properties of the grown MoS2 are analyzed using optical microscopy, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The electrical properties of the CVD-grown MoS2 show promising performance from fabricated field-effect transistors. This work provides new insight into the growth of large-area MoS2 and opens the way for its various optoelectronic and electronic applications.
Collapse
Affiliation(s)
- Muhammad Suleman
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Sohee Lee
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Minwook Kim
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Van Huy Nguyen
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Muhammad Riaz
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Naila Nasir
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Sunil Kumar
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Hyun Min Park
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Jongwan Jung
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| | - Yongho Seo
- Department of Nanotechnology
and Advanced Materials Engineering, and HMC, Sejong University, 05006 Seoul, South Korea
| |
Collapse
|