201
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
202
|
Wan X, Song M, Wang A, Zhao Y, Wei Z, Lu Y. Microbiome Crosstalk in Immunotherapy and Antiangiogenesis Therapy. Front Immunol 2021; 12:747914. [PMID: 34745119 PMCID: PMC8566949 DOI: 10.3389/fimmu.2021.747914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The human body and its microbiome constitute a highly delicate system. The gut microbiome participates in the absorption of the host's nutrients and metabolism, maintains the microcirculation, and modulates the immune response. Increasing evidence shows that gut microbiome dysbiosis in the body not only affects the occurrence and development of tumors but also tumor prognosis and treatment. Microbiome have been implicated in tumor control in patients undergoing anti- angiogenesis therapy and immunotherapy. In cases with unsatisfactory responses to chemotherapy, radiotherapy, and targeted therapy, appropriate adjustment of microbes abundance is considered to enhance the treatment response. Here, we review the current research progress in cancer immunotherapy and anti- angiogenesis therapy, as well as the unlimited potential of their combination, especially focusing on how the interaction between intestinal microbiota and the immune system affects cancer pathogenesis and treatment. In addition, we discuss the effects of microbiota on anti-cancer immune response and anti- angiogenesis therapy, and the potential value of these interactions in promoting further research in this field.
Collapse
Affiliation(s)
- Xueting Wan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.,Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
203
|
The gastrointestinal microbiota in colorectal cancer cell migration and invasion. Clin Exp Metastasis 2021; 38:495-510. [PMID: 34748126 DOI: 10.1007/s10585-021-10130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Colorectal carcinoma is the third most common cancer in developed countries and the second leading cause of cancer-related mortality. Interest in the influence of the intestinal microbiota on CRC emerged rapidly in the past few years, and the close presence of microbiota to the tumour mass creates a unique microenvironment in CRC. The gastrointestinal microbiota secrete factors that can contribute to CRC metastasis by influencing, for example, epithelial-to-mesenchymal transition. Although the role of EMT in metastasis is well-studied, mechanisms by which gastrointestinal microbiota contribute to the progression of CRC remain poorly understood. In this review, we will explore bacterial factors that contribute to the migration and invasion of colorectal carcinoma and the mechanisms involved. Bacteria involved in the induction of metastasis in primary CRC include Fusobacterium nucleatum, Enterococcus faecalis, enterotoxigenic Bacteroides fragilis, Escherichia coli and Salmonella enterica. Examples of prominent bacterial factors secreted by these bacteria include Fusobacterium adhesin A and Bacteroides fragilis Toxin. Most of these factors induce EMT-like properties in carcinoma cells and, as such, contribute to disease progression by affecting cell-cell adhesion, breakdown of the extracellular matrix and reorganisation of the cytoskeleton. It is of utmost importance to elucidate how bacterial factors promote CRC recurrence and metastasis to increase patient survival. So far, mainly animal models have been used to demonstrate this interplay between the host and microbiota. More human-based models are needed to study the mechanisms that promote migration and invasion and mimic the progression and recurrence of CRC.
Collapse
|
204
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
205
|
Dalal N, Jalandra R, Bayal N, Yadav AK, Harshulika, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol 2021; 147:3141-3155. [PMID: 34273006 DOI: 10.1007/s00432-021-03729-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Based on recent research reports, dysbiosis and improper concentrations of microbial metabolites in the gut may result into the carcinogenesis of colorectal cancer. Recent advancement also highlights the involvement of bacteria and their secreted metabolites in the cancer causation. Gut microbial metabolites are functional output of the host-microbiota interactions and produced by anaerobic fermentation of food components in the diet. They contribute to influence variety of biological mechanisms including inflammation, cell signaling, cell-cycle disruption which are majorly disrupted in carcinogenic activities. PURPOSE In this review, we intend to discuss recent updates and possible molecular mechanisms to provide the role of bacterial metabolites, gut bacteria and diet in the colorectal carcinogenesis. Recent evidences have proposed the role of bacteria, such as Fusobacterium nucleaturm, Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis and Clostridium septicum, in the carcinogenesis of CRC. Metagenomic study confirmed that these bacteria are in increased abundance in CRC patient as compared to healthy individuals and can cause inflammation and DNA damage which can lead to development of cancer. These bacteria produce metabolites, such as secondary bile salts from primary bile salts, hydrogen sulfide, trimethylamine-N-oxide (TMAO), which are likely to promote inflammation and subsequently cancer development. CONCLUSION Recent studies suggest that gut microbiota-derived metabolites have a role in CRC progression and causation and hence, could be implicated in CRC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Nitin Bayal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Harshulika
- Ministry of Environment, Forest and Climate Change, New Delhi, 110003, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, 110029, India
| | - Pramod Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
206
|
Wan C, Chen S, Zhao K, Ren Z, Peng L, Xia H, Wei H, Yu B. Serum Untargeted Metabolism Reveals the Mechanism of L. plantarum ZDY2013 in Alleviating Kidney Injury Induced by High-Salt Diet. Nutrients 2021; 13:nu13113920. [PMID: 34836175 PMCID: PMC8620752 DOI: 10.3390/nu13113920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet (HSD) is one of the key risk factors for hypertension and kidney injury. In this study, a HSD C57BL/6J mice model was established with 4% NaCl, and then different concentrations of Lactobacillus plantarum ZDY2013 were intragastrically administered for 2 weeks to alleviate HSD-induced renal injury. For the study, 16S rRNA gene sequencing, non-targeted metabonomics, real-time fluorescent quantitative PCR, and Masson’s staining were used to investigate the mechanism of L. plantarum ZDY2013 in alleviating renal damage. Results showed that HSD caused intestinal inflammation and changed the intestinal permeability of mice, disrupted the balance of intestinal flora, and increased toxic metabolites (tetrahydrocorticosteron (THB), 3-methyhistidine (3-MH), creatinine, urea, and L-kynurenine), resulting in serious kidney damage. Interestingly, L. plantarum ZDY2013 contributed to reconstructing the intestinal flora of mice by increasing the level of Lactobacillus and Bifidobacterium and decreasing that of Prevotella and Bacteroides. Moreover, the reconstructed intestinal microbiota significantly changed the concentration of the metabolites of hosts through metabolic pathways, including TCA cycle, ABC transport, purine metabolism, and histidine metabolism. The content of uremic toxins such as L-kynurenine, creatinine, and urea in the serum of mice was found to be decreased by L. plantarum ZDY2013, which resulted in renal injury alleviation. Our data suggest that L. plantarum ZDY2013 can indeed improve chronic kidney injury by regulating intestinal flora, strengthening the intestinal barrier, limiting inflammatory response, and reducing uremic toxins.
Collapse
Affiliation(s)
- Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Kui Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Huiling Xia
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Bo Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
- Correspondence: ; Tel.: +86-791-8833-4578
| |
Collapse
|
207
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
208
|
Lee K, Oh HJ, Kang MS, Kim S, Ahn S, Kim MJ, Kim SW, Chang S. Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model of pancreatic cancer, suppressing its proliferation. Appl Microbiol Biotechnol 2021; 105:8343-8358. [PMID: 34648062 DOI: 10.1007/s00253-021-11617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a lethal cancer with aggressive and invasive characteristics. By the time it is diagnosed, patients already have tumors extended to other organs and show extremely low survival rates. The gut microbiome is known to be associated with many diseases and its imbalance affects the pathogenesis of pancreatic cancer. In this study, we established an orthotopic, patient-derived xenograft model to identify how the gut microbiome is linked to pancreatic ductal adenocarcinoma (PDAC). Using the 16S rDNA metagenomic sequencing, we revealed that the levels of Alistipes onderdonkii and Roseburia hominis decreased in the gut microbiome of the PDAC model. To explore the crosstalk between the two bacteria and PDAC cells, we collected the supernatant of the bacteria or cancer cell culture medium and treated it in a cross manner. While the cancer cell medium did not affect bacterial growth, we observed that the A. onderdonkii medium suppressed the growth of the pancreatic primary cancer cells. Using the bromodeoxyuridine/7-amino-actinomycin D (BrdU/7-AAD) staining assay, we confirmed that the A. onderdonkii medium inhibited the proliferation of the pancreatic primary cancer cells. Furthermore, RNA-seq analysis revealed that the A. onderdonkii medium induced unique transcriptomic alterations in the PDAC cells, compared to the normal pancreatic cells. Altogether, our data suggest that the reduction in the A. onderdonkii in the gut microbiome provides a proliferation advantage to the pancreatic cancer cells. KEY POINTS: • Metagenome analysis of pancreatic cancer model reveals A. onderdonkii downregulation. • A. onderdonkii culture supernatant suppressed the proliferation of pancreatic cancer cells. • RNA seq data reveals typical gene expression changes induced by A. onderdonkii.
Collapse
Affiliation(s)
- Kihak Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Hyo Jae Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Su Kang
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sehee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
209
|
Bakuradze N, Merabishvili M, Makalatia K, Kakabadze E, Grdzelishvili N, Wagemans J, Lood C, Chachua I, Vaneechoutte M, Lavigne R, Pirnay JP, Abiatari I, Chanishvili N. In Vitro Evaluation of the Therapeutic Potential of Phage VA7 against Enterotoxigenic Bacteroides fragilis Infection. Viruses 2021; 13:2044. [PMID: 34696475 PMCID: PMC8538522 DOI: 10.3390/v13102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.
Collapse
Affiliation(s)
- Nata Bakuradze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Maya Merabishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Khatuna Makalatia
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
| | - Nino Grdzelishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Cedric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Irakli Chachua
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Nina Chanishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| |
Collapse
|
210
|
Nardelli C, Granata I, Nunziato M, Setaro M, Carbone F, Zulli C, Pilone V, Capoluongo ED, De Palma GD, Corcione F, Matarese G, Salvatore F, Sacchetti L. 16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:10747. [PMID: 34639088 PMCID: PMC8509685 DOI: 10.3390/ijms221910747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the Western world and intestinal dysbiosis might contribute to its pathogenesis. The mucosal colon microbiome and C-C motif chemokine 2 (CCL2) were investigated in 20 healthy controls (HC) and 20 CRC patients using 16S rRNA sequencing and immunoluminescent assay, respectively. A total of 10 HC subjects were classified as overweight/obese (OW/OB_HC) and 10 subjects were normal weight (NW_HC); 15 CRC patients were classified as OW/OB_CRC and 5 patients were NW_CRC. Results: Fusobacterium nucleatum and Escherichia coli were more abundant in OW/OB_HC than in NW_HC microbiomes. Globally, Streptococcus intermedius, Gemella haemolysans, Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were significantly increased in CRC patient tumor/lesioned tissue (CRC_LT) and CRC patient unlesioned tissue (CRC_ULT) microbiomes compared to HC microbiomes. CCL2 circulating levels were associated with tumor presence and with the abundance of Fusobacterium nucleatum, Bacteroides fragilis and Gemella haemolysans. Our data suggest that mucosal colon dysbiosis might contribute to CRC pathogenesis by inducing inflammation. Notably, Fusobacterium nucleatum, which was more abundant in the OW/OB_HC than in the NW_HC microbiomes, might represent a putative link between obesity and increased CRC risk.
Collapse
Affiliation(s)
- Carmela Nardelli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (C.N.); (M.N.); (E.D.C.); (G.M.); (F.S.)
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), 80131 Naples, Italy;
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (C.N.); (M.N.); (E.D.C.); (G.M.); (F.S.)
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
| | - Mario Setaro
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
| | - Fortunata Carbone
- Laboratory of Immunology, Institute of Endocrinology and Experimental Oncology, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131 Naples, Italy;
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Claudio Zulli
- Digestive Endoscopy Unit, Gaetano Fucito Hospital, Mercato San Severino, 84085 Salerno, Italy;
| | - Vincenzo Pilone
- Department of Medicine and Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84084 Salerno, Italy;
| | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (C.N.); (M.N.); (E.D.C.); (G.M.); (F.S.)
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
| | - Giovanni Domenico De Palma
- Department Clinical Medicine and Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy;
| | - Francesco Corcione
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (C.N.); (M.N.); (E.D.C.); (G.M.); (F.S.)
- Laboratory of Immunology, Institute of Endocrinology and Experimental Oncology, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131 Naples, Italy;
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (C.N.); (M.N.); (E.D.C.); (G.M.); (F.S.)
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
| | - Lucia Sacchetti
- CEINGE Biotecnologie Avanzate S.C.a R.L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
211
|
Li S, Liu J, Zheng X, Ren L, Yang Y, Li W, Fu W, Wang J, Du G. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0651. [PMID: 34586760 PMCID: PMC8832957 DOI: 10.20892/j.issn.2095-3941.2020.0651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common and the second most fatal cancer. In recent years, more attention has been directed toward the role of gut microbiota in the initiation and development of CRC. Some bacterial species, such as Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Enterococcus faecalis, and Salmonella sp. have been associated with CRC, based upon sequencing studies in CRC patients and functional studies in cell culture and animal models. These bacteria can cause host DNA damage by genotoxic substances, including colibactin secreted by pks + Escherichia coli, B. fragilis toxin (BFT) produced by Bacteroides fragilis, and typhoid toxin (TT) from Salmonella. These bacteria can also indirectly promote CRC by influencing host-signaling pathways, such as E-cadherin/β-catenin, TLR4/MYD88/NF-κB, and SMO/RAS/p38 MAPK. Moreover, some of these bacteria can contribute to CRC progression by helping tumor cells to evade the immune response by suppressing immune cell function, creating a proinflammatory environment, or influencing the autophagy process. Treatments with the classical antibacterial drugs, metronidazole or erythromycin, the antibacterial active ingredients, M13@ Ag (electrostatically assembled from inorganic silver nanoparticles and the protein capsid of bacteriophage M13), berberine, and zerumbone, were found to inhibit tumorigenic bacteria to different degrees. In this review, we described progress in elucidating the tumorigenic mechanisms of several CRC-associated bacteria, as well as progress in developing effective antibacterial therapies. Specific bacteria have been shown to be active in the oncogenesis and progression of CRC, and some antibacterial compounds have shown therapeutic potential in bacteria-induced CRC. These bacteria may be useful as biomarkers or therapeutic targets for CRC.
Collapse
Affiliation(s)
- Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
212
|
Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D, Gao B, Zhou H, Sun J, Han X, Lin M, Chen J. The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol 2021; 11:720842. [PMID: 34490119 PMCID: PMC8417127 DOI: 10.3389/fonc.2021.720842] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
The influence of microbiota on host health and disease has attracted adequate attention, and gut microbiota components and microbiota-derived metabolites affect host immune homeostasis locally and systematically. Some studies have found that gut dysbiosis, disturbance of the structure and function of the gut microbiome, disrupts pulmonary immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis and the progression of lung cancer through genotoxicity, systemic inflammation, and defective immunosurveillance. In addition, the gut microbiome harbors the potential to be a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by regulating the gut microbiota. Although current studies have found that gut microbiota closely participates in the development and immunotherapy of lung cancer, the mechanisms require further investigation. Therefore, this review aims to discuss the underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy in lung cancer and to provide new strategies for governing gut microbiota to enhance the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ye Cheng
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Dan Zang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Min Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuhua Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bing Gao
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Huan Zhou
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jinzhe Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xu Han
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Lin
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
213
|
Sánchez-Alcoholado L, Laborda-Illanes A, Otero A, Ordóñez R, González-González A, Plaza-Andrades I, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Relationships of Gut Microbiota Composition, Short-Chain Fatty Acids and Polyamines with the Pathological Response to Neoadjuvant Radiochemotherapy in Colorectal Cancer Patients. Int J Mol Sci 2021; 22:9549. [PMID: 34502456 PMCID: PMC8430739 DOI: 10.3390/ijms22179549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has suggested that dysbiosis of the gut microbiota may influence the drug efficacy of colorectal cancer (CRC) patients during cancer treatment by modulating drug metabolism and the host immune response. Moreover, gut microbiota can produce metabolites that may influence tumor proliferation and therapy responsiveness. In this study we have investigated the potential contribution of the gut microbiota and microbial-derived metabolites such as short chain fatty acids and polyamines to neoadjuvant radiochemotherapy (RCT) outcome in CRC patients. First, we established a profile for healthy gut microbiota by comparing the microbial diversity and composition between CRC patients and healthy controls. Second, our metagenomic analysis revealed that the gut microbiota composition of CRC patients was relatively stable over treatment time with neoadjuvant RCT. Nevertheless, treated patients who achieved clinical benefits from RTC (responders, R) had significantly higher microbial diversity and richness compared to non-responder patients (NR). Importantly, the fecal microbiota of the R was enriched in butyrate-producing bacteria and had significantly higher levels of acetic, butyric, isobutyric, and hexanoic acids than NR. In addition, NR patients exhibited higher serum levels of spermine and acetyl polyamines (oncometabolites related to CRC) as well as zonulin (gut permeability marker), and their gut microbiota was abundant in pro-inflammatory species. Finally, we identified a baseline consortium of five bacterial species that could potentially predict CRC treatment outcome. Overall, our results suggest that the gut microbiota may have an important role in the response to cancer therapies in CRC patients.
Collapse
Grants
- CPI13/00003 Miguel Servet Type II" program, ISCIII, Spain; co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
- C-0030-2018 "Nicolas Monardes" research program of the Consejería de Salud, Junta de Andalucía, Spain
- CP19/00098 Miguel Servet Type I" program, ISCIII, Spain; co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
- PE-0106-2019 Predoctoral grant from the Consejería de Salud y Familia, co-funded by the Fondo Europeo de Desarrollo Regional-FEDER, Andalucia, Spain
- FI19-00112 predoctoral grant PFIS-ISCIII, co-funded by the Fondo Europeo de Desarrollo Regional-FEDER, Madrid, Spain.
- PI15/00256 Institute of Health "Carlos III" (ISCIII), co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
Collapse
Affiliation(s)
- Lidia Sánchez-Alcoholado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Aurora Laborda-Illanes
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Ana Otero
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - Rafael Ordóñez
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Isaac Plaza-Andrades
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain;
| | - Jaime Gómez-Millán
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| |
Collapse
|
214
|
Vitale G, Dicitore A, Barrea L, Sbardella E, Razzore P, Campione S, Faggiano A, Colao A, Albertelli M, Altieri B, Bottiglieri F, De Cicco F, Di Molfetta S, Fanciulli G, Feola T, Ferone D, Ferraù F, Gallo M, Giannetta E, Grillo F, Grossrubatscher E, Guadagno E, Guarnotta V, Isidori AM, Lania A, Lenzi A, Calzo FL, Malandrino P, Messina E, Modica R, Muscogiuri G, Pes L, Pizza G, Pofi R, Puliani G, Rainone C, Rizza L, Rubino M, Ruggieri RM, Sesti F, Venneri MA, Zatelli MC. From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: Are we on the highway to hell? Rev Endocr Metab Disord 2021; 22:511-525. [PMID: 32935263 PMCID: PMC8346435 DOI: 10.1007/s11154-020-09589-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota is represented by different microorganisms that colonize the intestinal tract, mostly the large intestine, such as bacteria, fungi, archaea and viruses. The gut microbial balance has a key role in several functions. It modulates the host's metabolism, maintains the gut barrier integrity, participates in the xenobiotics and drug metabolism, and acts as protection against gastro-intestinal pathogens through the host's immune system modulation. The impaired gut microbiota, called dysbiosis, may be the result of an imbalance in this equilibrium and is linked with different diseases, including cancer. While most of the studies have focused on the association between microbiota and gastrointestinal adenocarcinomas, very little is known about gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs). In this review, we provide an overview concerning the complex interplay between gut microbiota and GEP NENs, focusing on the potential role in tumorigenesis and progression in these tumors.
Collapse
Affiliation(s)
- Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, MI, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| | - Alessandra Dicitore
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Razzore
- Endocrinology Unit, A.O. Ordine Mauriziano, Turin, Italy
| | | | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Kong C, Yan X, Zhu Y, Zhu H, Luo Y, Liu P, Ferrandon S, Kalady MF, Gao R, He J, Yin F, Qu X, Zheng J, Gao Y, Wei Q, Ma Y, Liu JY, Qin H. Fusobacterium Nucleatum Promotes the Development of Colorectal Cancer by Activating a Cytochrome P450/Epoxyoctadecenoic Acid Axis via TLR4/Keap1/NRF2 Signaling. Cancer Res 2021; 81:4485-4498. [PMID: 34162680 DOI: 10.1158/0008-5472.can-21-0453] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Emerging research has revealed regulation of colorectal cancer metabolism by bacteria. Fusobacterium nucleatum (Fn) plays a crucial role in the development of colorectal cancer, however, whether Fn infection modifies metabolism in patients with colorectal cancer remains unknown. Here, LC-MS/MS-based lipidomics identified the upregulation of cytochrome P450 monooxygenases, primarily CYP2J2, and their mediated product 12,13-EpOME in patients with colorectal cancer tumors and mouse models, which increased the invasive and migratory ability of colorectal cancer cells in vivo and in vitro by regulating the epithelial-mesenchymal transition (EMT). Metagenomic sequencing indicated a positive correlation between increased levels of fecal Fn and serum 12,13-EpOME in patients with colorectal cancer. High levels of CYP2J2 in tumor tissues also correlated with high Fn levels and worse overall survival in patients with stage III/IV colorectal cancer. Moreover, Fn was found to activate TLR4/AKT signaling, downregulating Keap1 and increasing NRF2 to promote transcription of CYP2J2. Collectively, these data identify that Fn promotes EMT and metastasis in colorectal cancer by activating a TLR4/Keap1/NRF2 axis to increase CYP2J2 and 12,13-EpOME, which could serve as clinical biomarkers and therapeutic targets for Fn-infected patients with colorectal cancer. SIGNIFICANCE: This study uncovers a mechanism by which Fusobacterium nucleatum regulates colorectal cancer metabolism to drive metastasis, suggesting the potential biomarker and therapeutic utility of the CYP2J2/12,13-EpOME axis in Fn-infected patients.
Collapse
Affiliation(s)
- Cheng Kong
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yefei Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ying Luo
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Peipei Liu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sylvain Ferrandon
- Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Matthew F Kalady
- Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Renyuan Gao
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jide He
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Fang Yin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Yan Liu
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
216
|
Fadista J, Yakimov V, Võsa U, Hansen CS, Kasela S, Skotte L, Geller F, Courraud J, Esko T, Kukuškina V, Buil A, Melbye M, Werge TM, Hougaard DM, Milani L, Bybjerg-Grauholm J, Cohen AS, Feenstra B. Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study. Sci Rep 2021; 11:17463. [PMID: 34465810 PMCID: PMC8408253 DOI: 10.1038/s41598-021-97069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10-49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10-28) and adults (P = 2.748 × 10-8) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.
Collapse
Affiliation(s)
- João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Victor Yakimov
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christine S Hansen
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Julie Courraud
- Section of Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alfonso Buil
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - David M Hougaard
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jonas Bybjerg-Grauholm
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Arieh S Cohen
- Section of Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
217
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
218
|
Dong J, Li Y, Xiao H, Cui M, Fan S. Commensal microbiota in the digestive tract: a review of its roles in carcinogenesis and radiotherapy. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0476. [PMID: 34369136 PMCID: PMC8763002 DOI: 10.20892/j.issn.2095-3941.2020.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/27/2021] [Indexed: 11/11/2022] Open
Abstract
The human microflora is a complex ecosystem composed of diverse microorganisms mainly distributed in the epidermal and mucosal habitats of the entire body, including the mouth, lung, intestines, skin, and vagina. These microbial communities are involved in many essential functions, such as metabolism, immunity, host nutrition, and diseases. Recent studies have focused on the microbiota associated with cancers, particularly the oral and intestinal microbiota. Radiotherapy, the most effective cytotoxic modality available for solid tumors, contributes to the treatment of cancer patients. Mounting evidence supports that the microbiota plays pivotal roles in the efficacy and prognosis of tumor radiotherapy. Here, we review current research on the microbiota and cancer development, and describe knowledge gaps in the study of radiotherapy and the microbiota. Better understanding of the effects of the microbiome in tumorigenesis and radiotherapy will shed light on future novel prevention and treatment strategies based on modulating the microbiome in cancer patients.
Collapse
Affiliation(s)
- Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
219
|
Sayed IM, Ramadan HKA, El-Mokhtar MA, Abdel-Wahid L. Microbiome and gastrointestinal malignancies. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
220
|
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021; 10:cells10081934. [PMID: 34440703 PMCID: PMC8391204 DOI: 10.3390/cells10081934] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The high incidence of colorectal cancer (CRC) in developed countries indicates a predominant role of the environment as a causative factor. Natural gut microbiota provides multiple benefits to humans. Dysbiosis is characterized by an unbalanced microbiota and causes intestinal damage and inflammation. The latter is a common denominator in many cancers including CRC. Indeed, in an inflammation scenario, cellular growth is promoted and immune cells release Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), which cause DNA damage. Apart from that, many metabolites from the diet are converted into DNA damaging agents by microbiota and some bacteria deliver DNA damaging toxins in dysbiosis conditions as well. The interactions between diet, microbiota, inflammation, and CRC are not the result of a straightforward relationship, but rather a network of multifactorial interactions that deserve deep consideration, as their consequences are not yet fully elucidated. In this paper, we will review the influence of dysbiosis in the induction of DNA damage and CRC.
Collapse
|
221
|
Mihai MM, Ion A, Giurcăneanu C, Nițipir C, Popa AM, Chifiriuc MC, Popa MI, Říčař J, Popa LG, Sârbu I, Lazăr V. The Impact of Long-Term Antibiotic Therapy of Cutaneous Adverse Reactions to EGFR Inhibitors in Colorectal Cancer Patients. J Clin Med 2021; 10:jcm10153219. [PMID: 34362003 PMCID: PMC8347035 DOI: 10.3390/jcm10153219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is an important public health issue, in terms of incidence and mortality, with approximately 1.8 million new cases reported worldwide in 2018. Advancements in understanding pathophysiological key steps in CRC tumorigenesis have led to the development of new targeted therapies such as those based on epidermal growth factor receptor inhibitors (EGFR inhibitors). The cutaneous adverse reactions induced by EGFR inhibitors, particularly papulopustular rash, often require long-term antibiotic treatment with tetracycline agents (mostly minocycline and doxycycline). However, this raises several issues of concern: possible occurrence of gut dysbiosis in already vulnerable CRC patients, selection of highly antibiotic resistant and/or virulent clones, development of adverse reactions related to tetracyclines, interference of antibiotics with the response to oncologic therapy, with a negative impact on disease prognosis etc. In the context of scarce information regarding these issues and controversial opinions regarding the role of tetracyclines in patients under EGFR inhibitors, our aim was to perform a thorough literature review and discuss the main challenges raised by long-term use of tetracyclines in advanced CRC patients receiving this targeted therapy.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Ana Ion
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Cornelia Nițipir
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Ana-Maria Popa
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| | - Mircea Ioan Popa
- Department of Microbiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Jan Říčař
- Department of Dermatology and Venereology, Charles University, Medical School and Teaching Hospital Pilsen, 30599 Pilsen, Czech Republic;
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Ionela Sârbu
- Department of Genetics, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania;
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| |
Collapse
|
222
|
Liu Y, Li X, Yang Y, Liu Y, Wang S, Ji B, Wei Y. Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing. Front Mol Biosci 2021; 8:703638. [PMID: 34307461 PMCID: PMC8299945 DOI: 10.3389/fmolb.2021.703638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract, the largest human microbial reservoir, is highly dynamic. The gut microbes play essential roles in causing colorectal diseases. In the present study, we explored potential keystone taxa during the development of colorectal diseases in central China. Fecal samples of some patients were collected and were allocated to the adenoma (Group A), colorectal cancer (Group C), and hemorrhoid (Group H) groups. The 16S rRNA amplicon and shallow metagenomic sequencing (SMS) strategies were used to recover the gut microbiota. Microbial diversities obtained from 16S rRNA amplicon and SMS data were similar. Group C had the highest diversity, although no significant difference in diversity was observed among the groups. The most dominant phyla in the gut microbiota of patients with colorectal diseases were Bacteroidetes, Firmicutes, and Proteobacteria, accounting for >95% of microbes in the samples. The most abundant genera in the samples were Bacteroides, Prevotella, and Escherichia/Shigella, and further species-level and network analyses identified certain potential keystone taxa in each group. Some of the dominant species, such as Prevotella copri, Bacteroides dorei, and Bacteroides vulgatus, could be responsible for causing colorectal diseases. The SMS data recovered diverse antibiotic resistance genes of tetracycline, macrolide, and beta-lactam, which could be a result of antibiotic overuse. This study explored the gut microbiota of patients with three different types of colorectal diseases, and the microbial diversity results obtained from 16S rRNA amplicon sequencing and SMS data were found to be similar. However, the findings of this study are based on a limited sample size, which warrants further large-scale studies. The recovery of gut microbiota profiles in patients with colorectal diseases could be beneficial for future diagnosis and treatment with modulation of the gut microbiota. Moreover, SMS data can provide accurate species- and gene-level information, and it is economical. It can therefore be widely applied in future clinical metagenomic studies.
Collapse
Affiliation(s)
- Yuanfeng Liu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Science China Press, Beijing, China
| | - Yudie Yang
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Ye Liu
- Oncology Department, Colorectal and Anal Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shijun Wang
- Oncology Department, Colorectal and Anal Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
223
|
El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36967-36983. [PMID: 34043164 PMCID: PMC8155182 DOI: 10.1007/s11356-021-14593-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
The microbiome is a term that usually refers to the community of various microorganisms that inhabit/live inside human/animal bodies or on their skin. It forms a complex ecosystem that includes trillions of commensals, symbiotics, and even pathogenic microorganisms. The external environment, diet, and lifestyle are the major determinants influencing the microbiome's composition and vitality. Recent studies have indicated the tremendous influence of the microbiome on health and disease. Their number, constitution, variation, and viability are dynamic. All these elements are responsible for the induction, development, and treatment of many health disorders. Serious diseases such as cancer, metabolic disorders, cardiovascular diseases, and even psychological disorders such as schizophrenia are influenced directly or indirectly by microbiota. In addition, in the last few weeks, accumulating data about the link between COVID-19 and the microbiota were published. In the present work, the role of the microbiome in health and disease is discussed. A deep understanding of the exact role of microbiota in disease induction enables the prevention of diseases and the development of new therapeutic concepts for most diseases through the correction of diet and lifestyle. The present review brings together evidence from the most recent works and discusses suggested nutraceutical approaches for the management of COVID-19 pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
224
|
Wu J, Wang S, Zheng B, Qiu X, Wang H, Chen L. Modulation of Gut Microbiota to Enhance Effect of Checkpoint Inhibitor Immunotherapy. Front Immunol 2021; 12:669150. [PMID: 34267748 PMCID: PMC8276067 DOI: 10.3389/fimmu.2021.669150] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.
Collapse
Affiliation(s)
- Jianmin Wu
- Institute of Metabolism & Integrative Biology (IMIB), Fudan University, Shanghai, China
| | - Shan Wang
- Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xinyao Qiu
- Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hongyang Wang
- Institute of Metabolism & Integrative Biology (IMIB), Fudan University, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
225
|
Biondi A, Basile F, Vacante M. Familial adenomatous polyposis and changes in the gut microbiota: New insights into colorectal cancer carcinogenesis. World J Gastrointest Oncol 2021; 13:495-508. [PMID: 34163569 PMCID: PMC8204352 DOI: 10.4251/wjgo.v13.i6.495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with familial adenomatous polyposis (FAP), an autosomal dominant hereditary colorectal cancer syndrome, have a lifetime risk of developing cancer of nearly 100%. Recent studies have pointed out that the gut microbiota could play a crucial role in the development of colorectal adenomas and the consequent progression to colorectal cancer. Some gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, Clostridium difficile, Peptostreptococcus, and enterotoxigenic Bacteroides fragilis, could be implicated in colorectal carcinogenesis through different mechanisms, including the maintenance of a chronic inflammatory state, production of bioactive tumorigenic metabolites, and DNA damage. Studies using the adenomatous polyposis coliMin/+ mouse model, which resembles FAP in most respects, have shown that specific changes in the intestinal microbial community could influence a multistep progression, the intestinal "adenoma-carcinoma sequence", which involves mucosal barrier injury, low-grade inflammation, activation of the Wnt pathway. Therefore, modulation of gut microbiota might represent a novel therapeutic target for patients with FAP. Administration of probiotics, prebiotics, antibiotics, and nonsteroidal anti-inflammatory drugs could potentially prevent the progression of the adenoma-carcinoma sequence in FAP. The aim of this review was to summarize the best available knowledge on the role of gut microbiota in colorectal carcinogenesis in patients with FAP.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| |
Collapse
|
226
|
Tata A, Chow RD, Tata PR. Epithelial cell plasticity: breaking boundaries and changing landscapes. EMBO Rep 2021; 22:e51921. [PMID: 34096150 DOI: 10.15252/embr.202051921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial tissues respond to a wide variety of environmental and genotoxic stresses. As an adaptive mechanism, cells can deviate from their natural paths to acquire new identities, both within and across lineages. Under extreme conditions, epithelial tissues can utilize "shape-shifting" mechanisms whereby they alter their form and function at a tissue-wide scale. Mounting evidence suggests that in order to acquire these alternate tissue identities, cells follow a core set of "tissue logic" principles based on developmental paradigms. Here, we review the terminology and the concepts that have been put forward to describe cell plasticity. We also provide insights into various cell intrinsic and extrinsic factors, including genetic mutations, inflammation, microbiota, and therapeutic agents that contribute to cell plasticity. Additionally, we discuss recent studies that have sought to decode the "syntax" of plasticity-i.e., the cellular and molecular principles through which cells acquire new identities in both homeostatic and malignant epithelial tissues-and how these processes can be manipulated for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan D Chow
- Department of Genetics, Systems Biology Institute, Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.,Regeneration Next, Duke University, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| |
Collapse
|
227
|
Yao Q, Tang M, Zeng L, Chu Z, Sheng H, Zhang Y, Zhou Y, Zhang H, Jiang H, Ye M. Potential of fecal microbiota for detection and postoperative surveillance of colorectal cancer. BMC Microbiol 2021; 21:156. [PMID: 34044781 PMCID: PMC8157663 DOI: 10.1186/s12866-021-02182-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. In recent studies, the gut microbiota has been reported to be potentially involved in aggravating or favoring CRC development. However, little is known about the microbiota composition in CRC patients after treatment. In this study, we explored the fecal microbiota composition to obtain a periscopic view of gut microbial communities. We analyzed microbial 16S rRNA genes from 107 fecal samples of Chinese individuals from three groups, including 33 normal controls (NC), 38 CRC patients (Fa), and 36 CRC post-surgery patients (Fb). Results Species richness and diversity were decreased in the Fa and Fb groups compared with that of the NC group. Partial least squares discrimination analysis showed clustering of samples according to disease with an obvious separation between the Fa and NC, and Fb and NC groups, as well as a partial separation between the Fa and Fb groups. Based on linear discriminant analysis effect size analysis and a receiver operating characteristic model, Fusobacterium was suggested as a potential biomarker for CRC screening. Additionally, we found that surgery greatly reduced the bacterial diversity of microbiota in CRC patients. Some commensal beneficial bacteria of the intestinal canal, such as Faecalibacterium and Prevotella, were decreased, whereas the drug-resistant Enterococcus was visibly increased in CRC post-surgery group. Meanwhile, we observed a declining tendency of Fusobacterium in the majority of follow-up CRC patients who were still alive approximately 3 y after surgery. We also observed that beneficial bacteria dramatically decreased in CRC patients that recidivated or died after surgery. This revealed that important bacteria might be associated with prognosis. Conclusions The fecal bacterial diversity was diminished in CRC patients compared with that in NC. Enrichment and depletion of several bacterial strains associated with carcinomas and inflammation were detected in CRC samples. Fusobacterium might be a potential biomarker for early screening of CRC in Chinese or Asian populations. In summary, this study indicated that fecal microbiome-based approaches could be a feasible method for detecting CRC and monitoring prognosis post-surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02182-6.
Collapse
Affiliation(s)
- Qiulin Yao
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Meifang Tang
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Liuhong Zeng
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hui Sheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuyu Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuan Zhou
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Zhang
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huayan Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mingzhi Ye
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Zone B Room 401, Qinglan Street, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
228
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
229
|
Nakanishi S, Cleveland JL. Polyamine Homeostasis in Development and Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2021; 9:medsci9020028. [PMID: 34068137 PMCID: PMC8162569 DOI: 10.3390/medsci9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.
Collapse
|
230
|
Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression. Microorganisms 2021; 9:microorganisms9051021. [PMID: 34068653 PMCID: PMC8151957 DOI: 10.3390/microorganisms9051021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis in the human body, and the disruption of these communities can lead to compromised host health and the onset of disease. Current research on probiotics is quite promising and, in particular, these microorganisms have demonstrated their potential for use as adjuvants for the treatment of colorectal cancer. This review addresses the possible applications of probiotics, postbiotics, synbiotics, and next-generation probiotics in colorectal cancer research.
Collapse
|
231
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
232
|
Li W, Deng X, Chen T. Exploring the Modulatory Effects of Gut Microbiota in Anti-Cancer Therapy. Front Oncol 2021; 11:644454. [PMID: 33928033 PMCID: PMC8076595 DOI: 10.3389/fonc.2021.644454] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
In the recent decade, gut microbiota has received growing interest due to its role in human health and disease. On the one hand, by utilizing the signaling pathways of the host and interacting with the immune system, the gut microbiota is able to maintain the homeostasis in human body. This important role is mainly modulated by the composition of microbiota, as a normal microbiota composition is responsible for maintaining the homeostasis of human body, while an altered microbiota profile could contribute to several pathogenic conditions and may further lead to oncogenesis and tumor progression. Moreover, recent insights have especially focused on the important role of gut microbiota in current anticancer therapies, including chemotherapy, radiotherapy, immunotherapy and surgery. Research findings have indicated a bidirectional interplay between gut microbiota and these therapeutic methods, in which the implementation of different therapeutic methods could lead to different alterations in gut microbiota, and the presence of gut microbiota could in turn contribute to different therapeutic responses. As a result, manipulating the gut microbiota to reduce the therapy-induced toxicity may provide an adjuvant therapy to achieve a better therapeutic outcome. Given the complex role of gut microbiota in cancer treatment, this review summarizes the interactions between gut microbiota and anticancer therapies, and demonstrates the current strategies for reshaping gut microbiota community, aiming to provide possibilities for finding an alternative approach to lower the damage and improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
233
|
Johns MS, Petrelli NJ. Microbiome and colorectal cancer: A review of the past, present, and future. Surg Oncol 2021; 37:101560. [PMID: 33848761 DOI: 10.1016/j.suronc.2021.101560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022]
Abstract
The gastrointestinal tract is home to diverse and abundant microorganisms, collectively referred to as the microbiome. This ecosystem typically contains trillions of microbial cells that play an important role in regulation of human health. The microbiome has been implicated in host immunity, nutrient absorption, digestion, and metabolism. In recent years, researchers have shown that alteration of the microbiome is associated with disease development, such as obesity, inflammatory bowel disease, and cancer. This review discusses the five decades of research into the human microbiome and the development of colorectal cancer - the historical context including experiments that sparked interest, the explosion of research that has occurred in the last decade, and finally the future of testing and treatment.
Collapse
Affiliation(s)
- Michael S Johns
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA.
| | - Nicholas J Petrelli
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA
| |
Collapse
|
234
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
235
|
Zhang W, Chen X, Wong KC. Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome. J Gastroenterol Hepatol 2021; 36:823-831. [PMID: 33880763 DOI: 10.1111/jgh.15500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The maturing development in artificial intelligence (AI) and genomics has propelled the advances in intestinal diseases including intestinal cancer, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). On the other hand, colorectal cancer is the second most deadly and the third most common type of cancer in the world according to GLOBOCAN 2020 data. The mechanisms behind IBD and IBS are still speculative. The conventional methods to identify colorectal cancer, IBD, and IBS are based on endoscopy or colonoscopy to identify lesions. However, it is invasive, demanding, and time-consuming for early-stage intestinal diseases. To address those problems, new strategies based on blood and/or human microbiome in gut, colon, or even feces were developed; those methods took advantage of high-throughput sequencing and machine learning approaches. In this review, we summarize the recent research and methods to diagnose intestinal diseases with machine learning technologies based on cell-free DNA and microbiome data generated by amplicon sequencing or whole-genome sequencing. Those methods play an important role in not only intestinal disease diagnosis but also therapy development in the near future.
Collapse
Affiliation(s)
- Weitong Zhang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.,Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
236
|
Wang F, Song M, Lu X, Zhu X, Deng J. Gut microbes in gastrointestinal cancers. Semin Cancer Biol 2021; 86:967-975. [PMID: 33812983 DOI: 10.1016/j.semcancer.2021.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Gut microbes (GMs), dominated by bacteria, play important roles in many physiological processes. The structures and functions of GMs are closely related to human health, the occurrence and development of diseases and the rapid recovery of the body. Gastrointestinal cancers are the major diseases affecting human health worldwide. With the development of metagenomic technology and the wide application of new generation sequencing technology, a large number of studies suggest that complex GMs are related to the occurrence and development of gastrointestinal cancers. Fecal microbiota transplantation (FMT) and probiotics can treat and prevent the occurrence of gastrointestinal cancers. This article reviews the latest research progress of microbes in gastrointestinal cancers from the perspectives of the correlation, the influence mechanism and the application, so as to provide new directions for the prevention, early diagnosis and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiya Lu
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Zhu
- University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiali Deng
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
237
|
Sayed IM, El-Hafeez AAA, Maity PP, Das S, Ghosh P. Modeling colorectal cancers using multidimensional organoids. Adv Cancer Res 2021; 151:345-383. [PMID: 34148617 PMCID: PMC8221168 DOI: 10.1016/bs.acr.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Organoids have revolutionized cancer research as highly adaptable models that enable an array of experimental techniques to interrogate tissue morphology and function. Because they preserve the genetic, phenotypic, and behavioral traits of their source tissue, organoids have gained traction as the most relevant models for drug discovery, tracking therapeutic response and for personalized medicine. As organoids are indisputably becoming a mainstay of cancer research, this review specifically addresses how colon-derived organoids can be perfected as multidimensional, scalable, reproducible models of healthy, pre-neoplastic and neoplastic conditions of the colon and for use in high-throughput "Phase-0" human clinical trials-in-a-dish.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, United States
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Priti P Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; Department of Medicine, University of California, San Diego, CA, United States; Veterans Affairs Medical Center, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| |
Collapse
|
238
|
Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F, De la Fuente M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front Immunol 2021; 12:612826. [PMID: 33841394 PMCID: PMC8033001 DOI: 10.3389/fimmu.2021.612826] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell populations, such as endothelial, stromal, and immune cells, secreting different signals (cytokines, chemokines or growth factors) to generate a favorable tumor microenvironment for cancer cell invasion and metastasis. There is ample evidence that inflammatory processes have a role in carcinogenesis and tumor progression in CCR. Different profiles of cell activation of the tumor microenvironment can promote pro or anti-tumor pathways; hence they are studied as a key target for the control of cancer progression. Additionally, the intestinal mucosa is in close contact with a microorganism community, including bacteria, bacteriophages, viruses, archaea, and fungi composing the gut microbiota. Aberrant composition of this microbiota, together with alteration in the diet-derived microbial metabolites content (such as butyrate and polyamines) and environmental compounds has been related to CRC. Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.
Collapse
Affiliation(s)
- Michelle Hanus
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Claudia Hurtado
- Research Core, Academic Department, Clínica Las Condes, Santiago, Chile
| | - Karin Alvarez
- Cancer Center, Clínica Universidad de los Andes, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
239
|
Peng Y, Nie Y, Yu J, Wong CC. Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites 2021; 11:metabo11030159. [PMID: 33802045 PMCID: PMC8001357 DOI: 10.3390/metabo11030159] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers that cause cancer-related deaths worldwide. The gut microbiota has been proved to show relevance with colorectal tumorigenesis through microbial metabolites. By decomposing various dietary residues in the intestinal tract, gut microbiota harvest energy and produce a variety of metabolites to affect the host physiology. However, some of these metabolites are oncogenic factors for CRC. With the advent of metabolomics technology, studies profiling microbiota-derived metabolites have greatly accelerated the progress in our understanding of the host-microbiota metabolism interactions in CRC. In this review, we briefly summarize the present metabolomics techniques in microbial metabolites researches and the mechanisms of microbial metabolites in CRC pathogenesis, furthermore, we discuss the potential clinical applications of microbial metabolites in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yao Peng
- Department of Gastroenterology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, China; (Y.P.); (Y.N.)
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, China; (Y.P.); (Y.N.)
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, South China University of Technology, Guangzhou 510180, China
| | - Jun Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, South China University of Technology, Guangzhou 510180, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (J.Y.); (C.C.W.)
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (J.Y.); (C.C.W.)
| |
Collapse
|
240
|
Jonaitis P, Kiudelis V, Streleckiene G, Gedgaudas R, Skieceviciene J, Kupcinskas J. Novel Biomarkers in the Diagnosis of Benign and Malignant Gastrointestinal Diseases. Dig Dis 2021; 40:1-13. [PMID: 33647906 DOI: 10.1159/000515522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Various noninvasive biomarkers have been used in the diagnosis, prognosis, and treatment of different gastrointestinal (GI) diseases for years. Novel technological developments and profound perception of molecular processes related to GI diseases over the last decade have allowed researchers to evaluate genetic, epigenetic, and many other potential molecular biomarkers in different diseases and clinical settings. Here, we present a review of recent and most relevant articles in order to summarize major findings on novel biomarkers in the diagnosis of benign and malignant GI diseases. SUMMARY Genetic variations, noncoding RNAs (ncRNAs), cell-free DNA (cfDNA), and microbiome-based biomarkers have been extensively analyzed as potential biomarkers in benign and malignant GI diseases. Multiple single-nucleotide polymorphisms have been linked with a number of GI diseases, and these observations are further being used to build up disease-specific genetic risk scores. Micro-RNAs and long ncRNAs have a large potential as noninvasive biomarkers in the management of inflammatory bowel diseases and GI tumors. Altered microbiome profiles were observed in multiple GI diseases, but most of the findings still lack translational clinical application. As of today, cfDNA appears to be the most potent biomarker for early detection and screening of GI cancers. Key Messages: Novel noninvasive molecular biomarkers show huge potential as useful tools in the diagnostics and management of different GI diseases. However, the use of these biomarkers in real-life clinical practice still remains limited, and further large studies are needed to elucidate the ultimate role of these potential noninvasive clinical tools.
Collapse
Affiliation(s)
- Paulius Jonaitis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Streleckiene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rolandas Gedgaudas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
241
|
Chiang SF, Huang HH, Tsai WS, Chin-Ming Tan B, Yang CY, Huang PJ, Yi-Feng Chang I, Lin J, Lu PS, Chin E, Liu YH, Yu JS, Chiang JM, Hung HY, You JF, Liu H. Comprehensive functional genomic analyses link APC somatic mutation and mRNA-miRNA networks to the clinical outcome of stage-III colorectal cancer patients. Biomed J 2021; 45:347-360. [PMID: 35550340 PMCID: PMC9250073 DOI: 10.1016/j.bj.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is a major health concern globally, but exhibits regional and/or environmental distinctions in terms of outcome especially for patients with stage III CRC. Methods From 2014 to 2016, matched pairs of tumor and adjacent normal tissue samples from 60 patients with stage I–IV CRC from Chang Gung Memorial Hospital in Taiwan were analyzed using next-generation sequencing. The DNA, mRNA, and miRNA sequences of paired tumor tissues were profiled. An observational study with survival analysis was done. Online datasets of The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) were also integrated and compared. Results The gene that exhibited the highest mutation rate was adenomatous polyposis coli (APC) (75.0%), followed by TP53 (70.0%), KRAS (56.6%), and TTN (48.3%). APC was also the most frequently mutated gene in TCGA and ICGC datasets. Surprisingly, for non-metastatic cases (stages I-III), CRC patients with mutated APC had better outcome in terms of overall survival (p = 0.041) and recurrence free survival (p = 0.0048). Particularly for stage III CRC, the overall survival rate was 94.4% and 67.7%, respectively (p = 0.018), and the recurrence free survival rate was 94.4% and 16.7%, respectively (p = 0.00044). Further clinical and gene expression analyses revealed that the APC wt specimens to a greater extent exhibit poor differentiation state as well as EGFR upregulation, providing molecular basis for the poor prognosis of these patients. Finally, based on integrated transcriptome analysis, we constructed the mRNA-miRNA networks underlying disease recurrence of the stage III CRC and uncovered potential therapeutic targets for this clinical condition. Conclusion For stage III CRC, patients with mutated APC had better overall and recurrence free survival.
Collapse
Affiliation(s)
- Sum-Fu Chiang
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Heng-Hsuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jiarong Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Shan Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - En Chin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hao Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jy-Ming Chiang
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jeng-Fu You
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsuan Liu
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
242
|
Marzano M, Fosso B, Piancone E, Defazio G, Pesole G, De Robertis M. Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer. Cancers (Basel) 2021; 13:996. [PMID: 33673612 PMCID: PMC7957811 DOI: 10.3390/cancers13050996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) initiation is believed to result from the conversion of normal intestinal stem cells (ISCs) into cancer stem cells (CSCs), also known as tumor-initiating cells (TICs). Hence, CRC evolves through the multiple acquisition of well-established genetic and epigenetic alterations with an adenoma-carcinoma sequence progression. Unlike other stem cells elsewhere in the body, ISCs cohabit with the intestinal microbiota, which consists of a diverse community of microorganisms, including bacteria, fungi, and viruses. The gut microbiota communicates closely with ISCs and mounting evidence suggests that there is significant crosstalk between host and microbiota at the ISC niche level. Metagenomic analyses have demonstrated that the host-microbiota mutually beneficial symbiosis existing under physiologic conditions is lost during a state of pathological microbial imbalance due to the alteration of microbiota composition (dysbiosis) and/or the genetic susceptibility of the host. The complex interaction between CRC and microbiota is at the forefront of the current CRC research, and there is growing attention on a possible role of the gut microbiome in the pathogenesis of CRC through ISC niche impairment. Here we primarily review the most recent findings on the molecular mechanism underlying the complex interplay between gut microbiota and ISCs, revealing a possible key role of microbiota in the aberrant reprogramming of CSCs in the initiation of CRC. We also discuss recent advances in OMICS approaches and single-cell analyses to explore the relationship between gut microbiota and ISC/CSC niche biology leading to a desirable implementation of the current precision medicine approaches.
Collapse
Affiliation(s)
- Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
| | - Elisabetta Piancone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Giuseppe Defazio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| |
Collapse
|
243
|
Ma Y, Zhang Y, Xiang J, Xiang S, Zhao Y, Xiao M, Du F, Ji H, Kaboli PJ, Wu X, Li M, Wen Q, Shen J, Yang Z, Li J, Xiao Z. Metagenome Analysis of Intestinal Bacteria in Healthy People, Patients With Inflammatory Bowel Disease and Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:599734. [PMID: 33738265 PMCID: PMC7962608 DOI: 10.3389/fcimb.2021.599734] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Several reports suggesting that the intestinal microbiome plays a key role in the development of inflammatory bowel disease (IBD) or colorectal cancer (CRC), but the changes of intestinal bacteria in healthy people, patients with IBD and CRC are not fully explained. The study aimed to investigate changes of intestinal bacteria in healthy subjects, patients with IBD, and patients with CRC. Materials We collected data from the European Nucleotide Archive on healthy people and patients with colorectal cancer with the study accession number PRJEB6070, PRJEB7774, PRJEB27928, PRJEB12449, and PRJEB10878, collected IBD patient data from the Integrated Human Microbiome Project from the Human Microbiome Project Data Portal. We performed metagenome-wide association studies on the fecal samples from 290 healthy subjects, 512 IBD patients, and 285 CRC patients. We used the metagenomics dataset to study bacterial community structure, relative abundance, functional prediction, differentially abundant bacteria, and co-occurrence networks. Results The bacterial community structure in both IBD and CRC was significantly different from healthy subjects. Our results showed that IBD patients had low intestinal bacterial diversity and CRC patients had high intestinal bacterial diversity compared to healthy subjects. At the phylum level, the relative abundance of Firmicutes in IBD decreased significantly, while the relative abundance of Bacteroidetes increased significantly. At the genus level, the relative abundance of Bacteroides in IBD was higher than in healthy people and CRC. Compared with healthy people and CRC, the main difference of intestinal bacteria in IBD patients was Bacteroidetes, and compared with healthy people and IBD, the main difference of intestinal bacteria in CRC patients was in Fusobacteria, Verrucomicrobia, and Proteobacteria. The main differences in the functional composition of intestinal bacteria in healthy people, IBD and CRC patients were L-homoserine and L-methionine biosynthesis, 5-aminoimidazole ribonucleotide biosynthesis II, L-methionine biosynthesis I, and superpathway of L-lysine, L-threonine, and L-methionine biosynthesis I. The results of stratified showed that the abundance of Firmicutes, Bacteroidetes, and Actinobacteria involved in metabolic pathways has significantly changed. Besides, the association network of intestinal bacteria in healthy people, IBD, and CRC patients has also changed. Conclusions In conclusion, compared with healthy people, the taxonomic and functional composition of intestinal bacteria in IBD and CRC patients was significantly changed.
Collapse
Affiliation(s)
- Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jianghou Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhongmin Yang
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
244
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
245
|
Chattopadhyay I, Dhar R, Pethusamy K, Seethy A, Srivastava T, Sah R, Sharma J, Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl Biochem Biotechnol 2021; 193:1780-1799. [PMID: 33492552 DOI: 10.1007/s12010-021-03498-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Dysbiosis of the gut microbiome has been associated with the development of colorectal cancer (CRC). Gut microbiota is involved in the metabolic transformations of dietary components into oncometabolites and tumor-suppressive metabolites that in turn affect CRC development. In a healthy colon, the major of microbial metabolism is saccharolytic fermentation pathways. The alpha-bug hypothesis suggested that oncogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) induce the development of CRC through direct interactions with colonic epithelial cells and alterations of microbiota composition at the colorectal site. Escherichia coli, E. faecalis, F. nucleatum, and Streptococcus gallolyticus showed higher abundance whereas Bifidobacterium, Clostridium, Faecalibacterium, and Roseburia showed reduced abundance in CRC patients. The alterations of gut microbiota may be used as potential therapeutic approaches to prevent or treat CRC. Probiotics such as Lactobacillus and Bifidobacterium inhibit the growth of CRC through inhibiting inflammation and angiogenesis and enhancing the function of the intestinal barrier through the secretion of short-chain fatty acids (SCFAs). Crosstalk between lifestyle, host genetics, and gut microbiota is well documented in the prevention and treatment of CRC. Future studies are required to understand the interaction between gut microbiota and host to the influence and prevention of CRC. However, a better understanding of bacterial dysbiosis in the heterogeneity of CRC tumors should also be considered. Metatranscriptomic and metaproteomic studies are considered a powerful omic tool to understand the anti-cancer properties of certain bacterial strains. The clinical benefits of probiotics in the CRC context remain to be determined. Metagenomic approaches along with metabolomics and immunology will open a new avenue for the treatment of CRC shortly. Dietary interventions may be suitable to modulate the growth of beneficial microbiota in the gut.
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ashikh Seethy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Tryambak Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ramkishor Sah
- Rajendra Prasad Center for Opthalmic Sciences, AIIMS, Ansari Nagar, New Delhi, USA
| | - Jyoti Sharma
- Department of Surgical Oncology, NCI AIIMS, Jhajjar, Haryana, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India.
| |
Collapse
|
246
|
Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J, Wu M. Gut microbiota influence tumor development and Alter interactions with the human immune system. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:42. [PMID: 33494784 PMCID: PMC7829621 DOI: 10.1186/s13046-021-01845-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent scientific advances have greatly enhanced our understanding of the complex link between the gut microbiome and cancer. Gut dysbiosis is an imbalance between commensal and pathogenic bacteria and the production of microbial antigens and metabolites. The immune system and the gut microbiome interact to maintain homeostasis of the gut, and alterations in the microbiome composition lead to immune dysregulation, promoting chronic inflammation and development of tumors. Gut microorganisms and their toxic metabolites may migrate to other parts of the body via the circulatory system, causing an imbalance in the physiological status of the host and secretion of various neuroactive molecules through the gut-brain axis, gut-hepatic axis, and gut-lung axis to affect inflammation and tumorigenesis in specific organs. Thus, gut microbiota can be used as a tumor marker and may provide new insights into the pathogenesis of malignant tumors.
Collapse
Affiliation(s)
- Yanshan Ge
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Xinhui Wang
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yali Guo
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Junting Yan
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Aliya Abuduwaili
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
247
|
Gut microbiota homeostasis restoration may become a novel therapy for breast cancer. Invest New Drugs 2021; 39:871-878. [PMID: 33454868 DOI: 10.1007/s10637-021-01063-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most diagnosed cancer in women. It significantly impairs a patient's physical and mental health. Gut microbiota comprise the bacteria residing in a host's gastrointestinal tract. Through studies over the last decade, we now know that alterations in the composition of the gut microbiome are associated with protection against colonization by pathogens and other diseases, such as diabetes and cancer. This review focuses on how gut microbiota can affect breast cancer development through estrogen activity and discusses the types of bacteria that may be involved in the onset and the progression of breast cancer. We also describe potential therapies to curtail the risk of breast cancer by restoring gut microbiota homeostasis and reducing systemic estrogen levels. This review will further explore the relationship between intestinal microbes and breast cancer and propose a method to treat breast cancer by improving intestinal microbes. We aimed at discovering new methods to prevent or treat BC by changing intestinal microorganisms.
Collapse
|
248
|
Druzhinin VG, Matskova LV, Demenkov PS, Baranova ED, Volobaev VP, Minina VI, Larionov AV, Titov VA, Fucic A. Genetic damage in lymphocytes of lung cancer patients is correlated to the composition of the respiratory tract microbiome. Mutagenesis 2021; 36:143-153. [PMID: 33454779 DOI: 10.1093/mutage/geab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
Recent findings indicate that the microbiome may have significant impact on the development of lung cancer by its effects on inflammation, dysbiosis or genome damage. The aim of this study was to compare the sputum microbiome of lung cancer (LC) patients with the chromosomal aberration (CA) and micronuclei (MN) frequency in peripheral blood lymphocytes. In the study, the taxonomic composition of the sputum microbiome of 66 men with untreated LC were compared with 62 control subjects with respect to CA and MN frequency and centromere fluorescence in situ hybridisation analysis. Results showed a significant increase in CA (4.11 ± 2.48% versus 2.08 ± 1.18%) and MN (1.53 ± 0.67% versus 0.87 ± 0.49%) frequencies, respectively, in LC patients as compared to control subjects. The higher frequency of centromeric positive MN of LC patients was mainly due to aneuploidy. A significant increase in Streptococcus, Bacillus, Gemella and Haemophilus in LC patients was detected, in comparison to the control subjects while 18 bacterial genera were significantly reduced, which indicates a decrease in the beta diversity in the microbiome of LC patients. Although, the CA frequency in LC patients is significantly associated with an increased presence of the genera Bacteroides, Lachnoanaerobaculum, Porphyromonas, Mycoplasma and Fusobacterium in their sputum, and a decrease for the genus Granulicatella after application of false discovery rate correction, significance was not any more present. The decrease of MN frequency of LC patients is significantly associated with an increase in Megasphaera genera and Selenomonas bovis. In conclusion, a significant difference in beta diversity of microbiome between LC and control subjects and association between the sputum microbiome composition and genome damage of LC patients was detected, thus supporting previous studies suggesting an etiological connection between the airway microbiome and LC.
Collapse
Affiliation(s)
- V G Druzhinin
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6
| | - L V Matskova
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6.,Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation, Kaliningrad, st. A. Nevsky, 14.,Department of Microbiology, Tumor Biology and Cell Biology (MTC), Stockholm, Sweden, 171 65, Solna, Solnavägen, 9
| | - P S Demenkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation, Lavrentyeva Pr., 10
| | - E D Baranova
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6
| | - V P Volobaev
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6
| | - V I Minina
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6.,Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russian Federation, Leningradsky Pr., 10
| | - A V Larionov
- Kemerovo State University, Kemerovo, Russian Federation, Krasnaya St., 6
| | - V A Titov
- Kemerovo Regional Oncology Center, Kemerovo, Russian Federation, Volgogradskaya St., 35
| | - A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia, Ksaverska c 2
| |
Collapse
|
249
|
De Santis S, Liso M, Vacca M, Verna G, Cavalcanti E, Coletta S, Calabrese FM, Eri R, Lippolis A, Armentano R, Mastronardi M, De Angelis M, Chieppa M. Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects. Cancers (Basel) 2021; 13:cancers13020283. [PMID: 33466665 PMCID: PMC7828790 DOI: 10.3390/cancers13020283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, characterized by a multifactorial etiology including genetics, lifestyle, and environmental factors including microbiota composition. To address the role of microbial modulation in CRC, we used our recently established mouse model (the Winnie-APCMin/+) combining inflammation and genetics. METHODS Gut microbiota profiling was performed on 8-week-old Winnie-APCMin/+ mice and their littermates by 16S rDNA gene amplicon sequencing. Moreover, to study the impact of dysbiosis induced by the mother's genetics in ACF development, the large intestines of APCMin/+ mice born from wild type mice were investigated by histological analysis at 8 weeks. RESULTS ACF development in 8-week-old Winnie-APCMin/+ mice was triggered by dysbiosis. Specifically, the onset of ACF in genetically predisposed mice may result from dysbiotic signatures in the gastrointestinal tract of the breeders. Additionally, fecal transplant from Winnie donors to APCMin/+ hosts leads to an increased rate of ACF development. CONCLUSIONS The characterization of microbiota profiling supporting CRC development in genetically predisposed mice could help to design therapeutic strategies to prevent dysbiosis. The application of these strategies in mothers during pregnancy and lactation could also reduce the CRC risk in the offspring.
Collapse
Affiliation(s)
- Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Marina Liso
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Elisabetta Cavalcanti
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Sergio Coletta
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Antonio Lippolis
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Raffaele Armentano
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mauro Mastronardi
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| | - Marcello Chieppa
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| |
Collapse
|
250
|
Wang Y, Zhang X, Li J, Zhang Y, Guo Y, Chang Q, Chen L, Wang Y, Wang S, Song Y, Zhao Y, Wang Z. Sini Decoction Ameliorates Colorectal Cancer and Modulates the Composition of Gut Microbiota in Mice. Front Pharmacol 2021; 12:609992. [PMID: 33776762 PMCID: PMC7991589 DOI: 10.3389/fphar.2021.609992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Sini Decoction (SND), as a classic prescription of Traditional Chinese Medicine (TCM), has been proved to be clinically useful in cardiomyopathy and inflammatory bowel diseases. However, the role and mechanism of SND in colitis-associated cancer remains unclear. This study aims to evaluate the effect of SND on colorectal cancer(CRC) symptoms and further explore the changes of gut microbes mediated by SND extract in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mice through 16 S rRNA sequencing. Our results indicated that treatment with SND extract could ameliorate the tumors' malignant degree by decreasing tumor number and size. Also, the expression levels of Cyclooxygenase 2 and Mucin-2, which are typical CRC biomarkers, were reduced compared to the CRC group. In the meantime, SND extract can upregulate CD8+ T lymphocytes' expression and Occludin in the colonic mucosal layer. Besides, SND inhibited the expression of CD4+ T cells and inflammatory cytokines in CRC tissue. According to bioinformatics analysis, SND extract was also suggested could modulate the gut microbial community. After the SND treatment, compared with the CRC mice model, the number of pathogenic bacteria showed a significant reduction, including Bacteroides fragilis and Sulphate-reducing bacteria; and SND increased the relative contents of the beneficial bacteria, including Lactobacillus, Bacillus coagulans, Akkermansia muciniphila, and Bifidobacterium. In summary, SND can effectively intervene in colorectal cancer development by regulating intestinal immunity, protecting the colonic mucosal barrier, and SND can change the intestinal microbiota composition in mice.
Collapse
Affiliation(s)
- Yishan Wang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
- College of Animal Science, Jilin University, Changchun, China
| | - Xiaodi Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Jiawei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Virology, Institute of Military Veterinary Medicine, Changchun, China
| | - Yingjie Guo
- College of Animal Science, Jilin University, Changchun, China
| | - Qing Chang
- College of Animal Science, Jilin University, Changchun, China
| | - Li Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Yiwei Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yu Song
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| | - Yongkun Zhao
- Department of Virology, Institute of Military Veterinary Medicine, Changchun, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| | - Zhihong Wang
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| |
Collapse
|