201
|
Arora P, Zhang L, Rocha C, Sidarovich A, Kempf A, Schulz S, Cossmann A, Manger B, Baier E, Tampe B, Moerer O, Dickel S, Dopfer-Jablonka A, Jäck HM, Behrens GMN, Winkler MS, Pöhlmann S, Hoffmann M. Comparable neutralisation evasion of SARS-CoV-2 omicron subvariants BA.1, BA.2, and BA.3. THE LANCET INFECTIOUS DISEASES 2022; 22:766-767. [PMID: 35427493 PMCID: PMC9005119 DOI: 10.1016/s1473-3099(22)00224-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anzhalika Sidarovich
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Cossmann
- German Centre for Infection Research, partner site Hannover-Braunschweig, Hannover, Germany
| | - Bernhard Manger
- Deutsches Zentrum für Immuntherapie, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Baier
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Steffen Dickel
- Department of Anaesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Hannover, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Hannover, Germany
| | - Martin S Winkler
- Department of Anaesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
202
|
SARS-CoV-2 ORF7a potently inhibits the antiviral effect of the host factor SERINC5. Nat Commun 2022; 13:2935. [PMID: 35618710 PMCID: PMC9135752 DOI: 10.1038/s41467-022-30609-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/22/2022] [Indexed: 01/03/2023] Open
Abstract
Serine Incorporator 5 (SERINC5), a cellular multipass transmembrane protein that is involved in sphingolipid and phosphatydilserine biogenesis, potently restricts a number of retroviruses, including Human Immunodeficiency Virus (HIV). SERINC5 is incorporated in the budding virions leading to the inhibition of virus infectivity. In turn, retroviruses, including HIV, encode factors that counteract the antiviral effect of SERINC5. While SERINC5 has been well studied in retroviruses, little is known about its role in other viral families. Due to the paucity of information regarding host factors targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), we evaluated the effect of SERINC proteins on SARS-CoV-2 infection. Here, we show SERINC5 inhibits SARS-CoV-2 entry by blocking virus-cell fusion, and SARS-CoV-2 ORF7a counteracts the antiviral effect of SERINC5 by blocking the incorporation of over expressed SERINC5 in budding virions. SERINC5, is a cellular multipass transmembrane protein involved in sphingolipid and phosphatydilserine biogenesis and a known retroviral restriction factor. Here, Timilsina et al. show that SERINC5 is a host restriction factor for SARS-CoV-2 that prevents viral fusion during entry. Further they show that viral ORF7a counteracts SERINC5 anti-viral activity by blocking its incorporation into progeny virions.
Collapse
|
203
|
Bachelet VC, Silva-Ayarza I, Lizana FJ, Gomolán P, Silva-Villalobos D, Navarrete MS. SARS-CoV-2 humoral immune response in patients with cardiovascular risk factors: the COmmunity Cohort Study protocol. BMJ Open 2022; 12:e061345. [PMID: 35589344 PMCID: PMC9121110 DOI: 10.1136/bmjopen-2022-061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The COmmunity Cohort Study aims to determine, after natural exposure to SARS-CoV-2 or anti-SARS-CoV-2 vaccines deployed in Chile to prevent COVID-19 in the context of the current pandemic, the strength and duration of detectable neutralising antibodies in adult ambulatory primary care patients with cardiovascular risk factors. METHODS AND ANALYSIS We will set up a community-based longitudinal, prospective cohort study. The study will be conducted in two public outpatient clinics located in the southern district of Santiago, Chile. We expect to begin recruitment in the second quarter of 2022. Each patient will be followed up for at least 1 year after inclusion in the cohort. The eligible population will be adult patients registered in the Cardiovascular Health Programme. Exposure in this study is defined as any event where participants have contact with SARS-CoV-2 antigens from natural exposure or vaccination. The primary outcomes are seroconversion and strength and duration of the neutralising IgG antibodies to SARS-CoV-2. Secondary outcomes are any COVID-19-related event or intercurrent morbidities or death. Data will be collected by extracting serial blood samples and administering a questionnaire at the first face-to-face contact and monthly follow-up time points. The sample size estimated for this study is 1060. We will characterise the cohort, determine the seroprevalence rate of neutralising antibodies at baseline and determine the rates of antibody decline using a longitudinal mixed-effects model. ETHICS AND DISSEMINATION The Scientific Ethics Committee of the South Metropolitan Health Care Service approved the study protocol (Memorandum No 191/2021). We will present the results in two peer-reviewed publications and national and international professional and academic meetings. We will organise seminars with relevant stakeholders and hold town hall meetings with the local community. We will set up a COmmunity Cohort Study website at www.communitystudy.cl to disseminate the study purpose, research team and milestones.
Collapse
Affiliation(s)
- Vivienne C Bachelet
- Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Ignacio Silva-Ayarza
- Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
- Department of Infectious Diseases, Hospital Barros Luco Trudeau, Santiago de Chile, Chile
| | - Francisca J Lizana
- Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Patricio Gomolán
- Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | | | - María S Navarrete
- Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| |
Collapse
|
204
|
Peng L, Renauer PA, Ökten A, Fang Z, Park JJ, Zhou X, Lin Q, Dong MB, Filler R, Xiong Q, Clark P, Lin C, Wilen CB, Chen S. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. Cell Rep Med 2022; 3:100634. [PMID: 35561673 PMCID: PMC9040489 DOI: 10.1016/j.xcrm.2022.100634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/06/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
Lipid nanoparticle (LNP)-mRNA vaccines offer protection against COVID-19; however, multiple variant lineages caused widespread breakthrough infections. Here, we generate LNP-mRNAs specifically encoding wild-type (WT), B.1.351, and B.1.617 SARS-CoV-2 spikes, and systematically study their immune responses. All three LNP-mRNAs induced potent antibody and T cell responses in animal models; however, differences in neutralization activity have been observed between variants. All three vaccines offer potent protection against in vivo challenges of authentic viruses of WA-1, Beta, and Delta variants. Single-cell transcriptomics of WT- and variant-specific LNP-mRNA-vaccinated animals reveal a systematic landscape of immune cell populations and global gene expression. Variant-specific vaccination induces a systemic increase of reactive CD8 T cells and altered gene expression programs in B and T lymphocytes. BCR-seq and TCR-seq unveil repertoire diversity and clonal expansions in vaccinated animals. These data provide assessment of efficacy and direct systems immune profiling of variant-specific LNP-mRNA vaccination in vivo.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Arya Ökten
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Department of Immunobiology, Yale University, New Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA; Immunobiology Program, Yale University, New Haven, CT, USA
| | - Renata Filler
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Qiancheng Xiong
- Department of Cell Biology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA; Immunobiology Program, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
205
|
Pande K, Hollingsworth SA, Sam M, Gao Q, Singh S, Saha A, Vroom K, Ma XS, Brazell T, Gorman D, Chen SJ, Raoufi F, Bailly M, Grandy D, Sathiyamoorthy K, Zhang L, Thompson R, Cheng AC, Fayadat-Dilman L, Geierstanger BH, Kingsley LJ. Hexamerization of Anti-SARS CoV IgG1 Antibodies Improves Neutralization Capacity. Front Immunol 2022; 13:864775. [PMID: 35603164 PMCID: PMC9114490 DOI: 10.3389/fimmu.2022.864775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC50 in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface. To our knowledge, this is the first time this format has been explored for application in viral neutralization and the studies provide proof-of-concept for the use of hexamer-enhanced IgG1 molecules as potential anti-viral therapeutics.
Collapse
Affiliation(s)
- Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Tres Brazell
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Dan Gorman
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - David Grandy
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., West Point, PA, United States
| | - Rob Thompson
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | - Alan C. Cheng
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | | | | | - Laura J. Kingsley
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| |
Collapse
|
206
|
Lin JJ, Tien CF, Kuo YP, Lin EJ, Tsai WH, Chen MY, Tsai PJ, Su YW, Pathak N, Yang JM, Yu CY, Chuang ZS, Wu HC, Tsai WT, Dai SS, Liao HC, Chai KM, Su YS, Chuang TH, Liu SJ, Chen HW, Dou HY, Chen FJ, Chen CT, Liao CL, Yu GY. Furin and TMPRSS2 Resistant Spike Induces Robust Humoral and Cellular Immunity Against SARS-CoV-2 Lethal Infection. Front Immunol 2022; 13:872047. [PMID: 35585971 PMCID: PMC9108258 DOI: 10.3389/fimmu.2022.872047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.
Collapse
Affiliation(s)
- Jhe-Jhih Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Feng Tien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - En-Ju Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Hsiang Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Nikhil Pathak
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Syong Dai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Siang Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Guann-Yi Yu,
| |
Collapse
|
207
|
Mahoney O, Melo C, Lockhart A, Cornejal N, Alsaidi S, Wu Q, Simon J, Juliani R, Zydowsky TM, Priano C, Koroch A, Fernández Romero JA. Antiviral activity of aframomum melegueta against severe acute respiratory syndrome coronaviruses type 1 and 2. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 146:735-739. [PMID: 34955582 PMCID: PMC8683269 DOI: 10.1016/j.sajb.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Plant-based compounds with antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Aframomum melegueta through computational models. The seed extract have been traditionally used to treat different illnesses. In this study, ethanolic extracts were prepared for six commercial samples of A. melegueta seeds. Antiviral activity was tested using the XTT cytotoxicity assay and cell-based SARS-CoV-1 and 2 pseudoviral models. The presence of gingerols and other non-volatile components in the seed extracts was determined using an Agilent 1290 UPLC/DAD in tandem with an Agilent 6546 QTOF-MS. Our results showed selective antiviral activity with TI values as high as 13.1. Fifteen gingerols were identified by chromatographic analysis, with 6-gingerol being the dominant component in each seed extract. A combination of 6-gingerol with techtochrysin, previously identified in computational models as a potential active ingredient against SARS-CoV-2, demonstrated additive antiviral activity with CI values between 0.8715 and 0.9426. We confirmed the antiviral activity of A. melegueta predicted through computational models and identified a different compound, 6-gingerol, as a potential active ingredient.
Collapse
Key Words
- Antiviral
- CC50, half-maximal cytotoxic concentration
- CI, Combination Index
- COVID-19, Coronavirus disease 2019
- EC50, half-maximal effective concentration
- Gingerols
- METLIM, Metabolomics Database and Library
- PCDL, comprehensive database of metabolites that includes MS/MS spectra
- Phytotherapy
- PsV, pseudovirus
- QTOF/MS, quadrupole technologies with a time-of-flight mass analyser
- SARS-COV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SE, Seed Extract
- TI, Therapeutic index
- UPLC/DAD, ultra-performance liquid chromatography method with diode array detection
- XTT, 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide
- hACE-2, human angiotensin-converting enzyme 2
Collapse
Affiliation(s)
- Oneil Mahoney
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | | | | | | | - Sahar Alsaidi
- Lehman College, The City University of New York, NY USA
| | - Qingli Wu
- Rutgers University, New Brunswick, NJ USA
| | - Jim Simon
- Rutgers University, New Brunswick, NJ USA
| | | | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, New York, NY USA
| | - Christine Priano
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | - Adolfina Koroch
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | - José A Fernández Romero
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
- Center for Biomedical Research, Population Council, New York, NY USA
| |
Collapse
|
208
|
van Gils MJ, Lavell A, van der Straten K, Appelman B, Bontjer I, Poniman M, Burger JA, Oomen M, Bouhuijs JH, van Vught LA, Slim MA, Schinkel M, Wynberg E, van Willigen HDG, Grobben M, Tejjani K, van Rijswijk J, Snitselaar JL, Caniels TG, Amsterdam UMC COVID-19 S3/HCW study group, Vlaar APJ, Prins M, de Jong MD, de Bree GJ, Sikkens JJ, Bomers MK, Sanders RW. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Med 2022; 19:e1003991. [PMID: 35580156 PMCID: PMC9113667 DOI: 10.1371/journal.pmed.1003991] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.
Collapse
Affiliation(s)
- Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joey H. Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Amsterdam UMC COVID-19 S3/HCW study group
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J. Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
209
|
Shah M, Ung Moon S, Hyun Kim J, Thanh Thao T, Goo Woo H. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Comput Struct Biotechnol J 2022; 20:2042-2056. [PMID: 35495107 PMCID: PMC9040525 DOI: 10.1016/j.csbj.2022.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Approved neutralizing antibodies that target the prototype Spike are losing their potency against the emerging variants of concern (VOCs) of SARS-CoV-2, particularly Omicron. Although SARS-CoV-2 is continuously adapting the host environment, emerging variants recognize the same ACE2 receptor for cell entry. Protein and peptide decoys derived from ACE2 or Spike proteins may hold the pan-variant inhibitory potential. Here, we deployed interactive structure- and pharmacophore-based approaches to design short and stable peptides -Coronavirus Spike Neutralizing Peptides (CSNPs)- capable of neutralizing all SARS-CoV-2 VOCs. After in silico structural stability investigation and free energies perturbation of the isolated and target-bound peptides, nine candidate peptides were evaluated for the biophysical interaction through SPR assay. CSNP1, CSNP2, and Pep1 dose-dependently bind the S1 domain of the prototype Spike, whereas CSNP4 binds both S1 and ACE2. After safety and immunocytochemistry evaluation, peptides were probed for their pan-variant inhibitory effects. CSNP1, CSNP2, and CSNP4 inhibited all VOCs dose-dependently, whereas Pep1 had a moderate effect. CSNP2 and CSNP4 could neutralize the wild-type pseudovirus up to 80 % when treated at 0.5 µM. Furthermore, CSNP4 synergize the neutralization effect of monoclonal antibody and CSNP1 in Delta variant pseudovirus assay as they target different regions on the RBD. Thus, we suggest that CSNPs are SARS-CoV-2 pan-variant inhibitory candidates for COVID-19 therapy, which may pave the way for combating the emerging immune-escaping variants. We also propose that CSNP1/2-CSNP4 peptide cocktail or CSNP1/4 mAbs cocktail with no overlapping epitopes could be effective therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Ung Moon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Trinh Thanh Thao
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
210
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
211
|
Abstract
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. The “priming” of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2′ as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2′ cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.
Collapse
|
212
|
Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nat Commun 2022; 13:1638. [PMID: 35347138 PMCID: PMC8960874 DOI: 10.1038/s41467-022-29288-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Madeleine C Mankowski
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Ping Ren
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Rita E Chen
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Min Zhao
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Tongqing Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Therese Tripler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Daryl Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Richard Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Michael S Diamond
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
- Department of Immunobiology, Yale University, New Haven, CT, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
213
|
Hetrick B, Chilin LD, He S, Dabbagh D, Alem F, Narayanan A, Luchini A, Li T, Liu X, Copeland J, Pak A, Cunningham T, Liotta L, Petricoin EF, Andalibi A, Wu Y. Development of a hybrid alphavirus-SARS-CoV-2 pseudovirion for rapid quantification of neutralization antibodies and antiviral drugs. CELL REPORTS METHODS 2022; 2:100181. [PMID: 35229082 PMCID: PMC8866097 DOI: 10.1016/j.crmeth.2022.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/24/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-pseudotyped viruses are commonly used for quantifying antiviral drugs and neutralizing antibodies. Here, we describe the development of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirion, which is a non-replicating SARS-CoV-2 virus-like particle composed of viral structural proteins (S, M, N, and E) and an RNA genome derived from a fast-expressing alphaviral vector. We validated Ha-CoV-2 for rapid quantification of neutralization antibodies, antiviral drugs, and viral variants. In addition, as a proof of concept, we used Ha-CoV-2 to quantify the neutralizing antibodies from an infected and vaccinated individual and found that the one-dose vaccination with Moderna mRNA-1273 greatly increased the anti-serum titer by approximately 6-fold. The post-vaccination serum can neutralize all nine variants tested. These results demonstrate that Ha-CoV-2 can be used as a robust platform for the rapid quantification of neutralizing antibodies against SARS-CoV-2 and its emerging variants.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Linda D Chilin
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Sijia He
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Deemah Dabbagh
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Farhang Alem
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Tuanjie Li
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joshua Copeland
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Angela Pak
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Tshaka Cunningham
- TruGenomix, Inc., 155 Gibbs Street, Room 559, Rockville, MD 20850, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
214
|
Mahalingam G, Rachamalla HK, Arjunan P, Periyasami Y, M S, Thangavel S, Mohankumar KM, Moorthy M, Velayudhan SR, Srivastava A, Marepally S. Optimization of SARS-CoV-2 Pseudovirion Production in Lentivirus Backbone With a Novel Liposomal System. Front Pharmacol 2022; 13:840727. [PMID: 35401169 PMCID: PMC8990231 DOI: 10.3389/fphar.2022.840727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
Due to the fast mutating nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of novel therapeutics, vaccines, and evaluating the efficacies of existing one’s against the mutated strains is critical for containing the virus. Pseudotyped SARS-CoV-2 viruses are proven to be instrumental in evaluating the efficiencies of therapeutics, owing to their ease in application and safety when compared to handling the live virus. However, a comprehensive protocol that includes selecting transfection reagents, validating different packaging systems for high-throughput screening of neutralizing antibodies, is still a requisite. To this end, we designed and synthesized amide linker-based cationic lipids with varying hydrophilic head groups from dimethyl (Lipo-DME) to methyl, ethylhydroxyl (Lipo-MeOH), and diethylhydroxyl (Lipo-DOH) keeping the hydrophobic tail, stearic acid, as constant. Among the liposomal formulations of these lipids, Lipo-DOH was found to be superior in delivering plasmids and demonstrated comparable transfection efficiencies with commercial standard Lipofectamine 3000. We further used Lipo-DOH for lentivirus and SARS-CoV-2 pseudovirion preparation. For comparing different lentivirus packaging systems, we optimized conditions using Addgene and BEI systems and found that the BEI lenti plasmid system was found to be efficient in making lentiviruses using Lipo-DOH. Using the optimized transfection reagent and the lentivirus system, we developed a robust protocol for the generation of SARS-CoV-2 pseudovirions and characterized their infectivity in human ACE2 expressing HEK-293T cells and neutralizing properties in IgG against spike protein of SARS-CoV-2 positive human sera from individuals recovered from COVID-19.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
- *Correspondence: Srujan Marepally,
| |
Collapse
|
215
|
Construction of SARS-CoV-2 spike-pseudotyped retroviral vector inducing syncytia formation. Virus Genes 2022; 58:172-179. [PMID: 35322356 PMCID: PMC8942147 DOI: 10.1007/s11262-022-01890-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is handled in biosafety level 3 (BSL-3) facilities, whereas the antiviral screening of pseudotype virus is conducted in BSL-2 facilities. In this study, we developed a SARS-CoV-2 spike-pseudotyped virus based on a semi-replication-competent retroviral (s-RCR) vector system. The s-RCR vector system was divided into two packageable vectors, each with gag-pol and env genes. For env vector construction, SARS-CoV-2 SΔ19 env was inserted into the pCLXSN-IRES-EGFP retroviral vector to generate pCLXSN-SΔ19 env-EGFP. When pCLXSN-gag-pol and pCLXSN-SΔ19env-EGFP were co-transfected into HEK293 T cells to generate an s-RCR virus, titers of the s-RCR virus were consistently low in this transient transfection system (1 × 104 TU/mL). However, a three-fold higher amounts of MLV-based SARS-CoV-2 pseudotyped viruses (3 × 104 TU/mL) were released from stable producer cells, and the spike proteins induced syncytia formation in HEK293-hACE2 cells. Furthermore, s-RCR stocks collected from stable producer cells induced more substantial syncytia formation in the Vero E6-TMPRSS2 cell line than in the Vero E6 cell line. Therefore, a combination of the s-RCR vector and the two cell lines (HEK293-hACE2 or Vero E6-TMPRSS2) that induce syncytia formation can be useful for the rapid screening of novel fusion inhibitor drugs.
Collapse
|
216
|
Yan LN, Liu PP, Li XG, Zhou SJ, Li H, Wang ZY, Shen F, Lu BC, Long Y, Xiao X, Wang ZD, Li D, Han HJ, Yu H, Zhou SH, Lv WL, Yu XJ. Neutralizing Antibodies and Cellular Immune Responses Against SARS-CoV-2 Sustained One and a Half Years After Natural Infection. Front Microbiol 2022; 12:803031. [PMID: 35310397 PMCID: PMC8928406 DOI: 10.3389/fmicb.2021.803031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background COVID-19 has caused more than 2.6 billion infections and several million deaths since its outbreak 2 years ago. We know very little about the long-term cellular immune responses and the kinetics of neutralizing antibodies (NAbs) to SARS-CoV-2 because it has emerged only recently in the human population. Methods We collected blood samples from individuals who were from the first wave of the COVID-19 epidemic in Wuhan between December 30, 2019, and February 24, 2020. We analyzed NAbs to SARS-CoV-2 using pseudoviruses and IgG antibodies to SARS-CoV-2 spike (S) and nucleocapsid (N) protein using enzyme-linked immunosorbent assay in patients’ sera and determined SARS-CoV-2-specific T-cell responses of patients with ELISpot assays. Results We found that 91.9% (57/62) and 88.9% (40/45) of COVID-19 patients had NAbs against SARS-CoV-2 in a year (10–11 months) and one and a half years (17–18 months), respectively, after the onset of illness, indicating that NAbs against SARS-CoV-2 waned slowly and possibly persisted over a long period time. Over 80% of patients had IgG antibodies to SARS-CoV-2 S and N protein one and a half years after illness onset. Most patients also had robust memory T-cell responses against SARS-CoV-2 one and a half years after the illness. Among the patients, 95.6% (43/45) had an IFN-γ-secreting T-cell response and 93.8% (15/16) had an IL-2-secreting T-cell response. The T-cell responses to SARS-CoV-2 were positively correlated with antibodies (including neutralizing antibodies and IgG antibodies to S and N protein) in COVID-19 patients. Eighty percent (4/5) of neutralizing antibody-negative patients also had SARS-CoV-2-specific T-cell response. After long-term infection, protective immunity was independent of disease severity, sex, and age. Conclusions We concluded that SARS-CoV-2 infection elicited a robust and persistent neutralizing antibody and memory T-cell response in COVID-19 patients, indicating that these sustained immune responses, among most SARS-CoV-2-infected people, may play a crucial role in protection against reinfection.
Collapse
Affiliation(s)
- Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xu-Gui Li
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Shi-Jing Zhou
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Hao Li
- The First School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Yin Wang
- Department of Clinical Laboratory Medicine, Hubei University of Chinese Medicine Huangjiahu Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Bi-Chao Lu
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Long
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao Xiao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Zhen-Dong Wang
- School of Public Health, Xi'an Medical University, Xi'an, China
| | - Dan Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hui-Ju Han
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Shu-Han Zhou
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen-Liang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
217
|
Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons. PLoS One 2022; 17:e0261045. [PMID: 35263335 PMCID: PMC8906623 DOI: 10.1371/journal.pone.0261045] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
As novel SARS-CoV-2 variants with different patterns of spike protein mutations have emerged, the susceptibility of these variants to neutralization by antibodies has been rapidly assessed. However, neutralization data are generated using different approaches and are scattered across different publications making it difficult for these data to be located and synthesized. The Stanford Coronavirus Resistance Database (CoV-RDB; https://covdb.stanford.edu) is designed to house comprehensively curated published data on the neutralizing susceptibility of SARS-CoV-2 variants and spike mutations to monoclonal antibodies (mAbs), convalescent plasma (CP), and vaccinee plasma (VP). As of December 31, 2021, CoV-RDB encompassed 257 publications including 91 (35%) containing 9,070 neutralizing mAb susceptibility results, 131 (51%) containing 16,773 neutralizing CP susceptibility results, and 178 (69%) containing 33,540 neutralizing VP results. The database also records which spike mutations are selected during in vitro passage of SARS-CoV-2 in the presence of mAbs and which emerge in persons receiving mAbs as treatment. The CoV-RDB interface interactively displays neutralizing susceptibility data at different levels of granularity by filtering and/or aggregating query results according to one or more experimental conditions. The CoV-RDB website provides a companion sequence analysis program that outputs information about mutations present in a submitted sequence and that also assists users in determining the appropriate mutation-detection thresholds for identifying non-consensus amino acids. The most recent data underlying the CoV-RDB can be downloaded in its entirety from a GitHub repository in a documented machine-readable format.
Collapse
|
218
|
Lupitha SS, Darvin P, Chandrasekharan A, Varadarajan SN, Divakaran SJ, Easwaran S, Nelson-Sathi S, Umasankar PK, Jones S, Joseph I, Pillai MR, Santhoshkumar TR. A rapid bead-based assay for screening of SARS-CoV-2 neutralising antibodies. Antib Ther 2022; 5:100-110. [PMID: 35437514 PMCID: PMC8992333 DOI: 10.1093/abt/tbac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Quantitative determination of neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) is paramount in immunodiagnostics, vaccine efficacy testing, and immune response profiling among the vaccinated population. Cost-effective, rapid, easy-to-perform assays are essential to support the vaccine development process and immunosurveillance studies. We describe a bead-based screening assay for S1-neutralization using recombinant fluorescent proteins of hACE2 and SARS-CoV2-S1, immobilized on solid beads employing nanobodies/metal-affinity tags. Nanobody-mediated capture of SARS-CoV-2-Spike (S1) on agarose beads served as the trap for soluble recombinant ACE2-GFPSpark, inhibited by neutralizing antibody. The first approach demonstrates single-color fluorescent imaging of ACE2-GFPSpark binding to His-tagged S1-Receptor Binding Domain (RBD-His) immobilized beads. The second approach is dual-color imaging of soluble ACE2-GFPSpark to S1-Orange Fluorescent Protein (S1-OFPSpark) beads. Both methods showed a good correlation with the gold standard pseudovirion assay and can be adapted to any fluorescent platforms for screening.
Collapse
Affiliation(s)
- Santhik Subhasingh Lupitha
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Pramod Darvin
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Aneesh Chandrasekharan
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Soumya Jaya Divakaran
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreekumar Easwaran
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Shijulal Nelson-Sathi
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Perunthottathu K Umasankar
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sara Jones
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Iype Joseph
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - M Radhakrishna Pillai
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T R Santhoshkumar
- Corona Research and Intervention Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
219
|
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Whittaker GR, tenOever BR, Schwartz RE, Chandar V, Cantley L. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 2022; 11:77444. [PMID: 35294338 PMCID: PMC8942469 DOI: 10.7554/elife.77444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
| | - Marisa Mercadante
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Benjamin Nilsson-Payant
- Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
| | - Jared L Johnson
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Benjamin R tenOever
- Department of Microbiology, New York University Langone Medical Center, New York, United States
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Lewis Cantley
- Department of Medicine, Weill Cornell Medical College, New York, United States
| |
Collapse
|
220
|
van der Velden YU, Grobben M, Caniels TG, Burger JA, Poniman M, Oomen M, Rijnstra ESV, Tejjani K, Guerra D, Kempers R, Stegmann T, van Gils MJ, Sanders RW. A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Sci Rep 2022; 12:3884. [PMID: 35273217 PMCID: PMC8913678 DOI: 10.1038/s41598-022-07590-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yme U van der Velden
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Denise Guerra
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald Kempers
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
221
|
Qi H, Sun Z, Yao Y, Chen L, Su X. Immunogenicity of the Xcl1-SARS-CoV-2 Spike Fusion DNA Vaccine for COVID-19. Vaccines (Basel) 2022; 10:407. [PMID: 35335039 PMCID: PMC8951015 DOI: 10.3390/vaccines10030407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 spike (S) variants that may evade antibody-mediated immunity are emerging. Evidence shows that vaccines with a stronger immune response are still effective against mutant strains. Here, we report a targeted type 1 conventional dendritic (cDC1) cell strategy for improved COVID-19 vaccine design. cDC1 cells specifically express X-C motif chemokine receptor 1 (Xcr1), the only receptor for chemokine Xcl1. We fused the S gene sequence with the Xcl1 gene to deliver the expressed S protein to cDC1 cells. Immunization with a plasmid encoding the S protein fused to Xcl1 showed stronger induction of antibody and antigen-specific T cell immune responses than immunization with the S plasmid alone in mice. The fusion gene-induced antibody also displayed more powerful SARS-CoV-2 wild-type virus and pseudovirus neutralizing activity. Xcl1 also increased long-lived antibody-secreting plasma cells in bone marrow. These preliminary results indicate that Xcl1 serves as a molecular adjuvant for the SARS-CoV-2 vaccine and that our Xcl1-S fusion DNA vaccine is a potential COVID-19 vaccine candidate for use in further translational studies.
Collapse
Affiliation(s)
- Hailong Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Yanling Yao
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
| |
Collapse
|
222
|
Jakwerth CA, Feuerherd M, Guerth FM, Oelsner M, Schellhammer L, Giglberger J, Pechtold L, Jerin C, Kugler L, Mogler C, Haller B, Erb A, Wollenberg B, Spinner CD, Buch T, Protzer U, Schmidt-Weber CB, Zissler UM, Chaker AM. Early reduction of SARS-CoV-2-replication in bronchial epithelium by kinin B 2 receptor antagonism. J Mol Med (Berl) 2022; 100:613-627. [PMID: 35247068 PMCID: PMC8897552 DOI: 10.1007/s00109-022-02182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Abstract SARS-CoV-2 has evolved to enter the host via the ACE2 receptor which is part of the kinin-kallikrein pathway. This complex pathway is only poorly understood in context of immune regulation but critical to control infection. This study examines SARS-CoV-2-infection and epithelial mechanisms of the kinin-kallikrein-system at the kinin B2 receptor level in SARS-CoV-2-infection that is of direct translational relevance. From acute SARS-CoV-2-positive study participants and -negative controls, transcriptomes of nasal curettages were analyzed. Primary airway epithelial cells (NHBEs) were infected with SARS-CoV-2 and treated with the approved B2R-antagonist icatibant. SARS-CoV-2 RNA RT-qPCR, cytotoxicity assays, plaque assays, and transcriptome analyses were performed. The treatment effect was further studied in a murine airway inflammation model in vivo. Here, we report a broad and strong upregulation of kallikreins and the kinin B2 receptor (B2R) in the nasal mucosa of acutely symptomatic SARS-CoV-2-positive study participants. A B2R-antagonist impeded SARS-CoV-2 replication and spread in NHBEs, as determined in plaque assays on Vero-E6 cells. B2R-antagonism reduced the expression of SARS-CoV-2 entry receptor ACE2, G protein–coupled receptor signaling, and ion transport in vitro and in a murine airway inflammation in vivo model. In summary, this study provides evidence that treatment with B2R-antagonists protects airway epithelial cells from SARS-CoV-2 by inhibiting its replication and spread, through the reduction of ACE2 levels and the interference with several cellular signaling processes. Future clinical studies need to shed light on the airway protection potential of approved B2R-antagonists, like icatibant, in the treatment of early-stage COVID-19. Graphical Abstract ![]()
Key messages Induction of kinin B2 receptor in the nose of SARS-CoV-2-positive patients. Treatment with B2R-antagonist protects airway epithelial cells from SARS-CoV-2. B2R-antagonist reduces ACE2 levels in vivo and ex vivo. Protection by B2R-antagonist is mediated by inhibiting viral replication and spread.
Supplementary information The online version contains supplementary material available at 10.1007/s00109-022-02182-7.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, German Center of Infectiology Research (DZIF), Munich partner site, Munich, Germany
| | - Ferdinand M Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany
| | - Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Johanna Giglberger
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| | - Lisa Pechtold
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| | - Claudia Jerin
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| | - Luisa Kugler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, Medical School, Technical University of Munich, Munich, Germany
| | - Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, University Hospital Rechts Der Isar, Medical School, Technical University of Munich, Munich, Germany
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, German Center of Infectiology Research (DZIF), Munich partner site, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany.
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German, Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, and Member of the Helmholtz I&I Initiative, Biedersteiner Str. 29, 80202, Munich, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, Munich, Germany
| |
Collapse
|
223
|
Evaluation of a commercial ELISA as alternative to plaque reduction neutralization test to detect neutralizing antibodies against SARS-CoV-2. Sci Rep 2022; 12:3549. [PMID: 35241780 PMCID: PMC8894493 DOI: 10.1038/s41598-022-07597-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-throughput detection of neutralizing antibodies against SARS-CoV-2 presents a valuable tool for vaccine trials or investigations of population immunity. We evaluate the performance of the first commercial surrogate virus neutralization test (sVNT, GenScript Biotech) against SARS-CoV-2 plaque reduction neutralization test (PRNT) in convalescent and vaccinated individuals. We compare it to five other ELISAs, two of which are designed to detect neutralizing antibodies. In 491 pre-vaccination serum samples, sVNT missed 23.6% of PRNT-positive samples when using the manufacturer-recommended cutoff of 30% binding inhibition. Introducing an equivocal area between 15 and 35% maximized sensitivity and specificity against PRNT to 72.8–93.1% and 73.5–97.6%, respectively. The overall diagnostic performance of the other ELISAs for neutralizing antibodies was below that of sVNT. Vaccinated individuals exhibited higher antibody titers by PRNT (median 119.8, IQR 56.7–160) and binding inhibition by sVNT (median 95.7, IQR 88.1–96.8) than convalescent patients (median 49.1, IQR 20–62; median 52.9, IQR 31.2–76.2). GenScript sVNT is suitable to screen for SARS-CoV-2-neutralizing antibodies; however, to obtain accurate results, confirmatory testing by PRNT in a equivocal area is required. This equivocal area may require adaptation for use in vaccinated individuals, due to higher antibody titers.
Collapse
|
224
|
Noori M, Nejadghaderi SA, Arshi S, Carson‐Chahhoud K, Ansarin K, Kolahi A, Safiri S. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev Med Virol 2022; 32:e2277. [PMID: 34286893 PMCID: PMC8420542 DOI: 10.1002/rmv.2277] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022]
Abstract
BNT162b2 and mRNA-1273 are two types of mRNA-based vaccine platforms that have received emergency use authorization. The emergence of novel severe acute respiratory syndrome (SARS-CoV-2) variants has raised concerns of reduced sensitivity to neutralization by their elicited antibodies. We aimed to systematically review the most recent in vitro studies evaluating the effectiveness of BNT162b2 and mRNA-1273 induced neutralizing antibodies against SARS-CoV-2 variants of concern. We searched PubMed, Scopus, and Web of Science in addition to bioRxiv and medRxiv with terms including 'SARS-CoV-2', 'BNT162b2', 'mRNA-1273', and 'neutralizing antibody' up to June 29, 2021. A modified version of the Consolidated Standards of Reporting Trials (CONSORT) checklist was used for assessing included study quality. A total 36 in vitro studies meeting the eligibility criteria were included in this systematic review. B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) are four SARS-CoV-2 variants that have recently been identified as variants of concern. Included studies implemented different methods regarding pseudovirus or live virus neutralization assays for measuring neutralization titres against utilized viruses. After two dose vaccination by BNT162b2 or mRNA-1273, the B.1.351 variant had the least sensitivity to neutralizing antibodies, while B.1.1.7 variant had the most sensitivity; that is, it was better neutralized relative to the comparator strain. P.1 and B.1.617.2 variants had an intermediate level of impaired naturalization activity of antibodies elicited by prior vaccination. Our review suggests that immune sera derived from vaccinated individuals might show reduced protection of individuals immunized with mRNA vaccines against more recent SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research CommitteeSchool of MedicineIran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Shahnam Arshi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Kristin Carson‐Chahhoud
- Australian Centre for Precision HealthAllied Health and Human PerformanceUniversity of South AustraliaSouth AustraliaAustralia
- School of MedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Khalil Ansarin
- Rahat Breath and Sleep Research CenterTabriz University of Medical SciencesTabrizIran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ali‐Asghar Kolahi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Safiri
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Community MedicineFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
225
|
Abstract
Emerging zoonotic viral pathogens threaten global health, and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, a component of the retromer complex, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic- and pandemic-threat coronaviruses, as well as ebolavirus. Notably, we observed a heightened requirement for VPS29 by the recently described Omicron variant of SARS-CoV-2 compared to the ancestral variant. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. Deficiency in VPS29 or other retromer components caused changes in endosome morphology and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence cellular susceptibility to viral infection and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases.
Collapse
|
226
|
Ashur I, Alter J, Werbner M, Ogungbile A, Dessau M, Gal-Tanamy M, Vernick S. Rapid electrochemical immunodetection of SARS-CoV-2 using a pseudo-typed vesicular stomatitis virus model. Talanta 2022; 239:123147. [PMID: 34920254 PMCID: PMC8667521 DOI: 10.1016/j.talanta.2021.123147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 01/06/2023]
Abstract
The COVID-19 pandemic has highlighted the need for reliable and accurate diagnostic tools that provide quantitative results at the point of care. Real-time RT-PCR requires large laboratories, a skilled workforce, complex and costly equipment, and labor-intensive sample processing. Despite tremendous efforts, scaling up RT-PCR tests is seemingly unattainable. To date, hundreds of millions of COVID-19 tests have been performed globally, but the demand for timely, accurate testing continues to outstrip supply. Antigen-based rapid diagnostic testing is emerging as an alternative to RT-PCR. However, the performance of these tests, namely their sensitivity, is still inadequate. To overcome the limitations of currently employed diagnostic tests, new tools that are both sensitive and scalable are urgently needed. We have developed a miniaturized electrochemical biosensor based on the integration of specific monoclonal antibodies with a biochip and a measurement platform, and applied it in the detection of Spike S1 protein, the binding protein of SARS-CoV-2. Using electrochemical impedance spectroscopy, quantitative detection of sub-nanomolar concentrations of Spike S1 was demonstrated, exhibiting a broad detection range. To demonstrate the applicability of the biosensor, we have further developed a SARS-CoV-2 pseudovirus based on Spike protein-pseudo-typed VSV platform. Specific detection of different concentrations of pseudovirus particles was feasible in <30 min. This new tool may largely contribute to the fight against COVID-19 by enabling intensive testing to be performed and alleviating most of the hurdles that plague current diagnostics.
Collapse
Affiliation(s)
- Idan Ashur
- Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, ARO Volcani Center, 68 Hamaccabim Rd, Rishon lezion, 5025001, Israel.
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Abraham Ogungbile
- Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, ARO Volcani Center, 68 Hamaccabim Rd, Rishon lezion, 5025001, Israel; Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 761001, Israel.
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Sefi Vernick
- Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, ARO Volcani Center, 68 Hamaccabim Rd, Rishon lezion, 5025001, Israel.
| |
Collapse
|
227
|
Kumar V J, Banu S, Sasikala M, Parsa KVL, Sowpati DT, Yadav R, Tallapaka KB, Siva AB, Vishnubhotla R, Rao GV, Reddy DN. Effectiveness of REGEN-COV antibody cocktail against the B.1.617.2 (delta) variant of SARS-CoV-2: A cohort study. J Intern Med 2022; 291:380-383. [PMID: 34719811 PMCID: PMC8662228 DOI: 10.1111/joim.13408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Sofia Banu
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India.,CSIR-Human Resource Development Centre (HRDC) Campus, Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | | | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr Reddy's Institute of Life Sciences, Hyderabad, Telangana, India
| | - Divya Tej Sowpati
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Rupali Yadav
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr Reddy's Institute of Life Sciences, Hyderabad, Telangana, India
| | | | | | | | - G V Rao
- AIG Hospitals, Internal Medicine, Hyderabad, Telangana, India
| | | |
Collapse
|
228
|
Shrestha Y, Venkataraman R. The prevalence of inverse health consequences of COVID-19 vaccines: A post-vaccination study. VACUNAS 2022; 23:S67-S76. [PMID: 35345826 PMCID: PMC8942717 DOI: 10.1016/j.vacun.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 10/31/2022]
Abstract
Background Objective Methodology Results Conclusions
Collapse
|
229
|
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.14.480449. [PMID: 35194606 PMCID: PMC8863141 DOI: 10.1101/2022.02.14.480449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high transmissibility and recently swept the globe. Due to the extensive number of mutations, this variant has high level of immune evasion, which drastically reduced the efficacy of existing antibodies and vaccines. Thus, it is important to test an Omicron-specific vaccine, evaluate its immune response against Omicron and other variants, and compare its immunogenicity as boosters with existing vaccine designed against the reference wildtype virus (WT). Here, we generated an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and tested its activity in animals, both alone and as a heterologous booster to existing WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicited strong and specific antibody response in vaccination-naive mice. Mice that received two-dose WT LNP-mRNA, the one mimicking the commonly used Pfizer/Moderna mRNA vaccine, showed a >40-fold reduction in neutralization potency against Omicron variant than that against WT two weeks post second dose, which further reduced to background level >3 months post second dose. As a booster shot for two-dose WT mRNA vaccinated mice, a single dose of either a homologous booster with WT LNP-mRNA or a heterologous booster with Omicron LNP-mRNA restored the waning antibody response against Omicron, with over 40-fold increase at two weeks post injection as compared to right before booster. Interestingly, the heterologous Omicron LNP-mRNA booster elicited neutralizing titers 10-20 fold higher than the homologous WT booster against the Omicron variant, with comparable titers against the Delta variant. All three types of vaccination, including Omicron mRNA alone, WT mRNA homologous booster, and Omicron heterologous booster, elicited broad binding antibody responses against SARS-CoV-2 WA-1, Beta, and Delta variants, as well as other Betacoronavirus species such as SARS-CoV, but not Middle East respiratory syndrome coronavirus (MERS-CoV). These data provided direct proof-of-concept assessments of an Omicron-specific mRNA vaccination in vivo, both alone and as a heterologous booster to the existing widely-used WT mRNA vaccine form.
Collapse
Affiliation(s)
- Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Renata Filler
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Andrew McNamara
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Bridget Menasche
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Angie Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Ping Ren
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qiancheng Xiong
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Madison Strine
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
230
|
Kishor C, Spillings BL, Luhur J, Lutomski CA, Lin CH, McKinstry WJ, Day CJ, Jennings MP, Jarrold MF, Mak J. Calcium Contributes to Polarized Targeting of HIV Assembly Machinery by Regulating Complex Stability. JACS AU 2022; 2:522-530. [PMID: 35253001 PMCID: PMC8889552 DOI: 10.1021/jacsau.1c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Polarized or precision targeting of protein complexes to their destinations is fundamental to cellular homeostasis, but the mechanism underpinning directional protein delivery is poorly understood. Here, we use the uropod targeting HIV synapse as a model system to show that the viral assembly machinery Gag is copolarized with the intracellular calcium (Ca2+) gradient and binds specifically with Ca2+. Conserved glutamic/aspartic acids flanking endosomal sorting complexes required for transport binding motifs are major Ca2+ binding sites. Deletion or mutation of these Ca2+ binding residues resulted in altered protein trafficking phenotypes, including (i) changes in the Ca2+-Gag distribution relationship during uropod targeting and/or (ii) defects in homo/hetero-oligomerization with Gag. Mutation of Ca2+ binding amino acids is associated with enhanced ubiquitination and a decline in virion release via uropod protein complex delivery. Our data that show Ca2+-protein binding, via the intracellular Ca2+ gradient, represents a mechanism that regulates intracellular protein trafficking.
Collapse
Affiliation(s)
- Chandan Kishor
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Johana Luhur
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Corinne A. Lutomski
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chi-Hung Lin
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Martin F. Jarrold
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Johnson Mak
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
231
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
232
|
Muecksch F, Wang Z, Cho A, Gaebler C, Tanfous TB, DaSilva J, Bednarski E, Ramos V, Zong S, Johnson B, Raspe R, Schaefer-Babajew D, Shimeliovich I, Daga M, Yao KH, Schmidt F, Millard KG, Turroja M, Jankovic M, Oliveria TY, Gazumyan A, Caskey M, Hatziioannou T, Bieniasz PD, Nussenzweig MC. Increased Potency and Breadth of SARS-CoV-2 Neutralizing Antibodies After a Third mRNA Vaccine Dose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35194607 DOI: 10.1101/2022.02.14.480394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals 1-3 . The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain 4-7 . The 3 rd mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection 7 . Despite the reduced protection from infection, individuals that received 3 doses of an mRNA vaccine were highly protected from the more serious consequences of infection 8 . Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving 3 mRNA vaccine doses 9,10 . We find that the 3 rd dose is accompanied by an increase in, and evolution of, anti-receptor binding domain specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the 2 nd vaccine dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared to antibodies obtained after the 2 nd vaccine dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells that differed from the persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analyzed neutralizing antibodies in the memory compartment obtained from individuals receiving a 3 rd mRNA vaccine dose neutralized Omicron. Thus, individuals receiving 3 doses of an mRNA vaccine encoding Wuhan-Hu-1, have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help explain why a 3 rd dose of an mRNA vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.
Collapse
|
233
|
Kitchin D, Richardson SI, van der Mescht MA, Motlou T, Mzindle N, Moyo-Gwete T, Makhado Z, Ayres F, Manamela NP, Spencer H, Lambson B, Oosthuysen B, Kaldine H, du Pisanie M, Mennen M, Skelem S, Williams N, Ntusi NA, Burgers WA, Gray GG, Bekker LG, Boswell MT, Rossouw TM, Ueckermann V, Moore PL. Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern. Cell Rep Med 2022; 3:100535. [PMID: 35474744 PMCID: PMC8828412 DOI: 10.1016/j.xcrm.2022.100535] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.
Collapse
Affiliation(s)
- Dale Kitchin
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I. Richardson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Holly Spencer
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwen Lambson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brent Oosthuysen
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Haajira Kaldine
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marizane du Pisanie
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Mathilda Mennen
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Noleen Williams
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Glenda G. Gray
- The South African Medical Research Council, Tygerberg, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Centre for the AIDS Programme of Research in South Africa, Durban, South Africa,Corresponding author
| |
Collapse
|
234
|
Bednarski E, Del Rio Estrada PM, DaSilva J, Boukadida C, Zhang F, Luna-Villalobos YA, Rodríguez-Rangel X, Pitén-Isidro E, Luna-García E, Rivera DD, López-Sánchez DM, Tapia-Trejo D, Soto-Nava M, Astorga-Castañeda M, Martínez-Moreno JO, Urbina-Granados GS, Jiménez-Jacinto JA, Serna Alvarado FJ, Enriquez-López YE, López-Arellano O, Reyes-Teran G, Bieniasz PD, Avila-Rios S, Hatziioannou T. Antibody and memory B-cell immunity in a heterogeneously SARS-CoV-2 infected and vaccinated population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35169812 PMCID: PMC8845433 DOI: 10.1101/2022.02.07.22270626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global population immunity to SARS-CoV-2 is accumulating through heterogenous combinations of infection and vaccination. Vaccine distribution in low- and middle-income countries has been variable and reliant on diverse vaccine platforms. We studied B-cell immunity in Mexico, a middle-income country where five different vaccines have been deployed to populations with high SARS-CoV-2 incidence. Levels of antibodies that bound a stabilized prefusion spike trimer, neutralizing antibody titers and memory B-cell expansion correlated with each other across vaccine platforms. Nevertheless, the vaccines elicited variable levels of B-cell immunity, and the majority of recipients had undetectable neutralizing activity against the recently emergent omicron variant. SARS-CoV-2 infection, experienced prior to or after vaccination potentiated B-cell immune responses and enabled the generation of neutralizing activity against omicron and SARS-CoV for all vaccines in nearly all individuals. These findings suggest that broad population immunity to SARS-CoV-2 will eventually be achieved, but by heterogenous paths
Collapse
Affiliation(s)
- Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Celia Boukadida
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Yara A Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Ximena Rodríguez-Rangel
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Elvira Pitén-Isidro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Edgar Luna-García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Dafne Díaz Rivera
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Dulce M López-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Daniela Tapia-Trejo
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Maribel Soto-Nava
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | | - José O Martínez-Moreno
- Jurisdicción Sanitaria Coyoacán, Servicios de Salud Pública de la Ciudad de México, Mexico
| | | | - José A Jiménez-Jacinto
- Jurisdicción Sanitaria Magdalena Contreras, Servicios de Salud Pública de la Ciudad de México, Mexico
| | | | | | | | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | |
Collapse
|
235
|
Cao J, Liu Y, Zhou M, Dong S, Hou Y, Jia X, Lan X, Zhang Y, Guo J, Xiao G, Wang W. Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses 2022; 14:v14020353. [PMID: 35215943 PMCID: PMC8877376 DOI: 10.3390/v14020353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023] Open
Abstract
An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing the SARS-CoV-2 S glycoprotein to screen a botanical drug library containing 1037 botanical drugs to identify agents that prevent SARS-CoV-2 entry into the cell. Our study identified four hits, including angeloylgomisin O, schisandrin B, procyanidin, and oleanonic acid, as effective SARS-CoV-2 S pv entry inhibitors in the micromolar range. A mechanistic study revealed that these four agents inhibited SARS-CoV-2 S pv entry by blocking spike (S) protein-mediated membrane fusion. Furthermore, angeloylgomisin O and schisandrin B inhibited authentic SARS-CoV-2 with a high selective index (SI; 50% cytotoxic concentration/50% inhibition concentration). Our drug combination studies performed in cellular antiviral assays revealed that angeloylgomisin O has synergistic effects in combination with remdesivir, a drug widely used to treat SARS-CoV-2-mediated infections. We also showed that two hits could inhibit the newly emerged alpha (B.1.1.7) and beta (B.1.351) variants. Our findings collectively indicate that angeloylgomisin O and schisandrin B could inhibit SARS-CoV-2 efficiently, thereby making them potential therapeutic agents to treat the coronavirus disease of 2019.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
| | - Minmin Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohao Lan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiao Guo
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-87198232
| |
Collapse
|
236
|
Liang Z, Peng T, Jiao X, Zhao Y, Xie J, Jiang Y, Meng B, Fang X, Yu X, Dai X. Latex Microsphere-Based Bicolor Immunochromatography for Qualitative Detection of Neutralizing Antibody against SARS-CoV-2. BIOSENSORS 2022; 12:bios12020103. [PMID: 35200362 PMCID: PMC8869495 DOI: 10.3390/bios12020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 05/12/2023]
Abstract
Neutralizing antibody (NAb) is a family of antibodies with special functions, which afford a degree of protection against infection and/or reduce the risk of clinically severe infection. Receptor binding domain (RBD) in the spike protein of SARS-CoV-2, a portion of the S1 subunit, can stimulate the immune system to produce NAb after infection and vaccination. The detection of NAb against SARS-CoV-2 is a simple and direct approach for evaluating a vaccine's effectiveness. In this study, a direct, rapid, and point-of-care bicolor lateral flow immunoassay (LFIA) was developed for NAb against SARS-CoV-2 detection without sample pretreatment, and which was based on the principle of NAb-mediated blockage of the interaction between RBD and angiotensin-converting enzyme 2. In the bicolor LFIA, red and blue latex microspheres (LMs) were used to locate the test and control lines, leading to avoidance of erroneous interpretations of one-colored line results. Under the optimal conditions, NAb against SARS-CoV-2 detection carried out using the bicolor LFIA could be completed within 9 min, and the visible limit of detection was about 48 ng/mL. Thirteen serum samples were analyzed, and the results showed that the NAb levels in three positive serum samples were equal to, or higher than, 736 ng/mL. The LM-based bicolor LFIA allows one-step, rapid, convenient, inexpensive, and user-friendly determination of NAb against SARS-CoV-2 in serum.
Collapse
Affiliation(s)
- Zhanwei Liang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.L.); (X.J.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Xueshima Jiao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.L.); (X.J.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.L.); (X.J.)
- Correspondence: (X.Y.); (X.D.); Tel./Fax: +86-010-645-24962 (X.D.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (T.P.); (Y.Z.); (J.X.); (Y.J.); (B.M.); (X.F.)
- Correspondence: (X.Y.); (X.D.); Tel./Fax: +86-010-645-24962 (X.D.)
| |
Collapse
|
237
|
Comparison of the Anti-SARS-CoV-2 Surrogate Neutralization Assays by TECOmedical and DiaPROPH-Med with Samples from Vaccinated and Infected Individuals. Viruses 2022; 14:v14020315. [PMID: 35215912 PMCID: PMC8877287 DOI: 10.3390/v14020315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.
Collapse
|
238
|
The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022; 185:447-456.e11. [PMID: 35026151 PMCID: PMC8702401 DOI: 10.1016/j.cell.2021.12.032] [Citation(s) in RCA: 646] [Impact Index Per Article: 215.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.
Collapse
|
239
|
de Castro MV, Santos KS, Apostolico JS, Fernandes ER, Almeida RR, Levin G, Magawa JY, Nunes JPS, Bruni M, Yamamoto MM, Lima AC, Silva MVR, Matos LRB, Coria VR, Castelli EC, Scliar MO, Kuramoto A, Bruno FR, Jacintho LC, Nunes K, Wang JYT, Coelho VP, Neto MM, Maciel RMB, Naslavsky MS, Passos-Bueno MR, Boscardin SB, Rosa DS, Kalil J, Zatz M, Cunha-Neto E. Recurrence of COVID-19 associated with reduced T-cell responses in a monozygotic twin pair. Open Biol 2022; 12:210240. [PMID: 35104433 PMCID: PMC8807054 DOI: 10.1098/rsob.210240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrence of COVID-19 in recovered patients has been increasingly reported. However, the immune mechanisms behind the recurrence have not been thoroughly investigated. The presence of neutralizing antibodies (nAbs) in recurrence/reinfection cases suggests that other types of immune response are involved in protection against recurrence. Here, we investigated the innate type I/III interferon (IFN) response, binding and nAb assays and T-cell responses to severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) with IFN gamma (IFNγ) enzyme-linked spot assay (ELISPOT) in three pairs of young adult monozygotic (MZ) twins with previous confirmed COVID-19, one of them presenting a severe recurrence four months after the initial infection. Twin studies have been of paramount importance to comprehend the immunogenetics of infectious diseases. Each MZ twin pair was previously exposed to SARS-CoV-2, as seen by clinical reports. The six individuals presented similar overall recovered immune responses except for the recurrence case, who presented a drastically reduced number of recognized SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and the other twin pairs. Our results suggest that the lack of a broad T-cell response to initial infection may have led to recurrence, emphasizing that an effective SARS-CoV-2-specific T-cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19.
Collapse
Affiliation(s)
- Mateus V. de Castro
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Keity S. Santos
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Juliana S. Apostolico
- Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Edgar R. Fernandes
- Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Gabriel Levin
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Jhosiene Y. Magawa
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - João Paulo S. Nunes
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Mirian Bruni
- Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcio M. Yamamoto
- Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ariane C. Lima
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Larissa R. B. Matos
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vivian R. Coria
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick C. Castelli
- School of Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Fernanda R. Bruno
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Lucas C. Jacintho
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jaqueline Y. T. Wang
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Veronica P. Coelho
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | | | | | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia B. Boscardin
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil,Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniela S. Rosa
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Jorge Kalil
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil,Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
240
|
Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, DaSilva J, Bednarski E, Tanfous TB, Raspe R, Yao K, Lee YE, Chen T, Turroja M, Milard KG, Dizon J, Kaczynska A, Gazumyan A, Oliveira TY, Rice CM, Caskey M, Bieniasz PD, Hatziioannou T, Barnes CO, Nussenzweig MC. Conserved Neutralizing Epitopes on the N-Terminal Domain of Variant SARS-CoV-2 Spike Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.01.478695. [PMID: 35132412 PMCID: PMC8820657 DOI: 10.1101/2022.02.01.478695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for the antibody system. Neutralizing antibodies targeting the RBD bind to several different sites on this domain. In contrast, most neutralizing antibodies to NTD characterized to date bind to a single supersite, however these antibodies were obtained by methods that were not NTD specific. Here we use NTD specific probes to focus on anti-NTD memory B cells in a cohort of pre-omicron infected individuals some of which were also vaccinated. Of 275 NTD binding antibodies tested 103 neutralized at least one of three tested strains: Wuhan-Hu-1, Gamma, or PMS20, a synthetic variant which is extensively mutated in the NTD supersite. Among the 43 neutralizing antibodies that were further characterized, we found 6 complementation groups based on competition binding experiments. 58% targeted epitopes outside the NTD supersite, and 58% neutralized either Gamma or Omicron, but only 14% were broad neutralizers. Three of the broad neutralizers were characterized structurally. C1520 and C1791 recognize epitopes on opposite faces of the NTD with a distinct binding pose relative to previously described antibodies allowing for greater potency and cross-reactivity with 7 different variants including Beta, Delta, Gamma and Omicron. Antibody C1717 represents a previously uncharacterized class of NTD-directed antibodies that recognizes the viral membrane proximal side of the NTD and SD2 domain, leading to cross-neutralization of Beta, Gamma and Omicron. We conclude SARS-CoV-2 infection and/or Wuhan-Hu-1 mRNA vaccination produces a diverse collection of memory B cells that produce anti-NTD antibodies some of which can neutralize variants of concern. Rapid recruitment of these cells into the antibody secreting plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants including omicron.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Shuai Zong
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Briana Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yu E. Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Katrina G. Milard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Kaczynska
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | | | - Christopher O. Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
241
|
Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog 2022; 18:e1010260. [PMID: 35176090 PMCID: PMC8853550 DOI: 10.1371/journal.ppat.1010260] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is continuously evolving, and this poses a major threat to antibody therapies and currently authorized Coronavirus Disease 2019 (COVID-19) vaccines. It is therefore of utmost importance to investigate and predict the putative mutations on the spike protein that confer immune evasion. Antibodies are key components of the human immune system's response to SARS-CoV-2, and the spike protein is a prime target of neutralizing antibodies (nAbs) as it plays critical roles in host cell recognition, fusion, and virus entry. The potency of therapeutic antibodies and vaccines partly depends on how readily the virus can escape neutralization. Recent structural and functional studies have mapped the epitope landscape of nAbs on the spike protein, which illustrates the footprints of several nAbs and the site of escape mutations. In this review, we discuss (1) the emerging SARS-CoV-2 variants; (2) the structural basis for antibody-mediated neutralization of SARS-CoV-2 and nAb classification; and (3) identification of the RBD escape mutations for several antibodies that resist antibody binding and neutralization. These escape maps are a valuable tool to predict SARS-CoV-2 fitness, and in conjunction with the structures of the spike-nAb complex, they can be utilized to facilitate the rational design of escape-resistant antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
242
|
Xiang Q, Li L, Wu J, Tian M, Fu Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol Res 2022; 258:126993. [PMID: 35240544 PMCID: PMC8848573 DOI: 10.1016/j.micres.2022.126993] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
243
|
Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A, Pasqual G. Neutralizing Antibody Responses to SARS-CoV-2 in Recovered COVID-19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol 2022; 13:830710. [PMID: 35173741 PMCID: PMC8841804 DOI: 10.3389/fimmu.2022.830710] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused outbreaks of the pandemic starting from the end of 2019 and, despite ongoing vaccination campaigns, still influences health services and economic factors globally. Understanding immune protection elicited by natural infection is of critical importance for public health policy. This knowledge is instrumental to set scientific parameters for the release of “immunity pass” adopted with different criteria across Europe and other countries and to provide guidelines for the vaccination of COVID-19 recovered patients. Here, we characterized the humoral response triggered by SARS-CoV-2 natural infection by analyzing serum samples from 94 COVID-19 convalescent patients with three serological platforms, including live virus neutralization, pseudovirus neutralization, and ELISA. We found that neutralization potency varies greatly across individuals, is significantly higher in severe patients compared with mild ones, and correlates with both Spike and receptor-binding domain (RBD) recognition. We also show that RBD-targeting antibodies consistently represent only a modest proportion of Spike-specific IgG, suggesting broad specificity of the humoral response in naturally infected individuals. Collectively, this study contributes to the characterization of the humoral immune response in the context of natural SARS-CoV-2 infection, highlighting its variability in terms of neutralization activity, with implications for immune protection in COVID-19 recovered patients.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Massimo La Raja
- Department of Transfusion Medicine, Padua University Hospital, Padua, Italy
| | - Monia Pacenti
- Institute of Microbiology and Virology, Padua University Hospital, Padua, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Antonio Rosato
- Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- *Correspondence: Giulia Pasqual, ; Antonio Rosato,
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- *Correspondence: Giulia Pasqual, ; Antonio Rosato,
| |
Collapse
|
244
|
Huang A, Cicin-Sain C, Pasin C, Epp S, Audigé A, Müller NJ, Nilsson J, Bankova A, Wolfensberger N, Vilinovszki O, Nair G, Hockl P, Schanz U, Kouyos RD, Hasse B, Zinkernagel AS, Trkola A, Manz MG, Abela IA, Müller AMS. Antibody Response to SARS-CoV-2 Vaccination in Patients Following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:214.e1-214.e11. [PMID: 35092892 PMCID: PMC8802693 DOI: 10.1016/j.jtct.2022.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/06/2023]
Abstract
Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Alice Huang
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Caroline Cicin-Sain
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Chloe Pasin
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Nicolas J Müller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Switzerland
| | - Andriyana Bankova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland.
| |
Collapse
|
245
|
Gentles LE, Kehoe L, Crawford KH, Lacombe K, Dickerson J, Wolf C, Yuan J, Schuler S, Watson JT, Nyanseor S, Briggs-Hagen M, Saydah S, Midgley CM, Pringle K, Chu H, Bloom JD, Englund JA. Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.14.22269235. [PMID: 35118481 PMCID: PMC8811949 DOI: 10.1101/2022.01.14.22269235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children's sera decreased modestly from one to six months; a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.
Collapse
Affiliation(s)
- Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Leanne Kehoe
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Katharine H.D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Kirsten Lacombe
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Jane Dickerson
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin Wolf
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Joanna Yuan
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Susanna Schuler
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
| | - John T. Watson
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sankan Nyanseor
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Briggs-Hagen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Saydah
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claire M. Midgley
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Pringle
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Janet A. Englund
- Division of Infectious Disease, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
246
|
van Gils MJ, van Willigen HD, Wynberg E, Han AX, van der Straten K, Burger JA, Poniman M, Oomen M, Tejjani K, Bouhuijs JH, Verveen A, Lebbink R, Dijkstra M, Appelman B, Lavell AA, Caniels TG, Bontjer I, van Vught LA, Vlaar AP, Sikkens JJ, Bomers MK, Russell CA, Kootstra NA, Sanders RW, Prins M, de Bree GJ, de Jong MD. A single mRNA vaccine dose in COVID-19 patients boosts neutralizing antibodies against SARS-CoV-2 and variants of concern. Cell Rep Med 2022; 3:100486. [PMID: 35103254 PMCID: PMC8668345 DOI: 10.1016/j.xcrm.2021.100486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022]
Abstract
The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose. Neutralizing antibody titers against four variants of concern increase after vaccination; however, overall neutralization breadth does not improve. Pre-vaccination neutralizing antibody titers and time since infection have the largest positive effect on titers following vaccination. COVID-19 severity and the presence of comorbidities have no discernible impact on vaccine response. In conclusion, a single dose of BNT162b2 vaccine up to 15 months after SARS-CoV-2 infection offers higher neutralizing antibody titers than 2 vaccine doses in SARS-CoV-2-naive individuals.
Collapse
Affiliation(s)
- Marit J. van Gils
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hugo D.G. van Willigen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Alvin X. Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joey H. Bouhuijs
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, Amsterdam School of Public Health, Amsterdam, the Netherlands
| | - Romy Lebbink
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Maartje Dijkstra
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - A.H. Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J. Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
247
|
Li N, Chen XL, Li Q, Zhang ZR, Deng CL, Zhang B, Li XD, Ye HQ. A new screening system for entry inhibitors based on cell-to-cell transmitted syncytia formation mediated by self-propagating hybrid VEEV-SARS-CoV-2 replicon. Emerg Microbes Infect 2022; 11:465-476. [PMID: 35034586 PMCID: PMC8820800 DOI: 10.1080/22221751.2022.2030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The extremely high transmission rate of SARS-CoV-2 and severe cases of COVID-19 pose the two critical challenges in the battle against COVID-19. Increasing evidence has shown that the viral spike (S) protein-driven syncytia may be responsible for these two events. Intensive attention has thus been devoted to seeking S-guided syncytium inhibitors. However, the current screening campaigns mainly rely on either live virus-based or plasmid-based method, which are always greatly limited by the shortage of high-level biosafety BSL-3 facilities or too much labour-intensive work. Here, we constructed a new hybrid VEEV-SARS-CoV-2-S-eGFP reporter vector through replacement of the structural genes of Venezuelan equine encephalitis virus (VEEV) with the S protein of SARS-CoV-2 as the single structural protein. VEEV-SARS-CoV-2-S-eGFP can propagate steadily through cell-to-cell transmission pathway in S- and ACE2-dependent manner, forming GFP positive syncytia. In addition, a significant dose-dependent decay in GFP signals was observed in VEEV-SARS-CoV-2-S-eGFP replicating cells upon treatment with SARS-CoV-2 antiserum or entry inhibitors, providing further evidence that VEEV-SARS-CoV-2-S-eGFP system is highly sensitive to characterize the anti-syncytium-formation activity of antiviral agents. More importantly, the assay is able to be performed in a BSL-2 laboratory without manipulation of live SARS-CoV-2. Taken together, our work establishes a more convenient and efficient VEEV-SARS-CoV-2-S-eGFP replicating cells-based method for rapid screening of inhibitors blocking syncytium formation.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ling Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
248
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
249
|
Kelsen SG, Braverman AS, Aksoy MO, Hayman JA, Patel PS, Rajput C, Zhao H, Fisher SG, Ruggieri MR, Gentile NT. SARS-CoV-2 BNT162b2 vaccine-induced humoral response and reactogenicity in individuals with prior COVID-19 disease. JCI Insight 2022; 7:155889. [PMID: 35019861 PMCID: PMC8876462 DOI: 10.1172/jci.insight.155889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Most individuals with prior COVID-19 disease manifest long-term protective immune responses against reinfection. Accordingly, we tested the hypothesis that humoral immune and reactogenicity responses to a SARS-CoV-2 mRNA vaccine differ in individuals with and without prior COVID-19 disease. METHODS Health care workers (n = 61) with (n = 30) and without (n = 31) prior COVID-19 disease received two 30 μg doses of Pfizer BNT162b2 vaccine 3 weeks apart. Serum IgG antibody against the spike receptor-binding domain; serum neutralizing activity; and vaccine reactogenicity were assessed longitudinally every 2 weeks for 56 days after the first injection. RESULTS The COVID-19 group manifested more rapid increases in spike IgG antibody and serum neutralizing activity after the first vaccine dose but showed little or no increase after the second dose compared with the infection-naive group. In fact, spike IgG was at its maximum level after the first dose in 36% of the COVID-19 group versus 0% of the infection-naive group. Peak IgG antibody levels were lower but appeared to fall more slowly in the COVID-19 group versus the infection-naive group. Finally, adverse systemic reactions, e.g., fever, headache, and malaise, were more frequent and lasted longer after both the first and second injection in the COVID-19 group than in the infection-naive group. CONCLUSION Individuals with prior COVID-19 disease demonstrate a robust, accelerated humoral immune response to the first dose but an attenuated response to the second dose of BNT162b2 vaccine compared with controls. The COVID-19 group also experienced greater reactogenicity. Humoral responses and reactogenicity to BNT162b2 differ qualitatively and quantitatively in individuals with prior COVID-19 disease compared with infection-naive individuals. FUNDING This work was supported by Temple University institutional funds.
Collapse
Affiliation(s)
- Steven G Kelsen
- Departments of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Alan S Braverman
- Department of Anatomy, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Mark O Aksoy
- Departments of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Jacob A Hayman
- Departments of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Puja S Patel
- Departments of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Charu Rajput
- Departments of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Huaqing Zhao
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Susan G Fisher
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Michael R Ruggieri
- Department of Anatomy, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Nina T Gentile
- Department of Emergency Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| |
Collapse
|
250
|
Li W, Chen Y, Prévost J, Ullah I, Lu M, Gong SY, Tauzin A, Gasser R, Vézina D, Anand SP, Goyette G, Chaterjee D, Ding S, Tolbert WD, Grunst MW, Bo Y, Zhang S, Richard J, Zhou F, Huang RK, Esser L, Zeher A, Côté M, Kumar P, Sodroski J, Xia D, Uchil PD, Pazgier M, Finzi A, Mothes W. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep 2022; 38:110210. [PMID: 34971573 PMCID: PMC8673750 DOI: 10.1016/j.celrep.2021.110210] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here, we elucidate the structural basis and mode of action for two potent SARS-CoV-2 spike (S)-neutralizing monoclonal antibodies, CV3-1 and CV3-25, which remain effective against emerging variants of concern in vitro and in vivo. CV3-1 binds to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the "RBD-up" position and triggers potent shedding of the S1 subunit. In contrast, CV3-25 inhibits membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among β-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in the RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rick K Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Esser
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zeher
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|