201
|
Cui H, Chen Y, Li K, Zhan R, Zhao M, Xu Y, Lin Z, Fu Y, He Q, Tang PC, Lei I, Zhang J, Li C, Sun Y, Zhang X, Horng T, Lu HS, Chen YE, Daugherty A, Wang D, Zheng L. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur Heart J 2021; 42:4373-4385. [PMID: 34534287 PMCID: PMC11506060 DOI: 10.1093/eurheartj/ehab605] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.
Collapse
Affiliation(s)
- Hongtu Cui
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Nan Si Huan Xi Lu NO.119, Fengtai District, Beijing 100050, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Xueyuan Road NO.38, Haidian District, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100191, China
| | - Paul C Tang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Donghu Road NO.169, Wuchang District, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Zhongshan East Road NO.361, Shijiazhuang, Shijiazhuang 050017, China
| | - Tiffany Horng
- ShanghaiTech University, Yueyang Road NO.319, Xuhui District, Shanghai 201210, China
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, South Limestone, Lexington, KY 40536-0298, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, South Limestone, Lexington, KY 40536-0298, USA
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Nan Si Huan Xi Lu NO.119, Fengtai District, Beijing 100050, China
| |
Collapse
|
202
|
Zhang X, Shi L, Chen R, Zhao Y, Ren D, Yang X. Chlorogenic acid inhibits trimethylamine- N-oxide formation and remodels intestinal microbiota to alleviate liver dysfunction in high L-carnitine feeding mice. Food Funct 2021; 12:10500-10511. [PMID: 34558577 DOI: 10.1039/d1fo01778k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High L-carnitine ingestion has been shown to cause liver injury, mechanically due to an elevated circulating level of trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite from L-carnitine. This study aimed to investigate whether chlorogenic acid (CGA), a health-promoting polyphenol, could inhibit TMAO formation and thereafter might prevent L-carnitine-induced liver injury in mice. Feeding of mice with 3% L-carnitine in drinking water increased the serum and urinary levels of TMAO (p < 0.01 vs. Normal), whereas the serum and urinary TMAO formation was sharply reduced by CGA administration (p < 0.01). At the phylum level, CGA inhibited the L-carnitine-induced increase in the abundance of Firmicutes and Proteobacteria, while it promoted Bacteroidetes. At the genus level, CGA notably increased the abundance of Akkermansia and Bacteroides, but reduced the population of Erysipelatoclostridium, Faecalibaculum and Erysipelotrichaceae in high L-carnitine feeding mice. Meanwhile, CGA caused strong inhibition against the increase of liver injury markers (i.e. AST, ALT and ALP), hepatic inflammatory cytokines (i.e. IL-1, IL-6, TNF-α and TNF-β) and dyslipidemia (i.e. TC, TG, LDL-C and HDL-C) in L-carnitine-fed mice (p < 0.05). These findings suggest that CGA holds great potential to alleviate liver dysfunction induced by high L-carnitine ingestion. The beneficial effect might be attributed to the protection against TMAO formation and the improvement of the health-promoting gut microbiota, as well as the antioxidant and anti-inflammatory properties of CGA.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lin Shi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Chen
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
203
|
Sawicka-Smiarowska E, Bondarczuk K, Bauer W, Niemira M, Szalkowska A, Raczkowska J, Kwasniewski M, Tarasiuk E, Dubatowka M, Lapinska M, Szpakowicz M, Stachurska Z, Szpakowicz A, Sowa P, Raczkowski A, Kondraciuk M, Gierej M, Motyka J, Jamiolkowski J, Bondarczuk M, Chlabicz M, Bucko J, Kozuch M, Dobrzycki S, Bychowski J, Musial WJ, Godlewski A, Ciborowski M, Gyenesei A, Kretowski A, Kaminski KA. Gut Microbiome in Chronic Coronary Syndrome Patients. J Clin Med 2021; 10:jcm10215074. [PMID: 34768594 PMCID: PMC8584954 DOI: 10.3390/jcm10215074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Despite knowledge of classical coronary artery disease (CAD) risk factors, the morbidity and mortality associated with this disease remain high. Therefore, new factors that may affect the development of CAD, such as the gut microbiome, are extensively investigated. This study aimed to evaluate gut microbiome composition in CAD patients in relation to the control group. We examined 169 CAD patients and 166 people in the control group, without CAD, matched in terms of age and sex to the study group. Both populations underwent a detailed health assessment. The microbiome analysis was based on the V3-V4 region of the 16S rRNA gene (NGS method). Among 4074 identified taxonomic units in the whole population, 1070 differed between study groups. The most common bacterial types were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Furthermore, a higher Firmicutes/Bacteroidetes ratio in the CAD group compared with the control was demonstrated. Firmicutes/Bacteroidetes ratio, independent of age, sex, CAD status, LDL cholesterol concentration, and statins treatment, was related to altered phosphatidylcholine concentrations obtained in targeted metabolomics. Altered alpha-biodiversity (Kruskal-Wallis test, p = 0.001) and beta-biodiversity (Bray-Curtis metric, p < 0.001) in the CAD group were observed. Moreover, a predicted functional analysis revealed some taxonomic units, metabolic pathways, and proteins that might be characteristic of the CAD patients' microbiome, such as increased expressions of 6-phospho-β-glucosidase and protein-N(pi)-phosphohistidine-sugar phosphotransferase and decreased expressions of DNA topoisomerase, oxaloacetate decarboxylase, and 6-beta-glucosidase. In summary, CAD is associated with altered gut microbiome composition and function.
Collapse
Affiliation(s)
- Emilia Sawicka-Smiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Anna Szalkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Marlena Dubatowka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magda Lapinska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Malgorzata Szpakowicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Pawel Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Andrzej Raczkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magdalena Gierej
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Jacek Jamiolkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Mateusz Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Malgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jolanta Bucko
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Marcin Kozuch
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Wlodzimierz Jerzy Musial
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Karol Adam Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
204
|
Mehmood K, Moin A, Hussain T, Rizvi SMD, Gowda DV, Shakil S, Kamal MA. Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol (Praha) 2021; 66:897-916. [PMID: 34699042 DOI: 10.1007/s12223-021-00926-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.
Collapse
Affiliation(s)
- Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.,Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics 7 Peterlee Place, NSW, 2770, Hebersham, Australia.,Novel Global Community, Educational Foundation, Hebersham, Australia
| |
Collapse
|
205
|
Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Front Mol Biosci 2021; 8:733507. [PMID: 34660695 PMCID: PMC8517136 DOI: 10.3389/fmolb.2021.733507] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a molecular metabolite derived from the gut flora, which has recently emerged as a candidate risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). TMAO is mainly derived from gut, where the gut microbiota converts TMA precursors into TMA, which is absorbed into the bloodstream through the intestinal mucosa, and then transformed into TMAO by hepatic flavin monooxygenases (FMOs) in the liver. High-nutrient diets rich in TMA precursors, such as red meat, eggs, and fish, are the main sources of TMAO. Excessively consuming such diets not only directly affects energy metabolism in liver, but also increases the concentration of TMAO in plasma, which promotes the development of MAFLD by affecting bile acid metabolism, unfolded protein response, and oxidative stress. In this review, we focused on the relationship between TMAO and MAFLD and summarized intervention strategies for reducing circulating TMAO concentration, aiming at providing new targets for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
206
|
Li Q, Wu T, Zhang M, Chen H, Liu R. Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber. Food Funct 2021; 12:9880-9893. [PMID: 34664588 DOI: 10.1039/d1fo01481a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study investigated the induction of the glycolysis product methylglyoxal by trimethylamine (TMA) lyase synthesis in the intestinal microbiota and investigated the intervention mechanism of the effects of dietary fiber on methylglyoxal formation. Intestinal digesta samples, collected from the ceca of mice fed with choline-rich and fiber-supplemented diets, were incubated in an anaerobic environment at 37 °C and pH 7.0 with choline, glycine, and methylglyoxal as inductive factors. The differences between the gut microbiota and its metagenomic and metabonomics profiles were determined using 16S rRNA gene sequencing analysis. The results elucidated that the different dietary interventions could induce differences in the composition of the microbiota, gene expression profiles associated with glycine metabolism, and glycolysis. As compared to the gut microbiota of choline-diet fed mice, fiber supplementation effectively altered the composition of the microbiota and inhibited the genes involved in choline metabolism, glycine and methylglyoxal accumulation, and TMA lyase expression, and improved the methylglyoxal utilization by regulating the pathway related to pyruvate production. However, the intervention of exogenous methylglyoxal significantly decreased these effects. These findings successfully revealed the correlations between the TMA lyase expression and glycine level, as well as the inhibitory effects of dietary fiber on the glycine level, thereby highlighting the role of common glycolytic metabolites as a potential target for TMA production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
207
|
Osborn LJ, Claesen J, Brown JM. Microbial Flavonoid Metabolism: A Cardiometabolic Disease Perspective. Annu Rev Nutr 2021; 41:433-454. [PMID: 34633856 DOI: 10.1146/annurev-nutr-120420-030424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiometabolic disease (CMD) is a leading cause of death worldwide and encompasses the inflammatory metabolic disorders of obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. Flavonoids are polyphenolic plant metabolites that are abundantly present in fruits and vegetables and have biologically relevant protective effects in a number of cardiometabolic disorders. Several epidemiological studies underscored a negative association between dietary flavonoid consumption and the propensity to develop CMD. Recent studies elucidated the contribution of the gut microbiota in metabolizing dietary intake as it relates to CMD. Importantly, the biological efficacy of flavonoids in humans and animal models alike is linked to the gut microbial community. Herein, we discuss the opportunities and challenges of leveraging flavonoid intake as a potential strategy to prevent and treat CMD in a gut microbe-dependent manner, with special emphasis on flavonoid-derived microbial metabolites.
Collapse
Affiliation(s)
- Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
208
|
Lv S, Wang Y, Zhang W, Shang H. Trimethylamine oxide: a potential target for heart failure therapy. Heart 2021; 108:917-922. [PMID: 34611047 DOI: 10.1136/heartjnl-2021-320054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022] Open
Abstract
Heart failure (HF) is a clinical syndrome in the late stage of cardiovascular disease and is associated with high prevalence, mortality and rehospitalisation rate. The pathophysiological mechanisms of HF have experienced the initial 'water-sodium retention' mode to 'abnormal hemodynamics' mode, and subsequent to 'abnormal activation of neuroendocrine' mode, which has extensively promoted the reform of HF treatment and updated the treatment concept. Since the Human Microbiome Project commencement, the study on intestinal microecology has swiftly developed, providing a new direction to reveal the occurrence of diseases and the mechanisms behind drug effects. Intestinal microecology comprises the gastrointestinal lumen, epithelial secretion, food entering the intestine, intestinal flora and metabolites. Choline and L-carnitine in the diet are metabolised to trimethylamine (TMA) by the intestinal micro-organisms, with TMA being absorbed into the blood. TMA then enters the liver through the portal vein circulation and is oxidised to trimethylamine oxide (TMAO) by the hepatic flavin-containing mono-oxygenase (FMO) family, especially FMO3. The circulating TMAO levels are associated with adverse outcomes in HF (mortality and readmission), and lower TMAO levels indicate better prognosis. As HF progresses, the concentration of TMAO in patients gradually increases. Whether the circulating TMAO level can be decreased by intervening with the intestinal microflora or relevant enzymes, thereby affecting the prognosis of patients with HF, has become a research hotspot. Therefore, based on the HF intestinal hypothesis, exploring the treatment strategy for HF targeting the TMAO metabolite of the intestinal flora may update the treatment concept in HF and improve its therapeutic effect.
Collapse
Affiliation(s)
- Shichao Lv
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, BUCM, Beijing, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanqin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, BUCM, Beijing, China
| |
Collapse
|
209
|
Bishai JD, Palm NW. Small Molecule Metabolites at the Host-Microbiota Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1725-1733. [PMID: 34544815 PMCID: PMC8500551 DOI: 10.4049/jimmunol.2100528] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
The trillions of bacteria that constitutively colonize the human gut collectively generate thousands of unique small molecules. These microbial metabolites can accumulate both locally and systemically and potentially influence nearly all aspects of mammalian biology, including immunity, metabolism, and even mood and behavior. In this review, we briefly summarize recent work identifying bioactive microbiota metabolites, the means through which they are synthesized, and their effects on host physiology. Rather than offering an exhaustive list of all known bioactive microbial small molecules, we select a few examples from each key class of metabolites to illustrate the diverse impacts of microbiota-derived compounds on the host. In addition, we attempt to address the microbial logic behind specific biotransformations. Finally, we outline current and emerging strategies for identifying previously undiscovered bioactive microbiota metabolites that may shape human health and disease.
Collapse
Affiliation(s)
- Jason D Bishai
- Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, CT; and
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
210
|
Klag KA, Round JL. Microbiota-Immune Interactions Regulate Metabolic Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1719-1724. [PMID: 34544814 PMCID: PMC9105212 DOI: 10.4049/jimmunol.2100419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are common worldwide and include diseases of overnutrition, such as obesity, or undernutrition, such as kwashiorkor. Both the immune system and the microbiota contribute to a variety of metabolic diseases; however, these two processes have largely been studied independently of one another in this context. The gastrointestinal system houses the greatest density of microbes but also houses one of the largest collections of immune molecules, especially Abs. The IgA isotype dominates the Ab landscape at mucosal sites, and a number of studies have demonstrated the importance of this Ab to the stability of the microbiota. In this article, we review the literature that demonstrates how homeostatic Ab responses control microbiota composition and function to influence metabolic disease. We propose that many metabolic diseases may arise from disruptions to homeostatic immune control of gut commensals and that further understanding this interaction can offer a novel opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Kendra A Klag
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
211
|
Miao L, Du J, Chen Z, Shi D, Qu H. Effects of Microbiota-Driven Therapy on Circulating Trimethylamine-N-Oxide Metabolism: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:710567. [PMID: 34552967 PMCID: PMC8450403 DOI: 10.3389/fcvm.2021.710567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023] Open
Abstract
Aim: This study was designed to systematically evaluate the effects of microbiota-driven therapy on decreasing TMAO and its related metabolites. Methods and Results: PubMed, EMBASE and Cochrane Library databases were searched (up to July 2021). Randomized controlled trials (RCTs), compared microbiota-driven therapy (prebiotics, probiotics, or synbiotics) with placebo on decreasing TMAO and its related metabolites, were eligible. Two researchers extracted the data independently and the disagreement was resolved by a third researcher. The risk of bias of included study was evaluated using Cochrane tool (RoB 2.0). Meta-analysis, meta-regression analysis and publication bias analysis were performed by RevMan 5.3 or Stata 12.0 software. Ten studies (12 arms) involving 342 patients (168 patients in the intervention group and 174 patients in the control group) were included. Compared with the control group, microbiota-driven therapy did not reduce circulating TMAO [SMD = −0.05, 95% CI (−0.36, 0.26), P = 0.749], choline [SMD = −0.34, 95% CI (−1.09, 0.41), P = 0.373], betaine aldehyde [SMD = −0.704, 95% CI (−1.789, 0.382), P = 0.204], and L-carnatine [SMD = −0.06, 95% CI (−0.38, 0.25), P = 0.692]. Conclusion: Current evidence does not support that microbiota-driven treatment reduce circulating levels of TMAO, choline, betaine aldehyde, and L-carnitine. However, given the small sample size, this conclusion needs to be proved in the future. Systematic Review Registration: PROSPERO:CRD42019119107.
Collapse
Affiliation(s)
- Lina Miao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuhong Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.,NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
212
|
Wei L, Singh R, Ro S, Ghoshal UC. Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open 2021; 5:976-987. [PMID: 34584964 PMCID: PMC8454481 DOI: 10.1002/jgh3.12528] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs), currently known as disorders of gut-brain interaction, are emerging microbiota-gut-brain abnormalities that are prevalent worldwide. The pathogenesis of FGIDs is heterogeneous and is intertwined with gut microbiota and its derived molecule-modulated mechanisms, including gut dysmotility, visceral hypersensitivity, gut immune abnormalities, abnormal secretion, and impaired barrier function. There has been phenomenal progress in understanding the role of gut microbiota in FGIDs by underpinning the species alternations between healthy and pathological conditions such as FGIDs. However, the precise gut microbiota-directed cellular and molecular pathogeneses of FGIDs are yet enigmatic. Determining the mechanistic link between the gut microbiota and gastrointestinal (GI) diseases has been difficult due to (i) the lack of robust animal models imitating the various aspects of human FGID pathophysiology; (ii) the absence of longitudinal human and/or animal studies to unveil the interaction of the gut microbiota with FGID-relevant pathogenesis; (iii) uncertainty about connections between human and animal studies; and (iv) insufficient data supporting a holistic view of disease-specific pathophysiological changes in FGID patients. These unidentified gaps open possibilities to explore pathological mechanisms directed through gut microbiota dysbiosis in FGIDs. The current treatment options for dysbiotic gut microbiota are limited; dietary interventions, antibiotics, probiotics, and fecal microbiota transplantation are the front-line clinical options. Here, we review the contribution of gut microbiota and its derived molecules in gut homeostasis and explore the possible pathophysiological mechanisms involved in FGIDs leading to potential therapeutics options.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Uday C Ghoshal
- Department of GastroenterologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
| |
Collapse
|
213
|
Wilcox J, Skye SM, Graham B, Zabell A, Li XS, Li L, Shelkay S, Fu X, Neale S, O'Laughlin C, Peterson K, Hazen SL, Tang WHW. Dietary Choline Supplements, but Not Eggs, Raise Fasting TMAO Levels in Participants with Normal Renal Function: A Randomized Clinical Trial. Am J Med 2021; 134:1160-1169.e3. [PMID: 33872583 PMCID: PMC8410632 DOI: 10.1016/j.amjmed.2021.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Choline is a dietary precursor to the gut microbial generation of the prothrombotic and proatherogenic metabolite trimethylamine-N-oxide (TMAO). Eggs are rich in choline, yet the impact of habitual egg consumption on TMAO levels and platelet function in human subjects remains unclear. METHODS Healthy volunteers (41% male, 81% Caucasian, median age 28 years) with normal renal function (estimated glomerular filtration rate >60) were recruited and assigned to 1 of 5 daily interventions for 4 weeks: 1) hardboiled eggs (n = 18); 2) choline bitartrate supplements (n = 20); 3) hardboiled eggs + choline bitartrate supplements (n = 16); 4) egg whites + choline bitartrate supplements (n = 18); 5) phosphatidylcholine supplements (n = 10). Fasting blood and urine samples were collected for quantification of TMAO, its precursors, and platelet aggregometry. RESULTS Participants' plasma TMAO levels increased significantly in all 3 intervention arms containing choline bitartrate (all P < .0001), but daily ingestion of 4 large eggs (P = .28) or phosphatidylcholine supplements (P = .27) failed to increase plasma TMAO levels. Platelet reactivity also significantly increased in the 3 intervention arms containing choline bitartrate (all P < .01), but not with eggs (P = .10) or phosphatidylcholine supplements (P = .79). CONCLUSIONS Despite high choline content in egg yolks, healthy participants consuming 4 eggs daily showed no significant increase in TMAO or platelet reactivity. However, choline bitartrate supplements providing comparable total choline raised both TMAO and platelet reactivity, demonstrating that the form and source of dietary choline differentially contributes to systemic TMAO levels and platelet responsiveness.
Collapse
Affiliation(s)
- Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Sarah M Skye
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Brett Graham
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Allyson Zabell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Shamanthika Shelkay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Xiaoming Fu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Sarah Neale
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Cathy O'Laughlin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Kimberly Peterson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Ohio
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Ohio.
| |
Collapse
|
214
|
Panyod S, Wu WK, Chen CC, Wu MS, Ho CT, Sheen LY. Modulation of gut microbiota by foods and herbs to prevent cardiovascular diseases. J Tradit Complement Med 2021; 13:107-118. [PMID: 36970453 PMCID: PMC10037074 DOI: 10.1016/j.jtcme.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary nutrients are associated with the development of cardiovascular disease (CVD) both through traditional pathways (inducing hyperlipidemia and chronic inflammation) and through the emergence of a metaorganism-pathogenesis pathway (through the gut microbiota, its metabolites, and host). Several molecules from food play an important role as CVD risk-factor precursors either themselves or through the metabolism of the gut microbiome. Animal-based dietary proteins are the primary source of CVD risk-factor precursors; however, some plants also possess these precursors, though at relatively low levels compared with animal-source food products. Various medications have been developed to treat CVD through the gut-microbiota-circulation axis, and they exhibit potent effects in CVD treatment. Nevertheless, such medicines are still being improved, and there are many research gaps that need to be addressed. Furthermore, some medications have unpleasant or adverse effects. Numerous foods and herbs impart beneficial effects upon health and disease. In the past decade, many studies have focused on treating and preventing CVD by modulating the gut microbiota and their metabolites. This review provides an overview of the available information, summarizes current research related to the gut-microbiota-heart axis, enumerates the foods and herbs that are CVD-risk precursors, and illustrates how metabolites become CVD risk factors through the metabolism of gut microbiota. Moreover, we present perspectives on the application of foods and herbs-including prebiotics, probiotics, synbiotics, postbiotics, and antibiotic-like substances-as CVD prevention agents to modulate gut microbiota by inhibiting gut-derived CVD risk factors. Taxonomy classification by EVISE Cardiovascular disease, gut microbiota, herbal medicine, preventive medicine, dietary therapy, nutrition supplements.
Collapse
|
215
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
216
|
Saeedi Saravi SS, Bonetti NR, Pugin B, Constancias F, Pasterk L, Gobbato S, Akhmedov A, Liberale L, Lüscher TF, Camici GG, Beer JH. Lifelong dietary omega-3 fatty acid suppresses thrombotic potential through gut microbiota alteration in aged mice. iScience 2021; 24:102897. [PMID: 34401676 PMCID: PMC8355916 DOI: 10.1016/j.isci.2021.102897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Aging is a major risk factor for cardiovascular diseases, including thrombotic events. The gut microbiota has been implicated in the development of thrombotic risk. Plant-derived omega-3 fatty acid ɑ-linolenic acid (ALA) confers beneficial anti-platelet and anti-inflammatory effects. Hence, antithrombotic activity elicited by ALA may be partly dependent on its interaction with gut microbiota during aging. Here, we demonstrate that lifelong dietary ALA decreases platelet hyperresponsiveness and thrombus formation in aged mice. These phenotypic changes can be partly attributed to alteration of microbial composition and reduction of its metabolite trimethylamine N-oxide and inflammatory mediators including TNF-α, as well as the upregulated production of short-chain fatty acid acetate. ALA-rich diet also dampens secretion of increased procoagulant factors, tissue factor and plasminogen activator inhibitor-1, in aged mice. Our results suggest long-term ALA supplementation as an attractive, accessible, and well-tolerated nutritional strategy against age-associated platelet hyperreactivity and thrombotic potential.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Nicole R. Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lisa Pasterk
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
| | - Sara Gobbato
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Jürg H. Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| |
Collapse
|
217
|
Adhikari AA, Ramachandran D, Chaudhari SN, Powell CE, Li W, McCurry MD, Banks AS, Devlin AS. A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. ACS Chem Biol 2021; 16:1401-1412. [PMID: 34279901 PMCID: PMC9013266 DOI: 10.1021/acschembio.1c00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bile acids play crucial roles in host physiology by acting both as detergents that aid in digestion and as signaling molecules that bind to host receptors. Gut bacterial bile salt hydrolase (BSH) enzymes perform the gateway reaction leading to the conversion of host-produced primary bile acids into bacterially modified secondary bile acids. Small molecule probes that target BSHs will help elucidate the causal roles of these metabolites in host physiology. We previously reported the development of a covalent BSH inhibitor with low gut permeability. Here, we build on our previous findings and describe the development of a second-generation gut-restricted BSH inhibitor with enhanced potency, reduced off-target effects, and durable in vivo efficacy. Structure-activity relationship (SAR) studies focused on the bile acid core identified a compound, AAA-10, containing a C3-sulfonated lithocholic acid scaffold and an alpha-fluoromethyl ketone warhead as a potent pan-BSH inhibitor. This compound inhibits BSH activity in mouse and human fecal slurry, bacterial cultures, and purified BSH proteins and displays reduced toxicity against mammalian cells compared to first generation compounds. Oral administration of AAA-10 to wild-type mice for 5 days resulted in a decrease in the abundance of the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) in the mouse GI tract with low systemic exposure of AAA-10, demonstrating that AAA-10 is an effective tool for inhibiting BSH activity and modulating bile acid pool composition in vivo.
Collapse
Affiliation(s)
- Arijit A. Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Deepti Ramachandran
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Snehal N. Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chelsea E. Powell
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Megan D. McCurry
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alexander S. Banks
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - A. Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
218
|
Lee Y, Nemet I, Wang Z, Lai HTM, de Oliveira Otto MC, Lemaitre RN, Fretts AM, Sotoodehnia N, Budoff M, DiDonato JA, McKnight B, Tang WHW, Psaty BM, Siscovick DS, Hazen SL, Mozaffarian D. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. J Am Heart Assoc 2021; 10:e020646. [PMID: 34398665 PMCID: PMC8649305 DOI: 10.1161/jaha.120.020646] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Trimethylamine N‐oxide (TMAO) is a gut microbiota‐dependent metabolite of dietary choline, L‐carnitine, and phosphatidylcholine‐rich foods. On the basis of experimental studies and patients with prevalent disease, elevated plasma TMAO may increase risk of atherosclerotic cardiovascular disease (ASCVD). TMAO is also renally cleared and may interact with and causally contribute to renal dysfunction. Yet, how serial TMAO levels relate to incident and recurrent ASCVD in community‐based populations and the potential mediating or modifying role of renal function are not established. Methods and Results We investigated associations of serial measures of plasma TMAO, assessed at baseline and 7 years, with incident and recurrent ASCVD in a community‐based cohort of 4131 (incident) and 1449 (recurrent) older US adults. TMAO was measured using stable isotope dilution liquid chromatography–tandem mass spectrometry (laboratory coefficient of variation, <6%). Incident ASCVD (myocardial infarction, fatal coronary heart disease, stroke, sudden cardiac death, or other atherosclerotic death) was centrally adjudicated using medical records. Risk was assessed by multivariable Cox proportional hazards regression, including time‐varying demographics, lifestyle factors, medical history, laboratory measures, and dietary habits. Potential mediating effects and interaction by estimated glomerular filtration rate (eGFR) were assessed. During prospective follow‐up, 1766 incident and 897 recurrent ASCVD events occurred. After multivariable adjustment, higher levels of TMAO were associated with a higher risk of incident ASCVD, with extreme quintile hazard ratio (HR) compared with the lowest quintile=1.21 (95% CI, 1.02–1.42; P‐trend=0.029). This relationship appeared mediated or confounded by eGFR (eGFR‐adjusted HR, 1.07; 95% CI, 0.90–1.27), as well as modified by eGFR (P‐interaction <0.001). High levels of TMAO were associated with higher incidence of ASCVD in the presence of impaired renal function (eGFR <60 mL/min per 1.73 m2: HR, 1.56 [95% CI, 1.13–2.14]; P‐trend=0.007), but not normal or mildly reduced renal function (eGFR ≥60 mL/min per 1.73 m2: HR, 1.03 [95% CI, 0.85–1.25]; P‐trend=0.668). Among individuals with prior ASCVD, TMAO associated with higher risk of recurrent ASCVD (HR, 1.25 [95% CI, 1.01–1.56]; P‐trend=0.009), without significant modification by eGFR. Conclusions In this large community‐based cohort of older US adults, serial measures of TMAO were associated with higher risk of incident ASCVD, with apparent modification by presence of impaired renal function and with higher risk of recurrent ASCVD.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Food and Nutrition Myongji University Yongin Korea.,Friedman School of Nutrition Science and Policy Tufts University Boston MA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences Lerner Research Institute Cleveland OH.,Center for Microbiome and Human Health Cleveland OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences Lerner Research Institute Cleveland OH.,Center for Microbiome and Human Health Cleveland OH
| | - Heidi T M Lai
- Department of Primary Care and Public Health Imperial College London London UK
| | - Marcia C de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences School of Public Health The University of Texas Health Science Center at Houston (UTHealth) Houston TX
| | - Rozenn N Lemaitre
- Department of Medicine Cardiovascular Health Research UnitUniversity of Washington Seattle WA
| | - Amanda M Fretts
- Department of Medicine Cardiovascular Health Research UnitUniversity of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA
| | - Nona Sotoodehnia
- Department of Medicine Cardiovascular Health Research UnitUniversity of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA
| | - Matthew Budoff
- Department of Medicine Lundquist InstituteHarbor UCLA Medical Center Torrance CA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences Lerner Research Institute Cleveland OH.,Center for Microbiome and Human Health Cleveland OH
| | - Barbara McKnight
- Department of Medicine Cardiovascular Health Research UnitUniversity of Washington Seattle WA.,Department of Biostatistics University of Washington Seattle WA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences Lerner Research Institute Cleveland OH.,Center for Microbiome and Human Health Cleveland OH.,Department of Cardiovascular Medicine Heart Vascular & Thoracic InstituteCleveland Clinic Cleveland OH
| | - Bruce M Psaty
- Department of Medicine Cardiovascular Health Research UnitUniversity of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA.,Kaiser Permanente Washington Health Research Institute Seattle WA
| | | | - Stanley L Hazen
- Center for Microbiome and Human Health Cleveland OH.,Department of Cardiovascular Medicine Heart Vascular & Thoracic InstituteCleveland Clinic Cleveland OH
| | | |
Collapse
|
219
|
Colaco NA, Wang TS, Ma Y, Scherzer R, Ilkayeva OR, Desvigne-Nickens P, Braunwald E, Hernandez AF, Butler J, Shah SH, Shah SJ, Hsue PY. Transmethylamine-N-Oxide Is Associated With Diffuse Cardiac Fibrosis in People Living With HIV. J Am Heart Assoc 2021; 10:e020499. [PMID: 34365799 PMCID: PMC8475032 DOI: 10.1161/jaha.120.020499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background People living with HIV are at increased risk of developing diastolic dysfunction, heart failure, and sudden cardiac death, all of which have been characterized by higher levels of myocardial fibrosis. Transmethylamine-N-oxide (TMAO), a dietary gut metabolite, is linked to the development of myocardial fibrosis in animal models. However, it is unclear whether TMAO plays a role in the development of myocardial fibrosis in people living with HIV. Methods and Results The study population consisted of participants enrolled in the multisite cross-sectional study called CHART-HIV (Characterizing Heart Function on Anti-Retroviral Therapy). Participants underwent echocardiography, cardiac magnetic resonance imaging, biomarker analysis, and targeted assessment of gut-related circulating metabolites; diastolic dysfunction was determined by study-specific criteria. Multivariable linear regression models were performed to examine the relationship of gut-related metabolites with serum and imaging measures of myocardial fibrosis. Models were adjusted for traditional cardiovascular, inflammatory, and HIV-related risk factors. Diastolic dysfunction was present in 94 of 195 individuals (48%) in CHART-HIV; this cohort demonstrated higher prevalence of hypertension, hyperlipidemia, and chronic kidney disease as well as higher plasma levels of both TMAO and choline. TMAO levels were associated with parameters reflecting increased left ventricular filling pressures and with a marker of the innate immune system. TMAO levels correlated with diffuse myocardial fibrosis (R=0.35; P<0.05) as characterized by myocardial extracellular volume fraction as well as biomarkers reflective of myocardial fibrosis. Conclusions In this study of people living with HIV, the gut metabolite TMAO was associated with underlying diffuse myocardial fibrosis and found to be a potential marker of early structural heart disease. The mechanistic role of the gut microbiome in HIV-associated cardiovascular disease warrants further investigation. Registration URL: https://clinicaltrials.gov; Unique identifier: NCT02860156.
Collapse
Affiliation(s)
- Nalini A Colaco
- Division of Cardiology Oregon Health and Science University Portland OR
| | - Teresa S Wang
- Division of Cardiology University of Pennsylvania Philadelphia PA
| | - Yifei Ma
- Department of Epidemiology and Biostatistics University of California San Francisco CA
| | - Rebecca Scherzer
- Department of Epidemiology and Biostatistics University of California San Francisco CA
| | - Olga R Ilkayeva
- Division of Cardiology Duke University School of Medicine Durham NC
| | | | - Eugene Braunwald
- Department of Medicine TIMI Study GroupBrigham and Women's HospitalHarvard Medical School Boston MA
| | | | - Javed Butler
- Department of Medicine University of Mississippi Medical Center Jackson MS
| | - Svati H Shah
- Division of Cardiology Duke University School of Medicine Durham NC
| | - Sanjiv J Shah
- Division of Cardiology Northwestern University Feinberg School of Medicine Chicago IL
| | - Priscilla Y Hsue
- Division of Cardiology University of California San Francisco CA
| |
Collapse
|
220
|
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2021; 118:2367-2384. [PMID: 34352109 PMCID: PMC9890461 DOI: 10.1093/cvr/cvab263] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Collapse
Affiliation(s)
- Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mario Witkowski
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Caroline Tizian
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Freiburgstrasse 18 CH-3010, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100 8091, Zurich, Switzerland
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, Sydney St, London SW3 6NP, UK
| | - Ursula Rauch
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| | - Stanley L Hazen
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| |
Collapse
|
221
|
He S, Jiang H, Zhuo C, Jiang W. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. Cardiovasc Toxicol 2021; 21:593-604. [PMID: 34003426 DOI: 10.1007/s12012-021-09656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Trimethylamine (TMA) is a gut microbiota-derived metabolite which comes from diets rich of choline, betaine or L-carnitine and could be further converted to Trimethylamine-N-oxide (TMAO) in the liver. As the function of gut microbiota and its metabolites being explored so far, studies suggest that TMAO may be a potential risk factor of cardiovascular diseases independent of other traditional risk factors. However, the precise role of TMAO is controversial as some converse results were discovered. In recent studies, it is hypothesized that TMA may also participate in the progression of cardiovascular diseases and some cytotoxic effect of TMA has been discovered. Thus, exploring the relationship between TMA, TMAO and CVD may bring a novel insight into the diagnosis and therapy of cardiovascular diseases. In this review, we discussed the factors which influence the TMA/TMAO's process of metabolism in the human body. We have also summarized the pathogenic effect of TMA/TMAO in cardiovascular diseases, as well as the limitation of some controversial discoveries.
Collapse
Affiliation(s)
- Siyu He
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hong Jiang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Caili Zhuo
- The Laboratory of Cardiovascular Diseases, Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Jiang
- The Laboratory of Cardiovascular Diseases, Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
222
|
Su C, Li X, Yang Y, Du Y, Zhang X, Wang L, Hong B. Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutr Diabetes 2021; 11:27. [PMID: 34389700 PMCID: PMC8363624 DOI: 10.1038/s41387-021-00169-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite generated from its dietary precursors such as choline, has been identified as an independent risk factor for atherosclerosis. Metformin is the most widely used drug for the treatment of type 2 diabetes (T2D), which has therapeutic effects on hyperglycemia accelerated atherosclerosis. A growing body of evidence suggest that metformin plays a therapeutic role by regulating the structure and metabolic function of gut microbiota. However, whether metformin has an impact on gut-microbiota-mediated TMAO production from choline remains obscure. In this study, the oral administration of metformin significantly reduced choline diet-increased serum TMAO in choline diet-fed C57BL/6J mice. The diversity analysis based on 16S rRNA gene sequencing of C57BL/6J mice fecal samples indicated that metformin markedly changed the gut-microbiota composition. Metformin was positively correlated with the enrichment of different intestinal bacteria such as Bifidobacterium and Akkermansia and a lower cutC (a choline utilization gene) abundance. Furthermore, the ex vivo and in vitro inhibitory effects of metformin on choline metabolism of TMA-producing bacteria were confirmed under anaerobic condition. The results suggested that metformin suppresses serum TMAO level by remodeling gut microbiota involved in TMA generation from choline.
Collapse
Affiliation(s)
- Chunyan Su
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Yuxin Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Xiumin Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China. .,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
223
|
Orabi D, Berger NA, Brown JM. Abnormal Metabolism in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: Mechanistic Insights to Chemoprevention. Cancers (Basel) 2021; 13:3473. [PMID: 34298687 PMCID: PMC8307710 DOI: 10.3390/cancers13143473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the rise and becoming a major contributor to the development of hepatocellular carcinoma (HCC). Reasons for this include the rise in obesity and metabolic syndrome in contrast to the marked advances in prevention and treatment strategies of viral HCC. These shifts are expected to rapidly propel this trend even further in the coming decades, with NAFLD on course to become the leading etiology of end-stage liver disease and HCC. No Food and Drug Administration (FDA)-approved medications are currently available for the treatment of NAFLD, and advances are desperately needed. Numerous medications with varying mechanisms of action targeting liver steatosis and fibrosis are being investigated including peroxisome proliferator-activated receptor (PPAR) agonists and farnesoid X receptor (FXR) agonists. Additionally, drugs targeting components of metabolic syndrome, such as antihyperglycemics, have been found to affect NAFLD progression and are now being considered in the treatment of these patients. As NAFLD drug discovery continues, special attention should be given to their relationship to HCC. Several mechanisms in the pathogenesis of NAFLD have been implicated in hepatocarcinogenesis, and therapies aimed at NAFLD may additionally harbor independent antitumorigenic potential. This approach may provide novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nathan A. Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
| |
Collapse
|
224
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
225
|
Abstract
![]()
The genomic era has dramatically changed how we discover and investigate
microbial biochemistry. In particular, the exponential expansion in
the number of sequenced microbial genomes provides investigators with
a vast wealth of sequence data to exploit for the discovery of biochemical
functions and mechanisms, as well as novel enzymes and metabolites.
In contrast to early biochemical work, which was largely characterized
by “forward” approaches that proceed from biomass to
enzyme to gene, the availability of genome sequences enables the discovery
of new microbial metabolic activities, enzymes, and metabolites by
“reverse” approaches that originate with genetic information
or by approaches that incorporate features of both forward and reverse
methodologies. In the genomic era, the canonical organization of microbial
genomes into gene clusters presents a singular opportunity for the
utilization of genomic data. Specifically, genomic context (information
gleaned from the genes surrounding a gene of interest in the chromosome)
is a powerful tool for chemical discovery in microbial systems because
of the functional and/or physiological relationship that usually exists
between genes found within a gene cluster. This means that the investigator
can use this inferred link to generate hypotheses about the functions
of individual genes in the cluster or even the function of the entire
cluster itself. Here, we discuss how analysis of genomic context in
combination with a mechanistic understanding of enzymes can facilitate
numerous facets of microbial biochemical research including the identification
of biosynthetic gene clusters, the discovery of important and novel
enzymes, the elucidation of natural product structures, and the identification
of new metabolic pathways. We highlight work from our laboratory using
genomic context to discover and study biosynthetic pathways that produce
natural products, including the cylindrocyclophanes, nitrogen–nitrogen
bond-containing metabolites, and the gut microbial genotoxin colibactin.
Although use of genomic context is most commonly associated with studies
of natural product biosynthesis, we also show that it can be applied
to the study of primary metabolism. We illustrate this with examples
from our work studying the members of the glycyl radical enzyme superfamily
involved in choline and 4-hydroxyproline degradation in the human
gut. Looking forward, we envision increased opportunities to use such
information, with the combination of biochemical knowledge and computational
tools poised to fuel a new revolution in our ability to connect genes
and their biochemical functions. In particular, we note a need for
methods that computationally formalize the functional association
between genes when such associations are not obvious from manual gene
annotations. Such tools will drastically augment the feasibility and
scope of gene cluster analysis and accelerate the discovery of new
microbial enzymes, metabolites, and metabolic processes.
Collapse
Affiliation(s)
- Duncan J. Kountz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
226
|
Baaten CC, Sternkopf M, Henning T, Marx N, Jankowski J, Noels H. Platelet Function in CKD: A Systematic Review and Meta-Analysis. J Am Soc Nephrol 2021; 32:1583-1598. [PMID: 33941607 PMCID: PMC8425648 DOI: 10.1681/asn.2020101440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/20/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Patients with CKD are at high risk for thrombotic and hemorrhagic complications. Abnormalities in platelet function are central to these complications, but reports on platelet function in relation to CKD are conflicting, and vary from decreased platelet reactivity to normal or increased platelet responsiveness. The direct effects of uremic toxins on platelet function have been described, with variable findings. METHODS To help clarify how CKD affects platelet function, we conducted a systematic review and meta-analysis of platelet activity in CKD, with a focus on nondialysis-induced effects. We also performed an extensive literature search for the effects of individual uremic toxins on platelet function. RESULTS We included 73 studies in the systematic review to assess CKD's overall effect on platelet function in patients; 11 of them described CKD's effect on ex vivo platelet aggregation and were included in the meta-analysis. Although findings on platelet abnormalities in CKD are inconsistent, bleeding time was mostly prolonged and platelet adhesion mainly reduced. Also, the meta-analysis revealed maximal platelet aggregation was significantly reduced in patients with CKD upon collagen stimulation. We also found that relatively few uremic toxins have been examined for direct effects on platelets ex vivo; ex vivo analyses had varying methods and results, revealing both platelet-stimulatory and inhibitory effects. However, eight of the 12 uremic toxins tested in animal models mostly induced prothrombotic effects. CONCLUSIONS Overall, most studies report impaired function of platelets from patients with CKD. Still, a substantial number of studies find platelet function to be unchanged or even enhanced. Further investigation of platelet reactivity in CKD, especially during different CKD stages, is warranted.
Collapse
Affiliation(s)
- Constance C.F.M.J. Baaten
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Tobias Henning
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany,Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
227
|
Iliou A, Mikros E, Karaman I, Elliott F, Griffin JL, Tzoulaki I, Elliott P. Metabolic phenotyping and cardiovascular disease: an overview of evidence from epidemiological settings. Heart 2021; 107:1123-1129. [PMID: 33608305 DOI: 10.1136/heartjnl-2019-315615] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolomics, the comprehensive measurement of low-molecular-weight molecules in biological fluids used for metabolic phenotyping, has emerged as a promising tool to better understand pathways underlying cardiovascular disease (CVD) and to improve cardiovascular risk stratification. Here, we present the main methodologies for metabolic phenotyping, the methodological steps to analyse these data in epidemiological settings and the associated challenges. We discuss evidence from epidemiological studies linking metabolites to coronary heart disease and stroke. These studies indicate the systemic nature of CVD and identify associated metabolic pathways such as gut microbial cometabolism, branched-chain amino acids, glycerophospholipid and cholesterol metabolism, as well as activation of inflammatory processes. Integration of metabolomic with genomic data can provide new evidence for involved biochemical pathways and potential for causality using Mendelian randomisation. The clinical utility of metabolic biomarkers for cardiovascular risk stratification in healthy individuals has not yet been established. As sample sizes with high-dimensional molecular data increase in epidemiological settings, integration of metabolomic data across studies and platforms with other molecular data will lead to new understanding of the metabolic processes underlying CVD and contribute to identification of potentially novel preventive and pharmacological targets. Metabolic phenotyping offers a powerful tool in the characterisation of the molecular signatures of CVD, paving the way to new mechanistic understanding and therapies, as well as improving risk prediction of CVD patients. However, there are still challenges to face in order to contribute to clinically important improvements in CVD.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Pharmacy, National and Kapodistrian University of Athens School of Health Sciences, Athens, Attica, Greece
| | - Emmanuel Mikros
- Pharmacy, National and Kapodistrian University of Athens School of Health Sciences, Athens, Attica, Greece
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Freya Elliott
- School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Julian L Griffin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece
- BHF Research Centre for Excellence, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- BHF Research Centre for Excellence, Faculty of Medicine, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Biomedical Research Centre, Imperial College London, London, UK
| |
Collapse
|
228
|
Anselmi G, Gagliardi L, Egidi G, Leone S, Gasbarrini A, Miggiano GAD, Galiuto L. Gut Microbiota and Cardiovascular Diseases: A Critical Review. Cardiol Rev 2021; 29:195-204. [PMID: 32639240 DOI: 10.1097/crd.0000000000000327] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human intestine contains the largest and most diverse ecosystem of microbes. The main function of the intestinal bacterial flora is to limit the growth of potentially pathogenic microorganisms. However, the intestinal microbiota is increasingly emerging as a risk factor for the development of cardiovascular disease (CVD). The gut microbiota-derived metabolites, such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and polyphenols play a pivotal role in maintaining healthy cardiovascular function, and when dysregulated, can potentially lead to CVD. In particular, changes in the composition and diversity of gut microbiota, known as dysbiosis, have been associated with atherosclerosis, hypertension, and heart failure. Nonetheless, the underlying mechanisms remain yet to be fully understood. Therefore, the microbiota and its metabolites have become a new therapeutic target for the prevention and treatment of CVD. In addition to a varied and balanced diet, the use of prebiotic and probiotic treatments or selective trimethylamine-N-oxide inhibitors could play a pivotal role in the prevention of CVD, especially in patients with a high metabolic risk.
Collapse
Affiliation(s)
- Gaia Anselmi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucilla Gagliardi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Egidi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Leone
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- UOC di Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacinto Abele Donato Miggiano
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Leonarda Galiuto
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
229
|
Li Q, Gao B, Siqin B, He Q, Zhang R, Meng X, Zhang N, Zhang N, Li M. Gut Microbiota: A Novel Regulator of Cardiovascular Disease and Key Factor in the Therapeutic Effects of Flavonoids. Front Pharmacol 2021; 12:651926. [PMID: 34220497 PMCID: PMC8241904 DOI: 10.3389/fphar.2021.651926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 01/30/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, and traditional cardiovascular risk factors cannot fully explain the occurrence of the disease. In recent years, the relationship between gut microbiota and its metabolites and cardiovascular disease has been a hot study topic. The changes in gut microbiota and its metabolites are related to the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. The mechanisms by which gut microbiota and its metabolites influence cardiovascular disease have been reported, although not comprehensively. Additionally, following ingestion, flavonoids are decomposed into phenolic acids that are more easily absorbed by the body after being processed by enzymes produced by intestinal microorganisms, which increases flavonoid bioavailability and activity, consequently affecting the onset of cardiovascular disease. However, flavonoids can also inhibit the growth of harmful microorganisms, promote the proliferation of beneficial microorganisms, and maintain the balance of gut microbiota. Hence, it is important to study the relationship between gut microbiota and flavonoids to elucidate the protective effects of flavonoids in cardiovascular diseases. This article will review the role and mechanism of gut microbiota and its metabolites in the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. It also discusses the potential value of flavonoids in the prevention and treatment of cardiovascular disease following their transformation through gut microbiota metabolism.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bateer Siqin
- Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Qian He
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Ru Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiangxi Meng
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Naiheng Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
230
|
Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P, Tittle AN, Li XS, Fu X, Androjna C, DiDonato AJ, Brinson K, Trapp BD, Fischbach MA, Rey FE, Hajjar AM, DiDonato JA, Hazen SL. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021; 29:1199-1208.e5. [PMID: 34139173 DOI: 10.1016/j.chom.2021.05.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have demonstrated associations between circulating levels of the gut-microbiota-derived metabolite trimethylamine-N-oxide (TMAO) and stroke incident risk. However, a causal role of gut microbes in stroke has not yet been demonstrated. Herein we show that gut microbes, through dietary choline and TMAO generation, directly impact cerebral infarct size and adverse outcomes following stroke. Fecal microbial transplantation from low- versus high-TMAO-producing human subjects into germ-free mice shows that both TMAO generation and stroke severity are transmissible traits. Furthermore, employing multiple murine stroke models and transplantation of defined microbial communities with genetically engineered human commensals into germ-free mice, we demonstrate that the microbial cutC gene (an enzymatic source of choline-to-TMA transformation) is sufficient to transmit TMA/TMAO production, heighten cerebral infarct size, and lead to functional impairment. We thus reveal that gut microbiota in general, specifically the metaorganismal TMAO pathway, directly contributes to stroke severity.
Collapse
Affiliation(s)
- Weifei Zhu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kymberleigh A Romano
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Prem Prakash
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aaron N Tittle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony J DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly Brinson
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline M Hajjar
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
231
|
Yamashiro K, Kurita N, Urabe T, Hattori N. Role of the Gut Microbiota in Stroke Pathogenesis and Potential Therapeutic Implications. ANNALS OF NUTRITION AND METABOLISM 2021; 77 Suppl 2:36-44. [PMID: 34107468 DOI: 10.1159/000516398] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Major advances have been made in stroke treatment and prevention in the past decades. However, the burden of stroke remains high. Identification of novel targets and establishment of effective interventions to improve stroke outcomes are, therefore, needed. Recent research highlights the contribution of the gut microbiota to stroke pathogenesis. SUMMARY Compositional and functional alterations of the gut microbiota, termed dysbiosis, are linked to stroke risk factors, such as obesity, metabolic diseases, and atherosclerosis. In acute cerebral ischemia, the gut microbiota plays a key role in bidirectional interactions between the gut and brain, referred to as the microbiota-gut-brain axis. Gut dysbiosis prior to ischemic stroke affects outcomes. Additionally, the brain affects the gut microbiota during acute ischemic brain injury, which in turn impacts outcomes. Interactions between the gut microbiota and stroke pathogenesis are mediated by several factors including bacterial components (e.g., lipopolysaccharide), gut microbiota-related metabolites (e.g., short-chain fatty acids and trimethylamine N-oxide), and the immune and nervous systems. Clinical studies have reported that patients with acute ischemic stroke exhibit gut dysbiosis, which is associated with host metabolism and inflammation, as well as functional outcomes. Modulation of the gut microbiota or its metabolites improves conditions related to stroke pathogenesis, including inflammation, cardiometabolic disease, atherosclerosis, and thrombosis. Key Messages: Accumulating evidence indicates that the gut microbiota plays a possible role in stroke pathogenesis. Modulation of the gut microbiota may provide a novel therapeutic strategy for the treatment and prevention of stroke.
Collapse
Affiliation(s)
- Kazuo Yamashiro
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Naohide Kurita
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
232
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
233
|
Tang WW, Li XS, Wu Y, Wang Z, Khaw KT, Wareham NJ, Nieuwdorp M, Boekholdt SM, Hazen SL. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J 2021; 236:80-86. [PMID: 33626384 DOI: 10.1016/j.ahj.2021.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Recent studies show a mechanistic link between gut microbiota-dependent formation of the atherosclerosis- and thrombosis-promoting metabolite trimethylamine N-oxide (TMAO) and cardiovascular disease (CVD). The clinical utility of TMAO in apparently healthy subjects for predicting incident CVD risks is unclear. METHODS AND RESULTS In the EPIC-Norfolk community-based study, we examined baseline fasting levels of TMAO and two of its nutrient precursors, choline and betaine, in a case:control design study comparing apparently European healthy middle-aged participants who subsequently develop CVD (Cases, n = 908) vs those who did not (Controls, n = 1,273) over an ensuing average follow-up period of 8 years. In participants who developed CVD vs controls, higher plasma TMAO (3.70 [IQR 2.50-6.41]μM vs 3.25 [IQR 2.19-52,1.15]μM; P < .001) and choline levels (9.09 [IQR 7.87-10.53]μM vs 8.89 [IQR 7.66-10.13]μM; P = .001) were observed. Following adjustments for traditional risk factors, elevated TMAO (adjusted odds ratio (OR) 1.58 [95% confidence interval (CI) 1.21-2.06], P < .001) and choline levels (adjusted OR 1.31 [95%CI 1.00-1.72], P < .05) remained predictive of incident CVD development. The clinical prognostic utility of TMAO remained significant and essentially unchanged regardless of the level of cutoff chosen between 1.5 uM (10%ile) to 10.5 uM (90%ile). CONCLUSION In apparently healthy participants of the community-based middle-aged EPIC-Norfolk population, elevated plasma levels of the gut microbe-dependent metabolite TMAO, and its nutrient precursor choline, predict incident risk for CVD development independent of traditional risk factors.
Collapse
|
234
|
Zhou Y, Jin W, Xie F, Mao S, Cheng Y, Zhu W. The role of Methanomassiliicoccales in trimethylamine metabolism in the rumen of dairy cows. Animal 2021; 15:100259. [PMID: 34058595 DOI: 10.1016/j.animal.2021.100259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022] Open
Abstract
A considerable amount of trimethylamine (TMA) is likely generated in the rumen; however, its metabolism is still unclear. This study aimed to investigate the role of Methanomassiliicoccales (Mmc) in TMA metabolism in the rumen of dairy cows. Three experiments, two rumen in vitro fermentation trials and one dairy cow in vivo trial, were conducted. Four groups were set in Experiment 1: control, nitroglycerin (NG, a methanogen inhibitor), TMA (7.2 mmol/L), and TMA + NG. The methanogenic activity was completely inhibited in the NG group, and no methane production was observed in the NG and TMA + NG groups. The TMA content hardly reduced in the TMA + NG group (6.9 mmol/L) following a 2 d-incubation; in contrast, it demonstrated a significant reduction by 47.2% in the TMA group. Methanogen 16S rRNA gene sequencing and real-time PCR showed that the relative abundance of Mmc increased in the TMA group (P = 0.005). The increase was mainly attributed to two species-level taxa, Group 9 sp. ISO4-G1 and Group 10 sp. Four groups were set in Experiment 2: control, NG, choline (choline chloride, 7.2 mmol/L), and choline + NG. Choline was completely degraded in 24 h, and the TMA content reached the peak point (7.3 mmol/L) in the fermentation culture. The TMA content remained relatively stable in the choline + NG group following the peak point. However, it started to decrease after 24 h in the choline group, corresponding to the rapid increase in methane production and the abundance of Mmc. Eight mid-lactating, rumen-fistulated Holstein cows were randomly assigned to the control (n = 4) or choline (n = 4) group in Experiment 3: In the choline group, cows were gradually supplemented with 100-250 g/(cow·d) of choline chloride over 4 weeks. Compared to the control group, TMA accumulated in the rumen fluid, and the abundance of Mmc 16S rRNA gene and choline-degrading bacterial cutC gene increased in the rumen content in the choline group (P < 0.050). The trimethylamine N-oxide content in the plasma and milk of the dairy cows was approximately 10 times higher in the choline group than that in the control at the end of the experiment. These findings revealed that Mmc played an important role in the elimination of TMA in the rumen. The accumulation of TMA in the rumen would lead to a large amount of TMA absorbed into the blood stream of the dairy cows.
Collapse
Affiliation(s)
- Yang Zhou
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Xie
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
235
|
Cerebral microbleeds in vascular dementia from clinical aspects to host-microbial interaction. Neurochem Int 2021; 148:105073. [PMID: 34048844 DOI: 10.1016/j.neuint.2021.105073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/30/2022]
Abstract
Vascular dementia is the second leading cause of dementia after Alzheimer's disease in the elderly population worldwide. Cerebral microbleeds (CMBs) are frequently observed in MRI of elderly subjects and considered as a possible surrogate marker. The number and location of CMBs reflect the severity of diseases and the underlying pathologies may involve cerebral amyloid angiopathy or hypertensive vasculopathy. Accumulating evidence demonstrated the clinicopathological discrepancies of CMBs, the clinical significance of CMBs associated with other MRI markers of cerebral small vessel disease, cognitive impairments, serum, and cerebrospinal fluid biomarkers. Moreover, emerging evidence has shown that genetic factors and gene-environmental interactions might shed light on the underlying etiologies of CMBs, focusing on blood-brain-barrier and inflammation. In this review, we introduce recent genetic and microbiome studies as a cutting-edge approach to figure out the etiology of CMBs through the "microbe-brain-oral axis" and "microbiome-brain-gut axis." Finally, we propose novel concepts, "microvascular matrisome" and "imbalanced proteostasis," which may provide better perspectives for elucidating the pathophysiology of CMBs and future development of therapeutics for vascular dementia using CMBs as a surrogate marker.
Collapse
|
236
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
237
|
Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med 2021; 58:733-740. [PMID: 32084001 DOI: 10.1515/cclm-2019-1146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 01/16/2023]
Abstract
Background Accumulating evidence indicates that trimethylamine-N-oxide (TMAO) may play a causal role in cardiovascular disease (CVD), chronic kidney disease (CKD) and type 2 diabetes (T2D). TMAO plasma concentrations show considerable intra- and inter-individual variation, underscoring the need for a reference interval in the general population to identify elevated TMAO concentrations. Methods TMAO concentrations were determined using an LC-MS/MS assay in a community-based sample of the PopGen control cohort consisting of 694 participants (54% men; aged 25-82 years) free of clinical CVD, CKD and T2D. We defined reference intervals for TMAO concentrations in human plasma using the 2.5th and 97.5th percentiles. Using multivariable regression analysis we analyzed the association of estimated glomerular filtration rate (eGFR), sex, and dietary intake and TMAO plasma concentrations. Results TMAO plasma concentrations were positively skewed and differed by sex. The median TMAO plasma concentration in men was 3.91 (Q1-Q3: 2.87-6.10) μmol/L and the reference interval 1.28-19.67 μmol/L (2.5th-97.5th percentile). In women median TMAO plasma concentration was 3.56 (Q1-Q3: 2.41-5.15) μmol/L and the reference interval 1.08-17.12 μmol/L. In multivariable regression analysis plasma TMAO was associated with sex, renal function and diet. The association of TMAO and diet was significant for intake of fish and shellfish in men only. Conclusions In a community-based sample free of apparent CVD and renal disease, we report the distribution of TMAO plasma concentrations with sex, renal function and diet as factors associated with plasma TMAO, and suggest reference intervals. These data may facilitate standardized comparisons of TMAO across populations.
Collapse
Affiliation(s)
- Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Romina di Giuseppe
- Institute of Epidemiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Manja Koch
- Institute of Epidemiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
238
|
Ahmed S, Spence JD. Sex differences in the intestinal microbiome: interactions with risk factors for atherosclerosis and cardiovascular disease. Biol Sex Differ 2021; 12:35. [PMID: 34001264 PMCID: PMC8130173 DOI: 10.1186/s13293-021-00378-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background There are clearly sex differences in cardiovascular disease. On average, women experience cardiovascular events at an older age, and at any age, women, on average, have less atherosclerotic plaque than men. The role of the human intestinal microbiome in health and disease has garnered significant interest in recent years, and there have been indications of sex differences in the intestinal microbiome. The purpose of this narrative review was to evaluate evidence of sex differences in the interaction between the intestinal microbiome and risk factors for cardiovascular disease. Several studies have demonstrated changes in microbiota composition and metabolic profile as a function of diet, sex hormones, and host metabolism, among other factors. This dysbiosis has consequently been associated with several disease states, including atherosclerosis and cardiovascular disease. In this respect, there is a growing appreciation for the microbiota and its secreted metabolites, including trimethylamine N-oxide (TMAO), derived from intestinal bacterial metabolic pathways involving dietary choline and l-carnitine, as novel risk factors for atherosclerosis and cardiovascular outcomes. Although traditional risk factors for vascular disease have been studied broadly over the years, there exists little research to evaluate interactions of cardiovascular risk factors with a potentially sexually dimorphic intestinal microbiome. This review evaluates the role of sex differences in the composition of the intestinal microbiome, including effects of sex hormones on the microbiome, and the effects of these sex differences on cardiovascular risk factors. Diabetes and obesity exhibit sexual dimorphism, while the data concerning hypertension and dyslipidemia remain inconclusive based on the available literature. In addition, an increased proportion of gram-negative species capable of driving metabolic endotoxemia and a low-grade inflammatory response, as well as decreased numbers of butyrate-producing species, have been observed in relation to traditional vascular risk factors. In this context, circulating SCFAs and TMAO are recognized as key metabolites of the intestinal microbiome that can be readily measured in the blood for the evaluation of metabolic profile. Conclusion Novel strategies focused on resolving intestinal dysbiosis as a means to slow progression of atherosclerosis and reduce the risk of cardiovascular disease should be evaluated through a lens of sex differences.
Collapse
Affiliation(s)
- Shamon Ahmed
- University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - J David Spence
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Western University, 1400 Western Road, London, Ontario, N6G 2V4, Canada.
| |
Collapse
|
239
|
Orabi D, Osborn LJ, Fung K, Massey W, Horak AJ, Aucejo F, Choucair I, DeLucia B, Wang Z, Claesen J, Brown JM. A surgical method for continuous intraportal infusion of gut microbial metabolites in mice. JCI Insight 2021; 6:145607. [PMID: 33986195 PMCID: PMC8262340 DOI: 10.1172/jci.insight.145607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbe-derived metabolites influence human physiology and disease. However, establishing mechanistic links between gut microbial metabolites and disease pathogenesis in animal models remains challenging. The major route of absorption for microbe-derived small molecules is venous drainage via the portal vein to the liver. In the event of presystemic hepatic metabolism, the route of metabolite administration becomes critical. To our knowledge, we describe here a novel portal vein cannulation technique using a s.c. implanted osmotic pump to achieve continuous portal vein infusion in mice. We first administered the microbial metabolite trimethylamine (TMA) over 4 weeks, during which increased peripheral plasma levels of TMA and its host liver-derived cometabolite, trimethylamine-N-oxide, were observed when compared with a vehicle control. Next, 4-hydroxyphenylacetic acid (4-HPAA), a microbial metabolite that undergoes extensive presystemic hepatic metabolism, was administered intraportally to examine effects on hepatic gene expression. As expected, hepatic levels of 4-HPAA were elevated when compared with the control group while peripheral plasma 4-HPAA levels remained the same. Moreover, significant changes in the hepatic transcriptome were revealed by an unbiased RNA-Seq approach. Collectively, to our knowledge this work describes a novel method for administering gut microbe-derived metabolites via the portal vein, mimicking their physiologic delivery in vivo.
Collapse
Affiliation(s)
- Danny Orabi
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Kevin Fung
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - William Massey
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Anthony J. Horak
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Federico Aucejo
- Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Beckey DeLucia
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences and
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
240
|
Yang JJ, Shu XO, Herrington DM, Moore SC, Meyer KA, Ose J, Menni C, Palmer ND, Eliassen H, Harada S, Tzoulaki I, Zhu H, Albanes D, Wang TJ, Zheng W, Cai H, Ulrich CM, Guasch-Ferré M, Karaman I, Fornage M, Cai Q, Matthews CE, Wagenknecht LE, Elliott P, Gerszten RE, Yu D. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr 2021; 113:1145-1156. [PMID: 33826706 PMCID: PMC8106754 DOI: 10.1093/ajcn/nqaa430] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a diet-derived, gut microbial-host cometabolite, has been linked to cardiometabolic diseases. However, the relations remain unclear between diet, TMAO, and cardiometabolic health in general populations from different regions and ethnicities. OBJECTIVES To examine associations of circulating TMAO with dietary and cardiometabolic factors in a pooled analysis of 16 population-based studies from the United States, Europe, and Asia. METHODS Included were 32,166 adults (16,269 white, 13,293 Asian, 1247 Hispanic/Latino, 1236 black, and 121 others) without cardiovascular disease, cancer, chronic kidney disease, or inflammatory bowel disease. Linear regression coefficients (β) were computed for standardized TMAO with harmonized variables. Study-specific results were combined by random-effects meta-analysis. A false discovery rate <0.10 was considered significant. RESULTS After adjustment for potential confounders, circulating TMAO was associated with intakes of animal protein and saturated fat (β = 0.124 and 0.058, respectively, for a 5% energy increase) and with shellfish, total fish, eggs, and red meat (β = 0.370, 0.151, 0.081, and 0.056, respectively, for a 1 serving/d increase). Plant protein and nuts showed inverse associations (β = -0.126 for a 5% energy increase from plant protein and -0.123 for a 1 serving/d increase of nuts). Although the animal protein-TMAO association was consistent across populations, fish and shellfish associations were stronger in Asians (β = 0.285 and 0.578), and egg and red meat associations were more prominent in Americans (β = 0.153 and 0.093). Besides, circulating TMAO was positively associated with creatinine (β = 0.131 SD increase in log-TMAO), homocysteine (β = 0.065), insulin (β = 0.048), glycated hemoglobin (β = 0.048), and glucose (β = 0.023), whereas it was inversely associated with HDL cholesterol (β = -0.047) and blood pressure (β = -0.030). Each TMAO-biomarker association remained significant after further adjusting for creatinine and was robust in subgroup/sensitivity analyses. CONCLUSIONS In an international, consortium-based study, animal protein was consistently associated with increased circulating TMAO, whereas TMAO associations with fish, shellfish, eggs, and red meat varied among populations. The adverse associations of TMAO with certain cardiometabolic biomarkers, independent of renal function, warrant further investigation.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Herrington
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katie A Meyer
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Robert E Gerszten
- Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
241
|
Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2021; 15:813-826. [PMID: 33175138 DOI: 10.1093/ecco-jcc/jjaa227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The inflammatory bowel diseases [IBD], Crohn's disease and ulcerative colitis, are chronic, idiopathic gastrointestinal diseases. Although their precise aetiology is unknown, it is thought to involve a complex interaction between genetic predisposition and an abnormal host immune response to environmental exposures, probably microbial. Microbial dysbiosis has frequently been documented in IBD. Metabolomics [the study of small molecular intermediates and end products of metabolism in biological samples] provides a unique opportunity to characterize disease-associated metabolic changes and may be of particular use in quantifying gut microbial metabolism. Numerous metabolomic studies have been undertaken in IBD populations, identifying consistent alterations in a range of molecules across several biological matrices. This systematic review aims to summarize these findings. METHODS A comprehensive, systematic search was carried out using Medline and Embase. All studies were reviewed by two authors independently using predefined exclusion criteria. Sixty-four relevant papers were assessed for quality and included in the review. RESULTS Consistent metabolic perturbations were identified, including increases in levels of branched chain amino acids and lipid classes across stool, serum, plasma and tissue biopsy samples, and reduced levels of microbially modified metabolites in both urine [such as hippurate] and stool [such as secondary bile acids] samples. CONCLUSIONS This review provides a summary of metabolomic research in IBD to date, highlighting underlying themes of perturbed gut microbial metabolism and mammalian-microbial co-metabolism associated with disease status.
Collapse
Affiliation(s)
- Kate Gallagher
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Alexandra Catesson
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Julian L Griffin
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Institute of Health Futures, Murdoch University, Perth, WA, Australia
| | - Horace R T Williams
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Department of Gastroenterology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
242
|
Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 2021; 18:313-330. [PMID: 33340009 DOI: 10.1038/s41569-020-00477-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for analysing these data but must be applied with an understanding of the relevant biological and computational theories. Through applying these techniques to omics data, systems biology addresses the problems posed by the complex organization of biological processes. In this Review, we describe the techniques and sources of omics data, outline network theory, and highlight exemplars of novel approaches that combine gene regulatory and co-expression networks, proteomics, metabolomics, lipidomics and phenomics with informatics techniques to provide new insights into cardiovascular disease. The use of systems approaches will become necessary to integrate data from more than one omic technique. Although understanding the interactions between different omics data requires increasingly complex concepts and methods, we argue that hypothesis-driven investigations and independent validation must still accompany these novel systems biology approaches to realize their full potential.
Collapse
Affiliation(s)
- Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, UK
- Bart's Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, UK
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
243
|
The Future of Meat: Health Impact Assessment with Randomized Evidence. Am J Med 2021; 134:569-575. [PMID: 33316249 DOI: 10.1016/j.amjmed.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023]
Abstract
Massive animal farming for meat production poses major problems in terms of resource use, environmental impact, and biodiversity. Furthermore, excessive meat consumption has been associated with multiple deleterious health consequences. However, more and better-designed randomized trials are needed to increase the level of evidence on the health impacts of meat. Novel meat alternatives, such as plant- and cell-based meat, are much less impactful to the environment and might replace traditional animal meat in the future, but, despite promising early data, the health consequences of these novel products need further study. This manuscript focuses on the health impacts of meat over 3 main sections: 1) overview of the evidence highlighting the association of meat consumption with health; 2) novel alternatives to meat, including plant-based and cell-based alternatives; and 3) examine the rationale for randomized studies to evaluate the effects of the novel meat alternatives compared with the standard animal meat.
Collapse
|
244
|
Jansen VL, Gerdes VE, Middeldorp S, van Mens TE. Gut microbiota and their metabolites in cardiovascular disease. Best Pract Res Clin Endocrinol Metab 2021; 35:101492. [PMID: 33642219 DOI: 10.1016/j.beem.2021.101492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The gut microbiome affects the development and progress of various types of disease such as obesity, diabetes, atherosclerosis and arterial thrombosis. Gut microbiome derived metabolites have been established to be predictive of arterial thrombosis in epidemiological studies. In these studies atherosclerosis and prothrombotic effect cannot be distinguished but preclinical studies show gut derived metabolites can induce platelet hyperreactivity and increase thrombotic potential. Gut commensals can also influence platelets through serotonin synthesis and may enhance Von Willebrand factor production. The effects on secondary haemostasis are less studied. In antiphospholipid syndrome, a thrombotic auto-immune disorder, autoreactive T cells and antibodies cross-react with auto-antigen mimicking peptides from gut commensals which appears to contribute to the pathophysiology. This review focusses on the prothrombotic effect of the gut microbiome and aims to provide insight into its influence on thromboembolic disease and the haemostatic system.
Collapse
Affiliation(s)
- Valérie Lbi Jansen
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands.
| | - Victor Ea Gerdes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| | - Saskia Middeldorp
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands; Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Thijs E van Mens
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands.
| |
Collapse
|
245
|
Iglesias-Carres L, Essenmacher LA, Racine KC, Neilson AP. Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation. Nutrients 2021; 13:1466. [PMID: 33925806 PMCID: PMC8145906 DOI: 10.3390/nu13051466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Choline is metabolized by the gut microbiota into trimethylamine (TMA), the precursor of pro-atherosclerotic molecule trimethylamine N-oxide (TMAO). A reduction in TMA formation has shown cardioprotective effects, and some phytochemicals may reduce TMA formation. This study aimed to develop an optimized, high-throughput anaerobic fermentation methodology to study the inhibition of choline microbial metabolism into TMA by phenolic compounds with healthy human fecal starter. Optimal fermentation conditions were: 20% fecal slurry (1:10 in PBS), 100 µM choline, and 12 h fermentation. Additionally, 10 mM of 3,3-dimethyl-1-butanol (DMB) was defined as a positive TMA production inhibitor, achieving a ~50% reduction in TMA production. Gallic acid and chlorogenic acid reported higher TMA inhibitory potential (maximum of 80-90% TMA production inhibition), with IC50 around 5 mM. Neither DMB nor gallic acid or chlorogenic acid reduced TMA production through cytotoxic effects, indicating mechanisms such as altered TMA-lyase activity or expression.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.I.-C.); (K.C.R.)
| | - Lauren A. Essenmacher
- Department of Food Science and Technology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA;
| | - Kathryn C. Racine
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.I.-C.); (K.C.R.)
| | - Andrew P. Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (L.I.-C.); (K.C.R.)
| |
Collapse
|
246
|
Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review. Toxins (Basel) 2021; 13:toxins13050297. [PMID: 33921975 PMCID: PMC8143486 DOI: 10.3390/toxins13050297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) have become a major health problem because of the associated high morbidity and mortality rates observed in affected patients. Gut microbiota has recently been implicated as a novel endocrine organ that plays critical roles in the regulation of cardiometabolic and renal functions of the host via the production of bioactive metabolites. This review investigated the evidence from several clinical and experimental studies that indicated an association between the gut microbiota-derived toxins and CVDs. We mainly focused on the pro-inflammatory gut microbiota-derived toxins, namely lipopolysaccharides, derived from Gram-negative bacteria, and trimethylamine N-oxide and described the present status of research in association with these toxins, including our previous research findings. Several clinical studies aimed at exploring the effectiveness of reducing the levels of these toxins to inhibit cardiovascular events are currently under investigation or in the planning stages. We believe that some of the methods discussed in this review to eliminate or reduce the levels of such toxins in the body could be clinically applied to prevent CVDs in the near future.
Collapse
|
247
|
Li X, Su C, Jiang Z, Yang Y, Zhang Y, Yang M, Zhang X, Du Y, Zhang J, Wang L, Jiang J, Hong B. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. NPJ Biofilms Microbiomes 2021; 7:36. [PMID: 33863898 PMCID: PMC8052457 DOI: 10.1038/s41522-021-00205-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a derivative from the gut microbiota metabolite trimethylamine (TMA), has been identified to be an independent risk factor for promoting atherosclerosis. Evidences suggest that berberine (BBR) could be used to treat obesity, diabetes and atherosclerosis, however, its mechanism is not clear mainly because of its poor oral bioavailability. Here, we show that BBR attenuated TMA/TMAO production in the C57BL/6J and ApoE KO mice fed with choline-supplemented chow diet, and mitigated atherosclerotic lesion areas in ApoE KO mice. Inhibition of TMA/TMAO production by BBR-modulated gut microbiota was proved by a single-dose administration of d9-choline in vivo. Metagenomic analysis of cecal contents demonstrated that BBR altered gut microbiota composition, microbiome functionality, and cutC/cntA gene abundance. Furthermore, BBR was shown to inhibit choline-to-TMA conversion in TMA-producing bacteria in vitro and in gut microbial consortium from fecal samples of choline-fed mice and human volunteers, and the result was confirmed by transplantation of TMA-producing bacteria in mice. These results offer new insights into the mechanisms responsible for the anti-atherosclerosis effects of BBR, which inhibits commensal microbial TMA production via gut microbiota remodeling.
Collapse
Affiliation(s)
- Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunyan Su
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhibo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuxin Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengxia Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiumin Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jiandong Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
248
|
Gut Microbiota and Environment in Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084242. [PMID: 33923612 PMCID: PMC8073779 DOI: 10.3390/ijerph18084242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
In recent years, studies evaluated the associations between coronary artery disease (CAD) and fecal gut microbiota composition. This opens new perspectives on therapeutic strategies to prevent CAD representing the leading cause of mortality in Western societies. We have conducted a review of the literature regarding the characteristics of the gut microbiota of CAD patients, its underlying mechanisms and their associations with pollution and the Western diet. The latest evidence confirms that an abnormal microbiota predisposes to the development of CAD and differs in composition compared to the microbiota of healthy patients; the results are, however, heterogeneous. The most studied underlying mechanisms involve the production of trimethylamine-N-oxide (TMAO), the synthesis of short-chain fatty acids (SCFAs) and the immune system activation mediated by lipopolysaccharides (LPS). Despite a large amount of available data, there is no evidence about the role of a specific type of gut microbiota in the risk of developing acute coronary syndrome (ACS). Moreover, no relationship has been assessed between the gut microbiota and the characteristics of coronary plaques in humans. However, a close association has been found between both pollution and the Western diet and gut microbiota and CAD. Further studies are needed to clarify the associations between gut microbiota, CAD, and ACS to find efficient therapeutic strategies.
Collapse
|
249
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y, Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117:154712. [PMID: 33497712 DOI: 10.1016/j.metabol.2021.154712] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes is the fastest-growing metabolic disease in the world. Many clinical studies have found that type 2 diabetes patients have metabolic disorders and chronic inflammatory states accompanied by disturbances in the gut microbiota. The gut microbiota plays an important role in body metabolism and immune regulation, and disturbances in the gut microbiota in conjunction with destruction of the intestinal barrier in type 2 diabetes patients causes damage to multiple organs. Therefore, the gut microbiota may be a new therapeutic target for treating type 2 diabetes and related diseases. In this review, we introduce the characteristics of the gut microbiota in type 2 diabetes and related diseases, as well as highlight the potential molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders, and chronic inflammation. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of type 2 diabetes and related diseases. AUTHOR SUMMARY: Type 2 diabetes (T2D) is the fastest-growing metabolic disease in the world. Many clinical studies have found that T2D patients have metabolic disorders and chronic inflammatory states, accompanied by disturbances of the gut microbiota and increased intestinal permeability. The number of human gut microbiota is more than 10 times of human cells, and they play an important role in the body's metabolism and immune regulation. The abnormal intestinal metabolites and intestinal barrier disruption caused by the gut microbiota dysbiosis in the T2D facilitate intestinal bacteria and their harmful metabolites entering the circulatory system. The abnormal entering will cause the damage to multiple organs through disturbing insulin sensitivity, glucose metabolism, and immune homeostasis. Therefore, the gut microbiota may be a new therapeutic target for improving T2D and its related diseases. In this review, we introduce the compositional characteristics of the gut microbiota in T2D, and highlight some new molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders and chronic inflammation in T2D and its related diseases. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of T2D and related diseases.
Collapse
Affiliation(s)
- Ge Yang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guowen Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
250
|
Swanepoel I, Roberts A, Brauns C, Chaliha DR, Papa V, Palmer RD, Vaccarezza M. Trimethylamine N-oxide (TMAO): a new attractive target to decrease cardiovascular risk. Postgrad Med J 2021; 98:723-727. [PMID: 33790031 DOI: 10.1136/postgradmedj-2021-139839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is one of the greatest disease burdens and takes the lives of many each year. There are many risk factors both modifiable and non-modifiable which contribute to the onset and progression of the disease. Trimethylamine N-oxide (TMAO) in recent years has been found to have a correlation with CVD onset. Those with increased levels of the metabolite have a markedly increased risk of future development of cardiometabolic disorders.This literature review aimed to critique past studies undertaken to find a consensus of the significance of the interrelationship between TMAO and cardiovascular risk. A definite link between TMAO levels and a CVD outcome was found. The majority of the literature stated the relationship with evidence; however, there is still some uncertainty as to why and how the correlation occurs. Further study needs to be done to further dissect and understand the relationship between TMAO and CVD risk.
Collapse
Affiliation(s)
- Ione Swanepoel
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - April Roberts
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Chelsea Brauns
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Devahuti R Chaliha
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Veronica Papa
- Sport Sciences and Wellness, University of Naples Parthenope, Naples, Campania, Italy.,FAPAB Research Center, Avola, Siracusa, Italy
| | - Raymond D Palmer
- Longevity Experts, Helium-3 Biotech, South Perth, Western Australia, Australia
| | - Mauro Vaccarezza
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia .,Curtin Medical School, Curtin Health Innovation Research Institute, Bentley, Perth, Western Australia, Australia
| |
Collapse
|