201
|
Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008; 9:481-93. [PMID: 18490917 DOI: 10.1038/nrn2398] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental and clinical data have demonstrated that activating the immune system in the CNS can be destructive. However, other studies have shown that enhancing an immune response can be therapeutic, and several clinical trials have been initiated with the aim of boosting immune responses in the CNS of individuals with spinal cord injury, multiple sclerosis and Alzheimer's disease. Here, we evaluate the controversies in the field and discuss the remaining scientific challenges that are associated with enhancing immune function in the CNS to treat neurological diseases.
Collapse
Affiliation(s)
- Phillip G Popovich
- Ohio State University, 786 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
202
|
Seki T, Fehlings MG. Mechanistic insights into posttraumatic syringomyelia based on a novel in vivo animal model. Laboratory investigation. J Neurosurg Spine 2008; 8:365-75. [PMID: 18377322 DOI: 10.3171/spi/2008/8/4/365] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT Although posttraumatic syringomyelia (PTS) develops in up to 30% of patients after spinal cord injury (SCI), the pathophysiology of this debilitating complication is incompletely understood. To provide greater insight into the mechanisms of this degenerative sequela of SCI, the authors developed and characterized a novel model of PTS. METHODS The spinal cords of 64 female Wistar rats were injured by 35-g modified aneurysm clip compression at the level of T6-7. Kaolin (5 microl of 500 mg/ml solution) was then injected into the subarachnoid space rostral to the site of the injury to induce inflammatory arachnoiditis in 22 rats. Control groups received SCI alone (in 21 rats), kaolin injection alone (in 15 rats), or laminectomy and durotomy alone without injury (sham surgery in 6 rats). RESULTS The combination of SCI and subarachnoid kaolin injection resulted in a significantly greater syrinx formation and perilesional myelomalacia than SCI alone; SCI and kaolin injection significantly attenuated locomotor recovery and exacerbated neuropathic pain (mechanical allodynia) compared with SCI alone. We observed that combined SCI and kaolin injection significantly increased the number of terminal deoxytransferase-mediated deoxyuridine triphosphate nick-end labeled-positive cells at 7 days after injury (p<0.05 compared with SCI alone) and resulted in a significantly greater extent of astrogliosis and macrophage/microglial-associated inflammation at the lesion (p<0.05). CONCLUSIONS The combination of compressive/contusive SCI with induced arachnoiditis results in severe PTS and perilesional myelomalacia, which is associated with enhanced inflammation, astrogliosis, and apoptotic cell death. The development of delayed neurobehavioral deficits and neuropathic pain in this model accurately reflects the key pathological and clinical conditions of PTS in humans.
Collapse
Affiliation(s)
- Toshitaka Seki
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, University Health Network, University of Toronto, Ontario, Canada
| | | |
Collapse
|
203
|
Abstract
Vigorous immune responses are induced in the immune privileged CNS by injury and disease, but the molecular mechanisms regulating innate immunity in the CNS are poorly defined. The inflammatory response initiated by spinal cord injury (SCI) involves activation of interleukin-1beta (IL-1beta) that contributes to secondary cell death. In the peripheral immune response, the inflammasome activates caspase-1 to process proinflammatory cytokines, but the regulation of trauma-induced inflammation in the CNS is not clearly understood. Here we show that a molecular platform [NALP1 (NAcht leucine-rich-repeat protein 1) inflammasome] consisting of caspase-1, caspase-11, ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain), and NALP1 is expressed in neurons of the normal rat spinal cord and forms a protein assembly with the X-linked inhibitor of apoptosis protein (XIAP). Moderate cervical contusive SCI induced processing of IL-1beta, IL-18, activation of caspase-1, cleavage of XIAP, and promoted assembly of the multiprotein complex. Anti-ASC neutralizing antibodies administered to injured rats entered spinal cord neurons via a mechanism that was sensitive to carbenoxolone. Therapeutic neutralization of ASC reduced caspase-1 activation, XIAP cleavage, and interleukin processing, resulting in significant tissue sparing and functional improvement. Thus, rat spinal cord neurons contain a caspase-1, pro-ILbeta, and pro-IL-18 activating complex different from the human NALP1 inflammasome that constitutes an important arm of the innate CNS inflammatory response after SCI.
Collapse
|
204
|
Souza-Rodrigues R, Costa A, Lima R, Dos Santos C, Picanço-Diniz C, Gomes-Leal W. Inflammatory response and white matter damage after microinjections of endothelin-1 into the rat striatum. Brain Res 2008; 1200:78-88. [DOI: 10.1016/j.brainres.2007.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 01/23/2023]
|
205
|
Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, Burian M, Hajek M, Zamecnik J, Jendelova P, Sykova E. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine 2008; 8:67-73. [PMID: 18173349 DOI: 10.3171/spi-08/01/067] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECT Hydrogels are nontoxic, chemically inert synthetic polymers with a high water content and large surface area that provide mechanical support for cells and axons when implanted into spinal cord tissue. METHODS Macroporous hydrogels based on 2-hydroxyethyl methacrylate (HEMA) were prepared by radical copolymerization of monomers in the presence of fractionated NaCl particles. Male Wistar rats underwent complete spinal cord transection at the T-9 level. To bridge the lesion, positively charged HEMA hydrogels were implanted either immediately or 1 week after spinal cord transection; control animals were left untreated. Histological evaluation was performed 3 months after spinal cord transection to measure the volume of the pseudocyst cavities and the ingrowth of tissue elements into the hydrogels. RESULTS The hydrogel implants adhered well to the spinal cord tissue. Histological evaluation showed ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells into the hydrogels. Morphometric analysis of lesions showed a statistically significant reduction in pseudocyst volume in the treated animals compared with controls and in the delayed treatment group compared with the immediate treatment group (p < 0.001 and p < 0.05, respectively). CONCLUSIONS Positively charged HEMA hydrogels can bridge a posttraumatic spinal cord cavity and provide a scaffold for the ingrowth of regenerating axons. The results indicate that delayed implantation can be more effective than immediate reconstructive surgery.
Collapse
Affiliation(s)
- Ales Hejcl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Siegenthaler MM, Tu MK, Keirstead HS. The extent of myelin pathology differs following contusion and transection spinal cord injury. J Neurotrauma 2007; 24:1631-46. [PMID: 17970626 DOI: 10.1089/neu.2007.0302] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Demyelination is a prominent feature of spinal cord injury (SCI) and is followed by incomplete remyelination, which may contribute to physiological impairment. Demyelination has been documented in several species including humans, but the extent of demyelination and its functional consequence remain unknown. In this report, we document and compare the extent of tissue pathology, white matter apoptosis, demyelination, and remyelination 2 months following injury in rat contusion and transection models of SCI. Moreover, we document and compare the macrophage response 3 and 14 days post contusion and transection SCI. Contusion injury resulted in widespread tissue pathology, white matter apoptosis, demyelination, incomplete remyelination, and robust macrophage response extending several millimeters cranial and caudal to the epicenter of injury. In contrast, transection injury resulted in focal tissue pathology with white matter apoptosis, demyelination, incomplete remyelination, and robust macrophage response at the epicenter of injury, and little pathologic features at a distance from the epicenter of injury, as indicated by the lack of apoptosis and demyelination. These data indicate for the first time that myelin pathology differs substantially following contusion and transection SCI.
Collapse
Affiliation(s)
- Monica M Siegenthaler
- Reeve-Irvine Research Center, Departments of Anatomy and Neurobiology, College of Medicine, University of California at Irvine, Irvine, California 92697-4292, USA
| | | | | |
Collapse
|
207
|
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis 2007; 12:152-9. [PMID: 17903920 DOI: 10.1016/s1052-3057(03)00036-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 05/04/2003] [Indexed: 10/27/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is associated with stroke and head trauma. Different experimental models are used, but it is unclear to what extent the tissue responses are comparable. The purpose of this study was to compare the temporal responses to brain hemorrhages created by injection of autologous whole blood, collagenase digestion of blood vessels, and avulsion of cerebral blood vessels. Adult rats were subjected to ICH. Rats were perfusion fixed with paraformaldehyde 1 hour to 28 days later. Hematoxylin and eosin, Fluoro-Jade, immunohistochemical, and TUNEL staining were used to allow quantification of damaged and dying neurons, neutrophils, CD8alpha immunoreactive lymphocytes, and RCA-1 positive microglia/macrophages, adjacent to the hemorrhagic lesion. In all models, eosinophilic neurons peaked between 2 and 3 days. TUNEL positive cells were observed maximal at 2 days in blood injection model, 3 days in vessel avulsion model, between 1 and 7 days in the collagenase injection model, and were evident in small quantities in 21 to 28 days in 3 models. Neutrophils appeared briefly from 1 to 3 days in all models, but they were substantially lower in the cortical vessel avulsion model, perhaps owing to the devitalized nature of the tissue. Influx of CD8alpha immunoreactive lymphocytes were maximal at 2 to 3 days in the autologous injection model, 3 to 7 days in other 2 models, and persisted for 21 to 28 days in all models. The microglial/macrophage reaction peaked between 2 and 3 days in the blood injection model and at 3 to 7 days in other 2 models, and persisted for weeks in all groups. These results suggest that different models of ICH are associated with similar temporal patterns of cell death and inflammation. However, the relative magnitude of these changes differs.
Collapse
Affiliation(s)
- Mengzhou Xue
- Department of Pathology and Manitoba Institute of Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
208
|
Lima RR, Guimaraes-Silva J, Oliveira JL, Costa AMR, Souza-Rodrigues RD, Dos Santos CD, Picanço-Diniz CW, Gomes-Leal W. Diffuse axonal damage, myelin impairment, astrocytosis and inflammatory response following microinjections of NMDA into the rat striatum. Inflammation 2007; 31:24-35. [PMID: 17899345 DOI: 10.1007/s10753-007-9046-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 08/15/2007] [Indexed: 02/04/2023]
Abstract
White matter damage and inflammatory response are important secondary outcomes after acute neural disorders. Nevertheless, a few studies addressed the temporal outcomes of these pathological events using non-traumatic models of acute brain injury. In the present study, we describe acute inflammatory response and white matter neuropathology between 1 and 7 days after acute excitotoxic striatal damage. Twenty micrometer sections were stained by hematoxylin and eosin technique for gross histopathological analysis and immunolabed for neutrophils (anti-mbs-1), activated macrophages/microglia (anti-ed1), astrocytes (anti-gfap), damaged axons (anti-betaapp) and myelin basic protein (MBP). Recruitment peak of neutrophils and macrophages occurred at 1 and 7 days post-nmda injection, respectively. Diffuse damaged axons (beta-app + end-bulbs) were apparent at 7 days, concomitant with progressive myelin impairment and astrocytosis. Further studies using electron microscopy and blockers of inflammatory response and glutamatergic receptors should be performed to confirm and address the mechanisms of white matter damage following an excitotoxic lesion.
Collapse
Affiliation(s)
- Rafael R Lima
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Department of Morphology, Biological Sciences Center, Federal University of Pará, Belém-Pará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Gorio A, Madaschi L, Zadra G, Marfia G, Cavalieri B, Bertini R, Di Giulio AM. Reparixin, an inhibitor of CXCR2 function, attenuates inflammatory responses and promotes recovery of function after traumatic lesion to the spinal cord. J Pharmacol Exp Ther 2007; 322:973-81. [PMID: 17601981 DOI: 10.1124/jpet.107.123679] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown that the blockade of CXCR1 and CXCR2 receptors prevents ischemia/reperfusion damage in several types of vascular beds. Reparixin is a recently described inhibitor of human CXCR1/R2 and rat CXCR2 receptor activation. We applied reparixin in rats following traumatic spinal cord injury and determined therapeutic temporal and dosages windows. Treatment with reparixin significantly counteracts secondary degeneration by reducing oligodendrocyte apoptosis, migration to the injury site of neutrophils and ED-1-positive cells. The observed preservation of the white matter might also be secondary to the enhanced proliferation of NG2-positive cells. The expression of macrophage-inflammatory protein-2, tumor necrosis factor-alpha, interleukin (IL)-6, and IL-1 beta was also counteracted, and the proliferation of glial fibrillary acidic protein-positive cells was markedly reduced. These effects resulted in a smaller post-traumatic cavity and in a significantly improved recovery of hind limb function. The best beneficial outcome of reparixin treatment required 7-day administration either by i.p. route (15 mg/kg) or subcutaneous infusion via osmotic pumps (10 mg/kg), reaching a steady blood level of 8 microg/ml. Methylprednisolone was used as a reference drug; such treatment reduced cytokine production but failed to affect the rate of hind limb recovery.
Collapse
Affiliation(s)
- Alfredo Gorio
- Pharmacological Laboratories, Department of Medicine, Surgery and Dentistry, via A. Di Rudinì 8, 20142 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
210
|
Mueller CA, Conrad S, Schluesener HJ, Pietsch T, Schwab JM. Spinal cord injury-induced expression of the antiangiogenic endostatin/collagen XVIII in areas of vascular remodelling. J Neurosurg Spine 2007; 7:205-14. [PMID: 17688061 DOI: 10.3171/spi-07/08/205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECT Spinal cord injury (SCI) induces the disruption of neural and vascular structures. In contrast to the emerging knowledge of mechanisms regulating the onset of the postinjury angiogenic response, little is known about counterregulatory signals. METHODS Using immunohistochemical methods, the authors investigated the expression of the endogenous angiogenic inhibitor endostatin/collagen XVIII during the tissue remodeling response to SCI. RESULTS After SCI, endostatin/collagen XVIII+ cells accumulated at the lesion site, in pannecrotic regions (especially in areas of cavity formation), at the lesion margin/areas of ongoing secondary damage, and in perivascular Virchow-Robin spaces. In remote areas (> 0.75 cm from the epicenter) a more modest accumulation of endostatin/collagen XVIII+ cells was observed, especially in areas of pronounced Wallerian degeneration. The numbers of endostatin/collagen XVIII+ cells reached their maximum on Day 7 after SCI. The cell numbers remained elevated in both, the lesion and remote regions, compared with control spinal cords for 4 weeks afterwards. In addition to being predominantly confined to ED1+-activated microglia/macrophages within the pannecrotic lesion core, endostatin/collagen XVIII expression was frequently detected by the endothelium/vessel walls. Numbers of lesional endostatin/collagen XVIII+ endothelium/vessel walls were found to increase early by Day 1 postinjury, reaching their maximum on Day 3 and declining subsequently to enhanced (above control) levels 30 days after SCI. CONCLUSIONS The authors detected that in comparison to the early expression of neoangiogenic factors, there was a postponed lesional expression of the antiangiogenic endostatin/collagen XVIII. Furthermore, the expression of endostatin/collagen XVIII was localized to areas of neovascular pruning and retraction (cavity formation). The expression of endostatin/collagen XVIII by macrophages in a "late" activated phagocytic mode suggests that this factor plays a role in counteracting the preceding "early" neoangiogenic response after SCI.
Collapse
Affiliation(s)
- Christian A Mueller
- Institute of Brain Research, University of Tübingen Medical School, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
211
|
Dos Santos CD, Picanço-Diniz CW, Gomes-Leal W. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Res 2007; 1172:130-44. [PMID: 17822682 DOI: 10.1016/j.brainres.2007.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 11/16/2022]
Abstract
Inflammatory response, axonal damage and demyelination are important components of the pathophysiology of acute neurodegenerative diseases. We have investigated the outcome of these pathological events following an excitotoxic or an ischemic damage to the spinal nucleus of adult rats at 1 and 7 days postinjury. Microinjections of 80 nmol of NMDA or 40 pmol of endothelin-1 into the rat spinal nucleus induced differential histopathological events. NMDA injection induced intense tissue loss in the gray matter (GM) without significant tissue loss in the white matter (WM). There was a mild inflammatory response, with recruitment of a few neutrophils and macrophages. Axonal damage was present in the GM following NMDA injection, with negligible axonal damage in the WM. Myelin impairment was apparent at 7 days. Microinjections of endothelin-1 into the same region induced lesser tissue loss than NMDA injections, concomitant with an intense inflammatory response characterized by recruitment of macrophages, but not of neutrophils. There were more axonal damage and early myelin impairment after endothelin-1 injection. These results were confirmed by quantitative analysis. Microcysts were present in the WM of the trigeminothalamic tract at 7 days following injection of endothelin-1. These results show that an ischemic damage to the spinal nucleus affects both GM and WM with more bystander inflammation, axonal damage and myelin impairment, while excitotoxic damage induces effects more restricted to the GM. These pathological events may occur following acute damage to the human brain stem and can be an important contributing factor to the underlying functional deficits.
Collapse
Affiliation(s)
- C D Dos Santos
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Department of Morphology, Biological Sciences Center, Federal University of Pará, Brazil
| | | | | |
Collapse
|
212
|
Au E, Richter MW, Vincent AJ, Tetzlaff W, Aebersold R, Sage EH, Roskams AJ. SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci 2007; 27:7208-21. [PMID: 17611274 PMCID: PMC6794587 DOI: 10.1523/jneurosci.0509-07.2007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/23/2007] [Accepted: 05/17/2007] [Indexed: 11/21/2022] Open
Abstract
Olfactory ensheathing cells (OECs) transplanted into the lesioned CNS can stimulate reportedly different degrees of regeneration, remyelination, and functional recovery, but little is known about the mechanisms OECs may use to stimulate endogenous repair. Here, we used a functional proteomic approach, isotope-coded affinity tagging and mass spectrometry, to identify active components of the OEC secreteome that differentially stimulate outgrowth. SPARC (secreted protein acidic rich in cysteine) (osteonectin) was identified as an OEC-derived matricellular protein that can indirectly enhance the ability of Schwann cells to stimulate dorsal root ganglion outgrowth in vitro. SPARC stimulates Schwann cell-mediated outgrowth by cooperative signal with laminin-1 and transforming growth factor beta. Furthermore, when SPARC-null OECs were transplanted into lesioned rat spinal cord, the absence of OEC-secreted SPARC results in an attenuation of outgrowth of specific subsets of sensory and supraspinal axons and changes the pattern of macrophage infiltration in response to the transplanted cells. These data provide the first evidence for a role for SPARC in modulating different aspects of CNS repair and indicate that SPARC can change the activation state of endogenous Schwann cells, resulting in the promotion of outgrowth in vitro, and in vivo.
Collapse
Affiliation(s)
- Edmund Au
- Department of Zoology, Life Sciences Institute and
| | | | | | - Wolfram Tetzlaff
- Department of Zoology, Life Sciences Institute and
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ruedi Aebersold
- Institute for Systems Biology, Seattle, Washington 98103
- Molecular Systems Biology, Swiss Federal Institute of Technology of Zurich, CH-8092 Zurich, Switzerland, and
| | - E. Helene Sage
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
213
|
Abstract
Wallerian degeneration (WD) is the set of molecular and cellular events by which degenerating axons and myelin are cleared after injury. Why WD is rapid and robust in the PNS but slow and incomplete in the CNS is a longstanding mystery. Here we review current work on the mechanisms of WD with an emphasis on deciphering this mystery and on understanding whether slow WD in the CNS could account for the failure of CNS axons to regenerate.
Collapse
Affiliation(s)
- Mauricio E Vargas
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
214
|
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2007; 209:378-88. [PMID: 17662717 PMCID: PMC2692462 DOI: 10.1016/j.expneurol.2007.06.009] [Citation(s) in RCA: 740] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 12/26/2022]
Abstract
Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.
Collapse
Affiliation(s)
- Dustin J Donnelly
- The Integrated Biomedical Science Graduate Program, Department of Molecular Virology, Immunology & Medical Genetics, The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | |
Collapse
|
215
|
Rice T, Larsen J, Rivest S, Yong VW. Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 2007; 66:184-95. [PMID: 17356380 DOI: 10.1097/01.jnen.0000248552.07338.7f] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The occurrence of neuroinflammation after spinal cord injury (SCI) is well established, but its function is debated, with both beneficial and detrimental consequences ascribed. A discriminate of the role of neuroinflammation may be the time period after SCI, and there is evidence to favor early neuroinflammation being undesirable, whereas the later evolving phase may have useful roles. Here, we have focused on the inflammatory response in the first 24 hours of SCI in mice. We found elevation of interleukin (IL)-1beta and other cytokines and chemokines within 15 minutes to 3 hours of injury. The early neuroinflammation in SCI is likely to be CNS-derived and involves microglia, as demonstrated by in situ hybridization for IL-1beta in microglia, by an in vitro model of SCI in which elevation of inflammatory cytokines occurs in the absence of a dynamic source of infiltrating leukocytes, and by the correlation of decreased levels of inflammatory molecules and microglia activity in IL-1beta-null mice. Nonetheless, as there are no specific immunohistochemical markers that clearly differentiate microglia from their peripheral counterparts, macrophages, the latter cannot be definitively excluded as participants in early neuroinflammation in mouse SCI. These results of an instantaneous inflammatory response validate approaches to modulate microglia/macrophage activity to improve recovery from SCI.
Collapse
Affiliation(s)
- Tiffany Rice
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
216
|
Gok B, Okutan O, Beskonakli E, Palaoglu S, Erdamar H, Sargon MF. Effect of immunomodulation with human interferon-beta on early functional recovery from experimental spinal cord injury. Spine (Phila Pa 1976) 2007; 32:873-80. [PMID: 17426631 DOI: 10.1097/01.brs.0000259841.40358.8f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Electron and light microscopic changes, neutrophil infiltration, and lipid peroxidation in the spinal cord and early neurologic examination were studied in rats. OBJECTIVE To examine the effects of immunomodulator treatment with recombinant human interferon-beta after spinal cord contusion injury. SUMMARY OF BACKGROUND DATA Immunomodulator treatment with interferon-beta has been the subject of extensive studies, but mainly in relation to multiple sclerosis. Recently, it was reported that interferon-beta possessed significant neuroprotection after experimental transient ischemic stroke. However, to our knowledge, there have been no previous reports about the neuroprotective effect of interferon-beta after spinal cord injury. METHODS Rats were randomly allocated into 5 groups. Group 1 was control and after clinical examination, normal spinal cord samples were obtained. Group 2 was introduced 50 g/cm contusion injury. Group 3 was vehicle, immediately after trauma 1 mL of physiologic saline was injected. Group 4 was given 30 mg/kg methylprednisolone sodium succinate intraperitoneally immediately after trauma. Group 5 was given 1 x 10(7) IU interferon-beta immediately and 0.5 x 10(7) IU interferon-beta 4 hours after trauma. Animals were examined by inclined plane and Basso-Beattie-Bresnahan scale 24 hours after trauma. Spinal cord samples obtained following clinical evaluations. Neutrophil infiltration was evaluated by myeloperoxidase activity and lipid peroxidation was estimated by thiobarbituric acid test. Electron and light microscopic results were also performed to determine the effects of interferon-beta on tissue structure. RESULTS Interferon-beta treatment improved neurologic outcome, which was supported by decreased myeloperoxidase activity and lipid peroxidation. Electron and light microscopic results also showed preservation of tissue structure in the treatment group. CONCLUSIONS Immunomodulator treatment with interferon-beta possesses obvious neuroprotection after acute contusion injury to the rat spinal cord.
Collapse
Affiliation(s)
- Beril Gok
- Department of Neurological Surgery, Ankara Ataturk Research and Education Hospital, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
217
|
Rola R, Zou Y, Huang TT, Fishman K, Baure J, Rosi S, Milliken H, Limoli CL, Fike JR. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 2007; 42:1133-45; discussion 1131-2. [PMID: 17382195 PMCID: PMC1934512 DOI: 10.1016/j.freeradbiomed.2007.01.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 12/28/2006] [Accepted: 01/04/2007] [Indexed: 12/11/2022]
Abstract
Ionizing irradiation results in significant alterations in hippocampal neurogenesis that are associated with cognitive impairments. Such effects are influenced, in part, by alterations in the microenvironment within which the neurogenic cells exist. One important factor that may affect neurogenesis is oxidative stress, and this study was done to determine if and how the extracellular isoform of superoxide dismutase (SOD3, EC-SOD) mediated radiation-induced alterations in neurogenic cells. Wild-type (WT) and EC-SOD knockout (KO) mice were irradiated with 5 Gy and acute (8-48 h) cellular changes and long-term changes in neurogenesis were quantified. Acute radiation responses were not different between genotypes, suggesting that the absence of EC-SOD did not influence mechanisms responsible for acute cell death after irradiation. On the other hand, the extent of neurogenesis was decreased by 39% in nonirradiated KO mice relative to WT controls. In contrast, while neurogenesis was decreased by nearly 85% in WT mice after irradiation, virtually no reduction in neurogenesis was observed in KO mice. These findings show that after irradiation, an environment lacking EC-SOD is much more permissive in the context of hippocampal neurogenesis. This finding may have a major impact in developing strategies to reduce cognitive impairment after cranial irradiation.
Collapse
Affiliation(s)
- Radoslaw Rola
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94110-0899, and GRECC, VA Palo Alto Health Care System, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Belegu V, Oudega M, Gary DS, McDonald JW. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies. Neurosurg Clin N Am 2007; 18:143-68, xi. [PMID: 17244561 DOI: 10.1016/j.nec.2006.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.
Collapse
Affiliation(s)
- Visar Belegu
- The International Center for Spinal Cord Injury, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Room 518, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
219
|
Wang XF, Yin L, Hu JG, Huang LD, Yu PP, Jiang XY, Xu XM, Lu PH. Expression and localization of p80 interleukin-1 receptor protein in the rat spinal cord. J Mol Neurosci 2007; 29:45-53. [PMID: 16757809 DOI: 10.1385/jmn:29:1:45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The biological effects of interleukin (IL)-1 are mediated by two distinct receptors, the p80 or type I (IL-1RI) and p68 or type II (IL-1RII) receptors. Because IL-1RII has a short, 29-amino acid cytoplasmic domain which may not be sufficient for signaling, there is considerable evidence indicating that IL-1 may signal exclusively through the IL-1RI receptor. Here, we report the expression, distribution, and cellular localization of the IL-1RI protein in the adult rat spinal cord in vivo and embryonic spinal cord in vitro. We found that IL-1RI was expressed in both the gray and white matter throughout the entire length of the spinal cord and was localized in neurons of the anterior horn, astrocytes, oligodendrocytes, and central canal ependymal cells. Interestingly, resting microglia were negative for IL-1RI. In primary cultures obtained from the embryonic day (E) 15 rats, IL-1RI was expressed in neurons, astrocytes, and oligodendrocytes as well as microglia. These data provide both in vivo and in vitro evidence that neurons and glial cells express the IL-1RI proteins. The differential expression of IL-1RI in the developing, but not mature, microglia may indicate the difference of these cells in response to IL-1 stimuli during maturation. The distribution and cellular localization of IL-1RI proteins in the spinal cord provide a molecular basis for understanding the reciprocal interaction between the immune and the central nervous systems.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Department of Neurobiology, Shanghai Second Medical University, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Oudega M. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord. Acta Physiol (Oxf) 2007; 189:181-9. [PMID: 17250568 DOI: 10.1111/j.1748-1716.2006.01658.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A contusion injury to the spinal cord results in impaired neurological functions due to neuronal death, and axonal damage and demyelination. In time, a fluid-filled cyst forms at the site of the initial impact. There are no effective endogenous repair mechanisms and, consequently, injury-induced functional deficits are permanent. One aspect of spinal cord repair is that severed descending and ascending axons need to regenerate beyond the site of injury towards the denervated spinal regions where they can become part of axonal circuits involved in motor and sensory function. Implantation of cells into the injured cord has been studied extensively as a means to promote axonal regeneration in the injured spinal cord. Depending on the overall damage, different cell types may be appropriate in different types of injury. To accomplish axonal regeneration in the contused spinal cord, the strengths and limitations of two glial cell types in particular will be discussed; Schwann cells and olfactory ensheathing cells. It is known that with these implants, axonal regeneration is frustrated by the presence of a glial scar surrounding the contused area. I will review current approaches aimed at overcoming this axonal growth inhibitory scar. Future studies need to focus on identifying interventions that, in combination with cellular implants, will elicit substantial axonal growth beyond the contusion injury, which may then be the basis for biologically significant functional recovery.
Collapse
Affiliation(s)
- M Oudega
- International Center for Spinal Cord Injury, Kennedy Krieger Institute and the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
221
|
Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 2007; 25:231-8. [PMID: 17241284 DOI: 10.1111/j.1460-9568.2006.05275.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The entry of therapeutic compounds into the brain and spinal cord is normally restricted by barrier mechanisms in cerebral blood vessels (blood-brain barrier) and choroid plexuses (blood-CSF barrier). In the injured brain, ruptured cerebral blood vessels circumvent these barrier mechanisms by allowing blood contents to escape directly into the brain parenchyma. This process may contribute to the secondary damage that follows the initial primary injury. However, this localized compromise of barrier function in the injured brain may also provide a 'window of opportunity' through which drugs that do not normally cross the blood-brain barriers are able to do so. This paper describes a systematic study of barrier permeability in a mouse model of traumatic brain injury using both small and large inert molecules that can be visualized or quantified. The results show that soon after trauma, both large and small molecules are able to enter the brain in and around the injury site. Barrier restriction to large (protein-sized) molecules is restored by 4-5 h after injury. In contrast, smaller molecules (286-10,000 Da) are still able to enter the brain as long as 4 days postinjury. Thus the period of potential secondary damage from barrier disruption and the period during which therapeutic compounds have direct access to the injured brain may be longer than previously thought.
Collapse
Affiliation(s)
- M D Habgood
- Victorian Neurotrauma Research Group, Department of Pharmacology, Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Miguel-Hidalgo JJ, Nithuairisg S, Stockmeier C, Rajkowska G. Distribution of ICAM-1 immunoreactivity during aging in the human orbitofrontal cortex. Brain Behav Immun 2007; 21:100-11. [PMID: 16824729 PMCID: PMC2921168 DOI: 10.1016/j.bbi.2006.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/19/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022] Open
Abstract
Neurological and psychiatric alterations during aging are associated with increased cerebrovascular disturbances and inflammatory markers such as Intercellular Adhesion Molecule-1 (ICAM-1). We investigated whether the distribution of ICAM-1 immunoreactivity (ICAM-1-I) in histological sections from the left orbitofrontal cortex (ORB) was altered during normal aging. Postmortem tissue from the ORB of nine younger (27-54 years old) and 10 older (60-86) human subjects was collected. Cryostat sections were immunostained only with antibodies to ICAM-1 or together with an antibody to glial fibrillary acidic protein (GFAP). The total area fraction of ICAM-1-I, and the fraction of vascular and extravascular ICAM-1-I were quantified in the gray matter. Furthermore, we examined the association of extravascular ICAM-1-I to GFAP immunoreactive (GFAP-IR) astrocytes. In all subjects, brain blood vessels were similarly ICAM-1 immunoreactive, and in some subjects there was a variable number of extravascular patches of ICAM-1-I. The area fraction of ICAM-1-I was 120% higher (p<.0001) in the old subjects than in the young subjects. This increase localized mostly to the extravascular ICAM-1-I in register with GFAP-IR astrocytes. A much smaller, also age-dependent increase occurred in vascular ICAM-1-I. Our results indicate a dramatic increase in extravascular ICAM-1-I associated to GFAP-IR astrocytes in the ORB in normal aging. This increase may contribute to an enhanced risk for brain inflammatory processes during aging, although a role of extravascular ICAM-1 as a barrier to further inflammation cannot be ruled out.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
223
|
Petter-Puchner AH, Froetscher W, Krametter-Froetscher R, Lorinson D, Redl H, van Griensven M. The long-term neurocompatibility of human fibrin sealant and equine collagen as biomatrices in experimental spinal cord injury. ACTA ACUST UNITED AC 2007; 58:237-45. [PMID: 17118635 DOI: 10.1016/j.etp.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/30/2006] [Indexed: 12/16/2022]
Abstract
INTRODUCTION While fibrin sealant (FS) and equine collagen (EC) have been used as scaffold materials in experimental spinal cord injury (SCI), questions concerning neurocompatibility still remain. In this study, we assessed potential adverse effects, as well as functional and histological impact of FS and EC in subtotal hemisection of the thoracic spinal cord (SC) in rats. METHODS 124 male rats were randomly assigned to four main groups (n=31): Sham (SH), Lesion only (L), fibrin sealant (GFS) and equine collagen group (GEC). SH animals received laminectomy only; all other animals underwent subtotal lateral hemisection at T9. Treatment consisted of application of FS or EC into the lesion gap in GFS and GEC, which was left empty in L. GFS, GEC, L and SH were each further divided into 4 subgroups: One subgroup, consisting of 10 rats was subjected to behavioural and reflex testing before surgery and followed up on days 1,7, 14, 21, 28 post op and then sacrificed. Haemalaun or cresyl violet (CV) was used to identify neutrophils in parasagittal cord sections which were obtained on day 1 (n=7). Sections stained for quantification of microglia/macrophages using ED-1 on day 3 (n=7), day 7 (n=7) and day 28 (n=7 out of 10). Additionally, neural filament (NF) staining was chosen to detect axonal regeneration and the length of ingrowth into FS and EC, Luxol blue for myelination, Von Willebrand factor for vascularisation, and glial fibrillary acidic protein (GFAP) staining for detection of astrocytes in glial scars on day 28. RESULTS No adverse effects were observed in the treatment groups. Compared to L, GFS and GEC performed significantly better in the Basso, Beattie, Bresnahan (BBB) score and hopping responses. Proprioceptive placing was markedly improved in FS and EC compared to L. Axonal regrowth was found in GFS and GEC--the regrowth in the GFS was accompanied by myelination and vascularisation. Glial scarring occurred in all groups. Discussion Both biomatrices improved functional recovery compared to L and no adverse effects were perceived.
Collapse
Affiliation(s)
- Alexander H Petter-Puchner
- Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200-Vienna, Austria
| | | | | | | | | | | |
Collapse
|
224
|
Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. ACTA ACUST UNITED AC 2006; 6:283-292. [PMID: 18059979 DOI: 10.1016/j.cnr.2006.09.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune response that accompanies spinal cord injury contributes to both injury and reparative processes. It is this duality that is the focus of this review. Here we consider the complex cellular and molecular immune responses that lead to the infiltration of leukocytes and glial activation, promote oxidative stress and tissue damage, influence wound healing, and subsequently modulate locomotor recovery. Immunomodulatory strategies to improve outcomes are gaining momentum as ongoing research carefully dissects those pathways, which likely mediate cell injury from those, which favor recovery processes. Current therapeutic strategies address divergent approaches including early immunoblockade and vaccination with immune cells to prevent early tissue damage and support a wound-healing environment that favors plasticity. Despite these advances, there remain basic questions regarding how inflammatory cells interact in the injured spinal cord. Such questions likely arise as a result of our limited understanding of immune cell/neural interactions in a dynamic environment that culminates in progressive cell injury, demyelination, and regenerative failure.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Neurosurgery, University of California San Francisco, CA 94143
| | | | | |
Collapse
|
225
|
Stoll M, Capper D, Dietz K, Warth A, Schleich A, Schlaszus H, Meyermann R, Mittelbronn M. Differential microglial regulation in the human spinal cord under normal and pathological conditions. Neuropathol Appl Neurobiol 2006; 32:650-61. [PMID: 17083479 DOI: 10.1111/j.1365-2990.2006.00774.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As the primary intrinsic immune effector cells of the central nervous system, microglia are involved in virtually all pathological processes of the brain and spinal cord including inflammatory, neurodegenerative, traumatic, neoplastic and vascular diseases. Despite this important role, there is a lack of data concerning microglial distribution and protein expression in the human spinal cord. In this study, we immunohistochemically investigated 10 normal human spinal cords to establish reference data and compared these results with 15 pathological human spinal cords deriving from distinct pathologies. Each spinal cord was evaluated at eight different levels for three white and two grey matter areas for both constitutive (MHC-II, CD68, IL-16, AIF-1, LCA, CD4) and reactive (MRP-8, MRP-14) microglial antigens. Whereas previous studies revealed significant regional differences in microglial distribution and protein expression in human brain, normal spinal cord displayed a uniform expression pattern, reaching levels of up to 17% MHC-II positive cells of the total cell population. This datum formed the basis for the further evaluation of microglia expression levels in pathological spinal cords, where levels of up to 45% positive cells were observed. Our results represent important reference values for future neuropathological diagnostic and therapeutical approaches in spinal cord pathologies.
Collapse
Affiliation(s)
- M Stoll
- Institute of Brain Research, University of Tuebingen, Medical School, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2006; 28:12-8. [PMID: 17129764 DOI: 10.1016/j.it.2006.11.004] [Citation(s) in RCA: 534] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/27/2006] [Accepted: 11/15/2006] [Indexed: 12/22/2022]
Abstract
The 'immune privilege' of the central nervous system (CNS) is indispensable for damage limitation during inflammation in a sensitive organ with poor regenerative capacity. It is a longstanding notion which, over time, has acquired several misconceptions and a lack of precision in its definition. In this article, we address these issues and re-define CNS immune privilege in the light of recent data. We show how it is far from absolute, and how it varies with age and brain region. Immune privilege in the CNS is often mis-attributed wholly to the blood-brain barrier. We discuss the pivotal role of the specialization of the afferent arm of adaptive immunity in the brain, which results in a lack of cell-mediated antigen drainage to the cervical lymph nodes although soluble drainage to these nodes is well described. It is now increasingly recognized how immune privilege is maintained actively as a result of the immunoregulatory characteristics of the CNS-resident cells and their microenvironment.
Collapse
Affiliation(s)
- Ian Galea
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, SO16 7PX, UK.
| | | | | |
Collapse
|
227
|
HORKY LAURAL, GALIMI FRANCESCO, GAGE FREDH, HORNER PHILIPJ. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 2006; 498:525-38. [PMID: 16874803 PMCID: PMC2553041 DOI: 10.1002/cne.21065] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The adult mammalian spinal cord contains neural stem and/or progenitor cells that slowly multiply throughout life and differentiate exclusively into glia. The contribution of adult progenitors to repair has been highlighted in recent studies, demonstrating extensive cell proliferation and gliogenesis following central nervous system (CNS) trauma. The present experiments aimed to determine the relative roles of endogenously dividing progenitor cells versus quiescent progenitor cells in posttraumatic gliogenesis. Using the mitotic indicator bromodeoxyuridine (BrdU) and a retroviral vector, we found that, in the adult female Fisher 344 rat, endogenously dividing neural progenitors are acutely vulnerable in response to T8 dorsal hemisection spinal cord injury. We then studied the population of cells that divide postinjury in the injury epicenter by delivering BrdU or retrovirus at 24 hours after spinal cord injury. Animals were euthanized at five timepoints postinjury, ranging from 6 hours to 9 weeks after BrdU delivery. At all timepoints, we observed extensive proliferation of ependymal and periependymal cells that immunohistochemically resembled stem/progenitor cells. BrdU+ incorporation was noted to be prominent in NG2-immunoreactive progenitors that matured into oligodendrocytes, and in a transient population of microglia. Using a green fluorescence protein (GFP) hematopoietic chimeric mouse, we determined that 90% of the dividing cells in this early proliferation event originate from the spinal cord, whereas only 10% originate from the bone marrow. Our results suggest that dividing, NG2-expressing progenitor cells are vulnerable to injury, but a separate, immature population of neural stem and/or progenitor cells is activated by injury and rapidly divides to replace this vulnerable population.
Collapse
Affiliation(s)
- LAURA L. HORKY
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037
- Ahmanson Biological Imaging Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - FRANCESCO GALIMI
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037
- Department of Biomedical Sciences/INBB, University of Sassari Medical School, Sassari 07100, Italy
| | - FRED H. GAGE
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037
| | - PHILIP J. HORNER
- University of Washington, Department of Neurological Surgery, Seattle, Washington 98104
- Correspondence to: Philip J. Horner, PhD, Assistant Professor, Department of Neurosurgery, Harborview Research and Training Building, Box 359655, 325 Ninth Ave., Seattle, WA 98104-2499. E-mail:
| |
Collapse
|
228
|
Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol 2006; 203:8-21. [PMID: 17014846 DOI: 10.1016/j.expneurol.2006.07.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 12/19/2022]
Abstract
Cellular and extracellular inhibitors are thought to restrict axon growth after chronic spinal cord injury (SCI), confronting the axon with a combination of chronic astrocytosis and extracellular matrix-associated inhibitors that collectively constitute the chronic "scar." To examine whether the chronically injured environment is strongly inhibitory to axonal regeneration, we grafted permissive autologous bone marrow stromal cells (MSCs) into mid-cervical SCI sites of adult rats, 6 weeks post-injury without resection of the "chronic scar." Additional subjects received MSCs genetically modified to express neurotrophin-3 (NT-3), providing a further local stimulus to axon growth. Anatomical analysis 3 months post-injury revealed extensive astrocytosis surrounding the lesion site, together with dense deposition of the inhibitory extracellular matrix molecule NG2. Despite this inhibitory environment, axons penetrated the lesion site through the chronic scar. Robust axonal regeneration occurred into chronic lesion cavities expressing NT-3. Notably, chronically regenerating axons preferentially associated with Schwann cell surfaces expressing both inhibitory NG2 substrates and the permissive substrates L1 and NCAM in the lesion site. Collectively, these findings indicate that inhibitory factors deposited at sites of chronic SCI do not create impenetrable boundaries and that inhibition can be balanced by local and diffusible signals to generate robust axonal growth even without resecting chronic scar tissue.
Collapse
Affiliation(s)
- Paul Lu
- Department of Neurosciences-0626, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
229
|
Saganová K, Burda J, Orendácová J, Cízková D, Vanický I. Fluoro-Jade B staining following zymosan microinjection into the spinal cord white matter. Cell Mol Neurobiol 2006; 26:1463-73. [PMID: 16773443 PMCID: PMC11520724 DOI: 10.1007/s10571-006-9081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 04/24/2006] [Indexed: 12/26/2022]
Abstract
1. The fluorescein derivate Fluoro-Jade B (FJB), which primarily labels dead or dying neurons, was used to study the acute focal inflammation in the spinal cord white matter. Inflammation was induced by microinjection of the yeast particulate zymosan to evaluate the biological effects of intraspinal macrophages activation without the confounding effects of physical trauma. 2. A single bolus of zymosan (Sigma, 75 nL) was stereotaxically injected at the thoracic level into the lateral white matter of rat spinal cord. A standard Fluoro-Jade B staining protocol was applied to spinal cord sections at 6, 12, 24 h and 2, 4 days postinjection. Neutral Red, NADPH-diaphorase, Iba1-IR, and DAPI staining protocols accomplished examination of the cells participating in the acute inflammatory response. 3. Zymosan caused formation of clearly delineated inflammation lesions localized in the lateral white matter of the spinal cord. Fluoro-Jade B stained cells in the area of inflammation were not observed at 12 h postinjection while mild FJB staining appeared at 24 h and intense staining was observed at 2 and 4 days postinjection. 4. This study shows that the acute response to zymosan-induced inflammation in the rat spinal cord white matter causes a gradual appearance of phagocytic microglia/macrophages and delayed FJB staining of the inflammatory cells. 5. FJB, a reliable marker of dying neurons, is a more universal agent than formerly believed. One possible explanation for the gradual appearance of FJB-stained cells in the area of inflammation is that specific time is required for sufficient levels of proteins and/or myelin debris of axonal origin to appear in the cytoplasm of phagocytic microglia/macrophages.
Collapse
Affiliation(s)
- Kamila Saganová
- Center of Excellence, Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
230
|
McMichael MA, Ruaux CG, Baltzer WI, Kerwin SC, Hosgood GL, Steiner JM, Williams DA. Concentrations of 15F2t isoprostane in urine of dogs with intervertebral disk disease. Am J Vet Res 2006; 67:1226-31. [PMID: 16817747 DOI: 10.2460/ajvr.67.7.1226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure 15F(2t) isoprostane concentrations in the urine of dogs undergoing ovariohysterectomy (OHE) and dogs undergoing surgery because of intervertebral disk disease (IVDD) and to assess relationships between urinary concentrations of 15F(2t) isoprostanes and neurologic score in dogs with IVDD. ANIMALS 11 dogs undergoing OHE and 32 dogs with IVDD undergoing hemilaminectomy. PROCEDURES Paired urine samples were obtained at induction of anesthesia and approximately 1 hour after OHE (controls) and were collected from dogs with IVDD at induction of anesthesia (28 samples) and approximately 1 hour after hemilaminectomy (31 samples); 26 paired urine samples were obtained from dogs with IVDD. Urinary isoprostane concentrations were measured by use of a commercial ELISA, and results were adjusted on the basis of urinary creatinine concentrations. Differences in the mean isoprostane-to-creatinine ratio were analyzed. Neurologic score was determined in dogs with IVDD by use of the modified Frankel scoring system. RESULTS Urinary isoprostane-to-creatinine ratios were significantly higher in dogs with IVDD than in control dogs before and after surgery. There was no significant difference between values before and after surgery for either group. There was a significant correlation of neurologic score and urinary isoprostane-to-creatinine ratio because dogs that had higher neurologic scores (ie, less severely affected) generally had higher isoprostane-to-creatinine ratios. CONCLUSIONS AND CLINICAL RELEVANCE Urinary isoprostane-to-creatinine ratios were higher in dogs with IVDD before and after surgery. Analysis of these data suggests that dogs with IVDD are in a state of oxidative stress and that preemptive treatment with antioxidants warrants further investigation.
Collapse
Affiliation(s)
- Maureen A McMichael
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, 77843-4474, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Goldshmit Y, McLenachan S, Turnley A. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. ACTA ACUST UNITED AC 2006; 52:327-45. [PMID: 16774788 DOI: 10.1016/j.brainresrev.2006.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/19/2022]
Abstract
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during development. This review examines the contribution of one such family of developmental guidance molecules, the Eph receptor tyrosine kinases and their ligands, the ephrins in normal adult CNS and following injury or disease. Eph/ephrin signaling regulates axon guidance through contact repulsion during development of the CNS, inducing collapse of neuronal growth cones. Eph receptors and ephrins continue to be expressed in the adult CNS, although usually at lower levels, but are upregulated following neural injury on different cell types, including reactive astrocytes, neurons and oligodendrocytes. This upregulated expression may directly inhibit regrowth of regenerating axons; however, in addition, Eph expression also regulates astrocytic gliosis and formation of the glial scar. Therefore, Eph/ephrin signaling may inhibit regeneration by more than one mechanism and modulation of Eph receptor expression or signaling could prove pivotal in determining the outcome of injury in the adult CNS.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia
| | | | | |
Collapse
|
232
|
Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K, Potts MB, Fike JR. Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 2006; 202:189-99. [PMID: 16876159 DOI: 10.1016/j.expneurol.2006.05.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/23/2006] [Accepted: 05/26/2006] [Indexed: 11/18/2022]
Abstract
Clinical and experimental data show that traumatic brain injury (TBI)-induced cognitive changes are often manifest as deficits in hippocampal-dependent functions of spatial information processing. The underlying mechanisms for these effects have remained elusive, although recent studies have suggested that the changes in neuronal precursor cells in the dentate subgranular zone (SGZ) of the hippocampus might be involved. Here, we assessed the effects of unilateral controlled cortical impact on neurogenic cell populations in the SGZ in 2-month-old male C57BL6 mice by quantifying numbers of dying cells (TUNEL), proliferating cells (Ki-67) and immature neurons (Doublecortin, Dcx) up to 14 days after TBI. Dying cells were seen 6 h after injury, peaked at 24 h and returned to control levels at 14 days. Proliferating cells were decreased on the ipsilateral and contralateral sides at all the time points studied except 48 h after injury when a transient increase was seen. Simultaneously, immature neurons were reduced up to 84% relative to controls on the ipsilateral side. In the first week post-TBI, reduced numbers of Dcx-positive cells were also seen in the contralateral side; a return to control levels occurred at 14 days. To determine if these changes translated into longer-term effects, BrdU was administered 1 week post-injury and 3 weeks later the phenotypes of the newly born cells were assessed. TBI induced decreases in the numbers of BrdU-positive cells and new neurons (BrdU/NeuN) on the ipsilateral side without apparent changes on the contralateral side, whereas astrocytes (BrdU/GFAP) were increased on the ipsilateral side and activated microglia (BrdU/CD68) were increased on both ipsi- and contralateral sides. No differences were noted in oligodendrocytes (BrdU/NG2). Taken together, these data demonstrate that TBI alters both neurogenesis and gliogenesis. Such alterations may play a contributory role in TBI-induced cognitive impairment.
Collapse
Affiliation(s)
- Radoslaw Rola
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Petter-Puchner AH, Sieber J, Hopf R, Ohlinger W, Schuller M, Redl H. NON-activated protein C as post-treatment after spinal cord compression injury in rats. Acta Neurochir (Wien) 2006; 148:765-71. [PMID: 16708170 DOI: 10.1007/s00701-006-0784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/20/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neuroprotective effects of recombinant human activated Protein C (rhAPC) in models of Spinal Cord Injury (SCI) and ischemic stroke have been reported in rodents. To rule out immunogenicity of rhAPC and to possibly maintain the physiological PC/thrombin balance the use of zymogen PC in SCI might be preferable. Although activation of Protein C (PC) has been demonstrated in rats, the efficacy and drug safety of NON activated PC has not been previously tested in experimental SCI. METHODS Twelve rats were subjected to 40 g compression of the spinal cord at TH11 for 20 minutes and randomly allocated to either the NON activated PC (25 IU/kg) or the Placebo group (saline).Results. 25 IU treatment yielded improved recovery from SCI compared to placebo and the triple fold dose of PC (75 IU/kg) was subsequently tested to detect treatment associated complications (TAC). Treatment was administered as a single shot via the right vena jugularis forty minutes after onset of compression. The observation period was 5 weeks in 25 IU treated and 1 week in the 75 IU treated rats. Improvement of motor function recovery was measured with behaviour tests and electrophysiology. FINDINGS Single shot treatment with 25 IU/kg of NON activated PC led to improved recovery in terms of behaviour and electrophysiology. TACs neither occurred in the 25 IU nor in the 75 IU group within one week. CONCLUSION NON activated PC is a potent and safe drug in experimental SCI and should be considered for treatment in neurotrauma.
Collapse
Affiliation(s)
- A H Petter-Puchner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology at the Trauma Research Center of the AUVA, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
234
|
Zeman RJ, Peng H, Feng Y, Song H, Liu X, Etlinger JD. Beta2-adrenoreceptor agonist-enhanced recovery of locomotor function after spinal cord injury is glutathione dependent. J Neurotrauma 2006; 23:170-80. [PMID: 16503801 DOI: 10.1089/neu.2006.23.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beta2-adrenoreceptor agonist, clenbuterol, has been shown to spare spinal cord tissue and enhance locomotor recovery in an experimental model of spinal cord contusion injury. A likely mechanism of neurodegeneration following spinal cord injury involves generation of toxic levels of reactive oxygen species (ROS), e.g., O2-*, H2O2 and OH*, which overwhelm endogenous antioxidants. Agents, such as clenbuterol, that oppose neurodegeneration and improve recovery of locomotor function may possibly act by improving redox status. Consistent with reduced oxidative stress by beta2-agonist treatment following injury, prior blockade of synthesis of the antioxidant tripeptide, glutathione, with buthionine sulfoximine completely inhibited the ability of clenbuterol to enhance locomotor recovery and spare spinal cord tissue. Moreover, at 8 h postinjury, clenbuterol caused an increase in glutathione reductase activity, an indicator of cellular redox status, at the injury site that was also blocked by buthionine sulfoximine. Although clenbuterol improved locomotor recovery only when administered within a therapeutic window of several days postinjury, the accumulation of protein carbonyls in the spinal cord at 1 week postinjury, a consequence of ongoing ROS-mediated neurodegeneration, was also decreased by clenbuterol in a glutathione-dependent manner. Together, these results suggest that activation of beta2-adrenoreceptors during the acute phase of injury stimulates glutathione-dependent antioxidative processes, that lead to reduced oxidative damage and greater locomotor function as the injury evolves during the subacute and chronic phases.
Collapse
Affiliation(s)
- Richard J Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | |
Collapse
|
235
|
Gordh T, Chu H, Sharma HS. Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain 2006; 124:211-21. [PMID: 16806707 DOI: 10.1016/j.pain.2006.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 05/16/2006] [Accepted: 05/22/2006] [Indexed: 01/23/2023]
Abstract
Alterations in the spinal cord microenvironment in a neuropathic pain model in rats comprising right L-4 spinal nerve lesion were examined following 1, 2, 4 and 10 weeks using albumin and glial fibrillary acidic protein (GFAP) immunoreactivity. Rats subjected to nerve lesion showed pronounced activation of GFAP indicating astrocyte activation, and exhibited marked leakage of albumin, suggesting defects of the blood-spinal cord barrier (BSCB) function in the corresponding spinal cord segment. The intensities of these changes were most prominent in the gray matter of the lesioned side compared to the contralateral cord in both the dorsal and ventral horns. The most marked changes in albumin and GFAP immunoreaction were seen after 2 weeks and persisted with mild intensities even after 10 weeks. Distortion of nerve cells, loss of neurons and general sponginess were evident in the gray matter of the spinal cord corresponding to the lesion side. These nerve cell and glial cell changes was mainly evident in the areas showing leakage of endogenous albumin in the spinal cord. These novel observations indicate that chronic nerve lesion has the capacity to induce a selective increase in local BSCB permeability that could be instrumental in nerve cell and glial cell activation. These findings may be relevant to our current understanding on the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Torsten Gordh
- Laboratory of Pain Research, Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-75185, Uppsala, Sweden
| | | | | |
Collapse
|
236
|
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006; 23:264-80. [PMID: 16629615 DOI: 10.1089/neu.2006.23.263] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury results in acute as well as progressive secondary destruction of local and distant nervous tissue through a number of degenerative mechanisms. Spinal cord injury also initiates a number of endogenous neuroprotective and regenerative responses. Understanding of these mechanisms might identify potential targets for treatments after spinal cord injury in humans. Here, we first discuss recent developments in our understanding of the immediate traumatic and subsequent secondary degeneration of local tissue and long projecting pathways in animal models. These include the inflammatory and vascular responses during the acute phase, as well as cell death, demyelination and scar formation in the subacute and chronic phases. Secondly, we discuss the spontaneous axonal regeneration of injured and plasticity of uninjured systems, and other repair-related responses in animals, including the upregulation of regeneration-associated genes in some neurons, increases in neurotrophic factors in the spinal cord and remyelination by oligodendrocyte precursors and invading Schwann cells. Lastly, we comment on the still limited understanding of the neuropathology in humans, which is largely similar to that in rodents. However, there also are potentially important differences, including the reduced glial scarring, inflammation and demyelination, the increased Schwannosis and the protracted Wallerian degeneration in humans. The validity of current rodent models for human spinal cord injury is also discussed. The emphasis of this review is on the literature from 2002 to early 2005.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
237
|
Ibrahim A, Li Y, Li D, Raisman G, El Masry WS. Olfactory ensheathing cells: ripples of an incoming tide? Lancet Neurol 2006; 5:453-7. [PMID: 16632316 DOI: 10.1016/s1474-4422(06)70444-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Until now, brain and spinal cord injuries that sever nerve fibres have resulted in a degree of incurable functional loss. An incoming tide of research is now beginning to challenge this as yet unbreached sea wall. One of the most promising approaches involves a recently discovered type of cell, the olfactory ensheathing cell, which can be obtained from the adult nasal lining. In animal models transplantation of cultured olfactory ensheathing cells into an injured spinal cord induces regeneration, remyelination of severed spinal nerve fibres, and functional recovery. Although several clinical centres worldwide have shown an interest in applying this approach to patients with spinal cord injury, there is no agreement on cell technology, and claims of beneficial results lack independent confirmation. Important aspects still need to be worked out at the laboratory level. Overall, the outlook is optimistic, but there is still some way to go.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Spinal Repair Unit, Institute of Neurology, University College London, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
238
|
Mueller CA, Schluesener HJ, Conrad S, Pietsch T, Schwab JM. Spinal cord injury-induced expression of the immune-regulatory chemokine interleukin-16 caused by activated microglia/macrophages and CD8+ cells. J Neurosurg Spine 2006; 4:233-40. [PMID: 16572623 DOI: 10.3171/spi.2006.4.3.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Spinal cord injury (SCI) elicits a strong inflammatory response that readily participates in lipid oxygenation, edema formation, apoptotic cell death, and tissue remodeling. Because cytokines determine the postinjury inflammatory milieu, the authors analyzed the expression of the immunomodulatory chemokine interleukin- 16 (IL- 16) after SCI. METHODS The authors detected a highly significant, persistent, lesional accumulation of parenchymal IL-16+ microglia/macrophages, which reached a maximal level 3 days postinjury compared with control rats. The majority of cells that demonstrated positive labeling for IL-16 also had positive labeling for ED1 (> 70%) and OX-8/CD8; these cells exhibited the morphological hallmarks of activated microglia/macrophages and pronounced MHC Class II expression. In contrast to IL-16+ED1+ cells, IL-16+ microglia/macrophages that coexpressed OX-8 were exclusively seen in the pannecrotic lesion core. In addition, clustering of IL-16+ cells was observed in perivascular Virchow-Robin-like spaces in areas of the primary injury (lesion core) and in immediately adjacent areas of secondary injury. Furthermore, on Day 3 postinjury, IL-16+ microglia/macrophages were frequently observed in a perineuronal position. CONCLUSIONS The early lesional accumulation of IL-16+ microglia/macrophages suggests a role for IL-16 in the early postinjury immune response such as recruitment and activation of immune cells, leading to microvessel clustering and secondary damage progression.
Collapse
Affiliation(s)
- Christian A Mueller
- Institute of Brain Research, University of Tübingen Medical School, Germany.
| | | | | | | | | |
Collapse
|
239
|
Karrow NA. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav Immun 2006; 20:144-58. [PMID: 16023324 DOI: 10.1016/j.bbi.2005.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis (HPAA) and autonomic nervous system (ANS) are both activated during inflammation as an elaborate multi-directional communication pathway designed to restore homeostasis, in part, by regulating the inflammatory and subsequent immune response. During fetal and neonatal development programming of the HPAA, ANS and possibly the immune system is influenced by signals from the surrounding environment, as part of an adaptive mechanism to enhance the survival of the offspring. It is currently hypothesized that if this programming is either misguided, or the individual's environment is drastically altered such that neuroendocrine programming becomes maladaptive, it may contribute to the pathogenesis of certain diseases. Current research, suggests that exposure to inflammatory signals during critical windows of early life development may influence the programming of various genes within the neuroendocrine-immune axis. This review will provide, (1) an overview of the HPAA and ANS pathways that are activated during inflammation, highlighting studies that have used lipopolysaccharide as a model inflammagen and, (2) evidence to support the hypothesis that inflammatory stress during fetal and neonatal development can alter programming of the neuroendocrine-immune axis, influencing stress and immune responsiveness, and possibly disease resistance later in life.
Collapse
Affiliation(s)
- N A Karrow
- Centre for the Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Ont., Canada, N1G 2W1.
| |
Collapse
|
240
|
Bréjot T, Blanchard S, Hocquemiller M, Haase G, Liu S, Nosjean A, Heard JM, Bohl D. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis. Exp Neurol 2006; 198:167-82. [PMID: 16434037 DOI: 10.1016/j.expneurol.2005.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/12/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
In contrast to mouse embryonic stem cells and in spite of overlapping gene expression profiles, neural stem cells (NSCs) isolated from the embryonic spinal cord do not respond to physiological morphogenetic stimuli provided by Sonic hedgehog and retinoic acid and do not generate motor neurons upon differentiation. Transcription factors expressed in motor neuron progenitors during embryogenesis include Pax6, Ngn2, Nkx6.1 and Olig2, whose expression precedes that of factors specifying motor neuron fate, including HB9, Islet1 and LIM3. We showed that all these factors were present in neural progenitors derived from mouse ES cells, whereas NSCs derived from the rat embryonic spinal cord expressed neither HB9 nor Islet1 and contained low levels of Nkx6.1 and LIM3. We constructed a lentivirus vector to express HB9 and GFP in NSCs and examined the consequences of HB9 expression on other transcription factors and cell differentiation. Compared to cell expressing GFP alone, NSCs expressing GFP and HB9 cycled less rapidly, downregulated Pax6 and Ngn2 mRNA levels, produced higher proportions of neurons in vitro and lower numbers of neurons after transplantation in the spinal cord of recipient rats. Oligodendrocytic and astrocytic differentiations were not affected. HB9 expressing NSCs did not express Islet1 or upregulate LIM3. They neither responded to Sonic hedgehog and retinoic acid nor produced cholinergic neurons. We concluded that forced HB9 expression affected neurogenesis but was not sufficient to confer motor neuron fate to NSCs.
Collapse
Affiliation(s)
- Thomas Bréjot
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Département Neuroscience, Institut Pasteur, 28, rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Gomes-Leal W, Martins LC, Diniz JAP, Dos Santos ZA, Borges JA, Macedo CAC, Medeiros AC, De Paula LS, Guimarães JS, Freire MAM, Vasconcelos PFC, Picanço-Diniz CW. Neurotropism and neuropathological effects of selected rhabdoviruses on intranasally-infected newborn mice. Acta Trop 2006; 97:126-39. [PMID: 16266676 DOI: 10.1016/j.actatropica.2005.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/22/2005] [Accepted: 09/22/2005] [Indexed: 02/03/2023]
Abstract
Viral neurotropism is the ability of viruses to infect neuronal cells. This is well studied for herpesviruses, rabies-related viruses, and a few others, but it is poorly investigated among almost all arboviruses. In this study, we describe both the neurotropism and the neuropathological effects of Amazonian rhabdoviruses on the brains of experimentally infected-newborn mice. Suckling mice were intranasally infected with 10(-4) to 10(-8) LD50 of viruses. Animals were anaesthetized and perfused after they had become sick. Immunohistochemistry using specific anti-virus and anti-active caspase three antibodies was performed. All infected animals developed fatal encephalitis. Survival time ranged from 18 h to 15 days. Viruses presented distinct species-dependent neurotropism for CNS regions. Histopathological analysis revealed variable degrees of necrosis and apoptosis in different brain regions. These results showed that viruses belonging to the Rhabdoviridae family possess distinct tropism for CNS structures and induce different pattern of cell death depending on the CNS region.
Collapse
Affiliation(s)
- W Gomes-Leal
- Laboratory of Functional Neuroanatomy, Department de Morphology, CCB, Federal University of Pará. Rua Augusto Corrêa N. 1, CEP 66075-900 Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD. 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 2006; 22:1158-68. [PMID: 16176358 DOI: 10.1111/j.1460-9568.2005.04281.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular inflammation is well known for its ability to compromise the function of the blood--brain barrier (BBB). Whether inflammation on the parenchymal side of the barrier, such as that associated with Parkinson's-like dopamine (DA) neuron lesions, similarly disrupts BBB function, is unknown. We assessed BBB integrity by examining the leakage of FITC-labeled albumin or horseradish peroxidase from the vasculature into parenchyma in animals exposed to the DA neurotoxin 6-hydroxydopamine (6OHDA). Unilateral injections of 6OHDA into the striatum or the medial forebrain bundle produced increased leakage in the ipsilateral substantia nigra and striatum 10 and 34 days following 6OHDA. Microglia were markedly activated and DA neurons were reduced by the lesions. The areas of BBB leakage were associated with increased expression of P-glycoprotein and beta 3-integrin expression suggesting, respectively, a compensatory response to inflammation and possible angiogenesis. Behavioural studies revealed that domperidone, a DA antagonist that normally does not cross the BBB, attenuated apomorphine-induced stereotypic behaviour in animals with 6OHDA lesions. This suggests that drugs which normally have no effect in brain can enter following Parkinson-like lesions. These data suggest that the events associated with DA neuron loss compromise BBB function.
Collapse
Affiliation(s)
- P M Carvey
- Rush University Medical Center, Department of Pharmacology, Cohn 406, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Gomes-Leal W, Corkill DJ, Picanço-Diniz CW. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord. Brain Res 2005; 1066:57-70. [PMID: 16325784 DOI: 10.1016/j.brainres.2005.10.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 10/05/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms of white matter (WM) damage during secondary degeneration are a fundamental issue in the pathophysiology of central nervous system (CNS) diseases. Our main goal was to describe the pattern of an acute inflammatory response and secondary damage to axons in different WM tracts of acutely injured rat spinal cord. Adult rats were deeply anesthetized and injected with 20 nmol of NMDA into the spinal cord ventral horn on T7. Animals were perfused after survival times of 1 day, 3 days and 7 days. Ten micrometer sections were submitted to immunocytochemical analysis for activated macrophages/microglia, neutrophils and damaged axons. There were inflammatory response and progressive tissue destruction of ventral WM (VWM) with formation of microcysts in both VWM and lateral WM (LWM). In the VWM, the number of beta-amyloid precursor protein (beta-APP) end-bulbs increased from 1 day with a peak at 3 days, decreasing by 7 days following the injection. APP end-bulbs were present in the dorsal WM (DWM) at 3 days survival time but were not in the LWM. Electron microscopic analysis revealed different degrees of myelin disruption and axonal pathology in the vacuolated WM up to 14 mm along the rostrocaudal axis. Quantitative analysis revealed a significant loss of medium and large axons (P < 0.05), but not of small axons (P > 0.05). Our results suggest that bystander axonal damage and myelin vacuolation are important secondary component of the pathology of WM tracts following rat SCI. Further studies are needed to understand the mechanisms of these pathological events.
Collapse
Affiliation(s)
- W Gomes-Leal
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia, Centro de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Campus do Guamá, CEP:66075-900. Belém-Pará, Brasil.
| | | | | |
Collapse
|
244
|
Ruohonen S, Khademi M, Jagodic M, Taskinen HS, Olsson T, Röyttä M. Cytokine responses during chronic denervation. J Neuroinflammation 2005; 2:26. [PMID: 16287511 PMCID: PMC1310517 DOI: 10.1186/1742-2094-2-26] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the present study was to examine inflammatory responses during Wallerian degeneration in rat peripheral nerve when the regrowth of axons was prevented by suturing. Methods Transected rat sciatic nerve was sutured and ligated to prevent reinnervation. The samples were collected from the left sciatic nerve distally and proximally from the point of transection. The endoneurium was separated from the surrounding epi- and perineurium to examine the expression of cytokines in both of these compartments. Macrophage invasion into endoneurium was investigated and Schwann cell proliferation was followed as well as the expression of cytokines IL-1β, IL-10, IFN-γ and TNF-α mRNA. The samples were collected from 1 day up to 5 weeks after the primary operation. Results At days 1 to 3 after injury in the epi-/perineurium of the proximal and distal stump, a marked expression of the pro-inflammatory cytokines TNF-α and IL-1β and of the anti-inflammatory cytokine IL-10 was observed. Concurrently, numerous macrophages started to gather into the epineurium of both proximal and distal stumps. At day 7 the number of macrophages decreased in the perineurium and increased markedly in the endoneurium of both stumps. At this time point marked expression of TNF-α and IFN-γ mRNA was observed in the endo- and epi-/perineurium of the proximal stump. At day 14 a marked increase in the expression of IL-1β could be noted in the proximal stump epi-/perineurium and in the distal stump endoneurium. At that time point many macrophages were observed in the longitudinally sectioned epineurium of the proximal 2 area as well as in the cross-section slides from the distal stump. At day 35 TNF-α, IL-1β and IL-10 mRNA appeared abundantly in the proximal epi-/perineurium together with macrophages. Conclusion The present studies show that even during chronic denervation there is a cyclic expression pattern for the studied cytokines. Contrary to the previous findings on reinnervating nerves the studied cytokines show increased expression up to 35 days. The high expressions of pro-inflammatory and anti-inflammatory cytokines in the proximal epi-/perineurial area at day 35 may be involved in the formation of fibrosis due to irreversible nerve injury and thus may have relevance to the formation of traumatic neuroma.
Collapse
Affiliation(s)
- Saku Ruohonen
- Department of Pathology, University of Turku, Kiinanmyllynkatu 10, 20520 Turku, Finland
| | - Mohsen Khademi
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Maja Jagodic
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Hanna-Stiina Taskinen
- Department of Handsurgery, Turku University hospital, Kiinanmyllynkatu 10, 20520, Turku, Finland
| | - Tomas Olsson
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Matias Röyttä
- Department of Pathology, University of Turku, Kiinanmyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
245
|
Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S, Coleman T, Cerami A, Brines M. Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci U S A 2005; 102:16379-84. [PMID: 16260722 PMCID: PMC1283477 DOI: 10.1073/pnas.0508479102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inflammation plays a major pathological role in spinal cord injury (SCI). Although antiinflammatory treatment using the glucocorticoid methyprednisolone sodium succinate (MPSS) improved outcomes in several multicenter clinical trials, additional clinical experience suggests that MPSS is only modestly beneficial in SCI and poses a risk for serious complications. Recent work has shown that erythropoietin (EPO) moderates CNS tissue injury, in part by reducing inflammation, limiting neuronal apoptosis, and restoring vascular autoregulation. We determined whether EPO and MPSS act synergistically in SCI. Using a rat model of contusive SCI, we compared the effects of EPO [500-5,000 units/kg of body weight (kg-bw)] with MPSS (30 mg/kg-bw) for proinflammatory cytokine production, histological damage, and motor function at 1 month after a compression injury. Although high-dose EPO and MPSS suppressed proinflammatory cytokines within the injured spinal cord, only EPO was associated with reduced microglial infiltration, attenuated scar formation, and sustained neurological improvement. Unexpectedly, coadministration of MPSS antagonized the protective effects of EPO, even though the EPO receptor was up-regulated normally after injury. These data illustrate that the suppression of proinflammatory cytokines alone does not necessarily prevent secondary injury and suggest that glucocorticoids should not be coadministered in clinical trials evaluating the use of EPO for treatment of SCI.
Collapse
Affiliation(s)
- Alfredo Gorio
- Pharmacological Laboratories, Departments of Medicine, Surgery, and Dentistry, Polo Ospedale San Paolo, Faculty of Medicine, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Sosa I, Reyes O, Kuffler DP. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol 2005; 195:7-15. [PMID: 15935348 DOI: 10.1016/j.expneurol.2005.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/28/2005] [Indexed: 12/17/2022]
Abstract
No clinical techniques induce restoration of neurological losses following spinal cord trauma. Peripheral nerve damage also leads to permanent neurological deficits, but neurological recovery can be relatively good, especially if the ends of a transected nerve are anastomosed soon after the injury. The time until recovery generally depends on the distance the axons must regenerate to their targets. Neurological recovery following the destruction of a length of a peripheral nerve requires a graft to bridge the gap that is permissive to, and promotes, axon regeneration. But neurological recovery is slow and limited, especially for gaps longer than 1.5 cm, even using autologous peripheral nerve grafts. Without a reliable means of bridging long nerve gaps, such injuries commonly result in amputations. Promoting extensive neurological recovery requires techniques that simultaneously provide protection to injured neurons and increase the numbers of neurons that extend axons, while inducing more rapid and extensive axon regeneration across long nerve gaps. Although conduits filled with various materials enhance axon regeneration across short nerve gaps, pure sensory nerve graft remains the gold standard for use across long nerve gaps, even though they lead to only limited neurological recovery. Consistent results demonstrate that several immunosuppressive agents enhance the number of axons and the rate at which they regenerate. This review examines the roles played by immunosuppressants, especially FK506, with primary focus on its role as a neuroprotectant and neurotrophic agent, and its potential clinical use to promote improved neurological recovery following peripheral nerve and spinal cord injuries.
Collapse
Affiliation(s)
- I Sosa
- Section of Neurosurgery, Medical Sciences Campus, UPR, 201 Boulevard del Valle, San Juan 00901, Puerto Rico
| | | | | |
Collapse
|
247
|
Kerr BJ, Patterson PH. Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia 2005; 51:73-9. [PMID: 15779090 DOI: 10.1002/glia.20177] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injury to the mammalian spinal cord is accompanied by a delayed, secondary wave of oligodendrocyte apoptosis that arises several days after the initial injury. A strong candidate to support oligodendrocyte survival after spinal cord injury is the pleiotropic cytokine, leukemia inhibitory factor (LIF). In vitro, LIF potentiates the differentiation and survival of oligodendrocyte precursors. LIF can also prevent oligodendrocyte apoptosis in response to either growth factor removal or cytotoxic challenge. More recently, in vivo studies have demonstrated that LIF is effective in preventing oligodendrocyte death in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). We therefore asked whether systemic delivery of LIF could ameliorate oligodendrocyte death in a mouse model of spinal cord injury. We have found that daily administration of LIF (25 microg/kg/day) promotes oligodendrocyte survival after spinal cord injury. Interestingly however, this effect does not appear to be mediated by a direct action of LIF on the oligodendrocyte but rather via an ancillary cell type, which results in augmented expression of another trophic factor capable of supporting oligodendrocyte survival, insulin-like growth factor 1 (IGF-1).
Collapse
Affiliation(s)
- Bradley J Kerr
- Biology Division, California Institute of Technology, Pasadena, California, USA.
| | | |
Collapse
|
248
|
Genovese T, Mazzon E, Di Paola R, Cannavò G, Muià C, Bramanti P, Cuzzocrea S. Role of endogenous ligands for the peroxisome proliferators activated receptors alpha in the secondary damage in experimental spinal cord trauma. Exp Neurol 2005; 194:267-78. [PMID: 15899263 DOI: 10.1016/j.expneurol.2005.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/17/2005] [Accepted: 03/01/2005] [Indexed: 01/06/2023]
Abstract
The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors related to retinoid, steroid, and thyroid hormone receptors. The aim of the present study was to examine the effects of endogenous PPAR-alpha ligand in an experimental model of spinal cord trauma. Spinal cord injury was induced in PPAR-alpha wild-type (WT) mice and PPAR-alpha knock out mice (PPAR-alpha KO) mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration (measured as an increase in myeloperoxidase activity) and apoptosis (measured by Annexin 5 staining). An increase of immunoreactivity to TNF-alpha was observed in the spinal cord of spinal cord-injured PPAR-alpha WT mice. Absence of a functional PPAR-alpha gene in PPAR-alphaKO mice resulted in a significant augmentation of all the above described parameters. In a separate set of experiments, we have also demonstrated that the absence of PPAR-alpha gene in PPAR-alphaKO mice significantly worsened the recovery of limb function (evaluated by motor recovery score). Thus, endogenous PPAR-alpha ligands reduce the degree of development of inflammation and tissue injury events associated with spinal cord trauma in the mice.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica-Policlinico Universitario Via C. Valeria-Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
249
|
Campbell SJ, Perry VH, Pitossi FJ, Butchart AG, Chertoff M, Waters S, Dempster R, Anthony DC. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1487-97. [PMID: 15855648 PMCID: PMC1606402 DOI: 10.1016/s0002-9440(10)62365-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The administration of interleukin-1beta to the brain induces hepatic CXC chemokine synthesis, which increases neutrophil levels in the blood, liver, and brain. We now show that such hepatic response is not restricted to the CXC chemokines. CCL-2, a CC chemokine, was released by the liver in response to a tumor necrosis factor (TNF)-alpha challenge to the brain and boosted monocyte levels. Furthermore, a clinically relevant compression injury to the spinal cord triggered hepatic chemokine expression of both types. After a spinal cord injury, elevated CCL-2 and CXCL-1 mRNA and protein were observed in the liver by TaqMan reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay as early as 2 to 4 hours. Simultaneously, we observed elevated levels of these chemokines and circulating leukocyte populations in the blood. Leukocytes were recruited to the liver at this early stage, whereas at the site of challenge in the central nervous system, few were observed until 24 hours. Artificial elevation of blood CCL-2 triggered dose-dependent monocyte mobilization in the blood and enhanced monocyte recruitment to the brain after TNF-alpha challenge. Attenuation of hepatic CCL-2 production with corticosteroids resulted in reduced monocyte levels after the TNF-alpha challenge. Thus, combined production of CC and CXC hepatic chemokines appears to amplify the central nervous system response to injury.
Collapse
Affiliation(s)
- Sandra J Campbell
- Department of Pharmacology, University of Oxford, Oxfordshire OX1 3QT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Pannu R, Barbosa E, Singh AK, Singh I. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 2005; 79:340-50. [PMID: 15605375 DOI: 10.1002/jnr.20345] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complex clinical condition involving proinflammatory cytokines and nitric oxide toxicity that produces a predictable pattern of progressive injury entailing neuronal loss, axonal destruction, and demyelination at the site of impact. The involvement of proinflammatory cytokines and inducible nitric oxide synthase (iNOS) in exacerbation of SCI pathology is well documented. We have reported previously the antiinflammatory properties and immunomodulatory activities of statins (3-hydroxy-3-methylglutaryl [HMG]-CoA reductase inhibitors) in the animal model of multiple sclerosis, experimental allergic encephalitis (EAE). The present study was undertaken to investigate the efficacy of atorvastatin (Lipitor; LP) treatment in attenuating SCI-induced pathology. Immunohistochemical detection and real-time PCR analysis showed increased expression of iNOS, tumor necrosis factor alpha (TNFalpha) and interleukin 1beta (IL-1beta) after SCI. In addition, neuronal apoptosis was detected 24 hr after injury followed by a profound increase in ED1-positive inflammatory infiltrates, glial fibrillary acidic protein (GFAP)-positive reactive astrocytes, and oligodendrocyte apoptosis by 1 week after SCI relative to control. LP treatment attenuated the SCI-induced iNOS, TNFalpha, and IL-1beta expression. LP also provided protection against SCI-induced tissue necrosis, neuronal and oligodendrocyte apoptosis, demyelination, and reactive gliosis. Furthermore, rats treated with LP scored much higher on the locomotor rating scale after SCI (19.13 +/- 0.53) than did untreated rats (9.04 +/- 1.22). This study therefore reports the beneficial effect of atorvastatin for the treatment of SCI-related pathology and disability.
Collapse
Affiliation(s)
- Ravinder Pannu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|