201
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
202
|
Zheng Q, Li W, Mao L, Wang M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater Sci 2021; 9:7024-7033. [PMID: 34378567 DOI: 10.1039/d1bm00790d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The discovery of CRISPR/Cas9 genome-editing technology enables the precise manipulation of mammalian DNA sequences for treating genetic disorders. Despite its high efficiency for genome editing, the introduction of CRISPR/Cas9 machinery, which is composed of Cas9 nuclease protein and guide RNA, into cells challenges its clinical translation potential. Therefore, the intracellular delivery of genome-editing machinery determines the efficacy of gene manipulation via the CRISPR/Cas9 technology. Recently, metallosupramolecules including metal-organic frameworks (MOFs) and metal-organic cages (MOCs) have been designed to selfassemble with Cas9 nuclease and guide RNA for CRISPR/Cas9 delivery and genome editing. Herein, we review the most recent advances and strategies of constructing metallosupramolecules for CRISPR/Cas9 delivery. In particular, we discuss nanoscale MOFs and MOCs that could be assembled and regulated by the intracellular environment for the spatiotemporal delivery of genome editing machinery. We also provide a perspective view of the future development of metallosupramolecules for genome editing and gene therapy in vivo.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenting Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Bejing 100875, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
203
|
Öztürk BE, Johnson ME, Kleyman M, Turunç S, He J, Jabalameli S, Xi Z, Visel M, Dufour VL, Iwabe S, Pompeo Marinho LFL, Aguirre GD, Sahel JA, Schaffer DV, Pfenning AR, Flannery JG, Beltran WA, Stauffer WR, Byrne LC. scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution. eLife 2021; 10:64175. [PMID: 34664552 PMCID: PMC8612735 DOI: 10.7554/elife.64175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Adeno-associated virus (AAV)-mediated gene therapies are rapidly advancing to the clinic, and AAV engineering has resulted in vectors with increased ability to deliver therapeutic genes. Although the choice of vector is critical, quantitative comparison of AAVs, especially in large animals, remains challenging. Methods Here, we developed an efficient single-cell AAV engineering pipeline (scAAVengr) to simultaneously quantify and rank efficiency of competing AAV vectors across all cell types in the same animal. Results To demonstrate proof-of-concept for the scAAVengr workflow, we quantified - with cell-type resolution - the abilities of naturally occurring and newly engineered AAVs to mediate gene expression in primate retina following intravitreal injection. A top performing variant identified using this pipeline, K912, was used to deliver SaCas9 and edit the rhodopsin gene in macaque retina, resulting in editing efficiency similar to infection rates detected by the scAAVengr workflow. scAAVengr was then used to identify top-performing AAV variants in mouse brain, heart, and liver following systemic injection. Conclusions These results validate scAAVengr as a powerful method for development of AAV vectors. Funding This work was supported by funding from the Ford Foundation, NEI/NIH, Research to Prevent Blindness, Foundation Fighting Blindness, UPMC Immune Transplant and Therapy Center, and the Van Sloun fund for canine genetic research.
Collapse
Affiliation(s)
- Bilge E Öztürk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Molly E Johnson
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Michael Kleyman
- Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, United States
| | - Serhan Turunç
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Jing He
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Sara Jabalameli
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Meike Visel
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Valérie L Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Simone Iwabe
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Luis Felipe L Pompeo Marinho
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Chemical Engineering, University of California, Berkeley, Berkeley, United States
| | - Andreas R Pfenning
- Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Vision Science, Herbert Wertheim School of Optometry, University of California Berkeley, Berkeley, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
204
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
205
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
206
|
Adachi S, Torio M, Okuzono S, Motomura Y, Ichimiya Y, Sonoda Y, Nagata J, Okamoto M, Notomi S, Sanefuji M, Sakai Y, Ohga S. Vitamin A deficiency-associated corneal perforation in a boy with autism spectrum disorder: A case report and literature review. Nutrition 2021; 90:111275. [PMID: 34004415 DOI: 10.1016/j.nut.2021.111275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Malnutrition and vitamin deficiency are growing concerns in the clinical management of children with autism spectrum disorder (ASD). This case report presents a boy with ASD who developed vitamin A deficiency during follow-up. CASE REPORT A 7-y-old boy had been diagnosed with ASD and developmental delay at age 18 mo. He developed convulsions associated with hypocalcemia and vitamin D deficiency at 3 y of age. Although vitamin D supplementation was continued, he was only able to eat rice, green tea, and fried potatoes from 3 y of age to age 7 y. He had started rubbing his eyes and had refused to open his eyes 9 mo before. An ophthalmologic examination showed bilateral corneal ulcers and right corneal perforation. Vitamin A was immediately supplemented with a nasogastric tube; however, his right eye was surgically enucleated against the persistent infection. LITERATURE REVIEW A search of the relevant literature from 1993 to 2020 identified 11 cases of patients with ASD (5-17 y of age) who developed vitamin A deficiency owing to malnutrition. Only 4 cases (36%) had a full recovery in visual acuity. CONCLUSION Vitamin A deficiency frequently causes irreversible visual impairment in children with ASD. Vigilant monitoring of vitamin levels prevents unfavorable outcomes in children with ASD and difficulty in food intake.
Collapse
Affiliation(s)
- Shunichi Adachi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jyunya Nagata
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Misato Okamoto
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
207
|
Lopes FM, Woolf AS, Roberts NA. Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. J Pediatr Urol 2021; 17:610-620. [PMID: 34312114 DOI: 10.1016/j.jpurol.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| |
Collapse
|
208
|
Mettananda S. Genetic and Epigenetic Therapies for β-Thalassaemia by Altering the Expression of α-Globin Gene. Front Genome Ed 2021; 3:752278. [PMID: 34713267 PMCID: PMC8525347 DOI: 10.3389/fgeed.2021.752278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
β-Thalassaemia is caused by over 300 mutations in and around the β-globin gene that lead to impaired synthesis of β-globin. The expression of α-globin continues normally, resulting in an excess of α-globin chains within red blood cells and their precursors. These unpaired α-globin chains form unstable α-hemichromes that trigger cascades of events to generate reactive oxygen species, leading to ineffective erythropoiesis and haemolysis in patients with β-thalassaemia. The clinical genetic data reported over several decades have demonstrated how the coinheritance of α-thalassaemia ameliorates the disease phenotype of β-thalassaemia. Thus, it is evident that down-regulation of the α-globin gene expression in patients with β-thalassaemia could ameliorate or even cure β-thalassaemia. Over the last few years, significant progress has been made in utilising this pathway to devise a cure for β-thalassaemia. Most research has been done to alter the epigenetic landscape of the α-globin locus or the well-characterised distant enhancers of α-globin. In vitro, pre-clinical studies on primary human erythroid cells have unveiled inhibition of histone lysine demethylation and histone deacetylation as potential targets to achieve selective downregulation of α-globin through epigenetic drug targeting. CRISPR based genome editing has been successfully used in vitro to mutate α-globin genes or enhancers of α-goblin to achieve clinically significant knockdowns of α-globin to the levels beneficial for patients with β-thalassaemia. This review summarises the current knowledge on the regulation of human α-globin genes and the clinical genetic data supporting the pathway of targeting α-globin as a treatment for β-thalassaemia. It also presents the progress of epigenetic drug and genome editing approaches currently in development to treat β-thalassaemia.
Collapse
Affiliation(s)
- Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- University Paediatrics Unit, Colombo North Teaching Hospital, Ragama, Sri Lanka
| |
Collapse
|
209
|
Oral Gene Therapy of HFD-Obesity via Nonpathogenic Yeast Microcapsules Mediated shRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13101536. [PMID: 34683827 PMCID: PMC8539367 DOI: 10.3390/pharmaceutics13101536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is a chronic systemic inflammatory disease, which occurs when energy intake exceeds the energy consumption. Therefore, controlling energy intake or increasing physical consumption can effectively control obesity. However, in reality, it is very difficult for the majority of obese patients to lose weight by autonomously controlling diet. In this study, oral shRNA/yeast microcapsules were constructed with non-virus-mediated IL-1β shRNA interference vectors and non-pathogenic Saccharomyces cerevisiae. Moreover, high-fat diet induced obese mice were established to assess the weight loss effect of IL-1β shRNA/yeast microcapsules via the oral route. After IL-1β shRNA/yeast treatment, body weight and fat weight was reduced. Compared with the control group, higher average food intake but lower energy conversion rate was observed in IL-1β shRNA/yeast group. In addition, lipid metabolism related cytokines and blood glucose concentration in the circulating blood was improved after IL-1β shRNA/yeast treatment. Yeast microcapsules mediated IL-1β shRNA delivery can effectively improve obesity. Noteworthy, this kind of non-diet-controlled weight loss strategy does not need diet control, and shows good biocompatibility. It is good news to obese patients who need to lose weight but cannot control their diet.
Collapse
|
210
|
Liu MX, Liu XY, Liu JY, Tang JT, Shi K, Mao J, Lu ZL, Qiao HJ, He L. Di[12]aneN 3-Functionalized Green Fluorescent Protein Chromophore for GFP Luminescence Simulation and Efficient Gene Transfection In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2021; 4:7111-7122. [PMID: 35006943 DOI: 10.1021/acsabm.1c00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although a plethora of gene carriers have been developed for potential gene therapy, imageable stimuli-responsive gene vectors with fast access to the nucleus, high biocompatibility, and transfection efficiency are still scarce. Herein, we report the design and synthesis of four dendrite-shaped cationic liposomes, MPA-HBI-R/DOPE (R: n-butyl, 1; n-octyl, 2; n-dodecyl, 3; palmyl, 4), prepared via esterification of 4-alkoxybenzylideneimidazolinone containing aliphatic chains of different lengths (HBI-R), the green fluorescent protein (GFP) chromophore, with a di[12]aneN3 unit. Liposomes were fabricated via the self-assembly of MPA-HBI-R, assisted with 1,2-dioleoyl-sn-glycerol-3-phosphorylethanolamine (DOPE). These liposomes (MPA-HBI-R/DOPE) exhibited efficient DNA condensation, pH-responsive degradation, excellent cellular biocompatibility (up to 150 μM), and high transfection efficiency. Molecular docking experiments were also used to verify the optimal interaction between MPA-HBI-R and DNA, as well as the fluorescence enhancements. In particular, MPA-HBI-2/DOPE delivered DNA into the nucleus in less than an hour, and its luciferase transfection activity was more than 10 times that by Lipo2000, across multiple cell lines. The GFP chromophore conjugation allowed trackable intracellular delivery and release of DNA in real time via fluorescence imaging. Furthermore, efficient red fluorescent protein (RFP) transfection in zebrafish, with an efficiency of more than 6 times that by Lipo2000, was also achieved. The results not only realized, for the first time, the combination of gene delivery and GFP-simulated light emission, allowing fluorescent tracking and highly efficient gene transfection, but also offered valuable insights into the use of biomimetic chromophore for the development of the next-generation nonviral vectors.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.,School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Tao Tang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ke Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jie Mao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hai-Jun Qiao
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan He
- China National Institute for Food and Drug Control, Institute of Chemical Drugs, Beijing 100050, China
| |
Collapse
|
211
|
Zoratto S, Weiss VU, van der Horst J, Commandeur J, Buengener C, Foettinger‐Vacha A, Pletzenauer R, Graninger M, Allmaier G. Molecular weight determination of adeno-associate virus serotype 8 virus-like particle either carrying or lacking genome via native nES gas-phase electrophoretic molecular mobility analysis and nESI QRTOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4786. [PMID: 34608711 PMCID: PMC9285973 DOI: 10.1002/jms.4786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Virus-like particles (VLPs) are proteinaceous shells derived from viruses lacking any viral genomic material. Adeno-associated virus (AAV) is a non-enveloped icosahedral virus used as VLP delivery system in gene therapy (GT). Its success as vehicle for GT is due to its selective tropism, high level of transduction, and low immunogenicity. In this study, two preparations of AAV serotype 8 (AAV8) VLPs either carrying or lacking completely genomic cargo (i.e., non-viral ssDNA) have been investigated by means of a native nano-electrospray gas-phase electrophoretic mobility molecular analyzer (GEMMA) (native nES GEMMA) and native nano-electrospray ionization quadrupole reflectron time-of-flight mass spectrometry (MS) (native nESI QRTOF MS). nES GEMMA is based on electrophoretic mobility principles: single-charge nanoparticles (NPs), that is, AAV8 particle, are separated in a laminar sheath flow of dry, particle-free air and a tunable orthogonal electric field. Thus, the electrophoretic mobility diameter (EMD) of a bio-NP (i.e., diameter of globular nano-objects) is obtained at atmospheric pressure, which can be converted into its MW based on a correlation. First is the native nESI QRTOF. MS's goal is to keep the native biological conformation of an analyte during the passage into the vacuum. Subsequently, highly accurate MW values are obtained from multiple-charged species after deconvolution. However, once applied to the analysis of megadalton species, native MS is challenging and requires customized instrumental modifications not readily available on standard devices. Hence, the analysis of AAV8 VLPs via native MS in our hands did not produce a defined charge state assignment, that is, charge deconvolution for exact MW determination was not possible. Nonetheless, the method we present is capable to estimate the MW of VLPs by combining the results from native nES GEMMA and native ESI QRTOF MS. In detail, our findings show a MW of 3.7 and 5.0 MDa for AAV8 VLPs either lacking or carrying an engineered genome, respectively.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Victor U. Weiss
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | | | | - Carsten Buengener
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | | | - Robert Pletzenauer
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Michael Graninger
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Guenter Allmaier
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| |
Collapse
|
212
|
Shtykalova SV, Egorova AA, Maretina MA, Freund SA, Baranov VS, Kiselev AV. Molecular Genetic Basis and Prospects of Gene Therapy of Uterine Leiomyoma. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
213
|
Ilyinskii PO, Michaud AM, Rizzo GL, Roy CJ, Leung SS, Elkins SL, Capela T, Chowdhury A, Li L, Chandler RJ, Manoli I, Andres-Mateos E, Johnston LP, Vandenberghe LH, Venditti CP, Kishimoto TK. ImmTOR nanoparticles enhance AAV transgene expression after initial and repeat dosing in a mouse model of methylmalonic acidemia. Mol Ther Methods Clin Dev 2021; 22:279-292. [PMID: 34485611 PMCID: PMC8399083 DOI: 10.1016/j.omtm.2021.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/30/2021] [Indexed: 11/23/2022]
Abstract
A major barrier to adeno-associated virus (AAV) gene therapy is the inability to re-dose patients due to formation of vector-induced neutralizing antibodies (Nabs). Tolerogenic nanoparticles encapsulating rapamycin (ImmTOR) provide long-term and specific suppression of adaptive immune responses, allowing for vector re-dosing. Moreover, co-administration of hepatotropic AAV vectors and ImmTOR leads to an increase of transgene expression even after the first dose. ImmTOR and AAV Anc80 encoding the methylmalonyl-coenzyme A (CoA) mutase (MMUT) combination was tested in a mouse model of methylmalonic acidemia, a disease caused by mutations in the MMUT gene. Repeated co-administration of Anc80 and ImmTOR was well tolerated and led to nearly complete inhibition of immunoglobulin (Ig)G antibodies to the Anc80 capsid. A more profound decrease of plasma levels of the key toxic metabolite, plasma methylmalonic acid (pMMA), and disease biomarker, fibroblast growth factor 21 (FGF21), was observed after treatment with the ImmTOR and Anc80-MMUT combination. In addition, there were higher numbers of viral genomes per cell (vg/cell) and increased transgene expression when ImmTOR was co-administered with Anc80-MMUT. These effects were dose-dependent, with the higher doses of ImmTOR providing higher vg/cell and mRNA levels, and an improved biomarker response. Combining of ImmTOR and AAV can not only block the IgG response against capsid, but it also appears to potentiate transduction and enhance therapeutic transgene expression in the mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lina Li
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Randy J. Chandler
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irini Manoli
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Andres-Mateos
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | | | - Luk H. Vandenberghe
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Charles P. Venditti
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
214
|
Zabaleta N, Dai W, Bhatt U, Hérate C, Maisonnasse P, Chichester JA, Sanmiguel J, Estelien R, Michalson KT, Diop C, Maciorowski D, Dereuddre-Bosquet N, Cavarelli M, Gallouët AS, Naninck T, Kahlaoui N, Lemaitre J, Qi W, Hudspeth E, Cucalon A, Dyer CD, Pampena MB, Knox JJ, LaRocque RC, Charles RC, Li D, Kim M, Sheridan A, Storm N, Johnson RI, Feldman J, Hauser BM, Contreras V, Marlin R, Tsong Fang RH, Chapon C, van der Werf S, Zinn E, Ryan A, Kobayashi DT, Chauhan R, McGlynn M, Ryan ET, Schmidt AG, Price B, Honko A, Griffiths A, Yaghmour S, Hodge R, Betts MR, Freeman MW, Wilson JM, Le Grand R, Vandenberghe LH. An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host Microbe 2021; 29:1437-1453.e8. [PMID: 34428428 PMCID: PMC8346325 DOI: 10.1016/j.chom.2021.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.
Collapse
Affiliation(s)
- Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Wenlong Dai
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cécile Hérate
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Jessica A Chichester
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristofer T Michalson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dawid Maciorowski
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nidhal Kahlaoui
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Wenbin Qi
- Novartis Gene Therapies, San Diego, CA, USA
| | | | - Allison Cucalon
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Betina Pampena
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dan Li
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Maya Kim
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Abigail Sheridan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rebecca I Johnson
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vanessa Contreras
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Raphaël Ho Tsong Fang
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aisling Ryan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dione T Kobayashi
- Translational Innovation Fund, Mass General Brigham Innovation, Cambridge, MA, USA
| | - Ruchi Chauhan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Marion McGlynn
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | - Anna Honko
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Michael R Betts
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mason W Freeman
- Center for Computational & Integrative Biology, Department of Medicine, and Translational Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
215
|
Bernal S, Pelaez I, Alias L, Baena M, De Pablo-Moreno JA, Serrano LJ, Camero MD, Tizzano EF, Berrueco R, Liras A. High Mutational Heterogeneity, and New Mutations in the Human Coagulation Factor V Gene. Future Perspectives for Factor V Deficiency Using Recombinant and Advanced Therapies. Int J Mol Sci 2021; 22:9705. [PMID: 34575869 PMCID: PMC8465496 DOI: 10.3390/ijms22189705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.
Collapse
Affiliation(s)
- Sara Bernal
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Irene Pelaez
- Department of Pediatric and Oncohematology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Laura Alias
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Manel Baena
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
| | - Juan A. De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis J. Serrano
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - M. Dolores Camero
- Association for the Investigation and Cure of Factor V Deficiency, 23002 Jaén, Spain;
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron and Medicine Genetics Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Ruben Berrueco
- Pediatric Hematology Department, Hospital Sant Joan de Déu, University of Barcelona and Research Institute Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| |
Collapse
|
216
|
Giannikopoulos P, Parham DM. Rhabdomyosarcoma: How Advanced Molecular Methods Are Shaping the Diagnostic and Therapeutic Paradigm. Pediatr Dev Pathol 2021; 24:395-404. [PMID: 34107813 DOI: 10.1177/10935266211013621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the past 40 years, progress in rhabdomyosarcoma (RMS) has been focused on understanding its molecular basis and characterizing the mutations that drive its tumorigenesis and progression. Genetic predisposition to RMS has allowed discovery of key genetic pathways and driver mutations. Subclassification of RMS into embryonal (ERMS) and alveolar (ARMS) subtypes has shifted from histology to PAX-FOXO1 fusion status, and new driver mutations have been found in spindle cell RMS. Comprehensive molecular profiling leveraging genome-scale next-generation sequencing (NGS) indicates that the RAS/RAF/PI3K axis is mutated in the majority of ERMS and modulated by downstream effects of PAX-FOXO1 fusions in ARMS. Because of the continued poor outcome of high-risk RMS, a variety of molecular targets have been or are now being tested in current or recent therapy trials. New techniques such as single cell sequencing, spatial multi-omics, and CRISPR/Cas9 genome editing offer potential for further discovery, but a need for clinically annotated specimens persists.
Collapse
Affiliation(s)
- Petros Giannikopoulos
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - David M Parham
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA (retired)
| |
Collapse
|
217
|
Ihn H, Kang H, Iglesias B, Sugiyama O, Tang A, Hollis R, Bougioukli S, Skorka T, Park S, Longjohn D, Oakes DA, Kohn DB, Lieberman JR. Regional Gene Therapy with Transduced Human Cells: The Influence of "Cell Dose" on Bone Repair. Tissue Eng Part A 2021; 27:1422-1433. [PMID: 33882718 DOI: 10.1089/ten.tea.2020.0382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regional gene therapy using a lentiviral vector containing the BMP-2 complementary DNA (cDNA) has been shown to heal critical-sized bone defects in rodent models. An appropriate "cellular dose" needs to be defined for eventual translation into human trials. The purpose of this study was to evaluate bone defect healing potential and quality using three different doses of transduced human bone marrow cells (HBMCs). HBMCs were transduced with a lentiviral vector containing either BMP-2 or green fluorescent protein (GFP). All cells were loaded onto compression-resistant matrices and implanted in the bone defect of athymic rats. Treatment groups included femoral defects that were treated with a low-dose (1 × 106 cells), standard-dose (5 × 106 cells), and high-dose (1.5 × 107 cells) HBMCs transduced with lentiviral vector containing BMP-2 cDNA. The three control groups were bone defects treated with HBMCs that were either nontransduced or transduced with vector containing GFP. All animals were sacrificed at 12 weeks. The bone formed in each defect was evaluated with plain radiographs, microcomputed tomography (microCT), histomorphometric analysis, and biomechanical testing. Bone defects treated with higher doses of BMP-2-producing cells were more likely to have healed (6/14 of the low-dose group; 12/14 of the standard-dose group; 14/14 of the high-dose group; χ2(2) = 15.501, p < 0.001). None of the bone defects in the control groups had healed. Bone defects treated with high dose and standard dose of BMP-2-producing cells consistently outperformed those treated with a low dose in terms of bone formation, as assessed by microCT and histomorphometry, and biomechanical parameters. However, statistical significance was only seen between defects treated with high dose and low dose. Larger doses of BMP-2-producing cells were associated with a higher likelihood of forming heterotopic ossification. Femurs treated with a standard- and high-dose BMP-2-producing cells demonstrated similar healing and biomechanical properties. Increased doses of BMP-2 delivered through higher cell doses have the potential to heal large bone defects. Adapting regional gene therapy for use in humans will require a balance between promoting bone repair and limiting heterotopic ossification. Impact statement Critical bone loss may result from complex traumatic bone injury (i.e., open fracture or blast injury), revision total joint arthroplasty, and spine pseudoarthrosis. This is a challenging clinical problem to treat and regional gene therapy is an innovative means of addressing it. This study provides information regarding the quantity of cells or "cell dose" of transduced cells needed to treat a critical-sized bone defect in a rat model. This information may be extrapolated for use in humans in future trials.
Collapse
Affiliation(s)
- Hansel Ihn
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Hyunwoo Kang
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Brenda Iglesias
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Osamu Sugiyama
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Amy Tang
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Roger Hollis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Sofia Bougioukli
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Tautis Skorka
- USC Molecular Imaging Center, Los Angeles, California, USA
| | - Sanghyun Park
- Orthopaedic Institute for Children, J. Vernon Luck. Sr., Orthopedic Research Center, Los Angeles, California, USA
| | - Donald Longjohn
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Daniel A Oakes
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA.,Department of Molecular & Medical Pharmacology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA.,Eli & Edythe Broad Center for Regenerative Medicine & Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jay R Lieberman
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
218
|
Naszályi Nagy L, Dhaene E, Van Zele M, Mihály J, Klébert S, Varga Z, Kövér KE, De Buysser K, Van Driessche I, Martins JC, Fehér K. Silica@zirconia Core@shell Nanoparticles for Nucleic Acid Building Block Sorption. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2166. [PMID: 34578482 PMCID: PMC8468278 DOI: 10.3390/nano11092166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
The development of delivery systems for the immobilization of nucleic acid cargo molecules is of prime importance due to the need for safe administration of DNA or RNA type of antigens and adjuvants in vaccines. Nanoparticles (NP) in the size range of 20-200 nm have attractive properties as vaccine carriers because they achieve passive targeting of immune cells and can enhance the immune response of a weakly immunogenic antigen via their size. We prepared high capacity 50 nm diameter silica@zirconia NPs with monoclinic/cubic zirconia shell by a green, cheap and up-scalable sol-gel method. We studied the behavior of the particles upon water dialysis and found that the ageing of the zirconia shell is a major determinant of the colloidal stability after transfer into the water due to physisorption of the zirconia starting material on the surface. We determined the optimum conditions for adsorption of DNA building blocks, deoxynucleoside monophosphates (dNMP), the colloidal stability of the resulting NPs and its time dependence. The ligand adsorption was favored by acidic pH, while colloidal stability required neutral-alkaline pH; thus, the optimal pH for the preparation of nucleic acid-modified particles is between 7.0-7.5. The developed silica@zirconia NPs bind as high as 207 mg dNMPs on 1 g of nanocarrier at neutral-physiological pH while maintaining good colloidal stability. We studied the influence of biological buffers and found that while phosphate buffers decrease the loading dramatically, other commonly used buffers, such as HEPES, are compatible with the nanoplatform. We propose the prepared silica@zirconia NPs as promising carriers for nucleic acid-type drug cargos.
Collapse
Affiliation(s)
- Livia Naszályi Nagy
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (L.N.N.); (J.C.M.)
| | - Evert Dhaene
- Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium; (E.D.); (M.V.Z.); (K.D.B.); (I.V.D.)
| | - Matthias Van Zele
- Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium; (E.D.); (M.V.Z.); (K.D.B.); (I.V.D.)
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (IMEC RCNS ELKH), Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (J.M.); (S.K.); (Z.V.)
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (IMEC RCNS ELKH), Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (J.M.); (S.K.); (Z.V.)
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (IMEC RCNS ELKH), Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (J.M.); (S.K.); (Z.V.)
| | - Katalin E. Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Klaartje De Buysser
- Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium; (E.D.); (M.V.Z.); (K.D.B.); (I.V.D.)
| | - Isabel Van Driessche
- Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium; (E.D.); (M.V.Z.); (K.D.B.); (I.V.D.)
| | - José C. Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; (L.N.N.); (J.C.M.)
| | - Krisztina Fehér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences-Eötvös Loránd Research Network at University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
219
|
Li Y, Chen J, Tsai SQ, Cheng Y. Easy-Prime: a machine learning-based prime editor design tool. Genome Biol 2021; 22:235. [PMID: 34412673 PMCID: PMC8377858 DOI: 10.1186/s13059-021-02458-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Prime editing is a revolutionary genome-editing technology that can make a wide range of precise edits in DNA. However, designing highly efficient prime editors (PEs) remains challenging. We develop Easy-Prime, a machine learning-based program trained with multiple published data sources. Easy-Prime captures both known and novel features, such as RNA folding structure, and optimizes feature combinations to improve editing efficiency. We provide optimized PE design for installation of 89.5% of 152,351 GWAS variants. Easy-Prime is available both as a command line tool and an interactive PE design server at: http://easy-prime.cc/ .
Collapse
Affiliation(s)
- Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jingjing Chen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
220
|
Guan S, Darmstädter M, Xu C, Rosenecker J. In Vitro Investigations on Optimizing and Nebulization of IVT-mRNA Formulations for Potential Pulmonary-Based Alpha-1-Antitrypsin Deficiency Treatment. Pharmaceutics 2021; 13:pharmaceutics13081281. [PMID: 34452241 PMCID: PMC8399093 DOI: 10.3390/pharmaceutics13081281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
In vitro-transcribed (IVT) mRNA has come into focus in recent years as a potential therapeutic approach for the treatment of genetic diseases. The nebulized formulations of IVT-mRNA-encoding alpha-1-antitrypsin (A1AT-mRNA) would be a highly acceptable and tolerable remedy for the protein replacement therapy for alpha-1-antitrypsin deficiency in the future. Here we show that lipoplexes containing A1AT-mRNA prepared in optimum conditions could successfully transfect human bronchial epithelial cells without significant toxicity. A reduction in transfection efficiency was observed for aerosolized lipoplexes that can be partially overcome by increasing the initial number of components. A1AT produced from cells transfected by nebulized A1AT-mRNA lipoplexes is functional and could successfully inhibit the enzyme activity of trypsin as well as elastase. Our data indicate that aerosolization of A1AT-mRNA therapy constitutes a potentially powerful means to transfect airway epithelial cells with the purpose of producing functional A1AT, while bringing along the unique advantages of IVT-mRNA.
Collapse
Affiliation(s)
- Shan Guan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China;
- Correspondence: (S.G.); (J.R.); Tel.: +86-23-68771645 (S.G.); +49-89-440057713 (J.R.); Fax: +86-23-68771645 (S.G.); +49-89-440054421 (J.R.)
| | - Max Darmstädter
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China;
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (S.G.); (J.R.); Tel.: +86-23-68771645 (S.G.); +49-89-440057713 (J.R.); Fax: +86-23-68771645 (S.G.); +49-89-440054421 (J.R.)
| |
Collapse
|
221
|
Garcia AA, Koperniku A, Ferreira JCB, Mochly-Rosen D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: past and future perspectives. Trends Pharmacol Sci 2021; 42:829-844. [PMID: 34389161 DOI: 10.1016/j.tips.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) maintains redox balance in a variety of cell types and is essential for erythrocyte resistance to oxidative stress. G6PD deficiency, caused by mutations in the G6PD gene, is present in ~400 million people worldwide, and can cause acute hemolytic anemia. Currently, there are no therapeutics for G6PD deficiency. We discuss the role of G6PD in hemolytic and nonhemolytic disorders, treatment strategies attempted over the years, and potential reasons for their failure. We also discuss potential pharmacological pathways, including glutathione (GSH) metabolism, compensatory NADPH production routes, transcriptional upregulation of the G6PD gene, highlighting potential drug targets. The needs and opportunities described here may motivate the development of a therapeutic for hematological and other chronic diseases associated with G6PD deficiency.
Collapse
Affiliation(s)
- Adriana A Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Julio C B Ferreira
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
222
|
Zhou W, Wang X. Human gene therapy: a patent analysis. Gene 2021; 803:145889. [PMID: 34371094 DOI: 10.1016/j.gene.2021.145889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022]
Abstract
Although seen as a revolution in modern science, gene therapy has been plagued by failed clinical trials and controversial ethics in the last decade. Moreover, there is no comprehensive, in-depth, high-quality analysis of global gene therapy patents. This paper proposes a method to correctly retrieve patents to address the issue and use it for the patent landscape. The results show the global patent landscape of gene therapy, with the United States dominating the field, while China has emerged as a leader in recent years. For various reasons, the EU, Korea, and Japan lag in the development of patented technologies. China has edged closer to the US in both live and indefinite patents, with the Chinese Academy of Military Medical Sciences and the Chinese Academy of Sciences leading the way, surpassing primary applicants such as the US Department of Health and Human Services, the University of California, and the University of Pennsylvania. The study also reveals four broad categories of technologies that have been extensively studied in gene therapy: basic biology of the gene and diseases, diseases being treated, gene delivery methods, and potential adverse events. What is more, Adeno-Associated Virus, Retrovirus, and Lentivirus are the most prevalent gene therapy delivery vectors after 2014. The industrial development trend revealed in this paper can provide an evidence-based basis for scientific research management and decision-making.
Collapse
Affiliation(s)
- Wuyuan Zhou
- Zhejiang Academy of Science and Technology Information, Hangzhou 310006, China
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First People's Hospital Affiliated, Huzhou University, Huzhou 313000, China
| |
Collapse
|
223
|
Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B 2021; 11:2150-2171. [PMID: 34522582 PMCID: PMC8424283 DOI: 10.1016/j.apsb.2021.05.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Within less than a decade since its inception, CRISPR-Cas9-based genome editing has been rapidly advanced to human clinical trials in multiple disease areas. Although it is highly anticipated that this revolutionary technology will bring novel therapeutic modalities to many diseases by precisely manipulating cellular DNA sequences, the low efficiency of in vivo delivery must be enhanced before its therapeutic potential can be fully realized. Here we discuss the most recent progress of in vivo delivery of CRISPR-Cas9 systems, highlight innovative viral and non-viral delivery technologies, emphasize outstanding delivery challenges, and provide the most updated perspectives.
Collapse
|
224
|
Lisowski L, Staber JM, Wright JF, Valentino LA. The intersection of vector biology, gene therapy, and hemophilia. Res Pract Thromb Haemost 2021; 5:e12586. [PMID: 34485808 PMCID: PMC8410952 DOI: 10.1002/rth2.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy is at the forefront of the drive to bring the potential of cure to patients with genetic diseases. Multiple mechanisms of effective and efficient gene therapy delivery (eg, lentiviral, adeno-associated) for transgene expression as well as gene editing have been explored to improve vector and construct attributes and achieve therapeutic success. Recent clinical research has focused on recombinant adeno-associated viral (rAAV) vectors as a preferred method owing to their naturally occurring vector biology characteristics, such as serotypes with specific tissue tropisms, facilitated in vivo delivery, and stable physicochemical properties. For those living with hereditary diseases like hemophilia, this potential curative approach is balanced against the need to provide safe, predictable, effective, and durable factor expression. While in vivo studies of rAAV gene therapy have demonstrated amelioration of the bleeding phenotype in adults, long-term safety and effectiveness remain to be established. This review discusses vector biology in the context of rAAV-based liver-directed gene therapy for hemophilia and provides an overview of the types of viral vectors and vector components that are under investigation, as well as an assessment of the challenges associated with gene therapy delivery and durability of expression.
Collapse
Affiliation(s)
- Leszek Lisowski
- Translational Vectorology Research UnitFaculty of Medicine and HealthChildren's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Janice M. Staber
- Stead Family Department of PediatricsUniversity of IowaIowa CityIAUSA
- Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - J. Fraser Wright
- Department of PediatricsDivision of Hematology, OncologyStem Cell Transplantation and Regenerative MedicineCenter for Definitive and Curative MedicineStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
225
|
Rafael D, Melendres MMR, Andrade F, Montero S, Martinez-Trucharte F, Vilar-Hernandez M, Durán-Lara EF, Schwartz S, Abasolo I. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. Int J Pharm 2021; 606:120954. [PMID: 34332061 DOI: 10.1016/j.ijpharm.2021.120954] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Despite the enormous efforts done by the scientific community in the last decades, advanced cancer is still considered an incurable disease. New formulations are continuously under investigation to improve drugs therapeutic index, i.e., increase chemotherapeutic efficacy and reduce adverse effects. In this context, hydrogels-based systems for drug local sustained/controlled release have been proposed to reduce off-target effects caused by the repeated administration of systemic/oral anticancer drugs and improve their therapeutic effectiveness. Moreover, it increases the patient welfare by reducing the number of administrations needed. Among the several types of existing hydrogels, the thermo-responsive ones, which are able to change their physical state from liquid at 25 °C to a gel at the body temperature, i.e., 37 °C, gained special attention as in situ sustained drug release depot-systems in cancer treatment. To date, several thermo-responsive hydrogels have been used for drugs and/or genetic material delivery, yielding promising results both at preclinical and clinical evaluation stages. This culminates in the market authorization of Jelmyto® for the treatment of urothelial cancer. Here are summarized and discussed the last 10 years advances regarding the application of thermo-responsive hydrogels in local cancer treatment.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Mercè Roca Melendres
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Spain.
| | - Sara Montero
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Martinez-Trucharte
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Vilar-Hernandez
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Francisco Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
226
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
227
|
Rodríguez-Merchán EC, De Pablo-Moreno JA, Liras A. Gene Therapy in Hemophilia: Recent Advances. Int J Mol Sci 2021; 22:7647. [PMID: 34299267 PMCID: PMC8306493 DOI: 10.3390/ijms22147647] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.
Collapse
Affiliation(s)
- E. Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research–IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain;
| | - Juan Andres De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
228
|
Fletcher S, Jenner K, Holland M, Chaplin S, Khair K. An exploration of why men with severe haemophilia might not want gene therapy: The exigency study. Haemophilia 2021; 27:760-768. [PMID: 34265145 DOI: 10.1111/hae.14378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION For many people with haemophilia (PwH) gene therapy offers a potential functional cure. However, some have stated that they do not wish to have gene therapy either now or in the future. AIM This sub-study, part of the larger Exigency programme, assesses the attitudes, views and understanding of those who do not wish to undergo gene therapy. METHODS Participants were approached via social media and word of mouth referral and invited to participate in a focus group or individual interview to discuss their views. Interviews were recorded, transcribed verbatim and analysed thematically. RESULTS Ten adult men with severe haemophilia (eight haemophilia A and two haemophilia B), mean age 34.3 years, participated in a 1-h focus group (n = 9) or interview (n = 1). All were on prophylaxis. None reported significant treatment burden, and all had annual bleeding rates of less than five in the previous 12 months. Four major themes emerged: self-identity and its loss, lack of long-term safety and efficacy data, ongoing concerns about past viral infection, and lack of current treatment burden. CONCLUSION There are many concerns about gene therapy, including eligibility, effectiveness and safety, which may result in individuals declining it as a therapy. These concerns may recede as more data are published. This study reveals a psychological dynamic around self-identity and belonging for PwH. The nature of this dynamic is poorly understood and needs exploration to facilitate support for those making decisions about gene therapy.
Collapse
Affiliation(s)
- Simon Fletcher
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | | |
Collapse
|
229
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
230
|
Sanchez-Martos M, Martinez-Navarrete G, Bernabeu-Zornoza A, Humphreys L, Fernandez E. Evaluation and Optimization of Poly-d-Lysine as a Non-Natural Cationic Polypeptide for Gene Transfer in Neuroblastoma Cells. NANOMATERIALS 2021; 11:nano11071756. [PMID: 34361142 PMCID: PMC8308159 DOI: 10.3390/nano11071756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cationic polypeptides and cationic polymers have cell-penetrating capacities and have been used in gene transfer studies. In this study, we investigate the capability of a polymer of d-lysine (PDL), a chiral form of α–Poly-lysine, as a possible nonviral vector for releasing genetic materials to neuroblastoma cells and evaluate its stability against proteases. We tested and compared its transfection effectiveness in vitro as a vehicle for the EGFP plasmid DNA (pDNA) reporter in the SH-SY5Y human neuroblastoma, HeLa, and 3T3 cell lines. Using fluorescent microscopy and flow cytometry, we demonstrated high transfection efficiencies based on EGFP fluorescence in SH-SY5Y cells, compared with HeLa and 3T3. Our results reveal PDL as an efficient vector for gene delivery specifically in the SH-SY5Y cell line and suggest that PDL can be used as a synthetic cell-penetrating polypeptide for gene therapy in neuroblastoma cells.
Collapse
Affiliation(s)
- Miguel Sanchez-Martos
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Gema Martinez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Lawrence Humphreys
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eduardo Fernandez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222001
| |
Collapse
|
231
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
232
|
Lau M, Hsin MKY. Commentary: Can the new synthetic adeno-associated virus vector deliver the promise of cardiac gene therapy? J Thorac Cardiovasc Surg 2021; 164:e446-e447. [PMID: 34226049 DOI: 10.1016/j.jtcvs.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Lau
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China
| | - Michael K Y Hsin
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
233
|
Orive G, Anitua E. Platelet-rich therapies as an emerging platform for regenerative medicine. Expert Opin Biol Ther 2021; 21:1603-1608. [PMID: 34043484 DOI: 10.1080/14712598.2021.1936495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The combination of human plasma components with the multiple secretome from platelets has provided a new biological tool that is shaping a new future for its direct application in tissue regeneration as well as in cell culture and advanced therapy by means of its use as a clinical-grade supplement. AREAS COVERED Some relevant aspects related to the biology, growth factor delivery and molecular pathways driving the biological effects of platelet-rich therapies are summarized. Their use as clinical-grade cell supplements and advanced therapies is also carefully described. EXPERT OPINION Platelet-rich plasma therapies, and especially PRGF, contain an incredible number of biologically active agents that may exert regenerative and therapeutic potential. Here, we highlight the latest advances in this biological approach for the delivery of autologous growth factors with some of the recent new applications including the development of a clinical-grade supplement for advanced therapy.
Collapse
Affiliation(s)
- Gorka Orive
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain.,Department of Pharmacy, NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo De La Universidad 7, Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
234
|
Hartl D, de Luca V, Kostikova A, Laramie J, Kennedy S, Ferrero E, Siegel R, Fink M, Ahmed S, Millholland J, Schuhmacher A, Hinder M, Piali L, Roth A. Translational precision medicine: an industry perspective. J Transl Med 2021; 19:245. [PMID: 34090480 PMCID: PMC8179706 DOI: 10.1186/s12967-021-02910-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In the era of precision medicine, digital technologies and artificial intelligence, drug discovery and development face unprecedented opportunities for product and business model innovation, fundamentally changing the traditional approach of how drugs are discovered, developed and marketed. Critical to this transformation is the adoption of new technologies in the drug development process, catalyzing the transition from serendipity-driven to data-driven medicine. This paradigm shift comes with a need for both translation and precision, leading to a modern Translational Precision Medicine approach to drug discovery and development. Key components of Translational Precision Medicine are multi-omics profiling, digital biomarkers, model-based data integration, artificial intelligence, biomarker-guided trial designs and patient-centric companion diagnostics. In this review, we summarize and critically discuss the potential and challenges of Translational Precision Medicine from a cross-industry perspective.
Collapse
Affiliation(s)
- Dominik Hartl
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| | - Valeria de Luca
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anna Kostikova
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Laramie
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Scott Kennedy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Martin Fink
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Markus Hinder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Luca Piali
- Roche Innovation Center Basel, Basel, Switzerland
| | - Adrian Roth
- Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
235
|
Lai WH, Fang CY, Chou MC, Lin MC, Shen CH, Chao CN, Jou YC, Chang D, Wang M. Peptide-guided JC polyomavirus-like particles specifically target bladder cancer cells for gene therapy. Sci Rep 2021; 11:11889. [PMID: 34088940 PMCID: PMC8178405 DOI: 10.1038/s41598-021-91328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
The ultimate goal of gene delivery vectors is to establish specific and effective treatments for human diseases. We previously demonstrated that human JC polyomavirus (JCPyV) virus-like particles (VLPs) can package and deliver exogenous DNA into susceptible cells for gene expression. For tissue-specific targeting in this study, JCPyV VLPs were conjugated with a specific peptide for bladder cancer (SPB) that specifically binds to bladder cancer cells. The suicide gene thymidine kinase was packaged and delivered by SPB-conjugated VLPs (VLP-SPBs). Expression of the suicide gene was detected only in human bladder cancer cells and not in lung cancer or neuroblastoma cells susceptible to JCPyV VLP infection in vitro and in vivo, demonstrating the target specificity of VLP-SPBs. The gene transduction efficiency of VLP-SPBs was approximately 100 times greater than that of VLPs without the conjugated peptide. JCPyV VLPs can be specifically guided to target particular cell types when tagged with a ligand molecule that binds to a cell surface marker, thereby improving gene therapy.
Collapse
Affiliation(s)
- Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chieh Chou
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan
| | - Mien-Chun Lin
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan.
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University and Clinical Laboratory, Chung-Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
| |
Collapse
|
236
|
Challenging Safety and Efficacy of Retinal Gene Therapies by Retinogenesis. Int J Mol Sci 2021; 22:ijms22115767. [PMID: 34071252 PMCID: PMC8198227 DOI: 10.3390/ijms22115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Gene-expression programs modulated by transcription factors (TFs) mediate key developmental events. Here, we show that the synthetic transcriptional repressor (TR; ZF6-DB), designed to treat Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP), does not perturb murine retinal development, while maintaining its ability to block Rho expression transcriptionally. To express ZF6-DB into the developing retina, we pursued two approaches, (i) the retinal delivery (somatic expression) of ZF6-DB by Adeno-associated virus (AAV) vector (AAV-ZF6-DB) gene transfer during retinogenesis and (ii) the generation of a transgenic mouse (germ-line transmission, TR-ZF6-DB). Somatic and transgenic expression of ZF6-DB during retinogenesis does not affect retinal function of wild-type mice. The P347S mouse model of RHO-adRP, subretinally injected with AAV-ZF6-DB, or crossed with TR-ZF6-DB or shows retinal morphological and functional recovery. We propose the use of developmental transitions as an effective mode to challenge the safety of retinal gene therapies operating at genome, transcriptional, and transcript levels.
Collapse
|
237
|
Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev 2021; 47:100759. [DOI: 10.1016/j.blre.2020.100759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
|
238
|
Research Highlights. Transplantation 2021. [DOI: 10.1097/tp.0000000000003760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
239
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
240
|
Yung NK, Maassel NL, Ullrich SJ, Ricciardi AS, Stitelman DH. A narrative review of in utero gene therapy: advances, challenges, and future considerations. Transl Pediatr 2021; 10:1486-1496. [PMID: 34189107 PMCID: PMC8192997 DOI: 10.21037/tp-20-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The field of in utero gene therapy (IUGT) represents a crossroad of technologic advancements and medical ethical boundaries. Several strategies have been developed for IUGT focusing on either modifying endogenous genes, replacing missing genes, or modifying gene transcription products. The list of candidate diseases such as hemoglobinopathies, cystic fibrosis, lysosomal storage disorders continues to grow with new strategies being developed as our understanding of their respective underlying molecular pathogenesis increases. Treatment in utero has several distinct advantages to postnatal treatment. Biologic and physiologic phenomena enable the delivery of a higher effective dose, generation of immune tolerance, and the prevention of phenotypic onset for genetic diseases. Therapeutic technology for IUGT including CRISPR-Cas9 systems, zinc finger nucleases (ZFN), and peptide nucleic acids (PNAs) has already shown promise in animal models and early postnatal clinical trials. While the ability to detect fetal diagnoses has dramatically improved with developments in ultrasound and next-generation sequencing, treatment options remain experimental, with several translational gaps remaining prior to implementation in the clinical realm. Complicating this issue, the potential diseases targeted by this approach are often debilitating and would otherwise prove fatal if not treated in some manner. The leap from small animals to large animals, and subsequently, to humans will require further vigorous testing of safety and efficacy.
Collapse
Affiliation(s)
- Nicholas K Yung
- Department of General Surgery, Yale University, New Haven, CT, USA
| | - Nathan L Maassel
- Department of General Surgery, Yale University, New Haven, CT, USA
| | - Sarah J Ullrich
- Department of General Surgery, Yale University, New Haven, CT, USA
| | - Adele S Ricciardi
- Department of General Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - David H Stitelman
- Department of General Surgery, Yale University, New Haven, CT, USA.,Department of Pediatric Surgery, Yale University, New Haven, CT, USA
| |
Collapse
|
241
|
Askou AL, Jakobsen TS, Corydon TJ. Retinal gene therapy: an eye-opener of the 21st century. Gene Ther 2021; 28:209-216. [PMID: 32561864 DOI: 10.1038/s41434-020-0168-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Thomas Stax Jakobsen
- Department of Ophthalmology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| |
Collapse
|
242
|
Yu S, Zhang H, Zhang S, Zhong M, Fan H. Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Front Chem 2021; 9:651053. [PMID: 33987168 PMCID: PMC8110829 DOI: 10.3389/fchem.2021.651053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Ferrite nanoparticles have been widely used in the biomedical field (such as magnetic targeting, magnetic resonance imaging, magnetic hyperthermia, etc.) due to their appealing magnetic properties. In tumor acidic microenvironment, ferrite nanoparticles show intrinsic peroxidase-like activities, which can catalyze the Fenton reaction of hydrogen peroxide (H2O2) to produce highly toxic hydroxyl free radicals (•OH), causing the death of tumor cell. Recent progresses in this field have shown that the enzymatic activity of ferrite can be improved via converting external field energy such as alternating magnetic field and near-infrared laser into nanoscale heat to produce more •OH, enhancing the killing effect on tumor cells. On the other hand, combined with other nanomaterials or drugs for cascade reactions, the production of reactive oxygen species (ROS) can also be increased to obtain more efficient cancer therapy. In this review, we will discuss the current status and progress of the application of ferrite nanoparticles in ROS-mediated cancer therapy and try to provide new ideas for this area.
Collapse
Affiliation(s)
- Shancheng Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Shiya Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Mingli Zhong
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiming Fan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.,College of Chemistry and Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
243
|
Wei W, Liu Z, Wu X, Gan C, Su X, Liu H, Que H, Zhang Q, Xue Q, Yue L, Yu L, Ye T. Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Adv 2021; 11:15675-15687. [PMID: 35481216 PMCID: PMC9029309 DOI: 10.1039/d1ra01147b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
Several FDA approved small molecule anti-cancer drugs contain indazole scaffolds. Here, we report the design, synthesis and biological evaluation of a series of indazole derivatives. In vitro antiproliferative activity screening showed that compound 2f had potent growth inhibitory activity against several cancer cell lines (IC50 = 0.23-1.15 μM). Treatment of the breast cancer cell line 4T1 with 2f inhibited cell proliferation and colony formation. 2f dose-dependently promoted the apoptosis of 4T1 cells, which was connected with the upregulation of cleaved caspase-3 and Bax, and downregulation of Bcl-2. 2f also decreased the mitochondrial membrane potential and increased the levels of reactive oxygen species (ROS) in 4T1 cells. Additionally, treatment with 2f disrupted 4T1 cells migration and invasion, and the reduction of matrix metalloproteinase metalloproteinase-9 (MMP9) and increase of tissue inhibitor matrix metalloproteinase 2 (TIMP2) were also observed. Moreover, 2f could suppress the growth of the 4T1 tumor model without obvious side effects in vivo. Taken together, these results identified 2f as a potential small molecule anti-cancer agent.
Collapse
Affiliation(s)
- Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Zhihao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Qianyu Zhang
- Research Center for Public Health & Preventive Medicine, West China School of Public Health & Healthy Food Evaluation Research Center, West China Fourth Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Qiang Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Luoting Yu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
244
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
245
|
Pimenta C, Bettiol V, Alencar-Silva T, Franco OL, Pogue R, Carvalho JL, Felipe MSS. Advanced Therapies and Regulatory Framework in Different Areas of the Globe: Past, Present, and Future. Clin Ther 2021; 43:e103-e138. [PMID: 33892966 DOI: 10.1016/j.clinthera.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The field of human medicine is in a constant state of evolution, developing and incorporating technological advances from diverse scientific fields. In recent years, cellular and gene therapies have come of age, challenging regulatory agencies to define the path for commercial registration. Approval necessarily demands robust evidence for safety and efficacy, but these exigencies must not be such that they render unviable the development and testing of the therapeutic agent. Furthermore, reimbursement strategies are required to guarantee commercial viability of these products, to avoid the risk that they will be removed from the market or become unavailable to most patients through lack of financial resources. To address such challenges, several countries have created strategies to manage advanced therapy products. METHODS Based on official documents published by regulatory agencies worldwide, this review summarizes the current scenario in the United States, Europe, Brazil, Japan, South Korea, and China in this regard, discussing the harmonized and dissonant aspects of the regulatory framework in different regions of the world and exploring perspectives for the future. FINDINGS The technical aspects of advanced therapies are increasingly complex, bringing challenges for high mass commercialization and demanding specific regulation. The regulatory framework of the analyzed regions is mainly recent and discordant, but many harmonizing initiatives were observed. IMPLICATIONS The comparative analysis of regulatory frameworks in different parts of the world is informative, as scientists must be aware of the rationale of regulators to assertively develop new technology and products that will be commercialized. The comparative analysis also provides insight into the main dissonances that must be addressed, fostering the harmonization of local regulatory frameworks. Many unanswered questions still lie ahead for the field of advanced therapies, and empirical evidence will be the most effective way to separate hype from hope and to establish the most sustainable mechanisms to regulate and finance such products in each part of the world.
Collapse
Affiliation(s)
- Cleila Pimenta
- Public Health Program, University of Brasília, DF, Brazil
| | - Vitória Bettiol
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Thuany Alencar-Silva
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Octavio Luiz Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Catholic University of Dom Bosco, Campo Grande, MS, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Faculty of Medicine, University of Brasília, DF, Brazil
| | - Maria Sueli Soares Felipe
- Public Health Program, University of Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil.
| |
Collapse
|
246
|
Wang X, Luo X, Tian Y, Wu T, Weng J, Li Z, Ye F, Huang X. Equipping Natural Killer Cells with Cetuximab through Metabolic Glycoengineering and Bioorthogonal Reaction for Targeted Treatment of KRAS Mutant Colorectal Cancer. ACS Chem Biol 2021; 16:724-730. [PMID: 33829754 DOI: 10.1021/acschembio.1c00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While Cetuximab can be used to treat KRAS wild-type colon cancer cells by targeting EGFR and inhibiting the activation of downstream signaling pathways, it exhibits little therapeutic effect on KRAS mutant colon cancer cells. Natural killer (NK) cells are a class of powerful immune cells with anticancer activities. However, NK cells typically lack inherent tumor targeting abilities. Here, a new method is established to bestow NK-92 cells with tumor targeting abilities by installing cetuximab on the cell surface. Through metabolic glycoengineering, azide groups were introduced onto the surface of NK-92 cells. Bioorthogonal strain promoted the azide-alkyne cycloaddition click reaction of engineered NK-92 cells with alkyne modified cetuximab functionalized NK cells with the antibody. The resulting NK-92 cells were significantly more effective than the parent NK-92 cells in protecting against tumor development in a KRAS mutant mouse tumor model resistant to cetuximab treatment. Thus, NK cell functionalization with antibodies enabled by metabolic glycoengineering is a promising strategy to enhance anticancer immune therapy.
Collapse
Affiliation(s)
- Xianwu Wang
- Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xi Luo
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yunpeng Tian
- Xiamen Nuokangde Biological Technology Co., Ltd, Xiamen, 361006, China
| | - Ting Wu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jian Weng
- Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhu Li
- Xiamen Nuokangde Biological Technology Co., Ltd, Xiamen, 361006, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xuefei Huang
- Department of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
247
|
Cai W, Luo T, Mao L, Wang M. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli‐Responsive Vehicles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202005644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weiqi Cai
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) No. 2, North first street Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences No.19 (A) Yuquan Road Shijingshan District China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) No. 2, North first street Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences No.19 (A) Yuquan Road Shijingshan District China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) No. 2, North first street Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences No.19 (A) Yuquan Road Shijingshan District China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) No. 2, North first street Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences No.19 (A) Yuquan Road Shijingshan District China
| |
Collapse
|
248
|
Yang Y, Yue S, Qiao Y, Zhang P, Jiang N, Ning Z, Liu C, Hou Y. Activable Multi-Modal Nanoprobes for Imaging Diagnosis and Therapy of Tumors. Front Chem 2021; 8:572471. [PMID: 33912535 PMCID: PMC8075363 DOI: 10.3389/fchem.2020.572471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023] Open
Abstract
Malignant tumors have become one of the major causes of human death, but there remains a lack of effective methods for tiny tumor diagnosis, metastasis warning, clinical efficacy prediction, and effective treatment. In this context, localizing tiny tumors via imaging and non-invasively extracting molecular information related to tumor proliferation, invasion, metastasis, and drug resistance from the tumor microenvironment have become the most fundamental tasks faced by cancer researchers. Tumor-associated microenvironmental physiological parameters, such as hypoxia, acidic extracellular pH, protease, reducing conditions, and so forth, have much to do with prognostic indicators for cancer progression, and impact therapeutic administrations. By combining with various novel nanoparticle-based activatable probes, molecular imaging technologies can provide a feasible approach to visualize tumor-associated microenvironment parameters noninvasively and realize accurate treatment of tumors. This review focuses on the recent achievements in the design of “smart” nanomedicine responding to the tumor microenvironment-related features and highlights state-of- the-art technology in tumor imaging diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ni Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenbo Ning
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chunyan Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
249
|
Nicolau S, Waldrop MA, Connolly AM, Mendell JR. Spinal Muscular Atrophy. Semin Pediatr Neurol 2021; 37:100878. [PMID: 33892848 DOI: 10.1016/j.spen.2021.100878] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy is one of the most common neuromuscular disorders of childhood and has high morbidity and mortality. Three different disease-modifying treatments were introduced in the last 4 years: nusinersen, onasemnogene abeparvovec, and risdiplam. These agents have demonstrated safety and efficacy, but their long-term benefits require further study. Newborn screening programs are enabling earlier diagnosis and treatment and better outcomes, but respiratory care and other supportive measures retain a key role in the management of spinal muscular atrophy. Ongoing efforts seek to optimize gene therapy vectors, explore new therapeutic targets beyond motor neurons, and evaluate the role of combination therapy.
Collapse
Affiliation(s)
- Stefan Nicolau
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH.
| | - Megan A Waldrop
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Anne M Connolly
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| |
Collapse
|
250
|
Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J. The NIH Somatic Cell Genome Editing program. Nature 2021; 592:195-204. [PMID: 33828315 PMCID: PMC8026397 DOI: 10.1038/s41586-021-03191-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.
Collapse
Affiliation(s)
- Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical History & Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - P J Brooks
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - David R Liu
- Merkin Institute of Transformative Technologies, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Marina E Emborg
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ionita C Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - John T Hinson
- Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Samira Kiani
- Pittsburgh Liver Research Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Danith H Ly
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Samantha Maragh
- Biomarker and Genomic Sciences Group, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Oleg Mirochnitchenko
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Morizane
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John A Ronald
- Robarts Research Institute and Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sushmita Roy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David J Segal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mary Shimoyama
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Alice F Tarantal
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
- School of Medicine, University of California, Davis, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - John C Tilton
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Moriel Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Worcester, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guohua Yi
- Department of Pulmonary Immunology, University of Texas Health Sciences Center at Tyler, Tyler, TX, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| |
Collapse
|