201
|
Burré J, Zimmermann H, Volknandt W. Immunoisolation and subfractionation of synaptic vesicle proteins. Anal Biochem 2007; 362:172-81. [PMID: 17266918 DOI: 10.1016/j.ab.2006.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Within recent years, the advances in proteomics techniques have resulted in considerable novel insights into the protein expression patterns of specific tissues, cells, and organelles. The information acquired from large-scale proteomics approaches indicated, however, that the proteomic analysis of whole cells or tissues is often not suited to fully unravel the proteomes of individual organellar constituents or to identify proteins that are present at low copy numbers. In addition, the identification of hydrophobic proteins is still a challenge. Therefore, the development of techniques applicable for the enrichment of low-abundance membrane proteins is essential for a comprehensive proteomic analysis. In addition to the enrichment of particular subcellular structures by subcellular fractionation, the spectrum of techniques applicable for proteomics research can be extended toward the separation of integral and peripheral membrane proteins using organic solvents, detergents, and detergent-based aqueous two-phase systems with water-soluble polymers. Here, we discuss the efficacy of a number of experimental protocols. We demonstrate that the appropriate selection of physicochemical conditions results in the isolation of synaptic vesicles of high purity whose proteome can be subfractionated into integral membrane proteins and soluble proteins by several phase separation techniques.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Cell Biology and Neuroscience, Neurochemistry, JW Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt, Germany.
| | | | | |
Collapse
|
202
|
Borner GHH, Harbour M, Hester S, Lilley KS, Robinson MS. Comparative proteomics of clathrin-coated vesicles. ACTA ACUST UNITED AC 2007; 175:571-8. [PMID: 17116749 PMCID: PMC2064594 DOI: 10.1083/jcb.200607164] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clathrin-coated vesicles (CCVs) facilitate the transport of cargo between the trans-Golgi network, endosomes, and the plasma membrane. This study presents the first comparative proteomics investigation of CCVs. A CCV-enriched fraction was isolated from HeLa cells and a "mock CCV" fraction from clathrin-depleted cells. We used a combination of 2D difference gel electrophoresis and isobaric tags for relative and absolute quantification (iTRAQ) in conjunction with mass spectrometry to analyze and compare the two fractions. In total, 63 bona fide CCV proteins were identified, including 28 proteins whose association with CCVs had not previously been established. These include numerous post-Golgi SNAREs; subunits of the AP-3, retromer, and BLOC-1 complexes; lysosomal enzymes; CHC22; and five novel proteins of unknown function. The strategy outlined in this paper should be widely applicable as a means of distinguishing genuine organelle components from contaminants.
Collapse
Affiliation(s)
- Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, England, UK
| | | | | | | | | |
Collapse
|
203
|
Liu J, Bell AW, Bergeron JJM, Yanofsky CM, Carrillo B, Beaudrie CEH, Kearney RE. Methods for peptide identification by spectral comparison. Proteome Sci 2007; 5:3. [PMID: 17227583 PMCID: PMC1783643 DOI: 10.1186/1477-5956-5-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 01/16/2007] [Indexed: 11/15/2022] Open
Abstract
Background Tandem mass spectrometry followed by database search is currently the predominant technology for peptide sequencing in shotgun proteomics experiments. Most methods compare experimentally observed spectra to the theoretical spectra predicted from the sequences in protein databases. There is a growing interest, however, in comparing unknown experimental spectra to a library of previously identified spectra. This approach has the advantage of taking into account instrument-dependent factors and peptide-specific differences in fragmentation probabilities. It is also computationally more efficient for high-throughput proteomics studies. Results This paper investigates computational issues related to this spectral comparison approach. Different methods have been empirically evaluated over several large sets of spectra. First, we illustrate that the peak intensities follow a Poisson distribution. This implies that applying a square root transform will optimally stabilize the peak intensity variance. Our results show that the square root did indeed outperform other transforms, resulting in improved accuracy of spectral matching. Second, different measures of spectral similarity were compared, and the results illustrated that the correlation coefficient was most robust. Finally, we examine how to assemble multiple spectra associated with the same peptide to generate a synthetic reference spectrum. Ensemble averaging is shown to provide the best combination of accuracy and efficiency. Conclusion Our results demonstrate that when combined, these methods can boost the sensitivity and specificity of spectral comparison. Therefore they are capable of enhancing and complementing existing tools for consistent and accurate peptide identification.
Collapse
Affiliation(s)
- Jian Liu
- Center for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - John JM Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Corey M Yanofsky
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Brian Carrillo
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | | | - Robert E Kearney
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
204
|
Bai L, Swayne LA, Braun JEA. The CSPα/G protein complex in PC12 cells. Biochem Biophys Res Commun 2007; 352:123-9. [PMID: 17113038 DOI: 10.1016/j.bbrc.2006.10.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/28/2022]
Abstract
Cysteine string proteinalpha (CSPalpha) is a regulated vesicle protein and molecular chaperone that has been found to be critical for continuous synaptic transmission and is implicated in the defense against neurodegeneration. Previous work has revealed links between CSPalpha and heterotrimeric GTP binding protein (G protein) signal transduction pathways. We have shown that CSPalpha is a guanine nucleotide exchange factor (GEF) for Galphas. In vitro Hsc70 (70 kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) switch CSPalpha from an inactive GEF to an active GEF. Here we have examined the cellular distribution of the CSPalpha system in the PC12 neuroendocrine cell line. CSPalpha, an established secretory vesicle protein, was found to concentrate in the processes of NGF-differentiated PC12 cells as expected. Gbeta subunits co-localized and Galphas subunits partially co-localized with CSPalpha. However, under the conditions examined, the GEF activity of CSPalpha is expected to be inactive, in that Hsc70 was not found in PC12 processes. These results indicate that CSPalpha activity is subject to regulation by factors that alter Hsc70 distribution and translocation within the cell.
Collapse
Affiliation(s)
- Liping Bai
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
205
|
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. Molecular anatomy of a trafficking organelle. Cell 2006; 127:831-46. [PMID: 17110340 DOI: 10.1016/j.cell.2006.10.030] [Citation(s) in RCA: 1779] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/27/2006] [Accepted: 10/12/2006] [Indexed: 02/08/2023]
Abstract
Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Casas-Terradellas E, Garcia-Gonzalo FR, Hadjebi O, Bartrons R, Ventura F, Rosa JL. Simultaneous electrophoretic analysis of proteins of very high and low molecular weights using low-percentage acrylamide gel and a gradient SDS-PAGE gel. Electrophoresis 2006; 27:3935-8. [PMID: 17054096 DOI: 10.1002/elps.200600141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To be able to separate and analyze giant proteins and small proteins in the same electrophoretic gel, we have used a continuous SDS-PAGE gel formed by the combination of a low-percentage acrylamide gel and a gradient SDS-PAGE gel that we have named LAG gel. To get a good resolution for proteins of more than 200 kDa, we used an acrylamide/bisacrylamide ratio of 80:1 in the low-percentage acrylamide gel. To successfully resolve proteins in the 5-200 kDa range, we used a conventional 6-15% SDS-PAGE gradient gel with the standard acrylamide/bisacrylamide ratio of 40:1. We show that the LAG system can be successfully used in general applications of SDS-PAGE electrophoresis such as proteomics and immunobloting techniques. Thus, using this continuous LAG gel, it is possible to simultaneously analyze giant proteins, such as HERC1 and dynein, big proteins like clathrin heavy chain and small proteins like ARF. The LAG system has a good resolution, low cost, and high reproducibility. Moreover, to simultaneously analyze all proteins saves time. All these characteristics, together with the use of a standard apparatus found in any biochemistry laboratory, make the LAG system an easy tool to use.
Collapse
Affiliation(s)
- Eduard Casas-Terradellas
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
207
|
Khanna R, Li Q, Stanley EF. 'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex. PLoS One 2006; 1:e67. [PMID: 17183698 PMCID: PMC1762330 DOI: 10.1371/journal.pone.0000067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022] Open
Abstract
Background The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. Methodology/Principle Findings The first step in FR analysis was to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. Conclusions/Significance We hypothesize that the SAE serves as a recognition site and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of FR analysis with quantitative immunocytochemistry provides a novel and effective strategy for the identification and characterization of biologically-relevant multi-molecular complexes.
Collapse
|
208
|
Allaire PD, Ritter B, Thomas S, Burman JL, Denisov AY, Legendre-Guillemin V, Harper SQ, Davidson BL, Gehring K, McPherson PS. Connecdenn, a novel DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic vesicle endocytosis. J Neurosci 2006; 26:13202-12. [PMID: 17182770 PMCID: PMC6674997 DOI: 10.1523/jneurosci.4608-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 11/21/2022] Open
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the endocytosis of multiple cargo, including synaptic vesicle membranes. We now describe a new CCV protein, termed connecdenn, that contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a poorly characterized protein module found in multiple proteins of unrelated function and a C-terminal peptide motif domain harboring three distinct motifs for binding the alpha-ear of the clathrin adaptor protein 2 (AP-2). Connecdenn coimmunoprecipitates and partially colocalizes with AP-2, and nuclear magnetic resonance and peptide competition studies reveal that all three alpha-ear-binding motifs contribute to AP-2 interactions. In addition, connecdenn contains multiple Src homology 3 (SH3) domain-binding motifs and coimmunoprecipitates with the synaptic SH3 domain proteins intersectin and endophilin A1. Interestingly, connecdenn is enriched on neuronal CCVs and is present in the presynaptic compartment of neurons. Moreover, connecdenn has a uniquely stable association with CCV membranes because it resists extraction with Tris and high-salt buffers, unlike most other CCV proteins, but it is not detected on purified synaptic vesicles. Together, these observations suggest that connecdenn functions on the endocytic limb of the synaptic vesicle cycle. Accordingly, disruption of connecdenn interactions with its binding partners through overexpression of the C-terminal peptide motif domain or knock down of connecdenn through lentiviral delivery of small hairpin RNA both lead to defects in synaptic vesicle endocytosis in cultured hippocampal neurons. Thus, we identified connecdenn as a component of the endocytic machinery functioning in synaptic vesicle endocytosis, providing the first evidence of a role for a DENN domain-containing protein in endocytosis.
Collapse
Affiliation(s)
- Patrick D. Allaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Sebastien Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Jonathon L. Burman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexei Yu. Denisov
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, Quebec, Canada, H3G 1Y6, and
| | - Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Scott Q. Harper
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Beverly L. Davidson
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Kalle Gehring
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, Quebec, Canada, H3G 1Y6, and
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
209
|
Jensen TP, Filoteo AG, Knopfel T, Empson RM. Presynaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J Physiol 2006; 579:85-99. [PMID: 17170045 PMCID: PMC2075377 DOI: 10.1113/jphysiol.2006.123901] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasma membrane calcium ATPase isoforms (PMCAs) are expressed in a wide variety of tissues where cell-specific expression provides ample opportunity for functional diversity amongst these transporters. The PMCAs use energy derived from ATP to extrude submicromolar concentrations of intracellular Ca2+ ([Ca2+]i) out of the cell. Their high affinity for Ca2+ and the speed with which they remove [Ca2+]i depends upon splicing at their carboxy (C)-terminal site. Here we provide biochemical and functional evidence that a brain-specific, C-terminal truncated and therefore fast variant of PMCA2, PMCA2a, has a role at hippocampal CA3 synapses. PMCA2a was enriched in forebrain synaptosomes, and in hippocampal CA3 it colocalized with the presynaptic marker proteins synaptophysin and the vesicular glutamate transporter 1, but not with the postsynaptic density protein PSD-95. PMCA2a also did not colocalize with glutamic acid decarboxylase-65, a marker of GABA-ergic terminals, although it did localize to a small extent with parvalbumin-positive presumed inhibitory terminals. Pharmacological inhibition of PMCA increased the frequency but not the amplitude of mEPSCs with little effect on mIPSCs or paired-pulse depression of evoked IPSCs. However, inhibition of PMCA activity did enhance the amplitude and slowed the recovery of paired-pulse facilitation (PPF) of evoked EPSCs. These results indicated that fast PMCA2a-mediated clearance of [Ca2+]i from presynaptic excitatory terminals regulated excitatory synaptic transmission within hippocampal CA3.
Collapse
Affiliation(s)
- Thomas P Jensen
- School of Biological Sciences, Royal Holloway University of London, UK
| | | | | | | |
Collapse
|
210
|
Williams JN, Skipp PJ, Humphries HE, Christodoulides M, O'Connor CD, Heckels JE. Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 2006; 75:1364-72. [PMID: 17158897 PMCID: PMC1828559 DOI: 10.1128/iai.01424-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current experimental vaccines against serogroup B Neisseria meningitidis are based on meningococcal outer membrane (OM) proteins present in outer membrane vesicles (OMV) in which toxic lipopolysaccharide is depleted by detergent extraction. Knowledge of the composition of OM and OMV is essential for developing new meningococcal vaccines based on defined antigens. In the current study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nanocapillary liquid chromatography-tandem mass spectrometry were used to investigate the proteomes of OM and OMV from meningococcal strain MC58 and OM from a lipopolysaccharide-deficient mutant. The analysis of OM revealed a composition that was much more complex than the composition that has been reported previously; a total of 236 proteins were identified, only 6.4% of which were predicted to be located in the outer membrane. The most abundant proteins included not only the well-established major OM proteins (PorA, PorB, Opc, Rmp, and Opa) but also other proteins, such as pilus-associated protein Q (PilQ) and a putative macrophage infectivity protein. All of these proteins were also present in OMV obtained by extraction of the OM with deoxycholate. There were markedly increased levels of some additional proteins in OM from the lipopolysaccharide-deficient mutant, including enzymes that contribute to the tricarboxylic acid cycle. In all the preparations, the proteins not predicted to have an OM location were predominantly periplasmic or cytoplasmic or had an unknown location, and relatively few cytoplasmic membrane proteins were detected. However, several proteins that have previously been identified as potential vaccine candidates were not detected in either OM preparations or in OMV. These results have important implications for the development and use of vaccines based on outer membrane proteins.
Collapse
Affiliation(s)
- Jeannette N Williams
- Molecular Microbiology Group, Division of Infection Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | |
Collapse
|
211
|
Lemaire JF, McPherson PS. Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of a new internal PDZ-recognition motif. FEBS Lett 2006; 580:6948-54. [PMID: 17161399 DOI: 10.1016/j.febslet.2006.11.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/30/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
PDZ domains mediate protein interactions primarily through either classical recognition of carboxyl-terminal motifs or PDZ/PDZ domain associations. Several studies have also described internal modes of PDZ recognition, most of which depend on beta-finger structures. Here, we describe a novel interaction between the PDZ domain of nNOS and Vac14, the activator of the PtdIns(3)P 5-kinase PIKfyve. Binding assays using various Vac14 deletion constructs revealed a beta-finger independent interaction that is based on a novel internal motif. Mutational analyses reveal essential residues within the motif allowing us to define a new type of PDZ domain interaction.
Collapse
Affiliation(s)
- Jean-François Lemaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | |
Collapse
|
212
|
Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 2006; 6:6250-62. [PMID: 17080482 DOI: 10.1002/pmic.200600357] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Neurochemistry, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJC, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJM. Quantitative Proteomics Analysis of the Secretory Pathway. Cell 2006; 127:1265-81. [PMID: 17174899 DOI: 10.1016/j.cell.2006.10.036] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/20/2006] [Accepted: 10/04/2006] [Indexed: 11/24/2022]
Abstract
We report more than 1400 proteins of the secretory-pathway proteome and provide spatial information on the relative presence of each protein in the rough and smooth ER Golgi cisternae and Golgi-derived COPI vesicles. The data support a role for COPI vesicles in recycling and cisternal maturation, showing that Golgi-resident proteins are present at a higher concentration than secretory cargo. Of the 1400 proteins, 345 were identified as previously uncharacterized. Of these, 230 had their subcellular location deduced by proteomics. This study provides a comprehensive catalog of the ER and Golgi proteomes with insight into their identity and function.
Collapse
Affiliation(s)
- Annalyn Gilchrist
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 2006; 103:18928-33. [PMID: 17138671 PMCID: PMC1672612 DOI: 10.1073/pnas.0606379103] [Citation(s) in RCA: 443] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Components of multiprotein complexes are routinely determined by using proteomic approaches. However, this information lacks functional content except when new complex members are identified. To analyze quantitatively the abundance of proteins in human Mediator we used normalized spectral abundance factors generated from shotgun proteomics data sets. With this approach we define a common core of mammalian Mediator subunits shared by alternative forms that variably associate with the kinase module and RNA polymerase (pol) II. Although each version of affinity-purified Mediator contained some kinase module and RNA pol II, Mediator purified through F-Med26 contained the most RNA pol II and the least kinase module as demonstrated by the normalized spectral abundance factor approach. The distinct forms of Mediator were functionally characterized by using a transcriptional activity assay, where F-Med26 Mediator/RNA pol II was the most active. This method of protein complex visualization has important implications for the analysis of multiprotein complexes and assembly of protein interaction networks.
Collapse
Affiliation(s)
| | - Tari J. Parmely
- *Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Shigeo Sato
- *Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Dongxiao Zhu
- *Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Ronald C. Conaway
- *Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160; and
| | - Joan Weliky Conaway
- *Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160; and
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| | | | - Michael P. Washburn
- *Stowers Institute for Medical Research, Kansas City, MO 64110
- To whom correspondence should be addressed at: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110. E-mail:
| |
Collapse
|
215
|
Rappoport JZ, Kemal S, Benmerah A, Simon SM. Dynamics of clathrin and adaptor proteins during endocytosis. Am J Physiol Cell Physiol 2006; 291:C1072-81. [PMID: 17035303 DOI: 10.1152/ajpcell.00160.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endocytic adaptor complex AP-2 colocalizes with the majority of clathrin-positive spots at the cell surface. However, we previously observed that AP-2 is excluded from internalizing clathrin-coated vesicles (CCVs). The present studies quantitatively demonstrate that AP-2 disengages from sites of endocytosis seconds before internalization of the nascent CCV. In contrast, epsin, an alternate adaptor for clathrin at the plasma membrane, disappeared, along with clathrin. This suggests that epsin remains an integral part of the CCV throughout endocytosis. Clathrin spots at the cell surface represent a heterogeneous population: a majority (70%) of the spots disappeared with a time course of 4 min, whereas a minority (22%) remained static for > or =30 min. The static clathrin spots undergo constant subunit exchange, suggesting that although they are static structures, these spots comprise functional clathrin molecules, rather than dead-end aggregates. These results support a model where AP-2 serves a cargo-sorting function before endocytosis, whereas alternate adaptors, such as epsin, actually link cargo to the clathrin coat surrounding nascent endocytic vesicles. These data also support a role for static clathrin, providing a nucleation site for endocytosis.
Collapse
Affiliation(s)
- Joshua Z Rappoport
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
216
|
Hosaka M, Watanabe T, Yamauchi Y, Sakai Y, Suda M, Mizutani S, Takeuchi T, Isobe T, Izumi T. A subset of p23 localized on secretory granules in pancreatic beta-cells. J Histochem Cytochem 2006; 55:235-45. [PMID: 17101722 DOI: 10.1369/jhc.6a7093.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins on the membrane of secretory granules (SGs) involved in their biogenesis and exocytosis are poorly characterized compared with those of synaptic vesicle in neurons. Thus the secretory granule membrane was prepared from a mouse pancreatic beta-cell line MIN6 by subcellular fractionation, and protein constituents were analyzed by microscale two-dimensional liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Using this proteomics approach, one of the p24 family proteins, p23, was unexpectedly found in the granule fraction, although p24 proteins are generally regarded as functioning in the early secretory pathways between the endoplasmic reticulum and the Golgi apparatus. We further showed that p23 is expressed at high levels in endocrine cells. Furthermore, immunocytochemical analyses of pancreatic beta-cells at the light and electron microscopic levels demonstrated that a significant amount of p23 is localized on the insulin granule membrane, although it is most intensely concentrated at the cis-Golgi compartment as previously shown in non-endocrine cells. These findings suggest that a fraction of p23 enters post-Golgi compartments and may function in the biogenesis and/or quality control of SGs.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
218
|
Mouchantaf R, Azakir BA, McPherson PS, Millard SM, Wood SA, Angers A. The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J Biol Chem 2006; 281:38738-47. [PMID: 17038327 DOI: 10.1074/jbc.m605959200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Itch is a ubiquitin ligase that has been implicated in the regulation of a number of cellular processes. We previously have identified Itch as a binding partner for the endocytic protein Endophilin and found it to be localized to endosomes. Using affinity purification coupled to mass spectrometry, we have now identified the ubiquitin-protease FAM/USP9X as a binding partner of Itch. The association between Itch and FAM/USP9X was confirmed in vitro by glutathione S-transferase pulldown and in vivo through coimmunoprecipation. Itch and FAM partially colocalize in COS-7 cells at the trans-Golgi network and in peripheral vesicles. We mapped the FAM-binding domain on Itch to the WW domains, a region known to be involved in substrate recognition. However, transient overexpression of FAM/USP9X resulted in the deubiquitylation of Itch. Moreover, we show that Itch auto-ubiquitylation leads to its degradation in the proteasome. By examining the amounts of Itch and FAM in various cell lines and rat tissues, a positive correlation was found in the expression of both proteins. This observation suggests that the levels of FAM expression could have an influence on Itch in cells. Experimental decrease in FAM levels by RNA interference leads to a significant reduction in intracellular levels of endogenous Itch, which can be prevented by treatment with the proteasome inhibitor lactacystin. Accordingly, overexpression of FAM/USP9X resulted in a marked increase in endogenous Itch levels. These results demonstrate an intriguing interplay between a ubiquitin ligase and a ubiquitin protease, based on direct interaction between the two proteins.
Collapse
Affiliation(s)
- Rania Mouchantaf
- Départment de sciences biologiques, Université de Montréal, Station Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
219
|
Schmid EM, Ford MGJ, Burtey A, Praefcke GJK, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT. Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 2006; 4:e262. [PMID: 16903783 PMCID: PMC1540706 DOI: 10.1371/journal.pbio.0040262] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 06/06/2006] [Indexed: 11/19/2022] Open
Abstract
Adaptor protein complex 2 alpha and beta-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of beta-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the beta-appendage (the "top" and "side" sites) that bind motifs distinct from those previously identified on the alpha-appendage. We solved the structure of the beta-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor beta-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the beta-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability ("matricity"). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as beta-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors.
Collapse
Affiliation(s)
- Eva M Schmid
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marijn G. J Ford
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anne Burtey
- Department of Infectious Diseases, Institut Cochin, Paris, France
| | - Gerrit J. K Praefcke
- Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Köln, Germany
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ian G Mills
- The Oncology Department, University of Cambridge Hutchison/MRC Cancer Research Centre, Cambridge, United Kingdom
| | | | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
220
|
Düwel M, Ungewickell EJ. Clathrin-dependent association of CVAK104 with endosomes and the trans-Golgi network. Mol Biol Cell 2006; 17:4513-25. [PMID: 16914521 PMCID: PMC1635376 DOI: 10.1091/mbc.e06-05-0390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CVAK104 is a novel coated vesicle-associated protein with a serine/threonine kinase homology domain that was recently shown to phosphorylate the beta2-subunit of the adaptor protein (AP) complex AP2 in vitro. Here, we demonstrate that a C-terminal segment of CVAK104 interacts with the N-terminal domain of clathrin and with the alpha-appendage of AP2. CVAK104 localizes predominantly to the perinuclear region of HeLa and COS-7 cells, but it is also present on peripheral vesicular structures that are accessible to endocytosed transferrin. The distribution of CVAK104 overlaps extensively with that of AP1, AP3, the mannose 6-phosphate receptor, and clathrin but not at all with its putative phosphorylation target AP2. RNA interference-mediated clathrin knockdown reduced the membrane association of CVAK104. Recruitment of CVAK104 to perinuclear membranes of permeabilized cells is enhanced by guanosine 5'-O-(3-thio)triphosphate, and brefeldin A redistributes CVAK104 in cells. Both observations suggest a direct or indirect requirement for GTP-binding proteins in the membrane association of CVAK104. Live-cell imaging showed colocalization of green fluorescent protein-CVAK104 with endocytosed transferrin and with red fluorescent protein-clathrin on rapidly moving endosomes. Like AP1-depleted COS-7 cells, CVAK104-depleted cells missort the lysosomal hydrolase cathepsin D. Together, our data suggest a function for CVAK104 in clathrin-dependent pathways between the trans-Golgi network and the endosomal system.
Collapse
Affiliation(s)
- Michael Düwel
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| | - Ernst J. Ungewickell
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
221
|
Murshid A, Srivastava A, Kumar R, Presley JF. Characterization of the localization and function of NECAP 1 in neurons. J Neurochem 2006; 98:1746-62. [PMID: 16879712 DOI: 10.1111/j.1471-4159.2006.04066.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NECAPs (adaptin ear-binding clathrin-associated protein) are a new family of clathrin accessory proteins identified through a proteomic analysis of clathrin-coated vesicles (CCVs) from the brain. One member of this family, NECAP 1, is found primarily in tissues from the central nervous system and has been shown to be complexed tightly with a substantial portion of adaptor protein-2 (AP-2) in brain extracts. However, the function and intracellular location of this protein is unknown. In this study, we find that endogenous and epitope-tagged NECAP 1 co-localizes well with clathrin and AP-2 in punctate structures, many of which also contain the presynaptic markers synaptophysin, synaptotagmin or synaptic vesicle protein 2 (SV2). NECAP 1 was also detected by western blot in synaptic vesicle preparations. Overexpression of a truncation mutant of NECAP 1 (BC-NECAP 1) in neurons inhibited transferrin endocytosis but not epidermal growth factor (EGF) endocytosis, and this inhibition was dependent on an AP-2-binding WVQF motif. Moreover, overexpression of BC-NECAP 1 results in inhibition of synaptotagmin endocytosis both in unstimulated neurons and in neurons stimulated with potassium chloride. This inhibition was abrogated by truncation of the WVQF domain. We conclude from these observations that NECAP 1 plays a role in clathrin-mediated neuronal endocytosis, including a role in presynaptic endocytosis.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
222
|
Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol Biol Cell 2006; 17:4300-17. [PMID: 16870701 PMCID: PMC1635374 DOI: 10.1091/mbc.e06-05-0421] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a provocative recent proposal is that discrete endocytic cargo are sorted into compositionally and functionally distinct clathrin coats. We show here that the FXNPXY-type internalization signal within cytosolic domain of the LDL receptor is recognized redundantly by two phosphotyrosine-binding domain proteins, Dab2 and ARH; diminishing both proteins by RNAi leads to conspicuous LDL receptor accumulation at the cell surface. AP-2-dependent uptake of transferrin ensues relatively normally in the absence of Dab2 and ARH, clearly revealing delegation of sorting operations at the bud site. AP-2, Dab2, ARH, transferrin, and LDL receptors are all present within the vast majority of clathrin structures at the surface, challenging the general existence of specialized clathrin coats for segregated internalization of constitutively internalized cargo. However, Dab2 expression is exceptionally low in hepatocytes, likely accounting for the pathological hypercholesterolemia that accompanies ARH loss.
Collapse
Affiliation(s)
- Peter A. Keyel
- *Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Sanjay K. Mishra
- *Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Simon C. Watkins
- *Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Linton M. Traub
- *Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| |
Collapse
|
223
|
Swayne LA, Beck KE, Braun JEA. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006; 348:83-91. [PMID: 16875662 DOI: 10.1016/j.bbrc.2006.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 12/15/2022]
Abstract
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
224
|
Xiao J, Dai R, Negyessy L, Bergson C. Calcyon, a Novel Partner of Clathrin Light Chain, Stimulates Clathrin-mediated Endocytosis. J Biol Chem 2006; 281:15182-93. [PMID: 16595675 DOI: 10.1074/jbc.m600265200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the central nervous system, clathrin-mediated endocytosis is crucial for efficient synaptic transmission. Clathrin-coated vesicle assembly and disassembly is regulated by some 30 adaptor and accessory proteins, most of which interact with clathrin heavy chain. Using the calcyon cytosolic domain as bait, we isolated clathrin light chain in a yeast two-hybrid screen. The interaction domain was mapped to the heavy chain binding domain and C-terminal regions of light chain. Further, the addition of the calcyon C terminus stimulated clathrin self-assembly in a dose-dependent fashion. Calcyon, which is a single transmembrane protein predominantly expressed in brain, localized to vesicular compartments within pre- and postsynaptic structures. There was a high degree of overlap in the distribution of LC and calcyon in neuronal dendrites, spines, and cell bodies. Co-immunoprecipitation studies further suggested an association of calcyon with the clathrin-mediated endocytic machinery. Compared with controls, HEK293 cells overexpressing calcyon exhibited significantly enhanced transferrin uptake but equivalent levels of recycling. Conversely, transferrin uptake was largely abolished in neocortical neurons obtained from mice homozygous for a calcyon null allele, whereas recycling proceeded at wild type levels. Collectively, these data indicate a role for calcyon in clathrin-mediated endocytosis in brain.
Collapse
Affiliation(s)
- Jiping Xiao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
225
|
Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 2006; 7:262-81. [PMID: 16497222 DOI: 10.1111/j.1600-0854.2006.00383.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.
Collapse
Affiliation(s)
- Matthew J Hawryluk
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
226
|
Abstract
Systems biology aims to study complex biological processes, such as intracellular traffic, as a whole. Systematic genome-wide assays have the potential to identify the transport machinery, delineate pathways and uncover the molecular components of physiological processes that influence trafficking. A goal of this approach is to create predictive models of intracellular trafficking pathways that reflect these relationships. In this review, we highlight current genome-wide technologies of particular relevance to vesicle transport and describe recent applications of these technologies in the framework of systems biology. Systems approaches hold great promise for placing trafficking pathways in their cellular contexts.
Collapse
Affiliation(s)
- Nicole R Quenneville
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
227
|
Jin AJ, Prasad K, Smith PD, Lafer EM, Nossal R. Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy. Biophys J 2006; 90:3333-44. [PMID: 16473913 PMCID: PMC1432129 DOI: 10.1529/biophysj.105.068742] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 01/25/2006] [Indexed: 01/12/2023] Open
Abstract
Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of approximately 100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, estimate their bending rigidity to be 285 +/- 30 k(B)T, i.e., approximately 20 times that of either the outer clathrin cage or inner vesicle membrane. Further analysis reveals a flexible coupling between the clathrin coat and the membrane, a structural property whose modulation may affect vesicle biogenesis and cellular function.
Collapse
Affiliation(s)
- Albert J Jin
- Division of Bioengineering and Physical Science, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
228
|
Harasaki K, Lubben NB, Harbour M, Taylor MJ, Robinson MS. Sorting of major cargo glycoproteins into clathrin-coated vesicles. Traffic 2006; 6:1014-26. [PMID: 16190982 DOI: 10.1111/j.1600-0854.2005.00341.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The AP-1 and AP-2 complexes are the most abundant adaptors in clathrin-coated vesicles (CCVs), but clathrin-mediated trafficking can still occur in the absence of any detectable AP-1 or AP-2. To find out whether adaptor abundance reflects cargo abundance, we used lectin pulldowns to identify the major membrane glycoproteins in CCVs from human placenta and rat liver. Both preparations contained three prominent high molecular-weight proteins: the cation-independent mannose 6-phosphate receptor (CIMPR), carboxypeptidase D (CPD) and low-density lipoprotein receptor-related protein 1 (LRP1). To investigate how these proteins are sorted, we constructed and stably transfected CD8 chimeras into HeLa cells. CD8-CIMPR localized mainly to early/tubular endosomes, CD8-CPD to the trans Golgi network and CD8-LRP1 to late/multivesicular endosomes. All three constructs redistributed to the plasma membrane when clathrin was depleted by siRNA. CD8-CIMPR was also strongly affected by AP-2 depletion. CD8-CPD was moderately affected by AP-2 depletion but strongly affected by depleting AP-1 and AP-2 together. CD8-LRP1 was only slightly affected by AP-2 depletion; however, mutating an NPXY motif in the LRP1 tail caused it to become AP-2 dependent. These results indicate that all three proteins have AP-dependent sorting signals, which may help to explain the relative abundance of AP complexes in CCVs. However, the relatively low abundance of cargo proteins in CCV preparations suggests either that some of the APs may be empty or that the preparations may be dominated by empty coats.
Collapse
Affiliation(s)
- Kouki Harasaki
- University of Cambridge, Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
229
|
Berggård T, Arrigoni G, Olsson O, Fex M, Linse S, James P. 140 Mouse Brain Proteins Identified by Ca2+-Calmodulin Affinity Chromatography and Tandem Mass Spectrometry. J Proteome Res 2006; 5:669-87. [PMID: 16512683 DOI: 10.1021/pr050421l] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calmodulin is an essential Ca2+-binding protein that binds to a variety of targets that carry out critical signaling functions. We describe the proteomic characterization of mouse brain Ca2+-calmodulin-binding proteins that were purified using calmodulin affinity chromatography. Proteins in the eluates from four different affinity chromatography experiments were identified by 1-DE and in-gel digestion followed by LC-MS/MS. Parallel experiments were performed using two related control-proteins belonging to the EF-hand family. After comparing the results from the different experiments, we were able to exclude a significant number of proteins suspected to bind in a nonspecific manner. A total of 140 putative Ca2+-calmodulin-binding proteins were identified of which 87 proteins contained calmodulin-binding motifs. Among the 87 proteins that contained calmodulin-binding motifs, 48 proteins have not previously been shown to interact with calmodulin and 39 proteins were known calmodulin-binding proteins. Many proteins with ill-defined functions were identified as well as a number of proteins that at the time of the analysis were described only as ORFs. This study provides a functional framework for studies on these previously uncharacterized proteins.
Collapse
Affiliation(s)
- Tord Berggård
- Department of Protein Technology, Lund University, Sölvegatan 33, Wallenberglaboratoriet, SE-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
230
|
Castle A, Castle D. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci 2006; 118:3769-80. [PMID: 16105885 DOI: 10.1242/jcs.02503] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Secretory carrier membrane proteins (SCAMPs) 1-4 are ubiquitously expressed and are major components of the eukaryotic cell surface recycling system. We investigated whether different SCAMPs function along distinct pathways and whether they behave like itinerant cargoes or less mobile trafficking machinery. In NRK cells, we show by immunofluorescence microscopy that different SCAMPs are concentrated mostly adjacent to one another in the trans-Golgi network and endosomal recycling compartment. By immunoelectron microscopy, they were shown to be close neighbors on individual transferrin-containing endosomal elements and on the plasma membrane. Within the internal endosomal network, SCAMPs are located distal to rab5-containing endosomes, and the individual isoforms appear to mark pathways that diverge from the constitutive recycling route and that may be distinguished by different adaptors, especially AP-1 and AP-3. Based on comparisons of SCAMP localization with endocytosed transferrin as well as live imaging of GFP-SCAMP1, we show that SCAMPs are concentrated within the motile population of early and recycling endosomes; however, they are not detected in newly formed transferrin-containing endocytic vesicles or in vesicles recycling transferrin to the surface. Also, they are not detected in constitutive secretory carriers marked by VSV-G. Their minimal recycling to the surface is reflected by their inability to relocate to the plasma membrane upon inhibition of endocytosis. Thus SCAMPs exhibit limited exchange between the cell surface and internal recycling systems, but within each of these sites, they form a mosaic with individual isoforms marking distinct pathways and potentially functioning as trafficking machinery at sites of vesicle formation and fusion. A corollary of these findings is that early endosomes exist as a distinct SCAMP-containing compartment and are not formed de novo by fusion of endocytic vesicles.
Collapse
Affiliation(s)
- Anna Castle
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
231
|
Elvira G, Wasiak S, Blandford V, Tong XK, Serrano A, Fan X, del Rayo Sánchez-Carbente M, Servant F, Bell AW, Boismenu D, Lacaille JC, McPherson PS, DesGroseillers L, Sossin WS. Characterization of an RNA granule from developing brain. Mol Cell Proteomics 2005; 5:635-51. [PMID: 16352523 DOI: 10.1074/mcp.m500255-mcp200] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In brain, mRNAs are transported from the cell body to the processes, allowing for local protein translation at sites distant from the nucleus. Using subcellular fractionation, we isolated a fraction from rat embryonic day 18 brains enriched for structures that resemble amorphous collections of ribosomes. This fraction was enriched for the mRNA encoding beta-actin, an mRNA that is transported in dendrites and axons of developing neurons. Abundant protein components of this fraction, determined by tandem mass spectrometry, include ribosomal proteins, RNA-binding proteins, microtubule-associated proteins (including the motor protein dynein), and several proteins described only as potential open reading frames. The conjunction of RNA-binding proteins, transported mRNA, ribosomal machinery, and transporting motor proteins defines these structures as RNA granules. Expression of a subset of the identified proteins in cultured hippocampal neurons confirmed that proteins identified in the proteomics were present in neurites associated with ribosomes and mRNAs. Moreover many of the expressed proteins co-localized together. Time lapse video microscopy indicated that complexes containing one of these proteins, the DEAD box 3 helicase, migrated in dendrites of hippocampal neurons at the same speed as that reported for RNA granules. Although the speed of the granules was unchanged by activity or the neurotrophin brain-derived neurotrophic factor, brain-derived neurotrophic factor, but not activity, increased the proportion of moving granules. These studies define the isolation and composition of RNA granules expressed in developing brain.
Collapse
Affiliation(s)
- George Elvira
- Département de Biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3C3J7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR, Colman DR. Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 2005; 81:762-75. [PMID: 16047384 DOI: 10.1002/jnr.20614] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A fraction derived from presynaptic specializations (presynaptic particle fraction; PPF) can be separated from postsynaptic densities (PSD) by adjusting the pH of Triton X-100 (TX-100) extraction of isolated transsynaptic scaffolds. Solubilization of the PPF corresponds to disruption of the presynaptic specialization. We show that the PPF is insoluble to repeated TX-100 extraction at pH 6.0 but becomes soluble in detergent at pH 8.0. By immunolocalization, we find that the major proteins of the PPF, clathrin and dynamin, are concentrated in the presynaptic compartment. By using multidimensional protein identification technology, we compared the protein compositions of the PPF and the PSD fraction. We identified a total of 341 proteins, 50 of which were uniquely found in the PPF, 231 in the PSD fraction, and 60 in both fractions. Comparison of the two fractions revealed a relatively low proportion of actin and associated proteins and a high proportion of vesicle or intracellular compartment proteins in the PPF. We conclude that the PPF consists of presynaptic proteins not connected to the actin-based synaptic framework; its insolubility in pH 6 and solubility in pH 8 buffered detergent suggests that clathrin might be an anchorage scaffold for many proteins in the PPF.
Collapse
Affiliation(s)
- Greg R Phillips
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
233
|
Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 2005; 95:1732-45. [PMID: 16269012 DOI: 10.1111/j.1471-4159.2005.03506.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, J.W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
234
|
Yates JR, Gilchrist A, Howell KE, Bergeron JJM. Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 2005; 6:702-14. [PMID: 16231421 DOI: 10.1038/nrm1711] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mass-spectrometry-based identification of proteins has created opportunities for the study of organelles, transport intermediates and large subcellular structures. Traditional cell-biology techniques are used to enrich these structures for proteomics analyses, and such analyses provide insights into the biology and functions of these structures. Here, we review the state-of-the-art proteomics techniques for the analysis of subcellular structures and discuss the biological insights that have been derived from such studies.
Collapse
Affiliation(s)
- John R Yates
- Department of Cell Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
235
|
Brackmann M, Schuchmann S, Anand R, Braunewell KH. Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci 2005; 118:2495-505. [PMID: 15923662 DOI: 10.1242/jcs.02376] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The family of neuronal Ca2+ sensor (NCS) proteins is known to influence a variety of physiological and pathological processes by affecting signalling of different receptors and ion channels. Recently, it has been shown that the NCS protein VILIP-1 influences the activity of the receptor guanylyl cyclase GC-B. In transfected cell lines, VILIP-1 performs a Ca2+-dependent membrane association, the reversible Ca2+-myristoyl switch of VILIP-1, which leads to an increase in natriuretic peptide-stimulated cGMP levels. In this study, we have investigated the effect of VILIP-1 on cGMP signalling in C6 cells and in primary hippocampal neurons, where VILIP-1 and GC-B are co-expressed in many but not all neurons and partially co-localize in the soma and in dendrites. Our data indicate that VILIP-1 modulates GC-B activity by influencing clathrin-dependent receptor recycling. These data support a general physiological role for VILIP-1 in membrane trafficking in the intact hippocampus, where the NCS protein may affect processes, such as neuronal differentiation and synaptic plasticity e.g. by influencing cGMP-signalling.
Collapse
Affiliation(s)
- Marian Brackmann
- Signal Transduction Research Group, Charité, University Medicine, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
236
|
Carrillo B, Lekpor K, Yanofsky C, Bell AW, Boismenu D, Kearney RE. Increasing peptide identification in tandem mass spectrometry through automatic function switching optimization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1818-26. [PMID: 16198121 DOI: 10.1016/j.jasms.2005.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 05/04/2023]
Abstract
Comprehensive proteomic studies that employ MS directed peptide sequencing are limited by optimal peptide separation and MS and tandem MS data acquisition routines. To identify the optimal parameters for data acquisition, we developed a system that models the automatic function switching behavior of a mass spectrometer using an MS-only dataset. Simulations were conducted to characterize the number and the quality of simulated fragmentation as a function of the data acquisition routines and used to construct operating curves defining tandem mass spectra quality and the number of peptides fragmented. Results demonstrated that one could optimize for quality or quantity, with the number of peptides fragmented decreasing as quality increased. The predicted optimal operating curve indicated that significant improvements can be realized by selecting the appropriate data acquisition parameters. The simulation results were confirmed experimentally by testing 10 LC MS/MS data acquisition parameter sets on an LC-Q-TOF-MS. Database matching of the experimental fragmentation returned peptide scores consistent with the predictions of the model. The results of the simulations of mass spectrometer data acquisition routines reveal an inverse relationship between the quality and the quantity of peptide identifications and predict an optimal operating curve that can be used to select an optimal data acquisition parameter for a given (or any) sample.
Collapse
Affiliation(s)
- Brian Carrillo
- Department of Biomedical Engineering, McGill University, 3640 University Street, Rm. M5, Montreal, Quebec H3X 2B3, Canada.
| | | | | | | | | | | |
Collapse
|
237
|
Li KW, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 2005; 4:725-33. [PMID: 15952719 DOI: 10.1021/pr049802+] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organelle proteomics is the method of choice for global analysis of cellular proteins. However, it is difficult to isolate organelles to homogeneity. Recently, correlation-profiling has been used to filter off the contaminants ad hoc and to disclose the genuine organelle-specific proteins. In the present study, we further extend the method to include subcellular compartments that contain proteins shared by multiple distinct subcellular domains. We performed correlation profiling of proteins contained in synaptic membrane and postsynaptic density (PSD) fractions isolated from rat brain. Proteins were labeled with isotope-coded affinity-tag reagents, digested with trypsin, and resulting peptides were resolved by cation exchange chromatography followed by reversed phase chromatography. Peptides were then subjected to mass spectrometry for quantification and identification. We confirm that the core PSD proteins were enriched in the PSD preparation. Other functional protein groups such as cytoskeleton-associated proteins, protein kinases and phosphatases, signaling components and regulators, as well as proteins involved in energy production partitioned to multiple organelles. When analyzed as groups, they were shown to accumulate to a lesser extent. Mitochondrial proteins and transporters were generally strongly depleted from the PSD fraction confirming that they were contaminants of the PSD preparation. Finally, immunoelectron microscopy was performed on selected proteins to validate the proteomics results, and confirm that synaptophysin that was highly depleted in the PSD preparation is localized in the presynaptic compartment, whereas LASP-1 that was slightly enriched in the PSD preparation is present in the PSD as well as other subdomains within the synapse.
Collapse
Affiliation(s)
- Ka wan Li
- Department of Molecular and Cellular Neurobiology, Center of Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
238
|
Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 2005; 5:2531-41. [PMID: 15984043 DOI: 10.1002/pmic.200401198] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.
Collapse
Affiliation(s)
- Sabine P Schrimpf
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
The shotgun proteomic strategy based on digesting proteins into peptides and sequencing them using tandem mass spectrometry and automated database searching has become the method of choice for identifying proteins in most large scale studies. However, the peptide-centric nature of shotgun proteomics complicates the analysis and biological interpretation of the data especially in the case of higher eukaryote organisms. The same peptide sequence can be present in multiple different proteins or protein isoforms. Such shared peptides therefore can lead to ambiguities in determining the identities of sample proteins. In this article we illustrate the difficulties of interpreting shotgun proteomic data and discuss the need for common nomenclature and transparent informatic approaches. We also discuss related issues such as the state of protein sequence databases and their role in shotgun proteomic analysis, interpretation of relative peptide quantification data in the presence of multiple protein isoforms, the integration of proteomic and transcriptional data, and the development of a computational infrastructure for the integration of multiple diverse datasets.
Collapse
|
240
|
Girard M, Poupon V, Blondeau F, McPherson PS. The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 2005; 280:40135-43. [PMID: 16179350 DOI: 10.1074/jbc.m505036200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through a proteomic analysis of clathrin-coated vesicles from rat liver we identified the mammalian homolog of receptor-mediated endocytosis 8 (RME-8), a DnaJ domain-containing protein originally identified in a screen for endocytic defects in Caenorhabditis elegans. Mammalian RME-8 has a broad tissue distribution, and affinity selection assays reveal the ubiquitous chaperone Hsc70, which regulates protein conformation at diverse membrane sites as the major binding partner for its DnaJ domain. RME-8 is tightly associated with microsomal membranes and co-localizes with markers of the endosomal system. Small interfering RNA-mediated knock down of RME-8 has no influence on transferrin endocytosis but causes a reduction in epidermal growth factor internalization. Interestingly, and consistent with a localization to endosomes, knock down of RME-8 also leads to alterations in the trafficking of the cation-independent mannose 6-phosphate receptor and improper sorting of the lysosomal hydrolase cathepsin D. Our data demonstrate that RME-8 functions in intracellular trafficking and provides the first evidence of a functional role for a DnaJ domain-bearing co-chaperone on endosomes.
Collapse
Affiliation(s)
- Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | | | | | | |
Collapse
|
241
|
Star EN, Newton AJ, Murthy VN. Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. J Physiol 2005; 569:103-17. [PMID: 16141272 PMCID: PMC1464220 DOI: 10.1113/jphysiol.2005.092528] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the roles of two Rab-family proteins, Rab3a and Rab5a, in hippocampal synaptic transmission using real-time fluorescence imaging. During synaptic activity, Rab3a dissociated from synaptic vesicles and dispersed into neighbouring axonal regions. Dispersion required calcium-dependent exocytosis and was complete before the entire vesicle pool turned over. In contrast, even prolonged synaptic activity produced limited dispersion of Rab5a. A GTPase-deficient mutant, Rab3a (Q81L), dispersed more slowly than wild-type Rab3a, and decreased the rate of exocytosis and the size of the recycling pool of vesicles. While overexpression of Rab3a did not affect vesicle recycling, overexpression of Rab5a reduced the recycling pool size by 50%. We propose that while Rab3a preferentially associates with recycling synaptic vesicles and modulates their trafficking, Rab5a is largely excluded from recycling vesicles.
Collapse
Affiliation(s)
- Erin N Star
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
242
|
Lane-Guermonprez L, Morot-Gaudry-Talarmain Y, Meunier FM, O'Regan S, Onofri F, Le Caer JP, Benfenati F. Synapsin associates with cyclophilin B in an ATP- and cyclosporin A-dependent manner. J Neurochem 2005; 93:1401-11. [PMID: 15935056 DOI: 10.1111/j.1471-4159.2005.03125.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunophilins are ubiquitous enzymes responsible for proline isomerisation during protein synthesis and for the chaperoning of several membrane proteins. These activities can be blocked by the immunosuppressants cyclosporin A, FK506 and rapamycin. It has been shown that all three immunosuppressants have neurotrophic activity and can modulate neurotransmitter release, but the molecular basis of these effects is currently unknown. Here, we show that synapsin I, a synaptic vesicle-associated protein, can be purified from Torpedo cholinergic synaptosomes through its affinity to cyclophilin B, an immunophilin that is particularly abundant in brain. The interaction is direct and conserved in mammals, and shows a dissociation constant of about 0.5 microM in vitro. The binding between the two proteins can be disrupted by cyclosporin A and inhibited by physiological concentrations of ATP. Furthermore, cyclophilin B co-localizes with synapsin I in rat synaptic vesicle fractions and its levels in synaptic vesicle-containing fractions are decreased in synapsin knockout mice. These results suggest that immunophilins are involved in the complex protein networks operating at the presynaptic level and implicate the interaction between cyclophilin B and synapsins in presynaptic function.
Collapse
Affiliation(s)
- Lydie Lane-Guermonprez
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
243
|
Gao J, Friedrichs MS, Dongre AR, Opiteck GJ. Guidelines for the routine application of the peptide hits technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1231-8. [PMID: 15978832 DOI: 10.1016/j.jasms.2004.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/30/2004] [Accepted: 12/03/2004] [Indexed: 05/03/2023]
Abstract
A set of guidelines has been developed for using the peptide hits technique (PHT) as a semi-quantitative screening tool for the identification of proteins that change in abundance in a complex mixture. The dataset that formed the basis for these experiments was created using a cell lysate derived from the yeast Saccharomyces cerevisiae, spiked at various levels with serum albumin (BSA), and analyzed by LC/MS/MS and SEQUEST. Knowing that the level of only one protein (BSA) actually changed in the mixture allowed for the development and refinement of the necessary bioinformatics and statistical analyses, e.g., principal component analysis (PCA), normalization, and analysis of variation (ANOVA). As expected, the number of BSA peptide hits changed in proportion to the amount of BSA added to the sample. PCA was able to clearly distinguish between the spiked samples and the untreated sample, indicating that PCA may be able to classify samples, e.g., healthy versus diseased, in future experiments. The use of an endogenous "housekeeping" protein was found to be superior to the use of total hits for data normalization prior to analysis. An ANOVA based model readily identified BSA as a protein of interest, that is, one likely to be changing from amongst the background proteins, indicating that an ANOVA model may be able to identify individual proteins in target or biomarker discovery experiments. General guidelines based on these combined observations are set forth for future analyses and the rapid screening for candidate proteins of interest.
Collapse
Affiliation(s)
- Ji Gao
- Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey 08534-5400, USA.
| | | | | | | |
Collapse
|
244
|
Traub LM. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:415-37. [PMID: 15922462 DOI: 10.1016/j.bbamcr.2005.04.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/17/2005] [Accepted: 04/19/2005] [Indexed: 12/12/2022]
Abstract
Clathrin-mediated vesicular trafficking events underpin the vectorial transfer of macromolecules between several eukaryotic membrane-bound compartments. Classical models for coat operation, focused principally on interactions between clathrin, the heterotetrameric adaptor complexes, and cargo molecules, fail to account for the full complexity of the coat assembly and sorting process. New data reveal that targeting of clathrin adaptor complexes is generally supported by phosphoinositides, that cargo recognition by heterotetrameric adaptors depends on phosphorylation-driven conformational alterations, and that dedicated clathrin-associated sorting proteins (CLASPs) exist to promote the selective trafficking of specific categories of cargo. A host of accessory factors also participate in coat polymerization events, and the independently folded appendage domains that project off the heterotetrameric adaptor core function as recruitment platforms that appear to oversee assembly operations. It is also now clear that focal polymerization of branched actin microfilaments contributes to clathrin-coated vesicle assembly and movement at both plasma membrane and Golgi sites. This improved appreciation of the complex mechanisms governing clathrin-dependent sorting events reveals several common principles of clathrin operation at the Golgi and the plasma membrane.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology University of Pittsburgh School of Medicine 3500 Terrace Street, S325BST Pittsburgh, PA 15206, USA.
| |
Collapse
|
245
|
Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V. Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 2005; 16:3692-704. [PMID: 15944223 PMCID: PMC1182308 DOI: 10.1091/mbc.e05-01-0020] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
246
|
Girard M, Allaire PD, McPherson PS, Blondeau F. Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver. Mol Cell Proteomics 2005; 4:1145-54. [PMID: 15933375 DOI: 10.1074/mcp.m500043-mcp200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We used tandem mass spectrometry with peptide counts to identify and to determine the relative levels of expression of abundant protein components of highly enriched clathrin-coated vesicles (CCVs) from rat liver. The stoichiometry of stable protein complexes including clathrin heavy chain and clathrin light chain dimers and adaptor protein (AP) heterotetramers was assessed. We detected a deficit of clathrin light chain compared with clathrin heavy chain in non-brain tissues, suggesting a level of regulation of clathrin cage formation specific to brain. The high ratio of AP-1 to AP-2 in liver CCVs is reversed compared with brain where there is more AP-2 than AP-1. Despite this, general endocytic cargo proteins were readily detected in liver but not in brain CCVs, consistent with the previous demonstration that a major function for brain CCVs is recycling synaptic vesicles. Finally we identified 21 CCV-associated proteins in liver not yet characterized in mammals. Our results further validate the peptide accounting approach, reveal new information on the properties of CCVs, and allow for the use of quantitative proteomics to compare abundant components of organelles under different experimental and pathological conditions.
Collapse
Affiliation(s)
- Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec H3A 2B4, Canada
| | | | | | | |
Collapse
|
247
|
Conner SD, Schmid SL. CVAK104 Is a Novel Poly-l-lysine-stimulated Kinase That Targets the β2-Subunit of AP2. J Biol Chem 2005; 280:21539-44. [PMID: 15809293 DOI: 10.1074/jbc.m502462200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isolated clathrin adaptor protein (AP) preparations are known to co-fractionate with endogenous kinase activities, including poly-L-lysine-stimulated kinases that target various constituents of the clathrin coat. We have identified CVAK104 (a coated vesicle-associated kinase of 104 kDa) using a mass spectroscopic analysis of adaptor protein preparations. CVAK104 is a novel serine/threonine kinase that belongs to the SCY1-like family of protein kinases, previously thought to be catalytically inactive. We found that CVAK104 co-fractionates with adaptor protein preparations extracted from clathrin-coated vesicles and directly binds to both clathrin and the plasma membrane adaptor, AP2. CVAK104 binds ATP, and kinase assays indicate that it functions in vitro as a poly-L-lysine-stimulated kinase that is capable of autophosphorylation and phosphorylating the beta2-adaptin subunit of AP2.
Collapse
Affiliation(s)
- Sean D Conner
- Department of Genetics, Cell Biology, and Development, The University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
248
|
Sadygov RG, Cociorva D, Yates JR. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 2005; 1:195-202. [PMID: 15789030 DOI: 10.1038/nmeth725] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Database searching is an essential element of large-scale proteomics. Because these methods are widely used, it is important to understand the rationale of the algorithms. Most algorithms are based on concepts first developed in SEQUEST and PeptideSearch. Four basic approaches are used to determine a match between a spectrum and sequence: descriptive, interpretative, stochastic and probability-based matching. We review the basic concepts used by most search algorithms, the computational modeling of peptide identification and current challenges and limitations of this approach for protein identification.
Collapse
Affiliation(s)
- Rovshan G Sadygov
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
249
|
Burman JL, Wasiak S, Ritter B, de Heuvel E, McPherson PS. Aftiphilin is a component of the clathrin machinery in neurons. FEBS Lett 2005; 579:2177-84. [PMID: 15811338 DOI: 10.1016/j.febslet.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/20/2022]
Abstract
Aftiphilin was identified through a database search for proteins containing binding motifs for the gamma-ear domain of clathrin adaptor protein 1 (AP-1). Here, we demonstrate that aftiphilin is expressed predominantly in brain where it is enriched on clathrin-coated vesicles. In addition to eight gamma-ear-binding motifs, aftiphilin contains two WXXF-acidic motifs that mediate binding to the alpha-ear of clathrin adaptor protein 2 (AP-2) and three FXXFXXF/L motifs that mediate binding to the alpha- and beta2-ear. We demonstrate that aftiphilin uses these motifs for interactions with AP-1 and AP-2 and that it immunoprecipitates these APs but not AP-3 or AP-4 from brain extracts. Aftiphilin demonstrates a brefeldin A sensitive localization to the trans-Golgi network in hippocampal neurons where it co-localizes with AP-1. Aftiphilin is also found at synapses where it co-localizes with synaptophysin and AP-2. Our data suggest a role for aftiphilin in clathrin-mediated trafficking in neurons.
Collapse
Affiliation(s)
- Jonathon L Burman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | | | |
Collapse
|
250
|
Abstract
Clathrin assembles into a dynamic two-dimensional lattice on the plasma membrane where it plays a critical role in endocytosis. To probe the regulation of this process, we used siRNA against clathrin, in combination with single cell assays for transferrin uptake as well as total internal reflection microscopy, to examine how endocytic rates and membrane dynamics depend upon cellular clathrin concentration ([Clathrin]). We find that endocytosis is tightly controlled by [Clathrin] over a very narrow dynamic range such that small changes in [Clathrin] can lead to large changes in endocytic rates, indicative of a highly cooperative process (apparent Hill coefficient, n > 6). The number of clathrin assemblies at the cell surface was invariant over a wide range of [Clathrin]; however, both the amount of clathrin in each assembly and the subsequent membrane dynamics were steeply dependent on [Clathrin]. Thus clathrin controls the structural dynamics of membrane internalization via a strongly cooperative process. We used this analysis to show that one important regulator of endocytosis, the actin cytoskeleton, acts noncompetitively as a modulator of clathrin function.
Collapse
Affiliation(s)
- Howard S Moskowitz
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|