201
|
Vega JM, Podio M, Orjuela J, Siena LA, Pessino SC, Combes MC, Mariac C, Albertini E, Pupilli F, Ortiz JPA, Leblanc O. Chromosome-scale genome assembly and annotation of Paspalum notatum Flüggé var. saurae. Sci Data 2024; 11:891. [PMID: 39152143 PMCID: PMC11329641 DOI: 10.1038/s41597-024-03731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Paspalum notatum Flüggé is an economically important subtropical fodder grass that is widely used in the Americas. Here, we report a new chromosome-scale genome assembly and annotation of a diploid biotype collected in the center of origin of the species. Using Oxford Nanopore long reads, we generated a 557.81 Mb genome assembly (N50 = 56.1 Mb) with high gene completeness (BUSCO = 98.73%). Genome annotation identified 320 Mb (57.86%) of repetitive elements and 45,074 gene models, of which 36,079 have a high level of confidence. Further characterisation included the identification of 59 miRNA precursors together with their putative targets. The present work provides a comprehensive genomic resource for P. notatum improvement and a reference frame for functional and evolutionary research within the genus.
Collapse
Grants
- PUE 22920160100043CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP 11220200101680CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PICT 2019 3414 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT 2019-02153 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017-1956 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PIP 80020190300021UR Universidad Nacional de Rosario (National University of Rosario)
- 101007438 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 872417 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- PRIN 2022Z4HLLJ Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- P2022KFJB5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- Juan Manuel Vega
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Julie Orjuela
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Lorena A Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | | | - Cedric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06121, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina.
| | | |
Collapse
|
202
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
203
|
Liao M, Xu M, Hu R, Xu Z, Bonvillain C, Li Y, Li X, Luo X, Wang J, Wang J, Zhao S, Gu Z. The chromosome-level genome assembly of the red swamp crayfish Procambarus clarkii. Sci Data 2024; 11:885. [PMID: 39143139 PMCID: PMC11325019 DOI: 10.1038/s41597-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Red swamp crayfish, Procambarus clarkii, is the most cultured freshwater crayfish species. It attracts significant research attention due to its considerable economic importance. However, the limited availability of genome information has impeded further genetic studies and breeding programs. By utilizing Illumina, PacBio, and Hi-C sequencing technologies, we present a more comprehensive and continuous chromosome-level assembly for P. clarkii than the published one. The final genome size is 4.03 Gb, consisting of 2,358 scaffolds with a N50 of 42.87 Mb. Notably, 3.68 Gb, corresponding to 91.42% of the genome, was anchored to 94 chromosomes. The assembly comprises 70.64% repetitive sequences, including 5.21% tandem repeats and 65.40% transposable elements. Additionally, a total of 4,456 non-coding RNAs and 28,852 protein-coding genes were predicted in the P. clarkii genome, with 96.26% of the genes were annotated. This high-quality genome assembly not only represents a significant improvement for the genome of P. clarkii and provides insights into the unique genome evolution, but also offers valuable information for developing freshwater aquaculture and accelerating genetic breeding.
Collapse
Affiliation(s)
- Mingcong Liao
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Ruixue Hu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Zhiwei Xu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Christopher Bonvillain
- Department of Biological Sciences, Nicholls State University, P.O. Box 2021, Thibodaux, Louisiana, 70310, USA
| | - Ying Li
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Xu Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaohong Luo
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Wang
- Genetic engineering research center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zemao Gu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
204
|
Hu Y, Wei X, Chu Z, Wei F, Peng Y, Huang B, Dong L, Wei K, Li W. Chromosome-level assembly and evolution analysis of the Trichosanthes truncata genome. Sci Data 2024; 11:872. [PMID: 39134552 PMCID: PMC11319624 DOI: 10.1038/s41597-024-03608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Trichosanthes truncata C. B. Clarke, an important medicinal plant, is a dioecious plant belonging to the Cucurbitaceae family. This study presents a chromosomal-level reference genome assembly for T. truncata. Through the integration of PacBio high-fidelity sequencing and high-throughput chromosome conformation capture technology, a final genome sequence of 637.41 Mb was assembled, with an N50 of 57.24 Mb and consisting of 11 pseudochromosomes. Additionally, 97.21 Mb of repetitive sequences and 36,172 protein-coding genes were annotated. This high-quality genome assembly is of utmost significance for studying the molecular mechanisms underlying the biosynthesis of bioactive compounds. Furthermore, this study provided valuable insights into plant comparative genomics research.
Collapse
Affiliation(s)
- Ying Hu
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xiaomei Wei
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhuannan Chu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Fan Wei
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Yude Peng
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Baoyou Huang
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Kunhua Wei
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Weiwen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230001, China.
| |
Collapse
|
205
|
Chen Y, Zhang X, Wang L, Fang M, Lu R, Ma Y, Huang Y, Chen X, Sheng W, Shi L, Zheng Z, Qiu Y. Telomere-to-telomere genome assembly of Eleocharis dulcis and expression profiles during corm development. Sci Data 2024; 11:869. [PMID: 39127691 PMCID: PMC11316796 DOI: 10.1038/s41597-024-03717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Eleocharis dulcis (Burm. f.) Trin. ex Hensch., commonly known as Chinese water chestnut, is a traditional aquatic vegetable in China, and now is widely cultivated throughout the world because of its high nutritional value and unique tastes. Here, we report the assembly of a 493.24 Mb telomere-to-telomere (T2T) genome of E. dulcis accomplished by integrating ONT ultra-long reads, PacBio long reads and Hi-C data. The reference genome was anchored onto 111 gap-free chromosomes, containing 48.31% repeat elements and 33,493 predicted protein-coding genes. Whole genome duplication (WGD) and inter-genomic synteny analyses indicated that chromosome breakage and genome duplication in E. dulcis possibly occurred multiple times during genome evolution after its divergence from a common ancestor with Rhynchospora breviuscula at ca. 35.6 Mya. A comparative time-course transcriptome analysis of corm development revealed different patterns of gene expression between cultivated and wild accessions with the highest number of differentially expressed genes (DEGs, 15,870) at the middle swelling stage and some of the DEGs were significantly enriched for starch metabolic process.
Collapse
Affiliation(s)
- Yang Chen
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xinyi Zhang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, 210014, China
| | - Yazhen Ma
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yan Huang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xiaoyang Chen
- Seed Management Station of Zhejiang Province, Hangzhou, Zhejiang, 310020, China
| | - Wei Sheng
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China
| | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China
| | - Zhaisheng Zheng
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, Zhejiang, 321000, China.
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
206
|
Duan M, Yang S, Li X, Tang X, Cheng Y, Luo J, Wang J, Song H, Wang Q, Zhu GX. Chromosome-level genome assembly and annotation of the Rhabdophis nuchalis (Hubei keelback). Sci Data 2024; 11:850. [PMID: 39117633 PMCID: PMC11310211 DOI: 10.1038/s41597-024-03708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Rhabdophis nuchalis, a snake widely distributed in China, possesses a unique trait: glands beneath the skin on its neck and back, known as nucho-dorsal glands. These features make it a valuable subject for studying genetic diversity and the evolution of complex traits. In this study, we obtained a high-quality chromosome-level reference genome of R. nuchalis using MGI short-read sequencing, PacBio Revio long-read sequencing, and Hi-C sequencing techniques. The final assembly comprised 1.92 Gb of the R. nuchalis genome, anchored to 20 chromosomes (including 9 macrochromosomes and 11 microchromosomes), with a contig N50 of 104.79 Mb, a scaffold N50 of 204.96 Mb, and a BUSCO completeness of 97.50%. Additionally, we annotated a total of 1.09 Gb of repetitive sequences (which constitute 56.51% of the entire genome) and identified 22,057 protein-coding genes. This high-quality reference genome of R. nuchalis furnishes essential genomic data for comprehending the genetic diversity and evolutionary history of the species, as well as for facilitating species conservation efforts and comparative genomics studies.
Collapse
Affiliation(s)
- Mingwen Duan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shijun Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiufeng Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xuemei Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuqi Cheng
- Chengdu Zoo, Chengdu, Sichuan Province, 610081, China
| | - Jingxue Luo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ji Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Huina Song
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Guang Xiang Zhu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
207
|
Molik DC, Stahlke AR, Sharma SP, Simmonds TJ, Corpuz RL, Kauwe AN, Schrader JE, Mason CJ, Sim SB, Geib SM. otb: an automated HiC/HiFi pipeline assembles the Prosapia bicincta Genome. G3 (BETHESDA, MD.) 2024; 14:jkae129. [PMID: 38861413 PMCID: PMC11304988 DOI: 10.1093/g3journal/jkae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The implementation of a new genomic assembly pipeline named only the best (otb) has effectively addressed various challenges associated with data management during the development and storage of genome assemblies. otb, which incorporates a comprehensive pipeline involving a setup layer, quality checks, templating, and the integration of Nextflow and Singularity. The primary objective of otb is to streamline the process of creating a HiFi/HiC genome, aiming to minimize the manual intervention required in the genome assembly process. The 2-lined spittlebug, (Prosapia bicincta, Hemiptera: Cercopidae), a true bug insect herbivore, serves as a practical test case for evaluating otb. The 2-lined spittlebug is both a crucial agricultural pest and a genomically understudied insect belonging to the order Hemiptera. This insect is a significant threat to grasslands and pastures, leading to plant wilting and phytotoxemia when infested. Its presence in tropical and subtropical regions around the world poses a long-term threat to the composition of plant communities in grassland landscapes, impacting rangelands, and posing a substantial risk to cattle production.
Collapse
Affiliation(s)
- David C Molik
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, United States Department of Agriculture, Agricultural Research Service, 1515 College Ave, Manhattan, KS 66502, USA
| | - Amanda R Stahlke
- Department of Biological Sciences, Wubben Hall and Science Center, Colorado Mesa University, 1100 North Avenue, Grand Junction, CO 81501-3122, USA
| | - Sharu P Sharma
- Genome Informatics Facility, Iowa State University, 2200 Osborn Drive, Ames, IA 50011-4009, USA
| | - Tyler J Simmonds
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Renee L Corpuz
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Angela N Kauwe
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Jeremy E Schrader
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Sheina B Sim
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| | - Scott M Geib
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, 64 Nowelo St, Hilo, HI 96720, USA
| |
Collapse
|
208
|
Albuja-Quintana M, Pozo G, Gordillo-Romero M, Armijos CE, Torres MDL. Genome report: First reference genome of Vaccinium floribundum Kunth, an emblematic Andean species. G3 (BETHESDA, MD.) 2024; 14:jkae136. [PMID: 38888171 PMCID: PMC11304950 DOI: 10.1093/g3journal/jkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Vaccinium floribundum Kunth, known as "mortiño," is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 Mb, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LTR Assembly Index of 12.93 further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems but will also contribute to conservation strategies for a species endemic to the Andes.
Collapse
Affiliation(s)
- Martina Albuja-Quintana
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Gabriela Pozo
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Milton Gordillo-Romero
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Carolina E Armijos
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
209
|
Kuo WH, Wright SJ, Small LL, Olsen KM. De novo genome assembly of white clover (Trifolium repens L.) reveals the role of copy number variation in rapid environmental adaptation. BMC Biol 2024; 22:165. [PMID: 39113037 PMCID: PMC11305067 DOI: 10.1186/s12915-024-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sara J Wright
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Present address: Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Linda L Small
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
210
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
211
|
Kileeg Z, Wang P, Mott GA. Chromosome-Scale Assembly and Annotation of Eight Arabidopsis thaliana Ecotypes. Genome Biol Evol 2024; 16:evae169. [PMID: 39101619 PMCID: PMC11327923 DOI: 10.1093/gbe/evae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The plant Arabidopsis thaliana is a model system used by researchers through much of plant research. Recent efforts have focused on discovering the genomic variation found in naturally occurring ecotypes isolated from around the world. These ecotypes have come from diverse climates and therefore have faced and adapted to a variety of abiotic and biotic stressors. The sequencing and comparative analysis of these genomes can offer insight into the adaptive strategies of plants. While there are a large number of ecotype genome sequences available, the majority were created using short-read technology. Mapping of short-reads containing structural variation to a reference genome bereft of that variation leads to incorrect mapping of those reads, resulting in a loss of genetic information and introduction of false heterozygosity. For this reason, long-read de novo sequencing of genomes is required to resolve structural variation events. In this article, we sequenced the genomes of eight natural variants of A. thaliana using nanopore sequencing. This resulted in highly contiguous assemblies with >95% of the genome contained within five contigs. The sequencing results from this study include five ecotypes from relict and African populations, an area of untapped genetic diversity. With this study, we increase the knowledge of diversity we have across A. thaliana ecotypes and contribute to ongoing production of an A. thaliana pan-genome.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - G Adam Mott
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
212
|
Shang J, Feng D, Liu H, Niu L, Li R, Li Y, Chen M, Li A, Liu Z, He Y, Gao X, Jian H, Wang C, Tang K, Bao M, Wang J, Yang S, Yan H, Ning G. Evolution of the biosynthetic pathways of terpene scent compounds in roses. Curr Biol 2024; 34:3550-3563.e8. [PMID: 39043188 DOI: 10.1016/j.cub.2024.06.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
It is unknown why roses are terpene-rich, what the terpene biosynthetic pathways in roses are, and why only a few rose species produce the major components of rose essential oil. Here, we assembled two high-quality chromosome-level genomes for Rosa rugosa and Rosa multiflora. We also re-sequenced 132 individuals from the F1 progeny of Rosa chinensis and Rosa wichuraiana and 36 of their related species. Comparative genomics revealed that expansions of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and terpene synthases (TPSs) gene families led to the enrichment of terpenes in rose scent components. We constructed a terpene biosynthesis network and discovered a TPS-independent citronellol biosynthetic pathway in roses through gene functional identification, genome-wide association studies (GWASs), and multi-omic analysis. Heterologous co-expression of rose citronellol biosynthetic genes in Nicotiana benthamiana led to citronellol production. Our genomic and metabolomic analyses suggested that the copy number of NUDX1-1a determines the citronellol content in different rose species. Our findings not only provide additional genome and gene resources and reveal the evolution of the terpene biosynthetic pathways but also present a nearly complete scenario for terpenoid metabolism that will facilitate the breeding of fragrant roses and the production of rose oil.
Collapse
Affiliation(s)
- Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedang Feng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Heng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Lintao Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengxi Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
213
|
Wu W, Wang L, Huang W, Zhang X, Li Y, Guo W. A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus. DNA Res 2024; 31:dsae024. [PMID: 39101533 PMCID: PMC11347754 DOI: 10.1093/dnares/dsae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024] Open
Abstract
With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90, and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Weicheng Huang
- Plant Science Center, South China Botanical Garden, Chinese Academy of Science, , Guangzhou, 510650, Guangzhou, China
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
214
|
Yuan J, Zhang X, Zhang X, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Wang M, Xiang J, Li F. An ancient whole-genome duplication in barnacles contributes to their diversification and intertidal sessile life adaptation. J Adv Res 2024; 62:91-103. [PMID: 37734567 PMCID: PMC11331182 DOI: 10.1016/j.jare.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Whole-genome duplication (WGD) is one of the most sudden and dramatic events rarely reported in invertebrates, but its occurrence can lead to physiological, morphological, and behavioral diversification. WGD has also never been reported in barnacles, which is one of the most unique groups of crustaceans with extremely speciallized morphology (calcareous shells) and habits (intertidal sessile lifestyle). OBJECTIVES To investigate whether WGD has occurred in barnacles and examine its potential role in driving the adaptive evolution and diversification of barnacles. METHODS Based on a newly sequenced and assembled chromosome-level barnacle genome, a novel WGD event has been identified in barnacles through a comprehensive analysis of interchromosomal synteny, the Hox gene cluster, and synonymous substitution distribution. RESULTS We provide ample evidences for WGD in the barnacle genomes. Comparative genomic analysis indicates that this WGD event predates the divergence of Thoracicalcarea, occurring more than 247 million years ago. The retained ohnologs from the WGD are primarily enriched in various pathways related to environmental information processing, shedding light on the adaptive evolution and diversification of intertidal sessile lifestyle. In addition, transcriptomic analyses show that most of these ohnologs were differentially expressed following the ebb of tide. And the cytochrome P450 ohnologs with differential expression patterns are subject to subfunctionalization and/or neofunctionalization for intertidal adaptation. Besides WGD, parallel evolution underlying intertidal adaptation has also occurred in barnacles. CONCLUSION This study revealed an ancient WGD event in the barnacle genomes, which is potentially associated with the origin and diversification of thoracican barnacles, and may have contributed to the adaptive evolution of their intertidal sessile lifestyle.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
215
|
Bourret A, Leung C, Puncher GN, Le Corre N, Deslauriers D, Skanes K, Bourdages H, Cassista-Da Ros M, Walkusz W, Jeffery NW, Stanley RRE, Parent GJ. Diving into broad-scale and high-resolution population genomics to decipher drivers of structure and climatic vulnerability in a marine invertebrate. Mol Ecol 2024; 33:e17448. [PMID: 38946210 DOI: 10.1111/mec.17448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Species with widespread distributions play a crucial role in our understanding of climate change impacts on population structure. In marine species, population structure is often governed by both high connectivity potential and selection across strong environmental gradients. Despite the complexity of factors influencing marine populations, studying species with broad distribution can provide valuable insights into the relative importance of these factors and the consequences of climate-induced alterations across environmental gradients. We used the northern shrimp Pandalus borealis and its wide latitudinal distribution to identify current drivers of population structure and predict the species' vulnerability to climate change. A total of 1514 individuals sampled across 24° latitude were genotyped at high geographic (54 stations) and genetic (14,331 SNPs) resolutions to assess genetic variation and environmental correlations. Four populations were identified in addition to finer substructure associated with local adaptation. Geographic patterns of neutral population structure reflected predominant oceanographic currents, while a significant proportion of the genetic variation was associated with gradients in salinity and temperature. Adaptive landscapes generated using climate projections suggest a larger genomic offset in the southern extent of the P. borealis range, where shrimp had the largest adaptive standing genetic variation. Our genomic results combined with recent observations point to further deterioration in southern regions and an impending vulnerable status in the regions at higher latitudes for P. borealis. They also provide rare insights into the drivers of population structure and climatic vulnerability of a widespread meroplanktonic species, which is crucial to understanding future challenges associated with invertebrates essential to ecosystem functioning.
Collapse
Affiliation(s)
- Audrey Bourret
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Christelle Leung
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Gregory N Puncher
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Nicolas Le Corre
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - David Deslauriers
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Katherine Skanes
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Hugo Bourdages
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Manon Cassista-Da Ros
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Wojciech Walkusz
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Ryan R E Stanley
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Geneviève J Parent
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| |
Collapse
|
216
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
217
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
218
|
Potente G, Yousefi N, Keller B, Mora-Carrera E, Szövényi P, Conti E. The Primula edelbergii S-locus is an example of a jumping supergene. Mol Ecol Resour 2024; 24:e13988. [PMID: 38946153 DOI: 10.1111/1755-0998.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
219
|
Zhang Y, Zhao M, Tan J, Huang M, Chu X, Li Y, Han X, Fang T, Tian Y, Jarret R, Lu D, Chen Y, Xue L, Li X, Qin G, Li B, Sun Y, Deng XW, Deng Y, Zhang X, He H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat Genet 2024; 56:1750-1761. [PMID: 38977857 PMCID: PMC11319210 DOI: 10.1038/s41588-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.
Collapse
Affiliation(s)
- Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Mingxia Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Jingsheng Tan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Minghan Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yan Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Taohong Fang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yao Tian
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | | | - Dongdong Lu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yijun Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Lifang Xue
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xiaoni Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Guochen Qin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yudong Sun
- Vegetable Research and Development Center, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yun Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Xingping Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
220
|
Catalán A, Gygax D, Rodríguez-Montes L, Hinzke T, Hoff KJ, Duchen P. Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Commun Biol 2024; 7:906. [PMID: 39068254 PMCID: PMC11283472 DOI: 10.1038/s42003-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species. In this work, we present novel assembled genomes of two firefly species, Lamprohiza splendidula and Luciola italica, species with different degrees of sexual dimorphism. We uncover high synteny conservation of the X-chromosome across ~ 180 Mya and find full X-chromosome dosage compensation in our two fireflies, hinting at common mechanism upregulating the single male X-chromosome. Different degrees of sex-biased expressed genes were found across two body parts showing different proportions of expression conservation between species. Interestingly, we do not find X-chromosome enrichment of sex-biased genes, but retrieve autosomal enrichment of sex-biased genes. We further uncover higher nucleotide diversity in the intronic regions of sex-biased genes, hinting at a maintenance of heterozygosity through sexual selection. We identify different levels of sex-biased gene expression divergence including a set of genes showing conserved sex-biased gene expression between species. Divergent and conserved sex-biased genes are good candidates to test their role in the maintenance of sexually dimorphic traits.
Collapse
Affiliation(s)
- Ana Catalán
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany.
| | - Daniel Gygax
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany
- Helmholtz Center Munich, Helmholtz Pioneer Campus, Ingolstädter Landstraße 1, Munich, Oberschleißheim, 85764, Germany
| | - Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
221
|
Song M, Gong W, Tian Y, Meng Y, Huo T, Liu Y, Zhang Y, Dang Z. Chromosome-level genome assembly and annotation of xerophyte secretohalophyte Reaumuria soongarica. Sci Data 2024; 11:812. [PMID: 39039100 PMCID: PMC11263558 DOI: 10.1038/s41597-024-03644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Reaumuria soongarica is a xerophytic shrub belonging to the Tamaricaceae family. The species is widely distributed in the deserts of Central Asia and is characterized by its remarkable adaptability to saline and barren desert environments. Using PacBio long-read sequencing and Hi-C technologies, we assembled a chromosome-level genome of R. soongarica. The genome assembly has a size of 1.28 Gb with a scaffold N50 of 116.15 Mb, and approximately 1.25 Gb sequences were anchored in 11 pseudo-chromosomes. A completeness assessment of the assembled genome revealed a BUSCO score of 97.5% and an LTR Assembly Index of 12.37. R. soongarica genome had approximately 60.07% repeat sequences. In total, 21,791 protein-coding genes were predicted, of which 95.64% were functionally annotated. This high-quality genome will serve as a foundation for studying the genomic evolution and adaptive mechanisms to arid-saline environments in R. soongarica, facilitating the exploration and utilization of its unique genetic resources.
Collapse
Affiliation(s)
- Miaomiao Song
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Wei Gong
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Tingyu Huo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yanan Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yeming Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
222
|
Xu S, Jiang L, Zou Z, Zou M, Qiao G, Chen J. Two chromosome-level genome assemblies of galling aphids Slavum lentiscoides and Chaetogeoica ovagalla. Sci Data 2024; 11:803. [PMID: 39033163 PMCID: PMC11271456 DOI: 10.1038/s41597-024-03653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Slavum lentiscoides and Chaetogeoica ovagalla are two aphid species from the subtribe Fordina of Fordini within the subfamily Eriosomatinae, and they produce galls on their primary host plants Pistacia. We assembled chromosome-level genomes of these two species using Nanopore long-read sequencing and Hi-C technology. A 332 Mb genome assembly of S. lentiscoides with a scaffold N50 of 19.77 Mb, including 11,747 genes, and a 289 Mb genome assembly of C. ovagalla with a scaffold N50 of 11.85 Mb, containing 14,492 genes, were obtained. The Benchmarking Universal Single-Copy Orthologs (BUSCO) benchmark of the two genome assemblies reached 93.7% (91.9% single-copy) and 97.0% (95.3% single-copy), respectively. The high-quality genome assemblies in our study provide valuable resources for future genomic research of galling aphids.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
223
|
Kim J, Lim J, Kim M, Lee YK. Whole-genome sequencing of 13 Arctic plants and draft genomes of Oxyria digyna and Cochlearia groenlandica. Sci Data 2024; 11:793. [PMID: 39025921 PMCID: PMC11258133 DOI: 10.1038/s41597-024-03569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
To understand the genomic characteristics of Arctic plants, we generated 28-44 Gb of short-read sequencing data from 13 Arctic plants collected from the High Arctic Svalbard. We successfully estimated the genome sizes of eight species by using the k-mer-based method (180-894 Mb). Among these plants, the mountain sorrel (Oxyria digyna) and Greenland scurvy grass (Cochlearia groenlandica) had relatively small genome sizes and chromosome numbers. We obtained 45 × and 121 × high-fidelity long-read sequencing data. We assembled their reads into high-quality draft genomes (genome size: 561 and 250 Mb; contig N50 length: 36.9 and 14.8 Mb, respectively), and correspondingly annotated 43,105 and 29,675 genes using ~46 and ~85 million RNA sequencing reads. We identified 765,012 and 88,959 single-nucleotide variants, and 18,082 and 7,698 structural variants (variant size ≥ 50 bp). This study provided high-quality genome assemblies of O. digyna and C. groenlandica, which are valuable resources for the population and molecular genetic studies of these plants.
Collapse
Affiliation(s)
- Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jiseon Lim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Moonkyo Kim
- Korea Polar Research Institute, Incheon, 21990, Korea
- Department of Life Sciences, Incheon National University, Incheon, 22012, Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Korea.
| |
Collapse
|
224
|
Shekhar MS, Katneni VK, Jangam AK, Krishnan K, Prabhudas SK, Jayaraman R, Angel JRJ, Kailasam M. Genome assembly, Full-length transcriptome, and isoform diversity of Red Snapper, Lutjanus argentimaculatus. Sci Data 2024; 11:796. [PMID: 39025998 PMCID: PMC11258364 DOI: 10.1038/s41597-024-03633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The mangrove red snapper, Lutjanus argentimaculatus, is a marine food fish of economic and aquaculture importance. The application of genomic selection-based breeding programs for this species is limited by the absence of a reference genome and transcriptome profiles. The current study attempted to fill this void by generating genomic and transcriptomic resources for red snapper. Using PacBio long reads, and Arima Hi-C linked reads, a scaffold-level genome assembly was generated for L. argentimaculatus. The assembly is of 1.03 Gb comprising of 400 scaffolds with N50 of 33.8 Mb and was assessed to be 97.2% complete upon benchmarking with BUSCO. Full-length transcriptome generated with PacBio Iso-Sequencing strategy using six tissues (muscle, gills, liver, kidney, stomach, and gonad) contained 56,515 isoforms belonging to 18,108 unique genes with N50 length of 3,973 bp. The resources generated will have potential applications in the functional studies, conservation, broodstock management and selective breeding programmes of L. argentimaculatus.
Collapse
Affiliation(s)
- Mudagandur S Shekhar
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Vinaya Kumar Katneni
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India.
| | - Ashok Kumar Jangam
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Karthic Krishnan
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Sudheesh K Prabhudas
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Roja Jayaraman
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Jesudhas Raymond Jani Angel
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Muniyandi Kailasam
- Finfish Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| |
Collapse
|
225
|
Cao LJ, Guan TB, Chen JC, Yang F, Liu JX, Jin FL, Wei SJ. Chromosome-level genome assembly of the two-spotted spider mite Tetranychus urticae. Sci Data 2024; 11:798. [PMID: 39025916 PMCID: PMC11258348 DOI: 10.1038/s41597-024-03640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a notorious pest in agriculture that has developed resistance to almost all chemical types used for its control. Here, we assembled a chromosome-level genome for the TSSM using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled contigs had a total length of 103.94 Mb with an N50 of 3.46 Mb, with 87.7 Mb of 34 contigs anchored to three chromosomes. The chromosome-level genome assembly had a BUSCO completeness of 94.8%. We identified 15,604 protein-coding genes, with 11,435 genes that could be functionally annotated. The high-quality genome provides invaluable resources for the genetic and evolutionary study of TSSM.
Collapse
Affiliation(s)
- Li-Jun Cao
- College of Plant Protection, South China Agricultural University, Guangzhou, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tian-Bo Guan
- College of Plant Protection, South China Agricultural University, Guangzhou, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Xian Liu
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Feng-Liang Jin
- College of Plant Protection, South China Agricultural University, Guangzhou, China.
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
226
|
Li M, Zhang Y, Wang Y, Yin Y, Zhou M, Zhang Y. Chromosome-level genome assembly of Aquilaria yunnanensis. Sci Data 2024; 11:790. [PMID: 39019911 PMCID: PMC11255207 DOI: 10.1038/s41597-024-03635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Aquilaria yunnanensis is an endangered agarwood-producing tree currently listed on the IUCN Red List of Threatened Species. The agarwood it produces has important medicinal and economic value, but its population has sharply declined due to human destruction and habitat reduction. Therefore, obtaining genomic information on A. yunnanensis is beneficial for its protection work. We assembled a chromosome-level reference genome of A. yunnanensis by using BGI short reads, PacBio HiFi long reads, coupled with Hi-C technology. The final genome assembly of A. yunnanensis is 847.04 Mb, with N50 size of 99.68 Mb, in which 805.49 Mb of the bases were anchored on eight pseudo-chromosomes. Two gapless pseudo-chromosomes were detected in the assembly. A total of 27,955 protein-coding genes as well as 74.65% repetitive elements were annotated. These findings may provide valuable resources in conservation, functional genomics, and molecular breeding of A. yunnanensis, as well as the molecular phylogenetics and evolutionary patterns in Aquilaria.
Collapse
Affiliation(s)
- Meifei Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Wang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yue Yin
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Meijun Zhou
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
227
|
Shen X, Jin J, Zhang G, Yan B, Yu X, Wu H, Yang M, Zhang F. The chromosome-level genome assembly of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae). Sci Data 2024; 11:785. [PMID: 39019956 PMCID: PMC11255235 DOI: 10.1038/s41597-024-03614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Aphidoletes aphidimyza is widely recognized as an effective predator of aphids in agricultural systems. However, there is limited understanding of its predation mechanisms. In this study, we generated a high-quality chromosome level of the A. aphidimyza genome by combining PacBio, Illumina, and Hi-C data. The genome has a size of 192.08 Mb, with a scaffold N50 size of 46.85 Mb, and 99.08% (190.35 Mb) of the assembly is located on four chromosomes. The BUSCO analysis of our assembly indicates a completeness of 97.8% (n = 1,367), including 1,307 (95.6%) single-copy BUSCOs and 30 (2.2%) duplicated BUSCOs. Additionally, we annotated a total of 13,073 protein-coding genes, 18.43% (35.40 Mb) repetitive elements, and 376 non-coding RNAs. Our study is the first time to report the chromosome-scale genome for the species of A. aphidimyza. It provides a valuable genomic resource for the molecular study of A. aphidimyza.
Collapse
Affiliation(s)
- Xiuxian Shen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiaofei Yu
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Huizi Wu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, 564200, China
| | - Maofa Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
228
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Kishi Y, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 2024; 187:3563-3584.e26. [PMID: 38889727 PMCID: PMC11246231 DOI: 10.1016/j.cell.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jean M Badroos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joani W Viliunas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriko Kishi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David R Miller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mina Yousefelahiyeh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Taro Eldredge
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacy Pirro
- Iridian Genomes, 613 Quaint Acres Dr., Silver Spring, MD 20904, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven R Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
229
|
Alvarez van Tussenbroek I, Knörnschild M, Nagy M, O'Toole BP, Formenti G, Philge P, Zhang N, Abueg L, Brajuka N, Jarvis E, Volkert TL, Gray JL, Pieri M, Mai M, Teeling EC, Vernes SC, The Bat Biology Foundation, The Bat1K Consortium. The genome sequence of Rhynchonycteris naso, Peters, 1867 (Chiroptera, Emballonuridae, Rhynchonycteris). Wellcome Open Res 2024; 9:361. [PMID: 39239167 PMCID: PMC11375410 DOI: 10.12688/wellcomeopenres.19959.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 09/07/2024] Open
Abstract
We present a reference genome assembly from an individual male Rhynchonycteris naso (Chordata; Mammalia; Chiroptera; Emballonuridae). The genome sequence is 2.46 Gb in span. The majority of the assembly is scaffolded into 22 chromosomal pseudomolecules, with the Y sex chromosome assembled.
Collapse
Affiliation(s)
- Ine Alvarez van Tussenbroek
- School of Biology, University of St Andrews, St Andrews, Scotland, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
- Institute of Biology, Leiden University, 2300 RA Leiden, PO Box 9505, The Netherlands
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa Ancon, Panama City, Panama
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Philip Philge
- Paratus Sciences, New York, USA
- Excelra, Hyderabad, India
| | - Ning Zhang
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Nadolina Brajuka
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Erich Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Thomas L. Volkert
- Paratus Sciences, New York, USA
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Myrtani Pieri
- Department of Life Sciences, University of Nicosia, Nicosia, Nicosia, Cyprus
| | - Meike Mai
- School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Emma C. Teeling
- School of Biology and Environmental Science,, University College Dublin, Dublin, Ireland
- Wellcome Genome Campus, Wellcome Sanger Institute, Cambridgeshire, England, CB10 1SA, UK
| | - Sonja C. Vernes
- School of Biology, University of St Andrews, St Andrews, Scotland, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
| | - The Bat Biology Foundation
- School of Biology, University of St Andrews, St Andrews, Scotland, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
- Institute of Biology, Leiden University, 2300 RA Leiden, PO Box 9505, The Netherlands
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa Ancon, Panama City, Panama
- Paratus Sciences, New York, USA
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
- Excelra, Hyderabad, India
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, USA
- Department of Life Sciences, University of Nicosia, Nicosia, Nicosia, Cyprus
- School of Biology and Environmental Science,, University College Dublin, Dublin, Ireland
- Wellcome Genome Campus, Wellcome Sanger Institute, Cambridgeshire, England, CB10 1SA, UK
| | - The Bat1K Consortium
- School of Biology, University of St Andrews, St Andrews, Scotland, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
- Institute of Biology, Leiden University, 2300 RA Leiden, PO Box 9505, The Netherlands
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa Ancon, Panama City, Panama
- Paratus Sciences, New York, USA
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
- Excelra, Hyderabad, India
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, USA
- Department of Life Sciences, University of Nicosia, Nicosia, Nicosia, Cyprus
- School of Biology and Environmental Science,, University College Dublin, Dublin, Ireland
- Wellcome Genome Campus, Wellcome Sanger Institute, Cambridgeshire, England, CB10 1SA, UK
| |
Collapse
|
230
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
231
|
Zhao H, Zhou H, Sun G, Dong B, Zhu W, Mu X, Li X, Wang J, Zhao M, Yang W, Zhang G, Ji R, Geng T, Gong D, Meng H, Wang J. Telomere-to-telomere genome assembly of the goose Anser cygnoides. Sci Data 2024; 11:741. [PMID: 38972874 PMCID: PMC11228014 DOI: 10.1038/s41597-024-03567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Our study presents the assembly of a high-quality Taihu goose genome at the Telomere-to-Telomere (T2T) level. By employing advanced sequencing technologies, including Pacific Biosciences HiFi reads, Oxford Nanopore long reads, Illumina short reads, and chromatin conformation capture (Hi-C), we achieved an exceptional assembly. The T2T assembly encompasses a total length of 1,197,991,206 bp, with contigs N50 reaching 33,928,929 bp and scaffold N50 attaining 81,007,908 bp. It consists of 73 scaffolds, including 38 autosomes and one pair of Z/W sex chromosomes. Importantly, 33 autosomes were assembled without any gap, resulting in a contiguous representation. Furthermore, gene annotation efforts identified 34,898 genes, including 436,162 RNA transcripts, encompassing 806,158 exons, 743,910 introns, 651,148 coding sequences (CDS), and 135,622 untranslated regions (UTR). The T2T-level chromosome-scale goose genome assembly provides a vital foundation for future genetic improvement and understanding the genetic mechanisms underlying important traits in geese.
Collapse
Affiliation(s)
- Hongchang Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Hao Zhou
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201100, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Guobo Sun
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Biao Dong
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Wenqi Zhu
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Xiaohui Mu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Xiaoming Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Jun Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Mengli Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Wenhao Yang
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Gansheng Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China
| | - Rongchao Ji
- National Waterfowl of gene pool, Taizhou, 225511, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - He Meng
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201100, China.
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China.
- National Waterfowl of gene pool, Taizhou, 225511, China.
| |
Collapse
|
232
|
Wang YT, Zhang Y, Ma C, Ma WH, Cao LJ, Chen JC, Song W, Yang JF, Gao XY, Chen HS, Tian ZY, Desneux N, Wei SJ, Zhou ZS. Chromosome-level genome assembly of an oligophagous leaf beetle Ophraella communa (Coleoptera: Chrysomelidae). Sci Data 2024; 11:735. [PMID: 38971852 PMCID: PMC11227576 DOI: 10.1038/s41597-024-03486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
The leaf beetle Ophraella communa LeSage (Coleoptera: Chrysomelidae) is an effective biological control agent of the common ragweed. Here, we assembled a chromosome-level genome of the O. communa by combining Illumina, Nanopore, and Hi-C sequencing technologies. The genome size of the final genome assembly is 733.1 Mb, encompassing 17 chromosomes, with an improved contig N50 of 7.05 Mb compared to the original version. Genome annotation reveals 25,873 protein-coding genes, with functional annotations available for 22,084 genes (85.35%). Non-coding sequence annotation identified 204 rRNAs, 626 tRNAs, and 1791 small RNAs. Repetitive elements occupy 414.41 Mb, constituting 57.76% of the genome. This high-quality genome is fundamental for advancing biological control strategies employing O. communa.
Collapse
Affiliation(s)
- Yi-Ting Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Wei-Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing-Fang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Xu-Yuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hong-Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhen-Ya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Nicolas Desneux
- French National Institute for Agriculture, Food, and Environment, Nice, 06000, France
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| |
Collapse
|
233
|
Valero-Gracia A, Roberts NG, Yap-Chiongco M, Capucho AT, Kocot KM, Matschiner M, Struck TH. First Chromosome-Level Genome Assembly of a Ribbon Worm from the Hoplonemertea Clade, Emplectonema gracile, and Its Structural Annotation. Genome Biol Evol 2024; 16:evae127. [PMID: 38879873 PMCID: PMC11251423 DOI: 10.1093/gbe/evae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Genome-wide information has so far been unavailable for ribbon worms of the clade Hoplonemertea, the most species-rich class within the phylum Nemertea. While species within Pilidiophora, the sister clade of Hoplonemertea, possess a pilidium larval stage and lack stylets on their proboscis, Hoplonemertea species have a planuliform larva and are armed with stylets employed for the injection of toxins into their prey. To further compare these developmental, physiological, and behavioral differences from a genomic perspective, the availability of a reference genome for a Hoplonemertea species is crucial. Such data will be highly useful for future investigations toward a better understanding of molecular ecology, venom evolution, and regeneration not only in Nemertea but also in other marine invertebrate phyla. To this end, we herein present the annotated chromosome-level genome assembly for Emplectonema gracile (Nemertea; Hoplonemertea; Monostilifera; Emplectonematidae), an easily collected nemertean well suited for laboratory experimentation. The genome has an assembly size of 157.9 Mb. Hi-C scaffolding yielded chromosome-level scaffolds, with a scaffold N50 of 10.0 Mb and a score of 95.1% for complete BUSCO genes found as a single copy. Annotation predicted 20,684 protein-coding genes. The high-quality reference genome reaches an Earth BioGenome standard level of 7.C.Q50.
Collapse
Affiliation(s)
- Alberto Valero-Gracia
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway
| | - Nickellaus G Roberts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ana Teresa Capucho
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael Matschiner
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway
| | - Torsten H Struck
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway
| |
Collapse
|
234
|
Chen Y, Feng L, Lin H, Liu J, Hu Q. Chromosome-level genome assembly of Helwingia omeiensis: the first genome in the family Helwingiaceae. Sci Data 2024; 11:719. [PMID: 38956089 PMCID: PMC11220072 DOI: 10.1038/s41597-024-03568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Helwingia, a shrub of the monotypic cosmopolitan family Helwingiaceae, is distinguished by its inflorescence, in which flowers are borne on the midrib of the leaf-a trait not commonly observed in related plant families. Previous studies have investigated the development of this unusual structure using comparative anatomical methods. However, the scarcity of genomic data has hindered our understanding of the origins and evolutionary history of this uncommon trait at the molecular level. Here, we report the first high-quality genome of the family Helwingiaceae. Assembled using HiFi sequencing and Hi-C technologies, the genome of H. omeiensis is anchored to 19 chromosomes, with a total length of 2.75 Gb and a contig N50 length of 6.78 Mb. The BUSCO completeness score of the assembled genome was 98.2%. 53,951 genes were identified, of which 99.7% were annotated in at least one protein database. The high-quality reference genome of H. omeiensis provides an essential genetic resource and sheds light on the phylogeny and evolution of specific traits in the family Helwingiaceae.
Collapse
Affiliation(s)
- Yanyu Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
235
|
Liu M, Wang C, Huo L, Cao J, Mao X, He Z, Hu C, Sun H, Deng W, He W, Chen Y, Gu M, Liao J, Guo N, He X, Wu Q, Chen J, Zhang L, Wang X, Shang C, Dong J. Complexin-1 enhances ultrasound neurotransmission in the mammalian auditory pathway. Nat Genet 2024; 56:1503-1515. [PMID: 38834904 DOI: 10.1038/s41588-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.
Collapse
Affiliation(s)
- Meiling Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Changliang Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Lifang Huo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jie Cao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziqing He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Chuanxia Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Haijian Sun
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenjun Deng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Weiya He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Yifu Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Meifeng Gu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Ning Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Congping Shang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
236
|
Zhang T, Peng W, Xiao H, Cao S, Chen Z, Su X, Luo Y, Liu Z, Peng Y, Yang X, Jiang GF, Xu X, Ma Z, Zhou Y. Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1408-1426. [PMID: 38578160 DOI: 10.1111/jipb.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.
Collapse
Affiliation(s)
- Tianhao Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuyifu Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiangnian Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guo-Feng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
237
|
Gaynor ML, Landis JB, O'Connor TK, Laport RG, Doyle JJ, Soltis DE, Ponciano JM, Soltis PS. nQuack: An R package for predicting ploidal level from sequence data using site-based heterozygosity. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11606. [PMID: 39184199 PMCID: PMC11342224 DOI: 10.1002/aps3.11606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 08/27/2024]
Abstract
Premise Traditional methods of ploidal-level estimation are tedious; using DNA sequence data for cytotype estimation is an ideal alternative. Multiple statistical approaches to leverage sequence data for ploidy inference based on site-based heterozygosity have been developed. However, these approaches may require high-coverage sequence data, use inappropriate probability distributions, or have additional statistical shortcomings that limit inference abilities. We introduce nQuack, an open-source R package that addresses the main shortcomings of current methods. Methods and Results nQuack performs model selection for improved ploidy predictions. Here, we implement expectation maximization algorithms with normal, beta, and beta-binomial distributions. Using extensive computer simulations that account for variability in sequencing depth, as well as real data sets, we demonstrate the utility and limitations of nQuack. Conclusions Inferring ploidy based on site-based heterozygosity alone is difficult. Even though nQuack is more accurate than similar methods, we suggest caution when relying on any site-based heterozygosity method to infer ploidy.
Collapse
Affiliation(s)
- Michelle L. Gaynor
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Jacob B. Landis
- School of Integrative Plant ScienceCornell UniversityIthaca14850New YorkUSA
| | - Timothy K. O'Connor
- Department of Ecology and EvolutionUniversity of ChicagoChicago60637IllinoisUSA
| | | | - Jeff J. Doyle
- School of Integrative Plant ScienceCornell UniversityIthaca14850New YorkUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | | | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| |
Collapse
|
238
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
239
|
Cao LJ, Yang F, Chen JC, Wei SJ. Nuclear and mitochondrial genomes of the plum fruit moth Grapholita funebrana. Sci Data 2024; 11:692. [PMID: 38926434 PMCID: PMC11208415 DOI: 10.1038/s41597-024-03522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The plum fruit moth Grapholita funebrana (Tortricidae, Lepidoptera) is an important pest of many wild and cultivated stone fruits and other plants in the family Rosaceae. Here, we assembled its nuclear and mitochondrial genomes using Illumina, Nanopore, and Hi-C sequencing technologies. The nuclear genome size is 570.9 Mb, with a repeat rate of 51.28%, and a BUCSO completeness of 97.7%. The karyotype for males is 2n = 56. We identified 17,979 protein-coding genes, 5,643 tRNAs, and 94 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and 2 rRNA. These genomes provide resources to understand the genetics, ecology, and genome evolution of the tortricid moths.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
240
|
Calamari ZT, Song A, Cohen E, Akter M, Roy RD, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Vole genomics links determinate and indeterminate growth of teeth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572015. [PMID: 38187646 PMCID: PMC10769287 DOI: 10.1101/2023.12.18.572015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY 10016, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY 10010
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pengyang Li
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| |
Collapse
|
241
|
Bianco L, Fontana P, Marchesini A, Torre S, Moser M, Piazza S, Alessandri S, Pavese V, Pollegioni P, Vernesi C, Malnoy M, Torello Marinoni D, Murolo S, Dondini L, Mattioni C, Botta R, Sebastiani F, Micheletti D, Palmieri L. The de novo, chromosome-level genome assembly of the sweet chestnut (Castanea sativa Mill.) Cv. Marrone Di Chiusa Pesio. BMC Genom Data 2024; 25:64. [PMID: 38909221 PMCID: PMC11193896 DOI: 10.1186/s12863-024-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES The sweet chestnut Castanea sativa Mill. is the only native Castanea species in Europe, and it is a tree of high economic value that provides appreciated fruits and valuable wood. In this study, we assembled a high-quality nuclear genome of the ancient Italian chestnut variety 'Marrone di Chiusa Pesio' using a combination of Oxford Nanopore Technologies long reads, whole-genome and Omni-C Illumina short reads. DATA DESCRIPTION The genome was assembled into 238 scaffolds with an N50 size of 21.8 Mb and an N80 size of 7.1 Mb for a total assembled sequence of 750 Mb. The BUSCO assessment revealed that 98.6% of the genome matched the embryophyte dataset, highlighting good completeness of the genetic space. After chromosome-level scaffolding, 12 chromosomes with a total length of 715.8 and 713.0 Mb were constructed for haplotype 1 and haplotype 2, respectively. The repetitive elements represented 37.3% and 37.4% of the total assembled genome in haplotype 1 and haplotype 2, respectively. A total of 57,653 and 58,146 genes were predicted in the two haplotypes, and approximately 73% of the genes were functionally annotated using the EggNOG-mapper. The assembled genome will be a valuable resource and reference for future chestnut breeding and genetic improvement.
Collapse
Affiliation(s)
- Luca Bianco
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Alexis Marchesini
- Research Institute on Terrestrial Ecosystem, National Research Council, Via Marconi 2, Porano, TR, 05010, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino FI, Italy
| | - Mirko Moser
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Stefano Piazza
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Sara Alessandri
- Dept. of Agricultural and Food Sciences, University of Bologna, Via Zamboni 33, Bologna, BO, 40126, Italy
| | - Vera Pavese
- Dept. of Agricultural, Forest and Food Sci, University of Turin, L.go P. Braccini 2, Grugliasco, TO, 10095, Italy
| | - Paola Pollegioni
- Research Institute on Terrestrial Ecosystem, National Research Council, Via Marconi 2, Porano, TR, 05010, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristiano Vernesi
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Mickael Malnoy
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Daniela Torello Marinoni
- Dept. of Agricultural, Forest and Food Sci, University of Turin, L.go P. Braccini 2, Grugliasco, TO, 10095, Italy
| | - Sergio Murolo
- Dep. of Agricultural, Food and Env.Sci, Marche Polytechnic University, via Brecce Bianche, Ancona, AN, 60131, Italy
| | - Luca Dondini
- Dept. of Agricultural and Food Sciences, University of Bologna, Via Zamboni 33, Bologna, BO, 40126, Italy
| | - Claudia Mattioni
- Research Institute on Terrestrial Ecosystem, National Research Council, Via Marconi 2, Porano, TR, 05010, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Roberto Botta
- Dept. of Agricultural, Forest and Food Sci, University of Turin, L.go P. Braccini 2, Grugliasco, TO, 10095, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino FI, Italy
| | - Diego Micheletti
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Luisa Palmieri
- Research and Innovation Center, Edmund Mach Foundation, via Mach 1, San Michele all'Adige, TN, 38098, Italy.
| |
Collapse
|
242
|
Deng J, Zhang L, Zhang H, Wang X, Huang X. Chromosome-level genome assembly of the cottony cushion scale Icerya purchasi. Sci Data 2024; 11:639. [PMID: 38886361 PMCID: PMC11183206 DOI: 10.1038/s41597-024-03502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The cottony cushion scale, Icerya purchasi, a polyphagous pest, poses a significant threat to the global citrus industry. The hermaphroditic self-fertilization observed in I. purchasi is an exceptionally rare reproductive mode among insects. In this study, we successfully assembled a chromosome-level genome sequence for I. purchasi using PacBio long-reads and the Hi-C technique, resulting in a total size of 1,103.38 Mb and a contig N50 of 12.81 Mb. The genome comprises 14,046 predicted protein-coding genes, with 462,722,633 bp occurrence of repetitive sequences. BUSCO analysis revealed a completeness score of 93.20%. The genome sequence of I. purchasi serves as a crucial resource for comprehending the reproductive modes in insects, with particular emphasis on hermaphroditic self-fertilization.
Collapse
Affiliation(s)
- Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xubo Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224, China
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
243
|
Palma-Silva C, Mortati AF, Chaves CJN, Simões Santos Leal B, Ribeiro RV, Pinheiro F, Ferro M, Riaño-Pachón DM, de Mattos JS, Tavares MM, Aecyo P, da Costa Cacossi T, Schöngart J, Piedade MTF, André T. Ecological transcriptomics reveals stress response pathways of a ground-herb species in a waterlogging gradient of Amazonian riparian forests. Mol Ecol 2024:e17437. [PMID: 38887167 DOI: 10.1111/mec.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Environmental stress is a fundamental facet of life and a significant driver of natural selection in the wild. Gene expression diversity may facilitate adaptation to environmental changes, without necessary genetic change, but its role in adaptive divergence remains largely understudied in Neotropical systems. In Amazonian riparian forests, species distribution is predominantly influenced by species' waterlogging tolerance. The flooding gradient delineates distinct wetland forest types, shaping habitats and species characteristics. Here we investigated the molecular basis of environmental stress response in a tropical ground-herb species (Ischnosiphon puberulus) to environmental variation in Amazonian riparian forests. We compared environmental variables and gene expression profiles from individuals collected in two forest types: Igapó and Terra firme in the Amazonian riparian forests. Predictable seasonal flooding poses a significant challenge in Igapó compared to Terra firme environments, with the former presenting higher water column height and longer flooding duration. Our findings suggest that contrasting environmental conditions related to flooding regimes are important drivers of population genetic differentiation and differential gene expression in I. puberulus. Enriched gene ontology terms highlight associations with environmental stresses, such as defence response, water transport, phosphorylation, root development, response to auxin, salicylic acid and oxidative stress. By uncovering key environmental stress response pathways conserved across populations, I. puberulus offers novel genetic insights into the molecular basis of plant reactions to environmental constraints found in flooded areas of this highly biodiverse neotropical ecosystem.
Collapse
Affiliation(s)
- Clarisse Palma-Silva
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Amanda F Mortati
- Institute of Biodiversity and Forests, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Cleber Juliano Neves Chaves
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Bárbara Simões Santos Leal
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Vale Institute of Technology Sustainable Development, Belém, Pará, Brazil
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology-Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Fabio Pinheiro
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Milene Ferro
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Diego M Riaño-Pachón
- Laboratory of Computational, Evolutionary, and Systems Biology, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Jacqueline Salvi de Mattos
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Marília Manupella Tavares
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Paulo Aecyo
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Tami da Costa Cacossi
- Laboratory of Evolutionary Ecology and Genomics of Neotropical Plants, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Jochen Schöngart
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group), National Institute for Amazon Research (INPA), Manaus, Amazonas, Brazil
| | - Maria Teresa Fernandez Piedade
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group), National Institute for Amazon Research (INPA), Manaus, Amazonas, Brazil
| | - Thiago André
- Institute of Biodiversity and Forests, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
- Botany Department, Institute of Biological Sciences; Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
244
|
Alami MM, Shu S, Liu S, Ouyang Z, Zhang Y, Lv M, Sang Y, Gong D, Yang G, Feng S, Mei Z, Xie DY, Wang X. Chromosome-scale genome assembly of medicinal plant Tinospora sagittata (Oliv.) Gagnep. from the Menispermaceae family. Sci Data 2024; 11:610. [PMID: 38866889 PMCID: PMC11169364 DOI: 10.1038/s41597-024-03315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Tinospora sagittata (Oliv.) Gagnep. is an important medicinal tetraploid plant in the Menispermaceae family. Its tuber, Radix Tinosporae, used in traditional Chinese medicine, is rich in diterpenoids and benzylisoquinoline alkaloids (BIAs). To enhance our understanding of medicinal compounds' biosynthesis and Menispermaceae's evolution, we herein report assembling a high-quality chromosome-scale genome with both PacBio HiFi and Illumina sequencing technologies. PacBio Sequel II generated 2.5 million circular consensus sequencing (CCS) reads, and a hybrid assembly strategy with Illumina sequencing resulted in 4483 contigs. The assembled genome size was 2.33 Gb, consisting of 4070 scaffolds (N50 = 42.06 Mb), of which 92.05% were assigned to 26 pseudochromosomes. T. sagittata's chromosomal-scale genome assembly, the first species in Menispermaceae, aids Menispermaceae evolution and T. sagittata's secondary metabolites biosynthesis understanding.
Collapse
Affiliation(s)
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sanbo Liu
- China Resources Sanjiu (Huangshi) Pharmaceutical Co., Ltd., Huangshi, 435000, Hubei, China
| | - Zhen Ouyang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yipeng Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meijia Lv
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yonghui Sang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dalin Gong
- China Resources Sanjiu (Huangshi) Pharmaceutical Co., Ltd., Huangshi, 435000, Hubei, China
| | - Guozheng Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengqiu Feng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhinan Mei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuekui Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
245
|
Ferrari RR, Ricardo PC, Dias FC, de Souza Araujo N, Soares DO, Zhou QS, Zhu CD, Coutinho LL, Arias MC, Batista TM. The nuclear and mitochondrial genome assemblies of Tetragonisca angustula (Apidae: Meliponini), a tiny yet remarkable pollinator in the Neotropics. BMC Genomics 2024; 25:587. [PMID: 38862915 PMCID: PMC11167848 DOI: 10.1186/s12864-024-10502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The field of bee genomics has considerably advanced in recent years, however, the most diverse group of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared stingless bee in Brazil and other neotropical countries-Tetragonisca angustula (popularly known in Brazil as jataí). RESULTS A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them undergoing significant contractions. CONCLUSIONS Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-quality genome assemblies for bees.
Collapse
Affiliation(s)
- Rafael Rodrigues Ferrari
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Cordeiro Dias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Dalliane Oliveira Soares
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sate Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luiz Lehmann Coutinho
- Departamento de Ciências Animais, Universidade de São Paulo/ESALQ, Piracicaba, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Thiago Mafra Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil.
| |
Collapse
|
246
|
Yan X, Shi G, Sun M, Shan S, Chen R, Li R, Wu S, Zhou Z, Li Y, Liu Z, Hu Y, Liu Z, Soltis PS, Zhang J, Soltis DE, Ning G, Bao M. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proc Natl Acad Sci U S A 2024; 121:e2319679121. [PMID: 38830106 PMCID: PMC11181145 DOI: 10.1073/pnas.2319679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Collapse
Affiliation(s)
- Xu Yan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Gehui Shi
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Songlin Wu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Yuhan Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | | | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai201602, China
| | - Zhongjian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
247
|
Yang L, Jin J, Lyu S, Zhang F, Cao P, Qin Q, Zhang G, Feng C, Lu P, Li H, Deng S. Genomic analysis based on chromosome-level genome assembly reveals Myrtaceae evolution and terpene biosynthesis of rose myrtle. BMC Genomics 2024; 25:578. [PMID: 38858635 PMCID: PMC11165866 DOI: 10.1186/s12864-024-10509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and β-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear. RESULTS Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family. CONCLUSIONS The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of National Forestry and Grassland Administration On Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Jin
- National Tobacco Gene Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration On Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Fangqiu Zhang
- Guangdong Eco-Engineering Polytechnic, Guangzhou, 510520, China
| | - Peijian Cao
- National Tobacco Gene Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiaomei Qin
- Guangdong Eco-Engineering Polytechnic, Guangzhou, 510520, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan & the Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Peng Lu
- National Tobacco Gene Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Huiguang Li
- Key Laboratory of National Forestry and Grassland Administration On Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration On Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
248
|
Miao C, Wu Y, Wang L, Zhao S, Grierson D, Xu C, Chen W, Chen K. Haplotype-resolved chromosome-level genome assembly of Huyou (Citrus changshanensis). Sci Data 2024; 11:605. [PMID: 38849389 PMCID: PMC11161639 DOI: 10.1038/s41597-024-03437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Huyou (Citrus changshanensis) is a significant citrus species that originated in Zhejiang Province, China, where it is also primarily cultivated. It is valued for its distinctive flavor and notable health benefits, owing to its high content of bioactive compounds like naringin and limonin. However, the absence of a high quality reference genome has limited the exploration of these health-promoting compounds in Huyou and hindered research into the mechanisms behind its medicinal properties. In this study, we present a phased chromosome-level genome assembly of Huyou. By combining PacBio and Hi-C sequencing, we generated a primary genome assembly and two haplotypes, comprising nine pseudo-chromosomes, with sizes of 339.91 Mb, 323.51 Mb, and 311.89 Mb, respectively. By integrating transcriptome data and annotations of homologous species, we identified a total of 29,775 protein-coding genes in the genome of Huyou. Additionally, we detected lots of structural variants between the two haplotypes. This represents the first reference genome of Huyou, providing a valuable resource for future studies on its agricultural characteristics and medicinal applications.
Collapse
Affiliation(s)
- Changjiu Miao
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yijing Wu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Lixia Wang
- Changshan Agricultural Characteristic Industry Development Center, Quzhou, 324000, China
| | - Siqing Zhao
- Changshan Agricultural Characteristic Industry Development Center, Quzhou, 324000, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE125RD, UK
| | - Changjie Xu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
249
|
Peng H, Yi Y, Li J, Qing Y, Zhai X, Deng Y, Tian J, Zhang J, Hu Y, Qin X, Lu Y, Yao Y, Wang S, Zheng Y. A haplotype-resolved genome assembly of Malus domestica 'Red Fuji'. Sci Data 2024; 11:592. [PMID: 38844753 PMCID: PMC11156929 DOI: 10.1038/s41597-024-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.
Collapse
Affiliation(s)
- Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yating Yi
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Jinrong Li
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - You Qing
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yanfen Lu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| |
Collapse
|
250
|
Xie M, Yao Y, Feng Y, Xie L, Mao C, He J, Li X, Ni Q. Chromosome-Level Genome Assembly of Apoderus dimidiatus Voss (Coleoptera: Attelabidae): Insights into Evolution and Behavior. INSECTS 2024; 15:431. [PMID: 38921146 PMCID: PMC11204265 DOI: 10.3390/insects15060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Attelabidae insects have attracted much attention due to their unique leaf rolling behavior before oviposition. However, the lack of genomic data makes it difficult to understand the molecular mechanism behind their behavior and their evolutionary relationship with other species. To address this gap, we utilized Illumina and Nanopore sequencing platforms along with Hi-C technology to establish a highly accurate whole genome of A. dimidiatus at the chromosome level. The resulting genome size was determined to be 619.26 Mb, with a contig N50 of 50.89 Mb and GC content of 33.89%. Moreover, a total of 12,572 genes were identified, with 82.59% being functionally annotated, and 64.78% designated as repeat sequences. Our subsequent phylogenetic tree analysis revealed that Attelabidae's divergence from Curculionidae occurred approximately 161.52 million years ago. Furthermore, the genome of A. dimidiatus contained 334 expanded gene families and 1718 contracted gene families. In addition, using Phylogenetic Analysis by Maximum Likelihood (PAML), we identified 106 rapidly evolved genes exhibiting significant signals and 540 positively selected genes. Our research endeavors to serve as an invaluable genomic data resource for the study of Attelabidae, offering fresh perspectives for the exploration of its leaf rolling behavior.
Collapse
Affiliation(s)
- Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (M.X.); (Y.Y.)
| | - Yuhao Yao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (M.X.); (Y.Y.)
| | - Yuling Feng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| | - Lei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| | - Chuyang Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Jinwu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| |
Collapse
|