201
|
Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics 2014; 15:276. [PMID: 24726045 PMCID: PMC4023595 DOI: 10.1186/1471-2164-15-276] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
Collapse
|
202
|
The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: Structural characterization and expression in different parts of wheat plant. Gene 2014; 538:334-41. [DOI: 10.1016/j.gene.2014.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/27/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
203
|
Khalil HB, Brunetti SC, Pham UM, Maret D, Laroche A, Gulick PJ. Characterization of the caleosin gene family in the Triticeae. BMC Genomics 2014; 15:239. [PMID: 24673767 PMCID: PMC3986672 DOI: 10.1186/1471-2164-15-239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 02/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the α-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family. Results A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented. Conclusions The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-239) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick J Gulick
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
204
|
House MA, Griswold CK, Lukens LN. Evidence for selection on gene expression in cultivated rice (Oryza sativa). Mol Biol Evol 2014; 31:1514-25. [PMID: 24659814 DOI: 10.1093/molbev/msu110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Artificial selection has been used throughout plant domestication and breeding to develop crops that are adapted to diverse environments. Here, we investigate whether gene regulatory changes have been widespread targets of lineage-specific selection in cultivated lines Minghui 63 and Zhenshan 97 of rice, Oryza sativa. A line experiencing positive selection for either an increase or a decrease in genes' transcript abundances is expected to have an overabundance of expression quantitative trait locus (eQTL) alleles that increase or decrease those genes' expression, respectively. Results indicate that several genes that share Gene Ontology terms or are members of the same coexpression module have eQTL alleles from one parent that consistently increase gene expression relative to the second parent. A second line of evidence for lineage-specific selection is an overabundance of cis-trans pairs of eQTL alleles that affect gene expression in the same direction (are reinforcing). Across all cis-trans pairs of eQTL, including pairs that both weakly and strongly affect gene expression, there is no evidence for selection. However, the frequency of genes with reinforcing eQTL increases with eQTL strength. Therefore, there is evidence that eQTL with strong effects were positively selected during rice cultivation. Among 41 cis-trans pairs with strong trans eQTL, 31 have reinforcing eQTL. Several of the candidate genes under positive selection accurately predict phenotypic differences between Minghui 63 and Zhenshan 97. Overall, our results suggest that positive selection for regulatory alleles may be a key factor in plant improvement.
Collapse
Affiliation(s)
- Megan A House
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Cortland K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
205
|
Wang X, Fan S, Song M, Pang C, Wei H, Yu J, Ma Q, Yu S. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS One 2014; 9:e91869. [PMID: 24626476 PMCID: PMC3953518 DOI: 10.1371/journal.pone.0091869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1) gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13) and Gossypium arboreum L. genome (A-genome, n = 13) databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26). Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319) exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Qifeng Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, People’s Republic of China
- * E-mail:
| |
Collapse
|
206
|
Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM, Page JT, Udall JA. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS One 2014; 9:e90830. [PMID: 24598808 PMCID: PMC3944810 DOI: 10.1371/journal.pone.0090830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/04/2014] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Gregory Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Doug J. Hinchliffe
- Cotton Chemistry & Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Christopher Florane
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Kathleen M. Yeater
- USDA-ARS-Southern Plains Area, College Station, Texas, United States of America
| | - Justin T. Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
207
|
Renny-Byfield S, Gallagher JP, Grover CE, Szadkowski E, Page JT, Udall JA, Wang X, Paterson AH, Wendel JF. Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biol Evol 2014; 6:559-71. [PMID: 24558256 PMCID: PMC3971588 DOI: 10.1093/gbe/evu037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 12/25/2022] Open
Abstract
Whole genome duplication (WGD) is widespread in flowering plants and is a driving force in angiosperm diversification. The redundancy introduced by WGD allows the evolution of novel gene interactions and functions, although the patterns and processes of diversification are poorly understood. We identified ∼ 2,000 pairs of paralogous genes in Gossypium raimondii (cotton) resulting from an approximately 60 My old 5- to 6-fold ploidy increase. Gene expression analyses revealed that, in G. raimondii, 99.4% of the gene pairs exhibit differential expression in at least one of the three tissues (petal, leaf, and seed), with 93% to 94% exhibiting differential expression on a per-tissue basis. For 1,666 (85%) pairs, differential expression was observed in all tissues. These observations were mirrored in a time series of G. raimondii seed, and separately in leaf, petal, and seed of G. arboreum, indicating expression level diversification before species divergence. A generalized linear model revealed 92.4% of the paralog pairs exhibited expression divergence, with most exhibiting significant gene and tissue interactions indicating complementary expression patterns in different tissues. These data indicate massive, near-complete expression level neo- and/or subfunctionalization among ancient gene duplicates, suggesting these processes are essential in their maintenance over ∼ 60 Ma.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Joseph P. Gallagher
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Emmanuel Szadkowski
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Justin T. Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia
| | | | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
208
|
Yang H, Liu J, Huang S, Guo T, Deng L, Hua W. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene 2014; 538:113-22. [PMID: 24406618 DOI: 10.1016/j.gene.2013.12.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes.
Collapse
Affiliation(s)
- Hongli Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Shunmou Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Tingting Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Linbin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China.
| |
Collapse
|
209
|
Sui Y, Li B, Shi J, Chen M. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta. BMC Genomics 2014; 15:11. [PMID: 24393121 PMCID: PMC3890553 DOI: 10.1186/1471-2164-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022] Open
Abstract
Background Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. Results Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. Conclusions Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.
Collapse
Affiliation(s)
| | | | | | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
210
|
Rambani A, Page JT, Udall JA. Polyploidy and the petal transcriptome of Gossypium. BMC PLANT BIOLOGY 2014; 14:3. [PMID: 24393201 PMCID: PMC3890615 DOI: 10.1186/1471-2229-14-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation.
Collapse
Affiliation(s)
- Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua A Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
211
|
Matsuoka Y, Takumi S, Nasuda S. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:199-258. [PMID: 24529724 DOI: 10.1016/b978-0-12-800255-1.00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
212
|
Coate JE, Bar H, Doyle JJ. Extensive translational regulation of gene expression in an allopolyploid (Glycine dolichocarpa). THE PLANT CELL 2014; 26:136-50. [PMID: 24488964 PMCID: PMC3963564 DOI: 10.1105/tpc.113.119966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
All flowering plants have experienced repeated rounds of polyploidy (whole-genome duplication), which has in turn driven the evolution of novel phenotypes and ecological tolerances and been a major driver of speciation. The effects of polyploidy on gene expression have been studied extensively at the level of transcription and, to a much lesser extent, at the level of the steady state proteome, but not at the level of translation. We used polysome profiling by RNA-Seq to quantify translational regulation of gene expression in a recently formed (∼100,000 years ago) allotetraploid (Glycine dolichocarpa) closely related to the cultivated soybean (Glycine max). We show that there is a high level of concordance between the allopolyploid transcriptome and translatome overall but that at least one-quarter of the transcriptome is translationally regulated. We further show that translational regulation preferentially targets genes involved in transcription, translation, and photosynthesis, causes regional and possibly whole-chromosome shifts in expression bias between duplicated genes (homoeologs), and reduces transcriptional differences between the polyploid and its diploid progenitors, possibly attenuating misregulation resulting from genome merger and/or doubling. Finally, translational regulation correlates positively with long-term retention of homoeologs from a paleopolyploidy event, suggesting that it plays a significant role in polyploid evolution.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, Oregon 97202-8199
- Address correspondence to
| | - Haim Bar
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853-2601
| | - Jeff J. Doyle
- Department of Plant Biology, Cornell University, Ithaca, New York 14853-4301
| |
Collapse
|
213
|
Jung Y, Kawaura K, Mishina K, Sakuma S, Kishii M, Ogihara Y. Changes in genome-wide gene expression during allopolyploidization and genome stabilization in hexaploid wheat. Genes Genet Syst 2014; 89:215-25. [PMID: 25832748 DOI: 10.1266/ggs.89.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Allopolyploidization is an important evolutionary event in plants, but its genome-wide effects are not fully understood. Common wheat, Triticum aestivum (AABBDD), evolved through amphidiploidization between T. turgidum (AABB) and Aegilops tauschii (DD). Here, global gene expression patterns in the seedlings of a synthetic triploid wheat line (ABD), its chromosome-doubled hexaploid (AABBDD) and stable synthetic hexaploid (AABBDD), and the parental lines T. turgidum (AABB) and Ae. tauschii (DD) were compared using an oligo-DNA microarray to identify metabolic pathways affected by the genome conflict that occurs during allopolyploidization and genome stabilization. Characteristic gene expression patterns of non-additively expressed genes were detected in the newly synthesized triploid and hexaploid, and in the stable synthetic hexaploid. Hierarchical clustering of all differentially expressed and non-additively expressed genes revealed that the gene expression patterns of the triploid (ABD) were similar to those of the maternal parent (AABB), and that expression patterns in successive generations arising from self-pollination became closer to that of the pollen parent (DD). The non-additive gene expression profiles markedly differed between the triploid (ABD) and chromosome-doubled hexaploid (AABBDD), as supported by Gene Ontology (GOSlim) analysis. Four hundred and nineteen non-additively expressed genes were commonly detected in all three generations. GOSlim analysis indicated that these non-additively expressed genes were predominantly involved in "biological pathways". Notably, four of 11 genes related to sugar metabolism displayed elevated expression throughout allopolyploidization. These may be useful candidates for promoting heterosis and adaptation in plants.
Collapse
Affiliation(s)
- Yeonju Jung
- Kihara Institute for Biological Research and Department of Life and Environmental System Science, Yokohama City University
| | | | | | | | | | | |
Collapse
|
214
|
Róis AS, Rodríguez López CM, Cortinhas A, Erben M, Espírito-Santo D, Wilkinson MJ, Caperta AD. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC PLANT BIOLOGY 2013; 13:205. [PMID: 24314092 PMCID: PMC3884021 DOI: 10.1186/1471-2229-13-205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/26/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. RESULTS A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. CONCLUSIONS Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition.
Collapse
Affiliation(s)
- Ana Sofia Róis
- Plant Diversity and Conservation Group, Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carlos M Rodríguez López
- Plant Genomics Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064 Australia
| | - Ana Cortinhas
- Plant Diversity and Conservation Group, Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Matthias Erben
- Section Biodiversity Research & Systematic Botany, Maximilian University of Munich, Munich, Germany
| | - Dalila Espírito-Santo
- Plant Diversity and Conservation Group, Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Research Network in Biodiversity and Evolutionary Biology (InBIO), ISA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Michael J Wilkinson
- Plant Genomics Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064 Australia
| | - Ana D Caperta
- Plant Diversity and Conservation Group, Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Research Network in Biodiversity and Evolutionary Biology (InBIO), ISA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
215
|
Ge XH, Ding L, Li ZY. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. PLANT CELL REPORTS 2013; 32:1661-73. [PMID: 23864197 DOI: 10.1007/s00299-013-1475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/05/2023]
Abstract
Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Xian-Hong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | |
Collapse
|
216
|
Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. THE NEW PHYTOLOGIST 2013; 200:251-260. [PMID: 23790161 DOI: 10.1111/nph.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout the evolutionary history of plants and led to diversification and plant ecological adaptation. Functional plasticity of duplicate genes is believed to play a major role in the environmental adaptation of polyploids. In this context, we characterized genome-wide homoeologous gene expression in Coffea arabica, a recent allopolyploid combining two subgenomes that derive from two closely related diploid species, and investigated its variation in response to changing environment. The transcriptome of leaves of C. arabica cultivated at different growing temperatures suitable for one or the other parental species was examined using RNA-sequencing. The relative contribution of homoeologs to gene expression was estimated for 9959 and 10,628 genes in warm and cold conditions, respectively. Whatever the growing conditions, 65% of the genes showed equivalent levels of homoeologous gene expression. In 92% of the genes, relative homoeologous gene expression varied < 10% between growing temperatures. The subgenome contributions to the transcriptome appeared to be only marginally altered by the different conditions (involving intertwined regulations of homeologs) suggesting that C. arabica's ability to tolerate a broader range of growing temperatures than its diploid parents does not result from differential use of homoeologs.
Collapse
Affiliation(s)
- Marie-Christine Combes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Alexis Dereeper
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cédex 5, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| |
Collapse
|
217
|
Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:16927-32. [PMID: 24082131 DOI: 10.1073/pnas.1316009110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Comparisons within expanding sequence databases have revealed a dynamic interplay among genomic and epigenomic forces in driving plant evolution. Such forces are especially obvious within the F-Box (FBX) superfamily, one of the largest and most polymorphic gene families in land plants, where its frequent lineage-specific expansions and contractions provide an excellent model to assess how genetic variation impacted gene function before and after speciation. Previous phylogenetic comparisons based on orthology, diversity, and expression patterns identified three plant FBX groups--Common, Lineage-Specific, and Pseudo(genized)--whose emergences are consistent with genomic drift evolution. Here, we examined this variance within Arabidopsis thaliana by evaluating SNPs for all 877 FBX loci from 432 naturally occurring accessions and their relationships to variations in natural selection, expression, and DNA/histone methylation. In line with their phenotypic importance, Common FBX loci have low polymorphism but high deleterious mutation rates indicative of stringent functional constraints. In contrast, the Lineage-Specific and Pseudo groups are enriched in genes with basal expression and higher SNP density and more correlated with methylation marks (RNA-directed DNA methylation and histone H3K27 trimethylation) that promote transcriptional silencing. Taken together, we propose that reversible epigenomic modifications helped shape FBX gene evolution by transcriptionally suppressing the adverse effects of gene dosage imbalance and harmful FBX alleles that arise during genomic drift, while simultaneously allowing innovations to emerge through epigenomic reprogramming.
Collapse
|
218
|
Genetic and epigenetic changes in a genomic region containing MIR172 in Arabidopsis allopolyploids and their progenitors. Heredity (Edinb) 2013; 112:207-14. [PMID: 24065179 DOI: 10.1038/hdy.2013.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 01/25/2023] Open
Abstract
Combination of divergent genomes in allopolyploids creates genome-wide gene expression changes including many miRNA targets in Arabidopsis allotetraploids relative to the parents Arabidopsis thaliana and Arabidopsis arenosa. Here we report expression and epigenetic changes in a chromosomal region containing the MIR172b locus in the allotetraploids. Although mature miRNA sequences are conserved, A. thaliana and A. arenosa miRNA loci diverge rapidly in sequence and expression. Among four MIR172 loci in Arabidopsis, the level of nucleotide sequence divergence between A. thaliana and A. arenosa MIR172 loci is 15-25%, which is higher than that of protein-coding genes (∼5%). MIR172b locus and its flanking genes in A. arenosa were expressed at low levels relative to that in A. thaliana, which is associated with hypermethylation of this region in the allotetraploids. Consistently with this notion, pri-miR172 transcripts in the allotetraploids were primarily derived from the A. thaliana MIR172b locus. Expression of homoeologous alleles in miR172 target loci is associated with allelic loss, allelic changes in outcrossing A. arenosa or repression of A. thaliana alleles. These data suggest that gene expression changes in this homoeologous region are associated with genetic diversity and epigenetic variation of miRNA genes and their targets in allopolyploids.
Collapse
|
219
|
Dar TH, Raina SN, Goel S. Molecular analysis of genomic changes in synthetic autotetraploidPhlox drummondii Hook. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanvir H. Dar
- Department of Botany; University of Delhi; Delhi; 110007; India
| | - Soom N. Raina
- Amity Institute of Biotechnology; Amity University; Sector 125; Noida; 201303; UP; India
| | - Shailendra Goel
- Department of Botany; University of Delhi; Delhi; 110007; India
| |
Collapse
|
220
|
Lee KR, In Sohn S, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 2013; 531:253-62. [PMID: 24029080 DOI: 10.1016/j.gene.2013.08.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/23/2023]
Abstract
Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Zhao Q, Zou J, Meng J, Mei S, Wang J. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS One 2013; 8:e68883. [PMID: 23874799 PMCID: PMC3708896 DOI: 10.1371/journal.pone.0068883] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the Brassica allohexaploid can generate extensive transcriptomic diversity compared with its parents. These changes may contribute to the normal growth and reproduction of allohexaploids.
Collapse
Affiliation(s)
- Qin Zhao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shiyong Mei
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Jianbo Wang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
222
|
Ashman TL, Kwok A, Husband BC. Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet Genome Res 2013; 140:241-55. [PMID: 23838528 DOI: 10.1159/000353306] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The evolutionary transition from hermaphroditism (combined sexes) to dioecy (separate sexes) is associated with whole genome duplication (polyploidy) in several flowering plant genera. Moreover, there is evidence for transitions in the opposite direction, i.e. a loss of dioecy with an increase in ploidy. Here, we review evidence for these associations, synthesize previous ideas on the mechanism underlying the patterns and explore alternative pathways. Specifically, we examine potential ecological and genetic mechanisms, differentiated by whether ploidy or gender (functional sex expression of the plant) changes are the primary cause and whether the effect is direct or indirect. An analysis of 22 genera variable for both ploidy and gender indicates that gender monomorphism (hermaphroditism, monoecy) is more common among diploid than polyploid species, whereas gender dimorphism (dioecy, gynodioecy, subdioecy) is more frequent among polyploid species. The transition from diploid hermaphroditic to polyploid gender-dimorphic taxa may arise directly through changes in gender as a result of genome duplication through genomic rearrangements or homeologous recombination, or changes in gender may result in increased unreduced gamete production leading to polyploid formation. Alternatively, the transition may occur through the indirect effects of genome duplication on mating system and inbreeding depression, which favor selection for unisexuality, or habitat shifts associated with unisexuality may simultaneously cause increased unreduced gamete production. Novel mechanisms for transitions in the opposite direction (from dioecy to hermaphroditism with increase in ploidy) include disruption of genetic sex determination and the benefits of reproductive assurance. We highlight key questions requiring further attention and promising approaches for answering them and better clarifying the genesis of sexual system polyploidy associations. See also the sister article focusing on animals by Wertheim et al. in this themed issue.
Collapse
Affiliation(s)
- T-L Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260-3929, USA. tia1 @ pitt.edu
| | | | | |
Collapse
|
223
|
Moyle RL, Birch RG. Diversity of sequences and expression patterns among alleles of a sugarcane loading stem gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1775-82. [PMID: 23546592 DOI: 10.1007/s00122-013-2091-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/21/2013] [Indexed: 05/13/2023]
Abstract
Modern sugarcane cultivars are highly polyploid and aneuploid hybrids, which are propagated as clones. Their complex genome structure comprises 100-130 chromosomes and 10-13 hom(e)ologous copies of most loci. There is preliminary evidence of very high heterozygosity, with implications for genetic improvement approaches ranging from marker-assisted selection to transgenics. Here, we report that sugarcane cultivar Q200 has at least nine alleles at the Loading Stem Gene (ScLSG) locus. Exon-intron structure is identical and the predicted protein products show at least 92 % identity, across sugarcane alleles and the Sorghum homologue Sb07g027880. There is substantial variation in the 5' UTR and promoter regions including numerous allele-specific nucleotide polymorphisms, insertions and deletions. We developed an allele-specific qRT-PCR method to undertake the first compelling test of allele-specific expression in polyploid sugarcane. Seven alleles distinguished by this method all showed peak expression in the sucrose-loading zone of the stem, but there was apparent variability in expression patterns across other tissues. The ScLSG2 and ScLSG5 alleles appear promising for specificity of expression in stems, relative to leaf, meristem, emerging shoot and root tissues. Within the stem, there was activity in parenchyma, vascular and rind tissues. This expression pattern is of interest in basic research and biotechnology aimed at enhanced sucrose content, engineering value-added products, and manipulation of stem biomass composition.
Collapse
Affiliation(s)
- Richard L Moyle
- Hines Plant Science Building, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
224
|
Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihová J, Wang JW. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 2013; 340:1097-100. [PMID: 23723237 DOI: 10.1126/science.1234340] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plants flower in response to many varied cues, such as temperature, photoperiod, and age. The floral transition of Cardamine flexuosa, a herbaceous biennial-to-perennial plant, requires exposure to cold temperature, a treatment known as vernalization. C. flexuosa younger than 5 weeks old are not fully responsive to cold treatment. We demonstrate that the levels of two age-regulated microRNAs, miR156 and miR172, regulate the timing of sensitivity in response to vernalization. Age and vernalization pathways coordinately regulate flowering through modulating the expression of CfSOC1, a flower-promoting MADS-box gene. The related annual Arabidopsis thaliana, which has both vernalization and age pathways, does not possess an age-dependent vernalization response. Thus, the recruitment of age cue in response to environmental signals contributes to the evolution of life cycle in plants.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Tayalé A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 2013; 140:79-96. [PMID: 23751271 DOI: 10.1159/000351318] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The last decade highlighted polyploidy as a rampant evolutionary process that triggers drastic genome reorganization, but much remains to be understood about their causes and consequences in both autopolyploids and allopolyploids. Here, we provide an overview of the current knowledge on the pathways leading to different types of polyploids and patterns of polyploidy-induced genome restructuring and functional changes in plants. Available evidence leads to a tentative 'diverge, merge and diverge' model supporting polyploid speciation and stressing patterns of divergence between diploid progenitors as a suitable predictor of polyploid genome reorganization. The merging of genomes at the origin of a polyploid lineage may indeed reveal different kinds of incompatibilities (chromosomal, genic and transposable elements) that have accumulated in diverging progenitors and reduce the fitness of nascent polyploids. Accordingly, successful polyploids have to overcome these incompatibilities through non-Mendelian mechanisms, fostering polyploid genome reorganization in association with the establishment of new lineages. See also sister article focusing on animals by Collares-Pereira et al., in this themed issue.
Collapse
Affiliation(s)
- A Tayalé
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
226
|
Cui C, Ge X, Zhou Y, Li M, Li Z. Cytoplasmic and genomic effects on non-meiosis-driven genetic changes in Brassica hybrids and allotetraploids from pairwise crosses of three cultivated diploids. PLoS One 2013; 8:e65078. [PMID: 23741462 PMCID: PMC3669095 DOI: 10.1371/journal.pone.0065078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/22/2013] [Indexed: 12/27/2022] Open
Abstract
Nuclear-cytoplasmic interactions are predicted to be important in shaping the genetic changes in early stage of allopolyploidization. Our previous study shows the specific role of genome and cytoplasm affecting the chromosome pairing in Brassica hybrids and allotetraploids from pairwise crosses between three cultivated diploids with A, B and C genomes, respectively. Herein, to address how parental genomes and cytoplasm affects genomic, epigenetic and gene expression changes prior to meiosis in these hybrids and allopolyploids, their patterns of AFLP (Amplified fragment length polymorphism), mAFLP (Methylation AFLP) and cDNA-AFLP were compared with the progenitors, revealing the major absent bands within each genome. These changes varied under various cytoplasm backgrounds and genome combinations, following the significant order of AFLP> mAFLP> cDNA -AFLP. The frequencies of AFLP bands lost were positively correlated with the divergence degrees of parental genomes, but not obvious for those of mAFLP and cDNA-AFLP absent bands, and methylation change showed least variations among hybrids and within each genome. These changes within each genome followed the A>B>C hierarchy, except the highest rate of cDNA loss in B genome. Among three changes, only overall AFLP bands were significantly correlated with cDNA-AFLP, and their correlations varied within each genome. These changes in allotetraploids were mainly caused by genome merger rather than doubling. Parental genomes altered differently at three levels, responded to the types of cytoplasm and genome and their interaction or divergence. The result provides new clues for instant non-meiosis-driven genome restructuring following genome merger and duplication.
Collapse
Affiliation(s)
- Cheng Cui
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (GX); (ZL)
| | - Yingying Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (GX); (ZL)
| |
Collapse
|
227
|
GORELICK ROOT, OLSON KRYSTLE. Polyploidy Is Genetic Hence May Cause Non-Adaptive Radiations, Whereas Pseudopolyploidy Is Genomic Hence May Cause Adaptive Non-Radiations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:286-94. [DOI: 10.1002/jez.b.22499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- ROOT GORELICK
- Department of Biology; Carleton University; Ottawa, Ontario Canada
- School of Mathematics and Statistics and Institute of Interdisciplinary Studies; Carleton University; Ottawa, Ontario Canada
| | - KRYSTLE OLSON
- Department of Biology; Carleton University; Ottawa, Ontario Canada
| |
Collapse
|
228
|
Sanetomo R, Hosaka K. Pollen transcriptome analysis of Solanum tuberosum (2n = 4x = 48), S. demissum (2n = 6x = 72), and their reciprocal F1 hybrids. PLANT CELL REPORTS 2013; 32:623-636. [PMID: 23430172 DOI: 10.1007/s00299-013-1395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Pollen mRNAs were different in reciprocal F 1 hybrids, which were probably caused by a cytoplasm-nuclear chromosomal genes interaction. We have found reciprocal differences in crossability between F1 hybrids of Solanum tuberosum (T) and a Mexican wild potato species S. demissum (D). When the reciprocal hybrids were crossed as pollen parents with S. demissum, a significantly higher berry-setting rate was obtained in TD compared with DT. In this study, we performed a whole-genome transcript analysis of the pollen mRNA using a high-throughput sequencer. We obtained 12.6 billion bases that were aligned into 13,020 transcripts with 9,366 loci. All possible genetic modes were observed between the parents and their progeny, where over-dominance and under-recessive types were relatively frequent (15.7 and 15.3 %, respectively). We found that 59.1 % of transcripts were more abundant in TD and over fourfold higher transcription levels were found in 66 TD transcripts and three DT transcripts. A higher proportion of over-dominance and a lower proportion of under-recessive transcription types were also observed in TD. The percentage contributions of multiple transcripts at the same locus varied greatly and were transcribed differently between species. In the new allelic combinations created by hybridization, approximately three-fourth of the transcripts had intermediate percentage contributions between the parents but no differential transcription patterns were apparent between the reciprocal hybrids. A broad spectrum of functionally different nuclear genes was over-represented in TD pollen, some of which were directly related to pollen behavior. Since TD and DT pollen had the same composition of nuclear genes, a cytoplasm-nuclear chromosomal genes interaction is suggested for the cause of transcriptional and phenotypic differences between reciprocal hybrids.
Collapse
Affiliation(s)
- Rena Sanetomo
- NARO Hokkaido Agricultural Research Center, Shinsei, Memuro, Hokkaido, 082-0081, Japan
| | | |
Collapse
|
229
|
Bittner T, Campagne S, Neuhaus G, Rensing SA, Fischer-Iglesias C. Identification and characterization of two wheat Glycogen Synthase Kinase 3/ SHAGGY-like kinases. BMC PLANT BIOLOGY 2013; 13:64. [PMID: 23594413 PMCID: PMC3637598 DOI: 10.1186/1471-2229-13-64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/09/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant Glycogen Synthase Kinase 3/ SHAGGY-like kinases (GSKs) have been implicated in numerous biological processes ranging from embryonic, flower, stomata development to stress and wound responses. They are key regulators of brassinosteroid signaling and are also involved in the cross-talk between auxin and brassinosteroid pathways. In contrast to the human genome that contains two genes, plant GSKs are encoded by a multigene family. Little is known about Liliopsida resp. Poaceae in comparison to Brassicaceae GSKs. Here, we report the identification and structural characterization of two GSK homologs named TaSK1 and TaSK2 in the hexaploid wheat genome as well as a widespread phylogenetic analysis of land plant GSKs. RESULTS Genomic and cDNA sequence alignments as well as chromosome localization using nullisomic-tetrasomic lines provided strong evidence for three expressed gene copies located on homoeolog chromosomes for TaSK1 as well as for TaSK2. Predicted proteins displayed a clear GSK signature. In vitro kinase assays showed that TaSK1 and TaSK2 possessed kinase activity. A phylogenetic analysis of land plant GSKs indicated that TaSK1 and TaSK2 belong to clade II of plant GSKs, the Arabidopsis members of which are all involved in Brassinosteroid signaling. Based on a single ancestral gene in the last common ancestor of all land plants, paralogs were acquired and retained through paleopolyploidization events, resulting in six to eight genes in angiosperms. More recent duplication events have increased the number up to ten in some lineages. CONCLUSIONS To account for plant diversity in terms of functionality, morphology and development, attention has to be devoted to Liliopsida resp Poaceae GSKs in addition to Arabidopsis GSKs. In this study, molecular characterization, chromosome localization, kinase activity test and phylogenetic analysis (1) clarified the homologous/paralogous versus homoeologous status of TaSK sequences, (2) pointed out their affiliation to the GSK multigene family, (3) showed a functional kinase activity, (4) allowed a classification in clade II, members of which are involved in BR signaling and (5) allowed to gain information on acquisition and retention of GSK paralogs in angiosperms in the context of whole genome duplication events. Our results provide a framework to explore Liliopsida resp Poaceae GSKs functions in development.
Collapse
Affiliation(s)
- Thomas Bittner
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Sarah Campagne
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Gunther Neuhaus
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Stefan A Rensing
- Faculty of Biology & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
- Cell Biology, Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | | |
Collapse
|
230
|
Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. PLANT, CELL & ENVIRONMENT 2013; 36:856-68. [PMID: 23050986 DOI: 10.1111/pce.12021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.
Collapse
Affiliation(s)
- Thierry Allario
- Centre de Coopération Internationale en Recherche Agronomique pour Développement, UMR Amélioration Génétique et Adaptation des Plantes
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Cai C, Tong X, Liu F, Lv F, Wang H, Zhang T, Guo W. Discovery and identification of a novel Ligon lintless-like mutant (Lix) similar to the Ligon lintless (Li1) in allotetraploid cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:963-70. [PMID: 23397278 DOI: 10.1007/s00122-012-2029-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/06/2012] [Indexed: 05/10/2023]
Abstract
Mutants are a powerful resource for studying gene structure, function, and evolution. In this present study, a novel Ligon lintless-like mutant (Lix), that has short fibers and deformed leaves and stems, was isolated from the progeny of transgenic cottons. The Lix mutant is similar in morphology to the Ligon lintless (Li1) mutant. Genetic analysis and molecular mapping were performed for the Lix and Li1 mutants. These two mutants are monogenic dominant mutants with distorted growth of vegetative and reproductive structures. Seedlings of the dominant homozygote Li 1 Li 1 genotype are lethal, while LixLix plants are viable but show no reproductive growth. Molecular tagging showed that the Lix gene is located on Chr. 04 in a 30.9-cM region spanned by NAU8376 and NAU3469. In a previous study, the Li 1 gene was mapped to Chr. 22, and Chr. 04 and Chr. 22 are homoelogous chromosomes in tetraploid cotton. So, we propose that Lix and Li1 mutants have similar mutated morphology, and Lix is mapped to a homoelogous chromosome carrying Li 1 . The identification and genetic mapping of Lix/Li 1 genes using mutants provides a foundation for isolating these genes. In turn, this will permit studies to elucidate the functional and evolutionary roles for these genes in cotton growth and development.
Collapse
Affiliation(s)
- Caiping Cai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
232
|
Soltis PS. Hybridization, speciation and novelty. J Evol Biol 2013; 26:291-3. [PMID: 23324011 DOI: 10.1111/jeb.12095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022]
Affiliation(s)
- P S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA.
| |
Collapse
|
233
|
Zhang T, Zhao X, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B. Tissue-specific transcriptomic profiling of Sorghum propinquum using a rice genome array. PLoS One 2013; 8:e60202. [PMID: 23536906 PMCID: PMC3607598 DOI: 10.1371/journal.pone.0060202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyue Liu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zong
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (BF); (DY)
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (BF); (DY)
| |
Collapse
|
234
|
Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 2013; 30:798-802. [PMID: 22820317 DOI: 10.1038/nbt.2302] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/13/2012] [Indexed: 02/01/2023]
|
235
|
Chelaifa H, Chagué V, Chalabi S, Mestiri I, Arnaud D, Deffains D, Lu Y, Belcram H, Huteau V, Chiquet J, Coriton O, Just J, Jahier J, Chalhoub B. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. THE NEW PHYTOLOGIST 2013; 197:730-736. [PMID: 23278496 DOI: 10.1111/nph.12108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids.
Collapse
Affiliation(s)
- Houda Chelaifa
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Véronique Chagué
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Smahane Chalabi
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Imen Mestiri
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Dominique Arnaud
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Denise Deffains
- Unité Mixte de Recherches INRA, Agrocampus Rennes - Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), 35653, Le Rheu, France
| | - Yunhai Lu
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Harry Belcram
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Virginie Huteau
- Unité Mixte de Recherches INRA, Agrocampus Rennes - Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), 35653, Le Rheu, France
| | - Julien Chiquet
- Laboratoire Statistique et Génome, Université d'Évry Val d'Essonne, UMR CNRS 8071 - USC INRA, Evry, France
| | - Olivier Coriton
- Unité Mixte de Recherches INRA, Agrocampus Rennes - Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), 35653, Le Rheu, France
| | - Jérémy Just
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| | - Joseph Jahier
- Unité Mixte de Recherches INRA, Agrocampus Rennes - Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), 35653, Le Rheu, France
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale URGV (INRA- CNRS - UEVE), Organization and Evolution of Plant Genomes, 91057, Evry Cedex, France
| |
Collapse
|
236
|
Jiang J, Shao Y, Du K, Ran L, Fang X, Wang Y. Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genomics 2013; 14:72. [PMID: 23369045 PMCID: PMC3608150 DOI: 10.1186/1471-2164-14-72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/29/2013] [Indexed: 12/04/2022] Open
Abstract
Background Polyploidy is an important evolutionary mechanism in flowering plants that often induces immediate extensive changes in gene expression through genomic merging and doubling. Brassica napus L. is one of the most economically important polyploid oil crops and has been broadly studied as an example of polyploid crop. RNA-seq is a recently developed technique for transcriptome study, which could be in choice for profiling gene expression pattern in polyploids. Results We examined the global gene expression patterns of the first four generations of resynthesized B. napus (F1–F4), its diploid progenitors B. rapa and B. oleracea, and natural B. napus using digital gene expression analysis. Almost 42 million clean tags were generated using Illumina technology to produce the expression data for 25959 genes, which account for 63% of the annotated B. rapa genome. More than 56% of the genes were transcribed from both strands, which indicate the importance of RNA-mediated gene regulation in polyploidization. Tag mapping of the B. rapa genome generated 19023, 18547, 24383, 20659, 18881, 20692, and 19955 annotated genes for the B. rapa, B. oleracea, F1–F4 of synthesized B. napus, and natural B. napus libraries, respectively. The unambiguous tag-mapped genes in the libraries were functionally categorized via gene ontological analysis. Thousands of differentially expressed genes (DEGs) were identified and revealed the substantial changes in F1–F4. Among the 20 most DEGs are DNA binding/transcription factor, cyclin-dependent protein kinase, epoxycarotenoid dioxygenase, and glycine-rich protein. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs suggested approximately 120 biological pathways. Conclusions The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of early generations of synthesized B. napus. This information broadens our understanding of the mechanisms of B. napus polyploidization and contributes to molecular and genetic research by enriching the Brassica database.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | | | |
Collapse
|
237
|
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity (Edinb) 2013; 110:99-104. [PMID: 23149459 PMCID: PMC3554449 DOI: 10.1038/hdy.2012.79] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/09/2022] Open
Abstract
Polyploidy, the condition of possessing more than two complete genomes in a cell, has intrigued biologists for almost a century. Polyploidy is found in many plants and some animal species and today we know that polyploidy has had a role in the evolution of all angiosperms. Despite its widespread occurrence, the direct effect of polyploidy on evolutionary success of a species is still largely unknown. Over the years many attractive hypotheses have been proposed in an attempt to assign functionality to the increased content of a duplicated genome. Among these hypotheses are the proposal that genome doubling confers distinct advantages to a polyploid and that these advantages allow polyploids to thrive in environments that pose challenges to the polyploid's diploid progenitors. This article revisits these long-standing questions and explores how the integration of recent genomic developments with ecological, physiological and evolutionary perspectives has contributed to addressing unresolved problems about the role of polyploidy. Although unsatisfactory, the current conclusion has to be that despite significant progress, there still isn't enough information to unequivocally answer many unresolved questions about cause and effect of polyploidy on evolutionary success of a species. There is, however, reason to believe that the increasingly integrative approaches discussed here should allow us in the future to make more direct connections between the effects of polyploidy on the genome and the responses this condition elicits from the organism living in its natural environment.
Collapse
Affiliation(s)
- A Madlung
- Department of Biology, University of Puget Sound, Tacoma, WA 98416, USA.
| |
Collapse
|
238
|
Collares-Pereira M, Matos I, Morgado-Santos M, Coelho M. Natural Pathways towards Polyploidy in Animals: TheSqualius alburnoidesFish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet Genome Res 2013; 140:97-116. [DOI: 10.1159/000351729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
239
|
Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA. The fate of duplicated genes in a polyploid plant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:143-53. [PMID: 22974547 DOI: 10.1111/tpj.12026] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
Polyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.) has undergone two separate polyploidy events (13 and 59 million years ago) that have resulted in 75% of its genes being present in multiple copies. It therefore constitutes a good model to study the impact of whole-genome duplication on gene expression. Using RNA-seq, we tested the functional fate of a set of approximately 18 000 duplicated genes. Across seven tissues tested, approximately 50% of paralogs were differentially expressed and thus had undergone expression sub-functionalization. Based on gene ontology and expression data, our analysis also revealed that only a small proportion of the duplicated genes have been neo-functionalized or non-functionalized. In addition, duplicated genes were often found in collinear blocks, and several blocks of duplicated genes were co-regulated, suggesting some type of epigenetic or positional regulation. We also found that transcription factors and ribosomal protein genes were differentially expressed in many tissues, suggesting that the main consequence of polyploidy in soybean may be at the regulatory level.
Collapse
Affiliation(s)
- Anne Roulin
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Zoologisches Institut, Universität Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Paul L Auer
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jessica Schlueter
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Greg May
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Scott A Jackson
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| |
Collapse
|
240
|
Zhang H, Deng XW, Li L. Analysis of allele-specific gene expression using a target-oriented tiling microarray assay. Methods Mol Biol 2013; 1067:65-76. [PMID: 23975786 DOI: 10.1007/978-1-62703-607-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advances in molecular and computational biology in recent years have led to the development or the improvement of methods for analyzing global gene expression. In most of these efforts, it is assumed that alleles of different origins contribute equally to the transcript pool. However, accumulating evidence suggests that many genes are not equally expressed from the paternal and maternal chromosomes. In addition to imprinting, the phenomenon of imbalanced allelic expression is widespread in heterozygous individuals. To distinguish transcript pools derived from different alleles present in the same organism, a number of methods have been developed. Here, we describe an oligonucleotide tiling microarray-based assay for analyzing allele-specific gene expression. Specifically targeting single-nucleotide polymorphisms, this two-step assay offers a high-throughput and multiplex method for detecting and quantifying unequal allelic expression that is readily applicable to many experimental systems.
Collapse
Affiliation(s)
- Huiyong Zhang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
241
|
Fatta Del Bosco S, Abbate L, Tusa N, Strano T, Renda A, Ruberto G. Genetic improvement of Citrus fruits: The essential oil profiles in a Citrus limon backcross progeny derived from somatic hybridization. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
242
|
Wertheim B, Beukeboom L, van de Zande L. Polyploidy in Animals: Effects of Gene Expression on Sex Determination, Evolution and Ecology. Cytogenet Genome Res 2013; 140:256-69. [DOI: 10.1159/000351998] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
243
|
Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploids. THE NEW PHYTOLOGIST 2012; 196:966-971. [PMID: 23033870 DOI: 10.1111/j.1469-8137.2012.04365.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - J P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - E P Szadkowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - M J Yoo
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - L E Flagel
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - J F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
244
|
|
245
|
Zhao L, Yuanda L, Caiping C, Xiangchao T, Xiangdong C, Wei Z, Hao D, Xiuhua G, Wangzhen G. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 2012; 13:539. [PMID: 23046547 PMCID: PMC3557173 DOI: 10.1186/1471-2164-13-539] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/23/2012] [Indexed: 01/02/2023] Open
Abstract
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Koh J, Chen S, Zhu N, Yu F, Soltis PS, Soltis DE. Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. THE NEW PHYTOLOGIST 2012; 196:292-305. [PMID: 22861377 DOI: 10.1111/j.1469-8137.2012.04251.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• We examined the proteomes of the recently formed natural allopolyploid Tragopogon mirus and its diploid parents (T. dubius, T. porrifolius), as well as a diploid F(1) hybrid and synthetic T. mirus. • Analyses using iTRAQ LC-MS/MS technology identified 476 proteins produced by all three species. Of these, 408 proteins showed quantitative additivity of the two parental profiles in T. mirus (both natural and synthetic); 68 proteins were quantitatively differentially expressed. • Comparison of F(1) hybrid, and synthetic and natural polyploid T. mirus with the parental diploid species revealed 32 protein expression changes associated with hybridization, 22 with genome doubling and 14 that had occurred since the origin of T. mirus c. 80 yr ago. We found six proteins with novel expression; this phenomenon appears to start in the F(1) hybrid and results from post-translational modifications. • Our results indicate that the impact of hybridization on the proteome is more important than is polyploidization. Furthermore, two cases of homeolog-specific expression in T. mirus suggest that silencing in T. mirus was not associated with hybridization itself, but occurred subsequent to both hybridization and polyploidization. This study has shown the utility of proteomics in the analysis of the evolutionary consequences of polyploidy.
Collapse
Affiliation(s)
- Jin Koh
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
247
|
Schatlowski N, Köhler C. Tearing down barriers: understanding the molecular mechanisms of interploidy hybridizations. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6059-67. [PMID: 23105129 DOI: 10.1093/jxb/ers288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyploidization, the process leading to more than two sets of chromosomes, is widely recognized as a major speciation mechanism that might hold the key to Darwin's 'abominable mystery', as he referred to the sudden rise of angiosperms to ecological dominance. On their way to become polyploid most plants take the route through the production of unreduced gametes that might eventually lead to viable triploid intermediates able to backcross or self-fertilize to give rise to stable polyploid plants. Polyploids are almost instantly reproductively isolated from their non-polyploid ancestors; as hybridizations of species that differ in ploidy mostly lead to non-viable progeny. This immediate reproductive barrier referred to as 'triploid block' is established in the endosperm, pointing towards an important but greatly underestimated role of the endosperm in preventing interploidy hybridizations. Parent-of-origin specific gene expression occurs predominantly in the endosperm and might cause the dosage-sensitivity of the endosperm. This article illustrates, based on the recent molecular and genetic findings mainly gained in the model species Arabidopsis thaliana, the 'journey' of unreduced gametes to triploid intermediates to polyploid plants and will also discuss the implications for interploidy and interspecies hybridizations.
Collapse
Affiliation(s)
- Nicole Schatlowski
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | | |
Collapse
|
248
|
Charon C, Bruggeman Q, Thareau V, Henry Y. Gene duplication within the Green Lineage: the case of TEL genes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5061-5077. [PMID: 22865910 DOI: 10.1093/jxb/ers181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.
Collapse
Affiliation(s)
- Céline Charon
- Institut de Biologie des Plantes-CNRS (UMR8618), Université Paris-Sud 11, Saclay Plant Sciences, F-91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
249
|
Aversano R, Ercolano MR, Caruso I, Fasano C, Rosellini D, Carputo D. Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 2012; 13:10316-10335. [PMID: 22949863 PMCID: PMC3431861 DOI: 10.3390/ijms130810316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022] Open
Abstract
Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Maria Raffaella Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Immacolata Caruso
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Carlo Fasano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Daniele Rosellini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mail:
| | - Domenico Carputo
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| |
Collapse
|
250
|
Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BYH, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MA. Control of pollen-mediated gene flow in transgenic trees. PLANT PHYSIOLOGY 2012; 159:1319-34. [PMID: 22723085 PMCID: PMC3425181 DOI: 10.1104/pp.112.197228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/18/2012] [Indexed: 05/07/2023]
Abstract
Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees.
Collapse
|