201
|
Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 2004; 108:818-24. [PMID: 14712482 DOI: 10.1002/ijc.11651] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC.
Collapse
Affiliation(s)
- Minoru Fukuchi
- Department of Surgery I, Gunma University Faculty of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol 2004; 24:856-64. [PMID: 14701756 PMCID: PMC343794 DOI: 10.1128/mcb.24.2.856-864.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor beta (TGF-beta)/bone morphogenetic protein (BMP) family ligands interact with specific membrane receptor complexes that have serine/threonine kinase activities. The receptor phosphorylation and activation induced by the ligands leads to phosphorylation of the Smad proteins, which translocate to the nucleus, controlling gene expression. Thus, regulation of Smad proteins is a key step in TGF-beta/BMP-induced signal transduction. Here we report a novel mechanism of the regulation of SMAD-mediated signaling, by which the Smad1 protein level is controlled through expression of the CHIP protein. CHIP is a U-box-dependent E3 ubiquitin ligase, previously identified as a cochaperon protein. However, we have isolated CHIP as a Smad-interacting protein in a yeast two-hybrid screen using Smad1 as bait. Furthermore we have shown CHIP-Smad interaction using the (35)S-labeled CHIP protein, which can interact with glutathione S-transferase (GST)-Smad1 and GST-Smad4 in an in vitro protein-binding assay. The CHIP-Smad interaction has been confirmed in vivo in mammalian cells through coimmunoprecipitation. Interestingly, we demonstrate that the coexpression of Smad1 and Smad4 with the CHIP protein results in the degradation of the Smad proteins through a ubiquitin-mediated process. Consistent with the observation that CHIP induces Smad1 degradation, we further show that the expression of CHIP can inhibit the transcriptional activities of the Smad1/Smad4 complex induced by BMP signals. Intriguingly, pBS/U6/CHIPi, which diminishes CHIP expression, significantly enhanced Smad1/Smad4- or BMPRIB(QD)-induced gene transcription. These results suggest that CHIP can interact with the Smad1/Smad4 proteins and block BMP signal transduction through the ubiquitin-mediated degradation of Smad proteins.
Collapse
Affiliation(s)
- Linyu Li
- Tsinghua Institute of Genome Research, Department of Biological Sciences and Biotechnology and School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R. Identification of Necrosis-Associated Genes in Glioblastoma by cDNA Microarray Analysis. Clin Cancer Res 2004; 10:212-21. [PMID: 14734472 DOI: 10.1158/1078-0432.ccr-0155-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In the field of cancer research, there has been a paucity of interest in necrosis, whereas studies focusing on apoptosis abound. In neuro-oncology, this is particularly surprising because of the importance of necrosis as a hallmark of glioblastoma (GBM), the most malignant and most common primary brain tumor, and the fact that the degree of necrosis has been shown to be inversely related to patient survival. It is therefore of considerable interest and importance to identify genes and gene products related to necrosis formation. EXPERIMENTAL DESIGN We used a nylon cDNA microarray to analyze mRNA expression of 588 universal cellular genes in 15 surgically resected human GBM samples with varying degrees of necrosis. Gene expression was correlated with the degree of necrosis using rank correlation coefficients. The expression of identified genes was compared with their expression in tissue samples from 5 anaplastic astrocytomas (AAs). Immunostaining was used to determine whether genes showing the most positive correlation with necrosis were increasingly expressed in tumor tissues, as grade of necrosis increased. RESULTS The hybridization results indicated that 26 genes showed significant correlation with the amount of necrosis. All 26 genes had functions associated with either Ras, Akt, tumor necrosis factor alpha, nuclear factor kappaB, apoptosis, procoagulation, or hypoxia. Nine genes were positively correlated with necrosis grade, and 17 genes were negatively correlated with necrosis grade. There were significant differences in the median expression levels of 3 of the 26 genes between grade III necrosis GBM and anaplastic astrocytoma (AA) samples; all but 1 of the genes had elevated expression when comparing necrosis grade III with AA samples. Two factors, the ephrin type A receptor 1 and the prostaglandin E(2) receptor EP4 subtype, not previously considered in this context, were highlighted because of their particularly high (positive) correlation coefficients; immunostaining showed the products of these two genes to be localized in perinecrotic and necrotic regions and to be overexpressed in grade III GBMs, but not AAs. These two molecules also showed significant correlation with survival of GBM patients (P = 0.0034) in a combined model. CONCLUSIONS The application of cDNA expression microarray analysis has identified specific genes and patterns of gene expression that may help elucidate the molecular basis of necrogenesis in GBM. Additional studies will be required to further investigate and confirm these findings.
Collapse
Affiliation(s)
- Shaan M Raza
- Departments of Neurosurgery, Brain Tumor Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Lin X, Liang YY, Sun B, Liang M, Shi Y, Brunicardi FC, Shi Y, Feng XH. Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 2004; 23:9081-93. [PMID: 14645520 PMCID: PMC309600 DOI: 10.1128/mcb.23.24.9081-9093.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Smad6 and Smad7 are inhibitory Smads induced by transforming growth factor beta-Smad signal transduction pathways in a negative-feedback mechanism. Previously it has been thought that inhibitory Smads bind to the type I receptor and block the phosphorylation of receptor-activated Smads, thereby inhibiting the initiation of Smad signaling. Conversely, few studies have suggested the possible nuclear functions of inhibitory Smads. Here, we present compelling evidence demonstrating that Smad6 repressed bone morphogenetic protein-induced Id1 transcription through recruiting transcriptional corepressor C-terminal binding protein (CtBP). A consensus CtBP-binding motif, PLDLS, was identified in the linker region of Smad6. Our findings show that mutation in the motif abolished the Smad6 binding to CtBP and subsequently its repressor activity of transcription. We conclude that the nuclear functions and physical interaction of Smad6 and CtBP provide a novel mechanism for the transcriptional regulation by inhibitory Smads.
Collapse
Affiliation(s)
- Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Room 131D, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Takeda M, Mizuide M, Oka M, Watabe T, Inoue H, Suzuki H, Fujita T, Imamura T, Miyazono K, Miyazawa K. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol Biol Cell 2003; 15:963-72. [PMID: 14699069 PMCID: PMC363053 DOI: 10.1091/mbc.e03-07-0478] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
c-Ski is a transcriptional corepressor that interacts strongly with Smad2, Smad3, and Smad4 but only weakly with Smad1 and Smad5. Through binding to Smad proteins, c-Ski suppresses signaling of transforming growth factor-beta (TGF-beta) as well as bone morphogenetic proteins (BMPs). In the present study, we found that a mutant of c-Ski, termed c-Ski (ARPG) inhibited TGF-beta/activin signaling but not BMP signaling. Selectivity was confirmed in luciferase reporter assays and by determination of cellular responses in mammalian cells (BMP-induced osteoblastic differentiation of C2C12 cells and TGF-beta-induced epithelial-to-mesenchymal transdifferentiation of NMuMG cells) and Xenopus embryos. The ARPG mutant recruited histone deacetylases 1 (HDAC1) to the Smad3-Smad4 complex but not to the Smad1/5-Smad4 complex. c-Ski (ARPG) was unable to interact with Smad4, and the selective loss of suppression of BMP signaling by c-Ski (ARPG) was attributed to the lack of Smad4 binding. We also found that c-Ski interacted with Smad3 or Smad4 without disrupting Smad3-Smad4 heteromer formation. c-Ski (ARPG) would be useful for selectively suppressing TGF-beta/activin signaling.
Collapse
Affiliation(s)
- Masafumi Takeda
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI. DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development. Development 2003; 131:435-46. [PMID: 14681186 DOI: 10.1242/dev.00922] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unconventional TGF beta superfamily pathway plays a crucial role in the decision between dauer diapause and reproductive growth. We have studied the daf-5 gene, which, along with the daf-3 Smad gene, is antagonized by upstream receptors and receptor-regulated Smads. We show that DAF-5 is a novel member of the Sno/Ski superfamily that binds to DAF-3 Smad, suggesting that DAF-5, like Sno/Ski, is a regulator of transcription in a TGF beta superfamily signaling pathway. However, we present evidence that DAF-5 is an unconventional Sno/Ski protein, because DAF-5 acts as a co-factor, rather than an antagonist, of a Smad protein. We show that expressing DAF-5 in the nervous system rescues a daf-5 mutant, whereas muscle or hypodermal expression does not. Previous work suggested that DAF-5 and DAF-3 function in pharyngeal muscle to regulate gene expression, but our analysis of regulation of a pharynx specific promoter suggests otherwise. We present a model in which DAF-5 and DAF-3 control the production or release of a hormone from the nervous system by either regulating the expression of biosynthetic genes or by altering the connectivity or the differentiated state of neurons.
Collapse
Affiliation(s)
- Li S da Graca
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Nöth U, Tuli R, Seghatoleslami R, Howard M, Shah A, Hall DJ, Hickok NJ, Tuan RS. Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res 2003; 291:201-11. [PMID: 14597420 DOI: 10.1016/s0014-4827(03)00386-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bone morphogenetic proteins (BMPs) are potent osteoinductive factors that accelerate osteoblast maturation, accompanied by increased cell-substrate adhesion. BMP-2 treatment of osteoblastic cells increases phosphorylation of the cytoplasmic BMP-2 signaling molecules, Smad1 and Smad5. We have previously reported that BMP-2 treatment increase cytoskeletal organization of human trabecular bone-derived osteoblast-like cells (osteoblasts), which is also accompanied by an activation of the focal adhesion kinase p125(FAK). We report here that activation of p125(FAK) occurs with the same kinetics as the phosphorylation of Smad1, suggesting that BMP-2 initiates cross-talk between Smad signaling and the adhesion-mediated signaling pathway. As an adjunct to these effects, we examined activation of mitogen-activated protein (MAP) kinase family members in response to focal adhesion contact formation. Although phosphorylated forms of all three kinases were apparent, only SAPK2alpha/p38 (p38) was activated in response to BMP-2 treatment. Inhibition of p38 kinase activity suppressed BMP-2 induced Smad1 phosphorylation, as well as its translocation to the nucleus, suggesting the integration of p38 activation with Smad1 signaling. Finally, inhibition of p38 in osteoblasts also led to the complete abrogation of BMP-2 induced osteocalcin gene expression and matrix mineralization. These findings suggest that BMP-2 must activate p38 in order to mediate osteogenic differentiation and maturation.
Collapse
Affiliation(s)
- Ulrich Nöth
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Kim DW, Lassar AB. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 2003; 23:8704-17. [PMID: 14612411 PMCID: PMC262671 DOI: 10.1128/mcb.23.23.8704-8717.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/17/2003] [Accepted: 08/15/2003] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that Nkx3.2, a transcriptional repressor that is expressed in the sclerotome and developing cartilage, can activate the chondrocyte differentiation program in somitic mesoderm in a bone morphogenetic protein (BMP)-dependent manner. In this work, we elucidate how BMP signaling modulates the transcriptional repressor activity of Nkx3.2. We have found that Nkx3.2 forms a complex, in vivo, with histone deacetylase 1 (HDAC1) and Smad1 and -4 in a BMP-dependent manner. The homeodomain and NK domain of Nkx3.2 support the interaction of this transcription factor with HDAC1 and Smad1, respectively, and both of these domains are required for the transcriptional repressor activity of Nkx3.2. Furthermore, the recruitment of an HDAC/Sin3A complex to Nkx3.2 requires that Nkx3.2 interact with Smad1 and -4. Indeed, Nkx3.2 both fails to associate with the HDAC/Sin3A complex and represses target gene transcription in a cell line lacking Smad4, but it performs these functions if exogenous Smad4 is added to these cells. While prior work has indicated that BMP-dependent Smads can support transcriptional activation, our findings indicate that BMP-dependent Smads can also potentiate transcriptional repression, depending upon the identity of the Smad-interacting transcription factor.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
209
|
Lee HJ, Lee JK, Miyake S, Kim SJ. A novel E1A-like inhibitor of differentiation (EID) family member, EID-2, suppresses transforming growth factor (TGF)-beta signaling by blocking TGF-beta-induced formation of Smad3-Smad4 complexes. J Biol Chem 2003; 279:2666-72. [PMID: 14612439 DOI: 10.1074/jbc.m310591200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad proteins play key roles in intracellular signaling of the transforming growth factor-beta (TGF-beta) superfamily. E1A, an adenoviral oncoprotein, is known to inhibit TGF-beta-induced transactivation through binding to Smad proteins. Recently, an EID-1 (E1A-like inhibitor of differentiation-1) and EID-2 (EID-1-like inhibitor of differentiation-2) were identified. In this study, we examined the effect of EID-2 on Smad-mediated TGF-beta signaling. Here, we show that EID-2 inhibits TGF-beta/Smad transcriptional responses. EID-2 interacts constitutively with Smad proteins, and most strongly with Smad3. Stable expression of EID-2 in the TGF-beta1-responsive cell line inhibits endogenous Smad3-Smad4 complex formation and TGF-beta1-induced expression of p21 and p15. These results suggest that EID-2 may function as an endogenous suppressor of TGF-beta signaling.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892-5055, USA
| | | | | | | |
Collapse
|
210
|
Greene RM, Nugent P, Mukhopadhyay P, Warner DR, Pisano MM. Intracellular dynamics of Smad-mediated TGFbeta signaling. J Cell Physiol 2003; 197:261-71. [PMID: 14502566 DOI: 10.1002/jcp.10355] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transforming growth factor-beta (TGFbeta) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGFbeta on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGFbeta action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGFbeta. In the current study, elements of the Smad component of the TGFbeta intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGFbeta1, TGFbeta2, and TGFbeta3 was demonstrated. TGFbeta-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGFbeta-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGFbeta signaling system in cells of the developing murine palate.
Collapse
Affiliation(s)
- Robert M Greene
- University of Louisville Birth Defects Center, Department of Molecular, Cellular, & Craniofacial Biology, ULSD, Louisville, Kentucky, USA
| | | | | | | | | |
Collapse
|
211
|
Abstract
The bone morphogenetic proteins (BMPs) play important roles in the regulation of multiple aspects of vertebrate development. BMPs signal through the cell surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. The activity of this signal pathway can be modulated both by extracellular factors that regulate the binding of BMPs to the receptor and by intracellular proteins that interact with the Smad proteins. We have shown that Ski is an important negative regulator of the Smad proteins. Ski can bind to the BMP-Smad protein complexes in response to BMP and repress their ability to activate BMP target genes through disruption of a functional Smad complex and through recruitment of transcriptional co-repressors. The antagonism of BMP signaling by Ski results in neural specification in Xenopus embryos and inhibition of osteoblast differentiation in mouse bone-marrow stromal progenitor cells. This ability to modulate BMP signaling by Ski may play an important role in the regulation of craniofacial, neuronal, and skeletal muscle development.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA.
| |
Collapse
|
212
|
Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y, Ishii S. Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J Biol Chem 2003; 278:38998-9005. [PMID: 12874272 DOI: 10.1074/jbc.m307112200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple co-repressors such as N-CoR/SMRT, mSin3, and the c-ski proto-oncogene product (c-Ski) mediate the transcriptional repression induced by Mad and the thyroid hormone receptor by recruiting the histone deacetylase complex. c-Ski also binds directly to Smad proteins, which are transcriptional activators in the transforming growth factor-beta (TGF-beta)/bone morphogenetic protein (BMP) signaling pathways, and inhibits TGF-beta/BMP-induced transcriptional activation. However, it remains unknown whether other co-repressor(s) are also involved with Ski in the negative regulation of the TGF-beta/BMP signaling pathways. Here, we report that the co-repressor homeodomain-interacting protein kinase 2 (HIPK2) directly binds to both c-Ski and Smad1. HIPK2 efficiently inhibited Smad1/4-induced transcription from the Smad site-containing promoter. A dominant negative form of HIPK2, in which the ATP binding motif in the kinase domain and the putative phosphorylation sites were mutated, enhanced Smad1/4-dependent transcription and the BMP-induced expression of alkaline phosphatase. Furthermore, the c-Ski-induced inhibition of the Smad1/4-dependent transcription was suppressed by a dominant negative form of HIPK2. The HIPK2 co-repressor activity may be regulated by an uncharacterized HIPK2 kinase. These results indicate that HIPK2, together with c-Ski, plays an important role in the negative regulation of BMP-induced transcriptional activation.
Collapse
Affiliation(s)
- Jun Harada
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
213
|
Costelli P, Carbó N, Busquets S, López-Soriano FJ, Baccino FM, Argilés JM. Reduced protein degradation rates and low expression of proteolytic systems support skeletal muscle hypertrophy in transgenic mice overexpressing the c-ski oncogene. Cancer Lett 2003; 200:153-60. [PMID: 14568169 DOI: 10.1016/s0304-3835(03)00415-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the protein turnover modulations involved in the hypertrophic muscle phenotype of c-ski overexpressing transgenic mice. In these animals, the body weight is increased and all the muscles examined show a definite hypertrophy. The protein degradation rate is significantly reduced in the fast twitch muscles of c-ski transgenic animals with respect to controls; in contrast, there are no detectable differences in the synthesis rates. The down-regulation of protein breakdown is paralleled by decreased expression of genes belonging to the lysosomal as well as to the ATP-ubiquitin-dependent proteolytic pathways.
Collapse
Affiliation(s)
- Paola Costelli
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
214
|
Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH, Davidsen SK. Role of Class I and Class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 2003; 310:529-36. [PMID: 14521942 DOI: 10.1016/j.bbrc.2003.09.043] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of the individual histone deacetylases (HDACs) in the regulation of cancer cell proliferation was investigated using siRNA-mediated protein knockdown. The siRNA for HDAC3 and HDAC1 demonstrated significant morphological changes in HeLa S3 consistent with those observed with HDAC inhibitors. SiRNA for HDAC 4 or 7 produced no morphological changes in HeLa S3 cells. HDAC1 and 3 siRNA produced a concentration-dependent inhibition of HeLa cell proliferation; whereas, HDAC4 and 7 siRNA showed no effect. HDAC3 siRNA caused histone hyperacetylation and increased the percent of apoptotic cells. These results demonstrate that the Class I HDACs such as HDACs 1 and 3 are important in the regulation of proliferation and survival in cancer cells. These results and the positive preclinical results with non-specific inhibitors of the HDAC enzymes provide further support for the development of Class I selective HDAC inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Keith B Glaser
- Cancer Research, R47J-AP9, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6121, USA.
| | | | | | | | | | | |
Collapse
|
215
|
Imoto S, Sugiyama K, Muromoto R, Sato N, Yamamoto T, Matsuda T. Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3. J Biol Chem 2003; 278:34253-8. [PMID: 12815042 DOI: 10.1074/jbc.m304961200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Smads proteins play a key role in the intracellular signaling of the transforming growth factor (TGF)-beta family of growth factors, which exhibits a diverse set of cellular responses, including cell proliferation and differentiation. In particular, Smad7 acts as an antagonist of TGF-beta signaling, which could determine the intensity or duration of its signaling cascade. In this study we identified a protein inhibitor of activated STAT (signal transducers and activators of transcription), PIASy, as a novel interaction partner of Smad7 by yeast two-hybrid screening using the MH2 domain of Smad7 as bait. The association of Smad7 and PIASy was confirmed using co-expressed tagged proteins in 293T cells. Moreover, we found that other Smads including Smad3 also associated with PIASy through its MH2 domain, and PIASy suppressed TGF-beta-mediated activation of Smad3. PIASy also stimulated the sumoylation of Smad3 in vivo. Furthermore, endogenous PIASy expression was induced by TGF-beta in Hep3B cells. These findings provide the first evidence that a PIAS family protein, PIASy, associates with Smads and involves the regulation of TGF-beta signaling using the negative feedback loop.
Collapse
Affiliation(s)
- Seiyu Imoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
216
|
Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JXJ. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L740-54. [PMID: 12740218 DOI: 10.1152/ajplung.00284.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular medial hypertrophy in primary pulmonary hypertension (PPH) is mainly caused by increased proliferation and decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Mutations of the bone morphogenetic protein (BMP) receptor type II (BMP-RII) gene have been implicated in patients with familial and sporadic PPH. The objective of this study was to elucidate the apoptotic effects of BMPs on normal human PASMCs and to examine whether BMP-induced effects are altered in PASMCs from PPH patients. Using RT-PCR, we detected six isoforms of BMPs (BMP-1 through -6) and three subunits of BMP receptors (BMP-RIa, -RIb, and -RII) in PASMCs. Treatment of normal PASMCs with BMP-2 or -7 (100-200 nM, 24-48 h) markedly increased the percentage of cells undergoing apoptosis. The BMP-2-mediated apoptosis in normal PASMCs was associated with a transient activation or phosphorylation of Smad1 and a marked downregulation of the antiapoptotic protein Bcl-2. In PASMCs from PPH patients, the BMP-2- or BMP-7-induced apoptosis was significantly inhibited compared with PASMCs from patients with secondary pulmonary hypertension. These results suggest that the antiproliferative effect of BMPs is partially due to induction of PASMC apoptosis, which serves as a critical mechanism to maintain normal cell number in the pulmonary vasculature. Inhibition of BMP-induced PASMC apoptosis in PPH patients may play an important role in the development of pulmonary vascular medial hypertrophy in these patients.
Collapse
Affiliation(s)
- Shen Zhang
- Dept. of Medicine, UCSD Medical Center, 200 West Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Wendling J, Marchand A, Mauviel A, Verrecchia F. 5-fluorouracil blocks transforming growth factor-beta-induced alpha 2 type I collagen gene (COL1A2) expression in human fibroblasts via c-Jun NH2-terminal kinase/activator protein-1 activation. Mol Pharmacol 2003; 64:707-13. [PMID: 12920208 DOI: 10.1124/mol.64.3.707] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
5-Fluorouracil (5-FU), a pyrimidine analog widely used in cancer chemotherapy and in glaucoma surgery, has recently shown some efficacy in the treatment of keloids, scars that overgrow the boundaries of original wounds. Given the physiopathological importance of transforming growth factor-beta (TGF-beta) in keloid and scar formation, we have examined whether the clinical benefits from 5-FU treatment may result from its capacity to interfere with TGF-beta signaling and resulting activation of type I collagen gene expression. Using various molecular approaches to study the mechanisms underlying 5-FU effects, we have demonstrated that 5-FU antagonizes TGF-beta-driven COL1A2 transcription and associated type I collagen production by dermal fibroblasts. In addition, 5-FU inhibits both SMAD3/4-specific transcription and formation of SMAD/DNA complexes induced by TGF-beta. 5-FU induces c-Jun phosphorylation and activates both AP-1-specific transcription and DNA binding. Overexpression of an antisense c-jun expression vector, or that of a dominant-negative form of MKK4 that interferes with c-Jun N-terminal kinase (JNK) activation, blocks the inhibitory activity of 5-FU on TGF-beta-induced COL1A2 transcription. Furthermore, in a cellular context devoid of JNK activity (i.e., JNK-/- fibroblasts), 5-FU inhibits neither formation of SMAD/DNA complexes nor SMAD-driven COL1A2 transcription in response to TGF-beta. Together, these results identify 5-FU as a potent inhibitor of TGF-beta/SMAD signaling, capable of blocking TGF-beta-induced, SMAD-driven up-regulation of COL1A2 gene expression in a JNK-dependent manner. We thus provide a molecular explanation to the observed clinical benefits of 5-FU in the treatment of keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Jeanne Wendling
- INSERM U532, Institut de Recherche sur la Peau, Pavillon Bazin, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|
218
|
Ueki N, Hayman MJ. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J Biol Chem 2003; 278:32489-92. [PMID: 12857746 DOI: 10.1074/jbc.c300276200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
219
|
Long J, Matsuura I, He D, Wang G, Shuai K, Liu F. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc Natl Acad Sci U S A 2003; 100:9791-6. [PMID: 12904571 PMCID: PMC187844 DOI: 10.1073/pnas.1733973100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Indexed: 01/30/2023] Open
Abstract
Smad proteins mediate transforming growth factor beta (TGF-beta)-inducible transcriptional responses. Protein inhibitor of activated signal transducer and activator of transcription (PIAS) represents a family of proteins that inhibits signal transducer and activator of transcription and also regulates other transcriptional responses. In an effort to identify Smad-interacting proteins by a yeast three-hybrid screen with Smad3 and Smad4 as baits, we identified PIASy, a member of the PIAS family. In yeast, PIASy interacts strongly with Smad4 and also with receptor-regulated Smads. In mammalian cells, PIASy binds most strongly with Smad3 and also associates with other receptor-regulated Smads and Smad4. The interaction between Smad3 and PIASy is increased in the presence of TGF-beta and occurs through the C-terminal domain of Smad3. Moreover, Smad3, Smad4, and PIASy can form a ternary complex. PIASy does not inhibit Smad complex binding to DNA, but it represses Smad transcriptional activity. Interestingly, conditional overexpression of PIASy selectively inhibits a subset of endogenous TGF-beta-responsive genes, which includes the cyclin-dependent kinase inhibitor p15, and the plasminogen activator inhibitor 1. We further show that PIASy can interact constitutively with histone deacetylase 1 (HDAC1) and that addition of HDAC inhibitor trichostatin A (TSA) can prevent the inhibitory function of PIASy. Taken together, our studies indicate that PIASy can inhibit TGF-beta/Smad transcriptional responses through interactions with Smad proteins and HDAC.
Collapse
Affiliation(s)
- Jianyin Long
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
220
|
He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 2003; 278:30540-7. [PMID: 12764135 DOI: 10.1074/jbc.m304016200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.
Collapse
Affiliation(s)
- Jun He
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720-3206, USA
| | | | | | | | | |
Collapse
|
221
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
222
|
Pearson-White S, McDuffie M. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene. Mol Cell Biol 2003; 23:5446-59. [PMID: 12861029 PMCID: PMC165712 DOI: 10.1128/mcb.23.15.5446-5459.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.
Collapse
Affiliation(s)
- S Pearson-White
- Department of Microbiology, Health Sciences Center, University of Virginia Medical Center, Jordan Hall, Box 800734, Room 7034, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
223
|
Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem 2003; 278:26249-57. [PMID: 12732634 DOI: 10.1074/jbc.m304459200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.
Collapse
Affiliation(s)
- Celine Prunier
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
224
|
Ueki N, Hayman MJ. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem 2003; 278:24858-64. [PMID: 12716897 DOI: 10.1074/jbc.m303447200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor-beta (TGF-beta) and nuclear receptor signaling. To achieve this, Ski has been proposed to recruit the corepressor N-CoR to either the TGF-beta-regulated Smad transcription factors or nuclear receptors. Here we define the role of the Ski/N-CoR interaction in Ski-mediated repression of TGF-beta and vitamin D signaling. We show that Ski can negatively regulate vitamin D-mediated transcription by directly interacting with the vitamin D receptor. More importantly, a Ski single point mutant lacking N-CoR binding revealed that the Ski/N-CoR interaction is essential for repression of vitamin D signaling, but, surprisingly, not TGF-beta signaling. Thus, Ski modulates transcription in either an N-CoR-dependent or -independent manner depending on the signaling pathways targeted.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794-5222, USA.
| | | |
Collapse
|
225
|
Nelson BH, Martyak TP, Thompson LJ, Moon JJ, Wang T. Uncoupling of promitogenic and antiapoptotic functions of IL-2 by Smad-dependent TGF-beta signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5563-70. [PMID: 12759434 DOI: 10.4049/jimmunol.170.11.5563] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta opposes proliferative signaling by IL-2 through mechanisms that remain incompletely defined. In a well-characterized CD8(+) T cell model using wild-type and mutated IL-2 receptors, we examined the effects of TGF-beta on distinct IL-2 signaling events in CD8(+) T cells. IL-2 induces c-myc, cyclin D2, and cyclin E in a redundant manner through the Shc and STAT5 pathways. TGF-beta inhibited the ability of either the Shc or STAT5 pathway to induce these genes, as well as T cell proliferation. The inhibitory effects of TGF-beta were reversed by expression of a dominant-negative form of Smad3. TGF-beta did not impair proximal signaling by Shc or STAT5, and induction of some downstream genes, including cytokine-inducible Src homology-2-containing protein (CIS), bcl-x(L), and bcl-2, was spared. Experiments with c-fos, cyclin D2, and CIS reporter genes revealed that promoter-proximal regulatory elements dictate the sensitivity of IL-2 target genes to inhibition by TGF-beta. By leaving the Shc and STAT5 pathways functional while inhibiting their target genes selectively, TGF-beta was found to uncouple the proliferative and antiapoptotic functions of IL-2. Thus, TGF-beta is not a simple antagonist of IL-2, but rather serves to qualitatively modify the IL-2 signal to create a unique pattern of gene expression that neither cytokine can induce independently.
Collapse
Affiliation(s)
- Brad H Nelson
- Benaroya Research Institute, Seattle, WA 98101, USA.
| | | | | | | | | |
Collapse
|
226
|
Kokura K, Kim H, Shinagawa T, Khan MM, Nomura T, Ishii S. The Ski-binding protein C184M negatively regulates tumor growth factor-beta signaling by sequestering the Smad proteins in the cytoplasm. J Biol Chem 2003; 278:20133-9. [PMID: 12646588 DOI: 10.1074/jbc.m210855200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski is a transcriptional co-repressor and is involved in the negative regulation of tumor growth factor-beta (TGF-beta) signaling. To understand more fully the role of Ski in TGF-beta signaling, we searched for novel Ski-interacting proteins. The identified C184M protein consists of 189 amino acids and contains the leucine-rich region. An association between Ski and C184M involving the leucine-rich region of C184M and the C-terminal coiled-coil motif of Ski was confirmed by glutathione S-transferase pull-down and immunoprecipitation assays. The C184M protein is located in the cytosol, and the C184M and Ski signals are co-localized in the cytoplasm when C184M was co-expressed with Ski in CV-1 cells. The cytoplasmic C184M-Ski complex inhibited the nuclear translocation of Smad2. Consistent with this, the activity of promoter containing the Smad-binding sites was repressed by C184M, and the TGF-beta-induced growth inhibition of mink lung Mv1Lu cells was attenuated by the ectopic expression of C184M. Thus, C184M inhibits TGF-beta signaling in concert with Ski. In hepatocytes, which express significant levels of C184M, the Ski signals were found only in the cytoplasm, supporting the notion that C184M forms a complex with Ski in the cytosol.
Collapse
Affiliation(s)
- Kenji Kokura
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
227
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
228
|
Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003; 94:230-4. [PMID: 12824914 PMCID: PMC11160178 DOI: 10.1111/j.1349-7006.2003.tb01425.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 01/28/2003] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor of most types of cells; therefore, perturbations of TGF-beta signaling are believed to result in progression of various tumors. On the other hand, TGF-beta has been shown to act as an oncogenic cytokine through induction of extracellular matrices, angiogenesis, and immune suppression. A wide variety of effects of TGF-beta are mediated by physical interaction of signal transducer Smad proteins with various transcription factors. Among these, Runx3 plays a pivotal role in prevention of gastric cancer. TGF-beta signaling is regulated by various mechanisms in the cytoplasm and nucleus. Inhibitory Smads (I-Smads) repress TGF-beta signaling mainly by interacting with activated TGF-beta receptors. Smad ubiquitin regulatory factors (Smurfs) play important roles in facilitating the inhibitory signals induced by I-Smads. In addition, the transcriptional co-repressors c-Ski and SnoN interact with Smads, and repress transcription induced by TGF-beta. Abnormalities of these regulators of TGF-beta signaling may thus participate in the progression of various tumors.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan.
| | | | | |
Collapse
|
229
|
Warner DR, Pisano MM, Greene RM. Nuclear convergence of the TGFbeta and cAMP signal transduction pathways in murine embryonic palate mesenchymal cells. Cell Signal 2003; 15:235-42. [PMID: 12464395 DOI: 10.1016/s0898-6568(02)00082-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transforming growth factors beta (TGFbeta) and cyclic AMP (cAMP) both participate in growth and differentiation of the developing mammalian secondary palate and elicit similar biological responses. Cross-talk between these two signal transduction pathways in cells derived from the embryonic palate has been demonstrated previously. In the present study, we have examined nuclear convergence of these signalling pathways at the level of transcriptional complex formation. Biotinylated oligonucleotides encoding a consensus Smad binding element (SBE), or a cyclic AMP response element (CRE), were mixed with cell extracts from murine embryonic palate mesenchymal (MEPM) cells that were treated with either TGFbeta or forskolin. Protein-oligonucleotide complexes were precipitated with streptavidin-agarose, and analysed by Western blotting to identify proteins in the complex bound to each consensus oligonucleotide. TGFbeta treatment of MEPM cells increased the levels of phosphorylated Smad2, phosphorylated cAMP response element binding protein (CREB), and the coactivator, CREB binding protein (CBP), that were part of a complex bound to the SBE. Treatment of cells with forskolin, a stimulator of adenylate cyclase, increased the amount of phosphorylated CREB and CBP, but not the amount of phosphorylated Smad2 bound in a complex to the SBE. Additionally, the presence of the co-repressors, c-Ski and SnoN, was demonstrated as part of a complex bound to the SBE (but not the CRE). Amounts of c-Ski and SnoN found in the SBE-containing complex increased in response to either TGFbeta or forskolin. These results demonstrate that phosphorylated CREB forms a complex with the co-activator CBP, phosphorylated Smad2 and the co-repressors c-Ski and SnoN on a consensus SBE. This suggests cooperative regulation of genes with SBE-containing promoters by the cAMP and TGFbeta signalling pathways in the developing palate.
Collapse
Affiliation(s)
- D R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville School of Dentistry, 501 South Preston Street, Suite 301, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
230
|
Mizuide M, Hara T, Furuya T, Takeda M, Kusanagi K, Inada Y, Mori M, Imamura T, Miyazawa K, Miyazono K. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN. J Biol Chem 2003; 278:531-6. [PMID: 12426322 DOI: 10.1074/jbc.c200596200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
c-Ski and SnoN are transcriptional co-repressors that inhibit transforming growth factor-beta signaling through interaction with Smad proteins. Among receptor-regulated Smads, c-Ski and SnoN bind more strongly to Smad2 and Smad3 than to Smad1. Here, we show that c-Ski and SnoN bind to the "SE" sequence in the C-terminal MH2 domain of Smad3, which is exposed on the N-terminal upper side of the toroidal structure of the MH2 oligomer. The "QPSMT" sequence, located in the vicinity of SE, supports the interaction with c-Ski and SnoN. Sequences similar to SE and QPSMT are found in Smad2, but not in Smad1. The N-terminal MH1 domain and linker region of Smad3 protrude from the N-terminal upper side of the MH2 oligomer toroid. Smurf2 induces ubiquitin-dependent degradation of SnoN, since it appears to be located close to SnoN through binding to the linker region of Smad2. In contrast, transcription factors Mixer and FoxH3 (FAST1) bind to the bottom side of the Smad3 MH2 toroid; therefore, c-Ski does not affect the interaction of Smads with these transcription factors. Our findings thus demonstrate the stoichiometry of how multiple molecules can associate with the Smad oligomers and how the Smad-interacting proteins functionally interact with each other.
Collapse
Affiliation(s)
- Masafumi Mizuide
- Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo 170-8455, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Kadakia M, Brown TL, McGorry MM, Berberich SJ. MdmX inhibits Smad transactivation. Oncogene 2002; 21:8776-85. [PMID: 12483531 DOI: 10.1038/sj.onc.1205993] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
Mdm2 overexpression confers a growth promoting activity upon cells primarily by downregulating the p53 tumor suppressor protein. Nevertheless, Mdm2 deregulation has also been implicated in inhibiting TGF-beta growth repression in a p53 independent manner. Our goal in this study was to examine whether overexpression of Mdm2 or MdmX, a Mdm2-related protein, could affect Smad-induced transactivation. As downstream signaling elements of the TGF-beta pathway, Smads represent one potential target for Mdm2 and MdmX. Here we show that MdmX but not Mdm2 is capable of inhibiting Smad induced transactivation. Based on deletion mutant analysis, MdmX inhibition of Smad transactivation was independent of the p53 and Mdm2 interaction domains, yet required amino acid residues 128-444. Using TGF-beta sensitive HepG2 cells, MdmX overexpression was shown to inhibit TGF-beta induced Smad transactivation. Additionally, mouse embryo fibroblasts (MEFs) lacking p53 and MdmX showed enhanced Smad transactivation when compared to MEFs lacking either p53 or p53 and Mdm2. Interestingly, the inhibition of Smad transactivation by MdmX could be reversed by p300, a functional co-activator of Smads and a necessary factor for Mdm2 nuclear export and did not result from altered Smad localization. In vitro studies demonstrate that MdmX binds to p300 as well as Smad3 and Smad4. Taken together, these results suggest that inhibition of Smad-induced transactivation by MdmX occurs by altering Smad interaction with its coactivator p300.
Collapse
Affiliation(s)
- Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | | | | | | |
Collapse
|
232
|
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002; 7:1191-204. [PMID: 12485160 DOI: 10.1046/j.1365-2443.2002.00599.x] [Citation(s) in RCA: 518] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily bind to two different serine/threonine kinase receptors, i.e. type I and type II receptors. Upon ligand binding, type I receptors specifically activate intracellular Smad proteins. R-Smads are direct substrates of type I receptors; Smads 2 and 3 are specifically activated by activin/nodal and TGF-beta type I receptors, whereas Smads 1, 5 and 8 are activated by BMP type I receptors. Nearly 30 proteins have been identified as members of the TGF-beta superfamily in mammals, and can be classified based on whether they activate activin/TGF-beta-specific R-Smads (AR-Smads) or BMP-specific R-Smads (BR-Smads). R-Smads form complexes with Co-Smads and translocate into the nucleus, where they regulate the transcription of target genes. AR-Smads bind to various proteins, including transcription factors and transcriptional co-activators or co-repressors, whereas BR-Smads interact with other proteins less efficiently than AR-Smads. Id proteins are induced by BR-Smads, and play important roles in exhibiting some biological effects of BMPs. Understanding the mechanisms of TGF-beta superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-beta superfamily signalling is involved.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
233
|
Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell 2002; 111:357-67. [PMID: 12419246 DOI: 10.1016/s0092-8674(02)01006-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding.
Collapse
Affiliation(s)
- Jia Wei Wu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Kawada S, Tachi C, Ishii N. Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 2002; 22:627-33. [PMID: 12222823 DOI: 10.1023/a:1016366409691] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in myostatin content and localization in mouse skeletal muscles were investigated during aging, hindlimb suspension (HS) and reloading after HS. During aging, the content of myostatin among solubilized proteins in gastrocnemius and plantaris muscles (Gast/Plant) was initially low and increased until their wet weight/body weight ratio reached a peak. It remained unchanged with further aging, although gradual atrophy of the muscles was seen to occur. Also, the myostatin content did not change significantly during HS (up to 14 days) in both Gast/Plant and soleus muscles, though the muscles showed morphological signs of atrophy. However, reloading for 2 days after a 14-day HS caused significant decreases in the myostatin content in both of these muscles. Immunohistochemical observations showed the sarcoplasmic existence of myostatin, the amount of which appeared to decrease after reloading. The results suggest that myostatin plays a part in the processes of muscular growth and loading-induced hypertrophy, but is not involved in either aging-related or unloading-induced muscular atrophy.
Collapse
Affiliation(s)
- S Kawada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
235
|
Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 2002; 227:724-52. [PMID: 12324653 DOI: 10.1177/153537020222700905] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.
Collapse
Affiliation(s)
- Corrine Welt
- Reproductive Endocrine Unit and Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
236
|
Chargé SBP, Brack AS, Hughes SM. Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy. Am J Physiol Cell Physiol 2002; 283:C1228-41. [PMID: 12225986 DOI: 10.1152/ajpcell.00206.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To investigate the cause of skeletal muscle weakening during aging we examined the sequence of cellular changes in murine muscles. Satellite cells isolated from single muscle fibers terminally differentiate progressively less well with increasing age of donor. This change is detected before decline in satellite cell numbers and all histological changes examined here. In MSVski transgenic mice, which show type IIb fiber hypertrophy, initial muscle weakness is followed by muscle degeneration in the first year of life. This degeneration is accompanied by a spectrum of changes typical of normal muscle aging and a more marked decline in satellite cell differentiation efficiency. On a myoD-null genetic background, in which satellite cell differentiation is defective, the MSVski muscle phenotype is aggravated. This suggests that, on a wild-type genetic background, satellite cells are capable of repairing MSVski fibers and preserving muscle integrity in early life. We propose that decline in myogenic cell differentiation efficiency is an early event in aging-related loss of muscle function, both in normal aging and in some late-onset muscle degenerative conditions.
Collapse
Affiliation(s)
- Sophie B P Chargé
- Medical Research Council (MRC) Muscle and Cell Motility Unit, MRC Centre for Developmental Neurobiology, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
237
|
Zhang F, Mönkkönen M, Roth S, Laiho M. Proteasomal activity modulates TGF-ss signaling in a gene-specific manner. FEBS Lett 2002; 527:58-62. [PMID: 12220633 DOI: 10.1016/s0014-5793(02)03163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-beta (TGF-beta) signaling relies on Smad-signaling pathway controlled in part by the proteasome. Here we demonstrate that inhibition of the proteasome function in mink epithelial cells accumulates both positive and negative modulators of TGF-beta signaling, phospho-Smad2 and SnoN. Inhibition of the proteasome led to abrogation of TGF-beta target gene regulation in a gene-specific manner. While regulation of p15Ink4b and myc by TGF-beta are lost, PAI-1 induction, previously shown to occur in a Smad3-dependent manner, was not affected by treatment of the cells with the proteasomal inhibitor MG132. The results suggest that proteasomal activity is required for TGF-beta signaling in a gene-specific manner.
Collapse
Affiliation(s)
- Fan Zhang
- Haartman Institute, Department of Virology and Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital Laboratory Diagnostics, P.O. Box 63, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
238
|
Preobrazhenska O, Yakymovych M, Kanamoto T, Yakymovych I, Stoika R, Heldin CH, Souchelnytskyi S. BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene 2002; 21:5660-4. [PMID: 12165866 DOI: 10.1038/sj.onc.1205732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 05/24/2002] [Accepted: 06/07/2002] [Indexed: 11/09/2022]
Abstract
Smad3 is an essential component in the intracellular signaling of transforming growth factor-beta (TGFbeta), which is a potent inhibitor of tumor cell proliferation. BRCA2 is a tumor suppressor involved in early onset of breast, ovarian and prostate cancer. Both Smad3 and BRCA2 possess transcription activation domains. Here, we show that Smad3 and BRCA2 interact functionally and physically. We found that BRCA2 forms a complex with Smad3 in vitro and in vivo, and that both MH1 and MH2 domains of Smad3 contribute to the interaction. TGFbeta1 stimulates interaction of endogenous Smad3 and BRCA2 in non-transfected cells. BRCA2 co-activates Smad3-dependent transcriptional activation of luciferase reporter and expression of plasminogen activator inhibitor-1 (PAI-1). Smad3 increases the transcriptional activity of BRCA2 fused to the DNA-binding domain (DBD) of Gal4, and reciprocally, BRCA2 co-activates DBD-Gal4-Smad3. Thus, our results show that BRCA2 and Smad3 form a complex and synergize in regulation of transcription.
Collapse
Affiliation(s)
- Olena Preobrazhenska
- Ludwig Institute for Cancer Research, Box 595, Husargatan, 3, SE-751 24, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
239
|
Pessah M, Marais J, Prunier C, Ferrand N, Lallemand F, Mauviel A, Atfi A. c-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity. J Biol Chem 2002; 277:29094-100. [PMID: 12034730 DOI: 10.1074/jbc.m202831200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Smad proteins are key intracellular effectors of transforming growth factor-beta (TGF-beta) cytokines. The ability of Smads to modulate transcription results from a functional cooperativity with the coactivators p300/cAMP-response element-binding protein-binding protein (CBP), or the corepressors TGIF and Ski. The c-Jun N-terminal kinase (JNK) pathway, another downstream target activated by TGF-beta receptors, has also been suggested to inhibit TGF-beta signaling through interaction of c-Jun with Smad2 and Smad3. Here we show that c-Jun directly interacts with Ski to enhance the association of Ski with Smad2 in the basal state. Interestingly, TGF-beta signaling induces dissociation of c-Jun from Ski, thereby relieving active repression by c-Jun. Moreover, activation of JNK pathway suppressed the ability of TGF-beta to induce dissociation of c-Jun from ski. Thus, the formation of a c-Jun/Ski complex maintains the repressed state of Smad2-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling by the JNK cascade.
Collapse
Affiliation(s)
- Marcia Pessah
- INSERM U 482, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | | | | | | | | | | | | |
Collapse
|
240
|
Macias-Silva M, Li W, Leu JI, Crissey MAS, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem 2002; 277:28483-90. [PMID: 12023281 DOI: 10.1074/jbc.m202403200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) functions as an antiproliferative factor for hepatocytes. However, for unexplained reasons, hepatocytes become resistant to TGF-beta signals and can proliferate despite the presence of TGF-beta during liver regeneration. TGF-beta is up-regulated during liver regeneration, although it is not known whether it is active or latent. TGF-beta activity may be examined by assessing Smad activation, a downstream signaling pathway. Smad pathway activation during liver regeneration induced by partial hepatectomy or CC4 injury was examined by assessing the levels of phospho-Smad2 and Smad2-Smad4 complexes. We found that Smad proteins were slightly activated in quiescent liver, but that their activation was further enhanced in regenerating liver. Interestingly, TGF-beta/Smad pathway inhibitors (SnoN and Ski) were up-regulated during regeneration, and notably, SnoN was induced mainly in hepatocytes. SnoN and Ski are transcriptional repressors that may render some cells resistant to TGF-beta via binding Smad proteins. Complexes between SnoN, Ski, and the activated Smad proteins were detected from 2 to 120 h during the major proliferative phase in regenerating liver. Inhibitory complexes decreased after liver mass restitution (5-15 days), suggesting that persistently activated Smad proteins might participate in returning the liver to a quiescent state. Our data show that active TGF-beta/Smad signals are present during regeneration and suggest that SnoN/Ski induction might explain hepatocyte resistance to TGF-beta during the proliferative phase.
Collapse
Affiliation(s)
- Marina Macias-Silva
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
241
|
Qin BY, Lam SS, Correia JJ, Lin K. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev 2002; 16:1950-63. [PMID: 12154125 PMCID: PMC186427 DOI: 10.1101/gad.1002002] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad3 transduces the signals of TGF-betas, coupling transmembrane receptor kinase activation to transcriptional control. The membrane-associated molecule SARA (Smad Anchor for Receptor Activation) recruits Smad3 for phosphorylation by the receptor kinase. Upon phosphorylation, Smad3 dissociates from SARA and enters the nucleus, in which its transcriptional activity can be repressed by Ski. Here, we show that SARA and Ski recognize specifically the monomeric and trimeric forms of Smad3, respectively. Thus, trimerization of Smad3, induced by phosphorylation, simultaneously activates the TGF-beta signal by driving Smad3 dissociation from SARA and sets up the negative feedback mechanism by Ski. Structural models of the Smad3/SARA/receptor kinase complex and Smad3/Ski complex provide insights into the molecular basis of regulation.
Collapse
Affiliation(s)
- Bin Y Qin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
242
|
Yamamoto T, Saatcioglu F, Matsuda T. Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 2002; 143:2635-42. [PMID: 12072396 DOI: 10.1210/endo.143.7.8877] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenic proteins (BMPs) play central roles in differentiation, development, and physiological tissue remodeling. Estrogens have key roles in a variety of biological events, such as the development and maintenance of numerous target tissues. Previous studies demonstrated that estrogens suppress BMP functions by repressing BMP gene expression. Here we present a novel mechanism for the inhibitory effect of estrogens on BMP function. BMP-2-induced activation of Sma and Mad (mothers against decapentaplegic)-related protein (Smad) activity and BMP-2-mediated gene expression were suppressed by 17beta-E2 in breast cancer cells and mesangial cells. E2-mediated inhibition of Smad activation was reversed by tamoxifen, an ER antagonist. We provide evidence that the inhibitory action of ER on Smad activity was due to direct physical interactions between Smads and ER, which represents a novel mechanism for the cross-talk between BMP and ER signaling pathways.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
243
|
Jardine H, MacNee W, Donaldson K, Rahman I. Molecular mechanism of transforming growth factor (TGF)-beta1-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-1/ARE and Fra-1. J Biol Chem 2002; 277:21158-66. [PMID: 11912197 DOI: 10.1074/jbc.m112145200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous antioxidant in lung epithelial cells and lung lining fluid. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine involved in cellular proliferation and differentiation. The level of TGF-beta1 is elevated in many chronic inflammatory lung disorders associated with oxidant/antioxidant imbalance. In this study, we show that TGF-beta1 depletes GSH by down-regulating expression of the enzyme responsible for its formation, gamma-glutamylcysteine synthetase (gamma-GCS) and induces reactive oxygen species production in type II alveolar epithelial cells (A549). To investigate the molecular mechanisms of inhibition of glutathione synthesis, we employed reporters containing fragments from the promoter region of the gamma-GCS heavy subunit (h), the gene that encodes the catalytic subunit of gamma-GCS. We found that TGF-beta1 reduced the expression of the long gamma-GCSh construct (-3802/GCSh-5'-Luc), suggesting that an antioxidant response element (ARE) may be responsible for mediating the TGF-beta1 effect. Interestingly, the electrophoretic mobility shift assay revealed that the DNA binding activity of both activator protein-1 (AP-1) and ARE was increased in TGF-beta1-treated epithelial cells. The gamma-GCSh ARE contains a perfect AP-1 site embedded within it, and mutation of this internal AP-1 sequence, but not the surrounding ARE, prevented DNA binding. Further studies revealed that c-Jun and Fra-1 dimers, members of the AP-1 family previously shown to exert a negative effect on phase II gene expression, bound to the ARE sequence. We propose a novel mechanism of gamma-GCSh down-regulation by TGF-beta1 that involves the binding of c-Jun and Fra-1 dimers to the distal promoter. The findings of this study provide important information, which may be used for the modulation of glutathione biosynthesis in inflammation.
Collapse
Affiliation(s)
- Hazel Jardine
- Edinburgh Lung and the Environment Group Initiative/Colt Research Laboratories, Medical Research Council Centre for Inflammation Research, University of Edinburgh Medical School, Edinburgh EH8 9AG, United Kingdom
| | | | | | | |
Collapse
|
244
|
Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Structure 2002; 10:787-95. [PMID: 12057194 DOI: 10.1016/s0969-2126(02)00769-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Dachshund proteins are essential components of a regulatory network controlling cell fate determination. They have been implicated in eye, limb, brain, and muscle development. These proteins cannot be assigned to any recognizable structural or functional class based on amino acid sequence analysis. The 1.65 A crystal structure of the most conserved domain of human DACHSHUND is reported here. The protein forms an alpha/beta structure containing a DNA binding motif similar to that found in the winged helix/forkhead subgroup of the helix-turn-helix family. This unexpected finding alters the previously proposed molecular models for the role of Dachshund in the eye determination pathway. Furthermore, it provides a rational framework for future mechanistic analyses of the Dachshund proteins in several developmental contexts.
Collapse
Affiliation(s)
- Seung-Sup Kim
- Structural Biology Program, Skirball Institute, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
245
|
Galasinski SC, Resing KA, Goodrich JA, Ahn NG. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002; 277:19618-26. [PMID: 11919195 DOI: 10.1074/jbc.m201174200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of histone deacetylases (HDACs) by phosphorylation was examined by elevating intracellular phosphorylation in cultured cells with the protein phosphatase inhibitor okadaic acid. After fractionation of extracts from treated versus untreated cells, HDAC 1 and 2 eluted in several peaks of deacetylase activity, assayed using mixed acetylated histones or acetylated histone H4 peptide. Stimulation of cells with okadaic acid led to hyperphosphorylation of HDAC 1 and 2 as well as changes in column elution of both enzymes. Hyperphosphorylated HDAC2 was also observed in cells synchronized with nocodazole or taxol, demonstrating regulation of HDAC phosphorylation during mitosis. Phosphorylated HDAC1 and 2 showed a gel mobility retardation that correlated with a small but significant increase in activity, both of which were reversed upon phosphatase treatment in vitro. However, the most pronounced effect of HDAC phosphorylation was to disrupt protein complex formation between HDAC1 and 2 as well as complex formation between HDAC1 and corepressors mSin3A and YY1. In contrast, interactions between HDAC1/2 and RbAp46/48 were unaffected by okadaic acid. These results establish a novel link between HDAC phosphorylation and the control of protein-protein interactions and suggest a mechanism for relief of deacetylase-catalyzed transcriptional repression by phosphorylation-dependent signaling.
Collapse
Affiliation(s)
- Scott C Galasinski
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
246
|
Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21:3422-44. [PMID: 12032780 DOI: 10.1038/sj.onc.1205315] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The leukemia-associated fusion proteins share several structural or functional similarities, suggesting that they may impart a leukemic phenotype through common modes of transcriptional dysregulation. The fusion proteins generated by these translocations usually contain a DNA-binding domain, domains responsible for homo- or hetero-dimerization, and domains that interact with proteins involved in chromatin remodeling (e.g., co-repressor molecules or co-activator molecules). It is these shared features that constitute the 'variations on the theme' that underling the aberrant growth and differentiation that is the hallmark of acute leukemia cells.
Collapse
Affiliation(s)
- Joseph M Scandura
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
247
|
Verrecchia F, Mauviel A. Control of connective tissue gene expression by TGF beta: role of Smad proteins in fibrosis. Curr Rheumatol Rep 2002; 4:143-9. [PMID: 11890880 DOI: 10.1007/s11926-002-0010-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta (TGF beta) plays a critical role in the development of tissue fibrosis. Its expression is consistently elevated in affected organs and correlates with increased extracellular matrix deposition. During the last few years, tremendous progress has been made in understanding the molecular aspects of intracellular signaling downstream of the TGF beta receptors. In particular, Smad proteins--TGF beta receptor kinase substrates that translocate into the cell nucleus to act as transcription factors--have been studied extensively. Their role in the modulation of extracellular matrix gene expression is discussed in this review.
Collapse
Affiliation(s)
- Franck Verrecchia
- INSERM U532, Institut de Recherche sur la Peau, Pavillon Bazin, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France.
| | | |
Collapse
|
248
|
Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol 2002; 191:1-16. [PMID: 11920677 DOI: 10.1002/jcp.10066] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-beta (TGF-beta) family members which include TGF-betas, activins, and bone morphogenetic proteins (BMPs) regulate a broad spectrum of biological responses on a large variety of cell types. TGF-beta family members initiate their cellular responses by binding to distinct receptors with intrinsic serine/threonine kinase activity and activation of specific downstream intracellular effectors termed Smad proteins. Smads relay the signal from the cell membrane to the nucleus, where they affect the transcription of target genes. Smad activation, subcellular distribution, and stability have been found to be intricately regulated and a broad array of transcription factors have been identified as Smad partners. Important activities of TGF-beta are its potent anti-mitogenic and pro-apoptotic effects that, at least in part, are mediated via Smad proteins. Escape from TGF-beta/Smad-induced growth inhibition and apoptosis is frequently observed in tumors. Certain Smads have been found to be mutated in specific types of cancer and gene ablation of particular Smads in mice has revealed increased rate of tumorigenesis. In late stage tumors, TGF-beta has been shown to function as a tumor promoter. TGF-beta can stimulate the de-differentiation of epithelial cells to malignant invasive and metastatic fibroblastic cells. Interestingly, TGF-beta may mediate these effects directly on tumor cells via subverted Smad-dependent and/or Smad-independent pathways.
Collapse
Affiliation(s)
- Peter Ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
249
|
Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 2002; 118:211-5. [PMID: 11841535 DOI: 10.1046/j.1523-1747.2002.01641.x] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor (TGF)-beta represents a prototype of multifunctional cytokine. Its broad activities include, among others, context-specific inhibition or stimulation of cell proliferation, control of extracellular matrix (ECM) synthesis and degradation, control of mesenchymal-epithelial interactions during embryogenesis, mediation of cell and tissue responses to injury, control of carcinogenesis, and modulation of immune functions. Regulation of production and turnover of ECM components is essential for tissue homeostasis and function. TGF-beta exerts its effects on cell proliferation, differentiation, and migration in part through its capacity to modulate the deposition of ECM components. Specifically, TGF-beta isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Deregulation of these functions is associated with abnormal connective tissue deposition, as observed, for example, during scarring or fibrotic processes. In this review we discuss the current understanding of the signaling mechanisms used by TGF-beta to elicit its effects on target genes, focusing primarily on Smad proteins and their role in the transcriptional regulation of ECM gene expression. Other signaling mechanisms, such as the MAP/SAP kinase or Ras pathways, although potentially important for transmission of some of the TGF-beta signals, will not be described. Transforming growth factor-beta (TGF-beta) plays a critical role in the regulation of extracellular matrix gene expression. Its overexpression is believed to contribute to the development of tissue fibrosis. The recent identification of Smad proteins, TGF-beta receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, has increased our understanding of the molecular mechanisms underlying TGF-beta action. This review focuses primarily on the mechanisms underlying Smad modulation of gene expression and how they relate to wound healing. Potential implications for the development of therapeutic approaches against tissue fibrosis are discussed.
Collapse
Affiliation(s)
- Franck Verrecchia
- INSERM U532, Institut de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
250
|
Abstract
Studies of the retinoblastoma gene (Rb) have shown that its protein product (pRb) acts to restrict cell proliferation, inhibit apoptosis, and promote cell differentiation. The frequent mutation of the Rb gene, and the functional inactivation of pRb in tumor cells, have spurred interest in the mechanism of pRb action. Recently, much attention has focused on pRb's role in the regulation of the E2F transcription factor. However, biochemical studies have suggested that E2F is only one of many pRb-targets and, to date, at least 110 cellular proteins have been reported to associate with pRb. The plethora of pRb-binding proteins raises several important questions. How many functions does pRb possess, which of these functions are important for development, and which contribute to tumor suppression? The goal of this review is to summarize the current literature of pRb-associated proteins.
Collapse
Affiliation(s)
- E J Morris
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|