201
|
Fortunato ME, Colina CM. Effects of galactosylation in immunoglobulin G from all-atom molecular dynamics simulations. J Phys Chem B 2014; 118:9844-51. [PMID: 25116858 DOI: 10.1021/jp504243e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Explicit water atomistic molecular dynamics simulations (200 ns, ∼330,000 atoms) were performed to study the effects of galactosylation in the Fc domain of immunoglobulin G1. Two glycoforms were simulated to observe changes in protein-carbohydrate interactions and carbohydrate structure. A high degree of flexibility was observed in the small hinge region of the protein, while large domains remained stable. The hinge region flexibility allowed both translation and rotation of the domains relative to each other, resulting in a large number of possible conformations available. The distributions of rotational orientations between the Fab1 and Fab2 domains showed that while these domains are able to orient themselves rather freely pointing in space they rotated in unison to remain rotationally oriented at specific angles. Additionally, removing specific terminal galactose residues increased the mobility of the carbohydrate, resulting in different protein-carbohydrate interactions. Glycosylation has been suggested as a route to improve the aggregation resistance of monoclonal antibodies for therapeutic treatments to aid the immune system. The results presented here may provide insight into the search for IgG molecules with increased aggregation resistance to be used as monoclonal antibodies.
Collapse
Affiliation(s)
- Michael E Fortunato
- Department of Materials Science and Engineering, The Pennsylvania State University , 320 Steidle Building, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
202
|
Shi HH, Goudar CT. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N-linked high mannose glycans. Biotechnol Bioeng 2014; 111:1907-19. [DOI: 10.1002/bit.25318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Helen H. Shi
- First Year Medical Student at Case Western Reserve School of Medicine; Process & Product Development; Amgen Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Chetan T. Goudar
- First Year Medical Student at Case Western Reserve School of Medicine; Process & Product Development; Amgen Inc.; One Amgen Center Drive Thousand Oaks California 91320
| |
Collapse
|
203
|
Formolo T, Heckert A, Phinney KW. Analysis of deamidation artifacts induced by microwave-assisted tryptic digestion of a monoclonal antibody. Anal Bioanal Chem 2014; 406:6587-98. [PMID: 25080027 DOI: 10.1007/s00216-014-8043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
The thorough characterization of biopharmaceuticals is essential for ensuring their quality and safety since many potential variations can cause changes to the properties of a drug that may be detrimental to the patient such as decreased efficacy, shorter half-life or increased immunogenicity. Prior to approval and release, protein-based drugs are subject to a battery of analyses to assess the nature of those parameters that are considered critical quality attributes. In some cases the analytical method used may itself cause modifications that are impossible to distinguish from those induced by the intended test conditions (e.g. storage time/temperature, light exposure) which are used to assess drug stability. It is therefore important to develop and utilize analytical methods which impose as few artifactual modifications as possible. Asparagine deamidation is a common protein modification and it is known to be induced during tryptic digestion. Therefore we examined common tryptic digestion protocols and compared their propensities towards asparagine modification. Since microwave assisted hydrolysis techniques are often used to shorten digestion times and the effect on deamidation is unknown we sought to compare this method against alternate digestion protocols.
Collapse
Affiliation(s)
- Trina Formolo
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA,
| | | | | |
Collapse
|
204
|
The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 2014; 30:107-12. [PMID: 25005678 DOI: 10.1016/j.copbio.2014.06.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022]
Abstract
Non-human mammalian cells such as CHO have been used predominantly for the production of biopharmaceuticals including monoclonal antibodies (Mabs). Although the glycosylation profile of these products is 'human-like' there is still the possibility of immunogenic epitopes such as α-Gal and Neu5Gc. Human cell lines have now been designed for high productivity of recombinant proteins and ensuring authentic glycosylation patterns. The control of glycosylation on such proteins is important for the efficacy of recombinant biopharmaceuticals as well as the immunogenic properties of viral vaccines such as influenza. We are now starting to understand some of the relationships between the structure of glycans and the function bestowed on the associated protein. This has promoted cell culture technologies for the targeted control of glycosylation to produce pre-determined glycan profiles of secreted products.
Collapse
|
205
|
Davies AM, Jefferis R, Sutton BJ. Crystal structure of deglycosylated human IgG4-Fc. Mol Immunol 2014; 62:46-53. [PMID: 24956411 PMCID: PMC4166458 DOI: 10.1016/j.molimm.2014.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/29/2014] [Indexed: 12/24/2022]
Abstract
The first crystal structure of deglycosylated human IgG4-Fc is reported at 2.7 Å resolution. The asymmetric unit comprises a novel interlocked arrangement of two IgG4-Fc molecules. The CH2 domains are oriented in an “open” arrangement. The structure of the CH2 domain DE loop is altered in the absence of carbohydrate. Crystal packing reveals a hexameric Fc arrangement.
The Fc region of IgG antibodies, important for effector functions such as antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement activation, contains an oligosaccharide moiety covalently attached to each CH2 domain. The oligosaccharide not only orients the CH2 domains but plays an important role in influencing IgG effector function, and engineering the IgG-Fc oligosaccharide moiety is an important aspect in the design of therapeutic monoclonal IgG antibodies. Recently we reported the crystal structure of glycosylated IgG4-Fc, revealing structural features that could explain the anti-inflammatory biological properties of IgG4 compared with IgG1. We now report the crystal structure of enzymatically deglycosylated IgG4-Fc, derived from human serum, at 2.7 Å resolution. Intermolecular CH2-CH2 domain interactions partially bury the CH2 domain surface that would otherwise be exposed by the absence of oligosaccharide, and two Fc molecules are interlocked in a symmetric, open conformation. The conformation of the CH2 domain DE loop, to which oligosaccharide is attached, is altered in the absence of carbohydrate. Furthermore, the CH2 domain FG loop, important for Fcγ receptor and C1q binding, adopts two different conformations. One loop conformation is unique to IgG4 and would disrupt binding, consistent with IgG4's anti-inflammatory properties. The second is similar to the conserved conformation found in IgG1, suggesting that in contrast to IgG1, the IgG4 CH2 FG loop is dynamic. Finally, crystal packing reveals a hexameric arrangement of IgG4-Fc molecules, providing further clues about the interaction between C1q and IgG.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom; Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| | - Roy Jefferis
- University of Birmingham, College of Medical & Dental Sciences, School of Immunity & Infection, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom; Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
206
|
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 2014; 30:571-83. [DOI: 10.1002/btpr.1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yolande Rouiller
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Marie-Noëlle Vesin
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| |
Collapse
|
207
|
Zheng K, Yarmarkovich M, Bantog C, Bayer R, Patapoff TW. Influence of glycosylation pattern on the molecular properties of monoclonal antibodies. MAbs 2014; 6:649-58. [PMID: 24662970 DOI: 10.4161/mabs.28588] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glycosylation is an important post-translational modification during protein production in eukaryotic cells, and it is essential for protein structure, stability, half-life, and biological functions. In this study, we produced various monoclonal antibody (mAb) glycoforms from Chinese hamster ovary (CHO) cells, including the natively glycosylated antibody, the enriched G0 form, the deglycosylated form, the afucosylated form, and the high mannose form, and we compared their intrinsic properties, side-by-side, through biophysical and biochemical approaches. Spectroscopic analysis indicates no measureable secondary or tertiary structural changes after in vitro or in vivo modification of the glycosylation pattern. Thermal unfolding experiments show that the high mannose and deglycosylated forms have reduced thermal stability of the CH2 domain compared with the other tested glycoforms. We also observed that the individual domain's thermal stability could be pH dependent. Proteolysis analysis indicates that glycosylation plays an important role in stabilizing mAbs against proteases. The stability of antibody glycoforms at the storage condition (2-8 °C) and at accelerated conditions (30 and 40 °C) was evaluated, and the results indicate that glycosylation patterns do not substantially affect the storage stability of the antibody we studied.
Collapse
Affiliation(s)
- Kai Zheng
- Late Stage Pharmaceutical Development; Genentech Inc.; South San Francisco, CA USA; Formerly at Oceanside Pharma Technical Development; Genentech Inc.; Oceanside, CA USA
| | - Mark Yarmarkovich
- Formerly at Oceanside Pharma Technical Development; Genentech Inc.; Oceanside, CA USA; Department of Cancer Biology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Christopher Bantog
- Formerly at Oceanside Pharma Technical Development; Genentech Inc.; Oceanside, CA USA; Department of Chemistry Development; Illumina Inc.; San Diego, CA USA
| | - Robert Bayer
- Formerly at Oceanside Pharma Technical Development; Genentech Inc.; Oceanside, CA USA; Biotherapeutics Development Unit; Novartis Inc.; San Diego, CA USA
| | - Thomas W Patapoff
- Early Stage Pharmaceutical Development; Genentech Inc.; South San Francisco, CA USA
| |
Collapse
|
208
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
209
|
Yang JM, Ai J, Bao Y, Yuan Z, Qin Y, Xie YW, Tao D, Fu D, Peng Y. Investigation of the correlation between charge and glycosylation of IgG1 variants by liquid chromatography–mass spectrometry. Anal Biochem 2014; 448:82-91. [DOI: 10.1016/j.ab.2013.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
210
|
Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J Mol Biol 2014; 426:1799-811. [PMID: 24522230 DOI: 10.1016/j.jmb.2014.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/05/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G (IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response are tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in FcγR affinity being modulated through shifts in Fc conformational sampling. Here, we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulfide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population.
Collapse
|
211
|
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681. [PMID: 24385630 DOI: 10.1126/science.1235681] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation plays a key role in a wide range of biological processes. Specific modification to a glycan's structure can directly modulate its biological function. Glycans are not only essential to glycoprotein folding, cellular homeostasis, and immune regulation but are involved in multiple disease conditions. An increased molecular and structural understanding of the mechanistic role that glycans play in these pathological processes has driven the development of therapeutics and illuminated novel targets for drug design. This knowledge has enabled the treatment of metabolic disorders and the development of antivirals and shaped cancer and viral vaccine strategies. Furthermore, an understanding of glycosylation has led to the development of specific drug glycoforms, for example, monoclonal antibodies, with enhanced potency.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
212
|
Ogata S, Shimizu C, Franco A, Touma R, Kanegaye JT, Choudhury BP, Naidu NN, Kanda Y, Hoang LT, Hibberd ML, Tremoulet AH, Varki A, Burns JC. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One 2013; 8:e81448. [PMID: 24324693 PMCID: PMC3855660 DOI: 10.1371/journal.pone.0081448] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.
Collapse
Affiliation(s)
- Shohei Ogata
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Chisato Shimizu
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Alessandra Franco
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Ranim Touma
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - John T. Kanegaye
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Biswa P. Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Natasha N. Naidu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Yutaka Kanda
- Kyowa Hakko Kirin California, Inc., La Jolla, California, United States of America
| | - Long T. Hoang
- Division of Infectious Disease 1, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L. Hibberd
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Adriana H. Tremoulet
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
213
|
Costa AR, Withers J, Rodrigues ME, McLoughlin N, Henriques M, Oliveira R, Rudd PM, Azeredo J. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SPRINGERPLUS 2013; 2:25. [PMID: 23487430 PMCID: PMC3592997 DOI: 10.1186/2193-1801-2-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/23/2013] [Indexed: 11/10/2022]
Abstract
Microcarriers are widely used for the large-scale culture of attachment-dependent cells with increased cell densities and, ultimately, higher product yield. In these processes, the specific culture conditions can affect the quality of the product, which is closely related to its glycosylation pattern. Furthermore, the lack of studies in the area reinforces the need to better understand the effects of microcarrier culture in product glycosylation. Consequently, in this work, the glycosylation profile of a monoclonal antibody (mAb) produced by adherent CHO-K1 cells grown in Cytodex 3 was evaluated under different conditions, and compared to that obtained of typical adherent cultures. It was found that microcarrier cultures result in a glycosylation profile with different characteristics from T-flask cultures, with a general increase in galactosylation and decrease in fucosylation levels, both with a potentially positive impact on mAb activity. Sialylation also varied but without a general tendency. This study then showed that the specific culture conditions used in microcarrier culture influence the mAb glycan profile, and each functional element (galactose, core fucose, sialic acid) is independently affected by these conditions. In particular, great reductions of fucosylation (from 79 to 55%) were obtained when using half volume at inoculation, and notable decreases in sialylation (from 23 to 2%) and glycoform heterogeneity (from 20 to 11 glycoforms) were observed for shake flask culture, potentially associated with the improved cell densities achieved in these culture vessels.
Collapse
Affiliation(s)
- Ana Rita Costa
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joanne Withers
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Maria Elisa Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Niaobh McLoughlin
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Mariana Henriques
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosário Oliveira
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pauline M Rudd
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Joana Azeredo
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
214
|
Hristodorov D, Fischer R, Linden L. With or without sugar? (A)glycosylation of therapeutic antibodies. Mol Biotechnol 2013; 54:1056-68. [PMID: 23097175 DOI: 10.1007/s12033-012-9612-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | |
Collapse
|
215
|
Alsenaidy MA, Kim JH, Majumdar R, Weis DD, Joshi SB, Tolbert TJ, Middaugh CR, Volkin DB. High-throughput biophysical analysis and data visualization of conformational stability of an IgG1 monoclonal antibody after deglycosylation. J Pharm Sci 2013; 102:3942-56. [PMID: 24114789 DOI: 10.1002/jps.23730] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial or complete enzymatic removal of the N-linked Fc glycan, were compared with the untreated mAb over a wide range of temperature (10°C-90°C) and solution pH (3-8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams. Subtle-to-larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in the physical stability of a mAb glycoform. On the basis of these results, a two-step methodology was used in which conformational stability of a mAb glycoform is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques, and data visualization methods. With this approach, a high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Golay J, Semenzato G, Rambaldi A, Foà R, Gaidano G, Gamba E, Pane F, Pinto A, Specchia G, Zaja F, Regazzi M. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs 2013; 5:826-37. [PMID: 23933992 DOI: 10.4161/mabs.26008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anti-CD20 antibody rituximab (RTX; Rituxan®, MabThera®) was the first anti-cancer antibody approved by the US Food and Drug Administration in 1997 and it is now the most-studied unconjugated therapeutic antibody. The knowledge gained over the past 15 y on the pharmacodynamics (PD) of this antibody has led to the development of a new generation of anti-CD20 antibodies with enhanced efficacy in vitro. Studies on the pharmacokinetics (PK) properties and the effect of factors such as tumor load and localization, antibody concentration in the circulation and gender on both PK and clinical response has allowed the design of optimized schedules and novel routes of RTX administration. Although clinical results using newer anti-CD20 antibodies, such as ofatumumab and obinutuzumab, and novel administration schedules for RTX are still being evaluated, the knowledge gained so far on RTX PK and PD should also be relevant for other unconjugated monoclonal antibody therapeutics, and will be critically reviewed here.
Collapse
Affiliation(s)
- Josée Golay
- Division of Hematology; Ospedale Papa Giovanni XXIII; Bergamo, Italy
| | - Gianpietro Semenzato
- Padua University School of Medicine; Hematology Branch; Department of Medicine; Padua, Italy
| | | | - Robin Foà
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; University "Sapienza"; Rome, Italy
| | - Gianluca Gaidano
- Division of Hematology; Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara, Italy
| | | | - Fabrizio Pane
- Dipartimento di Medicina Clinica e Chirurgia; Università di Napoli Federico II and Ceinge-Biotecnologie Avanzate; Naples, Italy
| | - Antonello Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit; Istituto Nazionale Tumori; Fondazione 'G.Pascale'; IRCCS; Naples, Italy
| | | | - Francesco Zaja
- Clinica Ematologica; DISM, AOUD S.M. Misericordia; Udine, Italy
| | | |
Collapse
|
217
|
Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 2013; 34:281-99. [PMID: 23919242 DOI: 10.3109/07388551.2013.793649] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of the biopharmaceutical industry represented a major revolution for modern medicine, through the development of recombinant therapeutic proteins that brought new hope for many patients with previously untreatable diseases. There is a ever-growing demand for these therapeutics that forces a constant technological evolution to increase product yields while simultaneously reducing costs. However, the process changes made for this purpose may also affect the quality of the product, a factor that was initially overlooked but which is now a major focus of concern. Of the many properties determining product quality, glycosylation is regarded as one of the most important, influencing, for example, the biological activity, serum half-life and immunogenicity of the protein. Consequently, monitoring and control of glycosylation is now critical in biopharmaceutical manufacturing and a requirement of regulatory agencies. A rapid evolution is being observed in this context, concerning the influence of glycosylation in the efficacy of different therapeutic proteins, the impact on glycosylation of a diversity of parameters/processes involved in therapeutic protein production, the analytical methodologies employed for glycosylation monitoring and control, as well as strategies that are being explored to use this property to improve therapeutic protein efficacy (glycoengineering). This work reviews the main findings on these subjects, providing an up-to-date source of information to support further studies.
Collapse
Affiliation(s)
- Ana Rita Costa
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | | | | | | | | |
Collapse
|
218
|
ADME of monoclonal antibody biotherapeutics: knowledge gaps and emerging tools. Bioanalysis 2013; 5:2003-14. [DOI: 10.4155/bio.13.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Absorption, distribution, metabolism and excretion (ADME) data are pivotal for small-molecule drug development, with well-developed in vitro and in vivo correlation tools and guidances from regulatory agencies. In the past two decades, monoclonal antibody (mAb) biotherapeutics have been successfully approved, including derived novel conjugates of active molecules (toxins or bioactive peptides) for specific target delivery or half-life extension. However, ADME information of mAb therapeutics lags behind that of small molecules due to the complex nature of the molecules and lack of appropriate tools to study drug exposure, biotransformation, and target engagement in the vascular and tissue spaces. In this perspective, the current knowledge gaps on ADME of mAb-related therapeutics are reviewed with potential solutions from emerging analytical technologies.
Collapse
|
219
|
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. ACTA ACUST UNITED AC 2013; 210:1695-710. [PMID: 23897981 PMCID: PMC3754863 DOI: 10.1084/jem.20130579] [Citation(s) in RCA: 1139] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment. Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Tyler R Simpson
- Department of Immunology, M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Yu X, Baruah K, Harvey D, Vasiljevic S, Alonzi DS, Song BD, Higgins M, Bowden TA, Scanlan CN, Crispin M. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J Am Chem Soc 2013; 135:9723-32. [PMID: 23745692 PMCID: PMC3788586 DOI: 10.1021/ja4014375] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 12/20/2022]
Abstract
Biologically active conformations of the IgG1 Fc homodimer are maintained by multiple hydrophobic interactions between the protein surface and the N-glycan. The Fc glycan modulates biological effector functions, including antibody-dependent cellular cytotoxicity (ADCC) which is mediated in part through the activatory Fc receptor, FcγRIIIA. Consistent with previous reports, we found that site-directed mutations disrupting the protein-carbohydrate interface (F241A, F243A, V262E, and V264E) increased galactosylation and sialylation of the Fc and, concomitantly, reduced the affinity for FcγRIIIA. We rationalized this effect by crystallographic analysis of the IgG1 Fc F241A mutant, determined here to a resolution of 1.9 Å, which revealed localized destabilization of this glycan-protein interface. Given that sialylation of Fc glycans decreases ADCC, one explanation for the effect of these mutants on FcγRIIIA binding is their increased sialylation. However, a glycan-engineered IgG1 with hypergalactosylated and hypersialylated glycans exhibited unchanged binding affinity to FcγRIIIA. Moreover, when we expressed these mutants as a chemically uniform (Man5GlcNAc2) glycoform, the individual effect of each mutation on FcγRIIIA affinity was preserved. This effect was broadly recapitulated for other Fc receptors (FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIB). These data indicate that destabilization of the glycan-protein interactions, rather than increased galactosylation and sialylation, modifies the Fc conformation(s) relevant for FcγR binding. Engineering of the protein-carbohydrate interface thus provides an independent parameter in the engineering of Fc effector functions and a route to the synthesis of new classes of Fc domain with novel combinations of affinities for activatory and inhibitory Fc receptors.
Collapse
Affiliation(s)
- Xiaojie Yu
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Kavitha Baruah
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - David
J. Harvey
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Snezana Vasiljevic
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Dominic S. Alonzi
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Byeong-Doo Song
- Scripps Korea Antibody
Institute, 192-1 Hyoja-dong, Chuncheon, Gangwon 200-701,
Korea
| | - Matthew
K. Higgins
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Thomas A. Bowden
- Division of Structural
Biology, University of Oxford, Wellcome
Trust Centre for Human
Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Christopher N. Scanlan
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Max Crispin
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| |
Collapse
|
221
|
Thuy TT, Thorsén G. Glycosylation profiling of therapeutic antibodies in serum samples using a microfluidic CD platform and MALDI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1053-1063. [PMID: 23633012 DOI: 10.1007/s13361-013-0623-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
The serum clearance rate of therapeutic antibodies is important as it affects the clinical efficacy, required dose, and dose frequency. The glycosylation of antibodies has in some studies been shown to have an impact on the elimination rates in vivo. Monitoring changes to the glycan profiles in pharmacokinetics studies can reveal whether the clearance rates of the therapeutic antibodies depend on the different glycoforms, thereby providing useful information for improvement of the drugs. In this paper, a novel method for glycosylation analysis of therapeutic antibodies in serum samples is presented. A microfluidic compact-disc (CD) platform in combination with MALDI-MS was used to monitor changes to the glycosylation profiles of samples incubated in vitro. Antibodies were selectively purified from serum using immunoaffinity capture on immobilized target antigens. The glycans were enzymatically released, purified, and finally analyzed by MALDI-TOF-MS. To simulate changes to glycan profiles after administration in vivo, a therapeutic antibody was incubated in serum with the enzyme α1-2,3 mannosidase to artificially reduce the amount of the high mannose glycoforms. Glycan profiles were monitored at specific intervals during the incubation. The relative abundance of the high mannose 5 glycoform was clearly found to decrease and, simultaneously, that of high mannose 4 increased over the incubation period. The method can be performed in a rapid, parallel, and automated fashion for glycosylation profiling consuming low amounts of samples and reagents. This can contribute to less labor work and reduced cost of the studies of therapeutic antibodies glycosylation in vitro and in vivo.
Collapse
MESH Headings
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens/chemistry
- Bevacizumab
- Cetuximab
- Glycosylation
- Humans
- Infliximab
- Microfluidic Analytical Techniques
- Molecular Structure
- Polysaccharides/chemistry
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Tran Thi Thuy
- Department of Analytical Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | | |
Collapse
|
222
|
Costa AR, Withers J, Rodrigues ME, McLoughlin N, Henriques M, Oliveira R, Rudd PM, Azeredo J. The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. N Biotechnol 2013; 30:563-72. [DOI: 10.1016/j.nbt.2012.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
223
|
Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A. A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol Prog 2013; 29:697-706. [DOI: 10.1002/btpr.1693] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Katharine Cain
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Shirley Peters
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Hanna Hailu
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Bernie Sweeney
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Paul Stephens
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - James Heads
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Kaushik Sarkar
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Andy Ventom
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Catherine Page
- Faculty of Life Sciences; The Michael Smith Building, The University of Manchester; Manchester M13 9PT England
| | - Alan Dickson
- Faculty of Life Sciences; The Michael Smith Building, The University of Manchester; Manchester M13 9PT England
| |
Collapse
|
224
|
Reusch D, Haberger M, Selman MH, Bulau P, Deelder AM, Wuhrer M, Engler N. High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 2013; 432:82-9. [DOI: 10.1016/j.ab.2012.09.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/08/2023]
|
225
|
Bowden TA, Baruah K, Coles CH, Harvey DJ, Yu X, Song BD, Stuart DI, Aricescu AR, Scanlan C, Jones EY, Crispin M. Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc 2012; 134:17554-63. [PMID: 23025485 PMCID: PMC3593610 DOI: 10.1021/ja306068g] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 12/17/2022]
Abstract
Human IgG Fc glycosylation modulates immunological effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. Engineering of Fc glycans therefore enables fine-tuning of the therapeutic properties of monoclonal antibodies. The N-linked glycans of Fc are typically complex-type, forming a network of noncovalent interactions along the protein surface of the Cγ2 domain. Here, we manipulate the mammalian glycan-processing pathway to trap IgG1 Fc at sequential stages of maturation, from oligomannose- to hybrid- to complex-type glycans, and show that the Fc is structurally stabilized following the transition of glycans from their hybrid- to complex-type state. X-ray crystallographic analysis of this hybrid-type intermediate reveals that N-linked glycans undergo conformational changes upon maturation, including a flip within the trimannosyl core. Our crystal structure of this intermediate reveals a molecular basis for antibody biogenesis and provides a template for the structure-guided engineering of the protein-glycan interface of therapeutic antibodies.
Collapse
Affiliation(s)
- Thomas A. Bowden
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Kavitha Baruah
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Charlotte H. Coles
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - David J. Harvey
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Xiaojie Yu
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Byeong-Doo Song
- Scripps Korea Antibody
Institute, 192-1 Hyoja-dong, Chuncheon, Gangwon 200-701,
Korea
| | - David I. Stuart
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science
and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - A. Radu Aricescu
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Christopher
N. Scanlan
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - E. Yvonne Jones
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Max Crispin
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| |
Collapse
|
226
|
Abstract
Immunoglobulin (Ig) G is formed by two antigen-binding moieties termed Fabs and a conserved Fc -portion, which interacts with components of the immune systems. Within the Fc, N-linked carbohydrates are attached to each conserved asparagine residue at position 297 within the CH2 domain. These oligosaccharide moieties introduce a higher degree of heterogeneity within the molecule, by influencing stability of the antibody and its mediated effector functions, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). The carbohydrate moieties can vary strongly depending on the production host and can be manipulated by different fermentation conditions, thereby influencing the function of the antibody. Therefore it is necessary to carefully monitor changes in the carbohydrate composition during cell line development and production processes. This chapter describes two different mass spectrometry based methods used for analyses of the carbohydrate moieties attached to the Fc-part of human IgG1. In the first approach, the glycans are released from the antibody by endoglycosidase (Peptide N Glycosidase F) digestion and monitored by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MS), whereas in the second method the carbohydrate structures, still attached to an enzymatically produced Fc-fragment, are analyzed by electrospray ionization mass spectrometry.
Collapse
|
227
|
Lu Y, Westland K, Ma YH, Gadgil H. Evaluation of effects of Fc domain high-mannose glycan on antibody stability. J Pharm Sci 2012; 101:4107-17. [PMID: 22927056 DOI: 10.1002/jps.23284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Accepted: 07/12/2012] [Indexed: 02/02/2023]
Abstract
Elevated levels of CH2 domain N-linked high-mannose (HM) glycans are commonly observed in therapeutic monoclonal antibodies at various stages of the development. The effect of HM glycans on antibody stability was evaluated by using two approaches. In the first approach, immunoglobulin G (IgG) 1 material containing 21% HM was incubated at 29°C for 6 weeks and fractionated into monomeric and aggregate species by using size-exclusion chromatography (SEC). These fractions were analyzed for the levels of HM. No significant difference was observed in the amount of HM in aggregate and monomer fractions indicating that the HM-containing fractions did not have a greater tendency to form aggregates. In the second approach, both IgG1 material and IgG2 material were separated by Concanavalin-A affinity chromatography into a HM-enriched fraction and a HM-depleted fraction, respectively. Real-time and accelerated stability studies were carried out with these fractions together with untreated samples under standard formulation conditions. The stability of these fractions over time was monitored using SEC and cation-exchange chromatography. No significant difference was observed in rates of aggregation or charge variant formation. These data indicate that HM glycans had no effect on the IgG1 and IgG2 product's stability under the formulation conditions studied.
Collapse
Affiliation(s)
- Yuefeng Lu
- Process and Product Engineering, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|
228
|
Lingg N, Zhang P, Song Z, Bardor M. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 2012; 7:1462-72. [PMID: 22829536 DOI: 10.1002/biot.201200078] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022]
Abstract
Biopharmaceuticals currently represent the fastest growing sector of the pharmaceutical industry, mainly driven by a rapid expansion in the manufacture of recombinant protein-based drugs. Glycosylation is the most prominent post-translational modification occurring on these protein drugs. It constitutes one of the critical quality attributes that requires thorough analysis for optimal efficacy and safety. This review examines the functional importance of glycosylation of recombinant protein drugs, illustrated using three examples of protein biopharmaceuticals: IgG antibodies, erythropoietin and glucocerebrosidase. Current analytical methods are reviewed as solutions for qualitative and quantitative measurements of glycosylation to monitor quality target product profiles of recombinant glycoprotein drugs. Finally, we propose a framework for designing the quality target product profile of recombinant glycoproteins and planning workflow for glycosylation analysis with the selection of available analytical methods and tools.
Collapse
Affiliation(s)
- Nico Lingg
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | |
Collapse
|
229
|
Nagae M, Yamaguchi Y. Function and 3D structure of the N-glycans on glycoproteins. Int J Mol Sci 2012; 13:8398-8429. [PMID: 22942711 PMCID: PMC3430242 DOI: 10.3390/ijms13078398] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/28/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most common post-translational modifications in eukaryotic cells and plays important roles in many biological processes, such as the immune response and protein quality control systems. It has been notoriously difficult to study glycoproteins by X-ray crystallography since the glycan moieties usually have a heterogeneous chemical structure and conformation, and are often mobile. Nonetheless, recent technical advances in glycoprotein crystallography have accelerated the accumulation of 3D structural information. Statistical analysis of “snapshots” of glycoproteins can provide clues to understanding their structural and dynamic aspects. In this review, we provide an overview of crystallographic analyses of glycoproteins, in which electron density of the glycan moiety is clearly observed. These well-defined N-glycan structures are in most cases attributed to carbohydrate-protein and/or carbohydrate-carbohydrate interactions and may function as “molecular glue” to help stabilize inter- and intra-molecular interactions. However, the more mobile N-glycans on cell surface receptors, the electron density of which is usually missing on X-ray crystallography, seem to guide the partner ligand to its binding site and prevent irregular protein aggregation by covering oligomerization sites away from the ligand-binding site.
Collapse
Affiliation(s)
| | - Yoshiki Yamaguchi
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-48-467-9619; Fax: +81-48-467-9620
| |
Collapse
|
230
|
Alessandri L, Ouellette D, Acquah A, Rieser M, Leblond D, Saltarelli M, Radziejewski C, Fujimori T, Correia I. Increased serum clearance of oligomannose species present on a human IgG1 molecule. MAbs 2012; 4:509-20. [PMID: 22669558 PMCID: PMC3499345 DOI: 10.4161/mabs.20450] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The role of Fc glycans on clearance of IgG molecule has been examined by various groups in experiments where specific glycans have been enriched or the entire spectrum of glycans was studied after administration in pre-clinical or clinical pharmacokinetic (PK) studies. The overall conclusions from these studies are inconsistent, which may result from differences in antibody structure or experimental design. In the present study a well-characterized recombinant monoclonal IgG1 molecule (mAb-1) was analyzed from serum samples obtained from a human PK study. mAb-1 was recovered from serum using its ligand cross-linked to Sepharose beads. The overall purity and recovery of all isoforms were carefully evaluated using a variety of methods. Glycans were then enzymatically cleaved, labeled using 2-aminobenzamide and analyzed by normal phase high performance liquid chromatography. The assays for recovering mAb-1 from serum and subsequent glycan analysis were rigorously qualified at a lower limit of quantitation of 15 μg/mL, thus permitting analysis to day 14 of the clinical PK study. Eight glycans were monitored and classified into two groups: (1) the oligomannose type structures (M5, M6 and M7) and (2) fucosylated biantennary oligosaccharides (FBO) structures (NGA2F, NA1F, NA2F, NA1F-GlcNAc and NGA2F-GlcNAc). We observed that the oligomannose species were cleared at a much faster rate (40%) than FBOs and conclude that high mannose species should be carefully monitored and controlled as they may affect PK of the therapeutic; they should thus be considered an important quality attribute. These observations were only possible through the application of rigorous analytical methods that we believe will need to be employed when comparing innovator and biosimilar molecules.
Collapse
|
231
|
Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs 2012; 4:475-87. [PMID: 22699308 PMCID: PMC3499342 DOI: 10.4161/mabs.20737] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effector functions of therapeutic antibodies are strongly affected by the specific glycans added to the Fc domain during post-translational processing. Antibodies bearing high levels of N-linked mannose-5 glycan (Man5) have been reported to exhibit enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared with antibodies with fucosylated complex or hybrid glycans. To better understand the relationship between antibodies with high levels of Man5 and their biological activity in vivo, we developed an approach to generate substantially homogeneous antibodies bearing the Man5 glycoform. A mannosidase inhibitor, kifunensine, was first incorporated in the cell culture process to generate antibodies with a distribution of high mannose glycoforms. Antibodies were then purified and treated with a mannosidase for trimming to Man5 in vitro. This 2-step approach can consistently generate antibodies with > 99% Man5 glycan. Antibodies bearing varying levels of Man5 were studied to compare ADCC and Fcγ receptor binding, and they showed enhanced ADCC activity and increased binding affinity to the FcγRIIIA. In addition, the clearance rate of antibodies bearing Man8/9 and Man5 glycans was determined in a pharmacokinetics study in mice. When compared with historical data, the antibodies bearing the high mannose glycoform exhibited faster clearance rate compared with antibodies bearing the fucosylated complex glycoform, while the pharmacokinetic properties of antibodies with Man8/9 and Man5 glycoforms appeared similar. In addition, we identified the presence of a mannosidase in mouse serum that converted most Man8/9 to Man6 after 24 h.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacokinetics
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/immunology
- Area Under Curve
- Binding, Competitive
- CHO Cells
- Cell Line, Tumor
- Cell Survival/drug effects
- Cells, Cultured
- Cricetinae
- Cricetulus
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Mannose/immunology
- Mannose/metabolism
- Mannosidases/metabolism
- Metabolic Clearance Rate
- Mice
- Mice, Nude
- Polysaccharides/immunology
- Polysaccharides/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Marcella Yu
- Oceanside Pharma Technical Development; Genentech, Inc.; Oceanside, CA USA
- Commercial Cell Culture Development; Genzyme; A Sanofi Company; Framingham, MA USA
| | - Darren Brown
- Oceanside Pharma Technical Development; Genentech, Inc.; Oceanside, CA USA
- Chemistry Development; Illumina Inc.; San Diego, CA USA
| | - Chae Reed
- BioAnalytical Sciences; Genentech, Inc.; San Francisco, CA USA
| | - Shan Chung
- BioAnalytical Sciences; Genentech, Inc.; San Francisco, CA USA
| | - Jeff Lutman
- Early Development Pharmacokinetics Pharmacodynamics, Genentech, Inc.; San Francisco, CA USA
| | - Eric Stefanich
- Early Development Pharmacokinetics Pharmacodynamics, Genentech, Inc.; San Francisco, CA USA
| | - Anne Wong
- Assay & Automation Technology; Genentech, Inc.; San Francisco, CA USA
| | | | - Robert Bayer
- Oceanside Pharma Technical Development; Genentech, Inc.; Oceanside, CA USA
- Genomics Institute of the Novartis Research Foundation; San Diego CA USA
| |
Collapse
|
232
|
Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions. J Mol Biol 2012; 420:1-7. [PMID: 22484364 PMCID: PMC3437440 DOI: 10.1016/j.jmb.2012.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/09/2012] [Accepted: 04/03/2012] [Indexed: 01/07/2023]
Abstract
Serum IgG is a potent inhibitor of monoclonal antibody (mAb) binding to the cell-surface Fcγ receptors (FcγRs), which mediate cytotoxic and phagocytic effector functions. Here, we show that this competition can be eliminated, selectively, by the introduction to serum of (i) an enzyme that displaces Fc from FcγRs and (ii) a modification present in the therapeutic mAb that renders it resistant to that enzyme. Specifically, we show that (i) EndoS (endoglycosidase S) cleaves only complex-type glycans of the type found on IgG but (ii) is inactive against an engineered IgG Fc with oligomannose-type glycans. EndoS thus reduces FcγR binding of serum IgG, but not that of engineered mAb. Introduction of both the engineered mAb and endoglycosidase in serum leads to a dramatic increase in FcγR binding compared to the introduction of mAb in serum alone. Antibody receptor refocusing is a general technique for boosting the effector signal of therapeutic antibodies.
Collapse
|
233
|
Bumbaca D, Boswell CA, Fielder PJ, Khawli LA. Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics. AAPS JOURNAL 2012; 14:554-8. [PMID: 22610647 DOI: 10.1208/s12248-012-9369-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
234
|
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 2012; 28:608-22. [DOI: 10.1002/btpr.1548] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Indexed: 12/12/2022]
|
235
|
Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P, Wooden S, Gately D. Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs 2012; 4:310-8. [PMID: 22531445 DOI: 10.4161/mabs.19873] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humanized monoclonal antibodies (mAbs) are the fastest growing class of biological therapeutics that are being developed for various medical indications, and more than 30 mAbs are already approved and in the market place. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of several therapeutic antibodies, particularly oncology targeting mAbs. The ADCC assay is a complicated and highly variable assay. Thus, the use of an ADCC assay as a lot release test or a stability test for clinical trial batches of mAbs has been a substantial challenge to install in quality control laboratories. We describe here the development and validation of an alternate approach, an ADCC-reporter gene assay that is based on the key attributes of the PBMC-based ADCC assay. We tested the biological relevance of this assay using an anti-CD20 based model and demonstrated that this ADCC-reporter assay correlated well with standard ADCC assays when induced with the drugable human isotypes [IgG1, IgG2, IgG4, IgG4S > P (S228P) and IgG4PAA (S228P, F234A, L235A)] and with IgG1 isotype variants with varying amounts of fucosylation. This data demonstrates that the ADCC-reporter gene assay has performance characteristics (accuracy, precision and robustness) to be used not only as a potency assay for lot release and stability testing for antibody therapeutics, but also as a key assay for the characterization and process development of therapeutic molecules.
Collapse
Affiliation(s)
- Bhavin S Parekh
- BioProduct Research and Development, Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Chung S, Quarmby V, Gao X, Ying Y, Lin L, Reed C, Fong C, Lau W, Qiu ZJ, Shen A, Vanderlaan M, Song A. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities. MAbs 2012; 4:326-40. [PMID: 22531441 DOI: 10.4161/mabs.19941] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its "regular" fucosylated counterpart and a series of mixtures containing varying proportions of "regular" and afucosylated materials. Compared with the "regular" fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC 50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.
Collapse
Affiliation(s)
- Shan Chung
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One 2012; 7:e34226. [PMID: 22485160 PMCID: PMC3317771 DOI: 10.1371/journal.pone.0034226] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/26/2012] [Indexed: 11/19/2022] Open
Abstract
Recombinant production of therapeutically active proteins has become a central focus of contemporary life science research. These proteins are often produced in mammalian cells, in order to obtain products with post-translational modifications similar to their natural counterparts. However, in cases where a fast and flexible system for recombinant production of proteins is needed, the use of mammalian cells is limited. The baculoviral insect cell system has proven to be a powerful alternative for the expression of a wide range of recombinant proteins in short time frames. The major drawback of baculoviral systems lies in the inability to perform mammalian-like glycosylation required for the production of therapeutic glycoproteins. In this study we integrated sequences encoding Caenorhabditis elegans N-acetylglucosaminyltransferase II and bovine β1,4-galactosyltransferase I into the backbone of a baculovirus genome. The thereby generated SweetBac virus was subsequently used for the production of the human HIV anti-gp41 antibody 3D6 by integrating heavy and light chain open reading frames into the SweetBac genome. The parallel expression of target genes and glycosyltransferases reduced the yield of secreted antibody. However, the overall expression rate, especially in the recently established Tnao38 cell line, was comparable to that of transient expression in mammalian cells. In order to evaluate the ability of SweetBac to generate mammalian-like N-glycan structures on 3D6 antibody, we performed SDS-PAGE and tested for the presence of terminal galactose using Riccinus communis agglutinin I. The mammalianised variants of 3D6 showed highly specific binding to the lectin, indicating proper functionality. To confirm these results, PNGase A released N-glycans were analyzed by MALDI-TOF-MS and shown to contain structures with mainly one or two terminal galactose residues. Since the presence of specific N-glycans has an impact on antibodies ability to exert different effector functions, we tested the binding to human Fc gamma receptor I present on U937 cells.
Collapse
|
238
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
239
|
Zhong X, Cooley C, Seth N, Juo ZS, Presman E, Resendes N, Kumar R, Allen M, Mosyak L, Stahl M, Somers W, Kriz R. Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: Molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotechnol Bioeng 2012; 109:1723-34. [DOI: 10.1002/bit.24448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/29/2022]
|
240
|
Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, Hiatt A, Ngo L, Steinkellner H, Whaley KJ, Olinger GG. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci U S A 2011; 108:20690-4. [PMID: 22143789 PMCID: PMC3251097 DOI: 10.1073/pnas.1108360108] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 μg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 μg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 μg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.
Collapse
|
241
|
Triguero A, Cabrera G, Rodríguez M, Soto J, Zamora Y, Pérez M, Wormald MR, Cremata JA. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1120-30. [PMID: 21819534 DOI: 10.1111/j.1467-7652.2011.00638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant cells are able to perform most of the post-translational modifications that are required by recombinant proteins to achieve adequate bioactivity and pharmacokinetics. However, regarding N-glycosylation the processing of plant N-glycans in the Golgi apparatus displays major differences when compared with that of mammalian cells. These differences in N-glycosylation are expected to influence serum clearance rate of plant-derived monoclonal antibodies. The monoclonal antibody against the hepatitis B virus surface antigen expressed in Nicotiana tabacum leaves without KDEL endoplasmic reticulum (ER) retention signal (CB.Hep1(-)KDEL) and with a KDEL (Lys-Asp-Glu-Leu) fused to both IgG light and heavy chains (CB.Hep1(+)KDEL) were tested for in vivo stability in mice. Full characterization of N-glycosylation and aggregate formation in each monoclonal antibody batch was determined. The mouse counterpart (CB.Hep1) was used as control. Both (CB.Hep1(-)KDEL) and (CB.Hep1(+)KDEL) showed a faster initial clearance rate (first 24 h) compared with the analogous murine antibody while the terminal phase was similar in the three antibodies. Despite the differences between CB.Hep1(+)KDEL and CB.Hep1(-)KDEL N-glycans, the in vivo elimination in mice was indistinguishable from each other and higher than the murine monoclonal antibody. Molecular modelling confirmed that N-glycans linked to plantibodies were oriented away from the interdomain region, increasing the accessibility of the potential glycan epitopes by glycoprotein receptors that might be responsible for the difference in stability of these molecules.
Collapse
Affiliation(s)
- Ada Triguero
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor. J Am Chem Soc 2011; 133:18975-91. [PMID: 22004528 DOI: 10.1021/ja208390n] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structurally well-defined IgG-Fc glycoforms are highly demanded for understanding the effects of glycosylation on an antibody's effector functions. We report in this paper chemoenzymatic synthesis and Fcγ receptor binding of an array of homogeneous IgG-Fc glycoforms. The chemoenzymatic approach consists of the chemical synthesis of defined N-glycan oxazolines as donor substrates, the expression of the Fc domain in a CHO cell line in the presence of an α-mannosidase inhibitor kifunensine, and an endoglycosidase-catalyzed glycosylation of the deglycosylated Fc domain (GlcNAc-Fc homodimer) with the synthetic glycan oxazolines. The enzyme from Arthrobacter protophormiae (Endo-A) was found to be remarkably efficient to take various modified N-glycan core oxazolines, including the bisecting sugar-containing derivatives, for Fc glycosylation remodeling, resulting in the formation of the corresponding homogeneous Fc glycoforms. Nevertheless, neither Endo-A nor the Mucor hiemalis endoglycosidase mutants (EndoM-N175A and EndoM-N175Q) were able to transfer full-length complex-type N-glycan to the Fc domain, implicating the limitations of these two enzymes in Fc glycosylation remodeling. Surface plasmon resonance (SPR) binding studies with the synthetic IgG-Fc glycoforms unambiguously proved that the presence of a bisecting GlcNAc moiety could significantly enhance the binding of Fc to FcγRIIIa, the activating Fcγ receptor, independent of Fc core-fucosylation. Interestingly, the Fc glycoforms carrying an unusual bisecting sugar moiety such as a mannose or a LacNAc moiety also demonstrated enhanced affinity to FcγRIIIa. On the orther hand, the presence of a bisecting GlcNAc or core-fucosylation had little effect on the affinity of Fc to the inhibitory Fcγ receptor, FcγRIIb. Our experimental data also showed that the α-linked mannose residues in the pentasaccharide Man3GlcNAc2 core was essential to maintain a high affinity of Fc to both FcγRIIIa and FcγRIIb. The synthetic homogeneous Fc glycoforms thus provide a useful tool for elucidating how a fine Fc N-glycan structure precisely affects the function of the Fc domain.
Collapse
Affiliation(s)
- Guozhang Zou
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
243
|
Bongers J, Devincentis J, Fu J, Huang P, Kirkley DH, Leister K, Liu P, Ludwig R, Rumney K, Tao L, Wu W, Russell RJ. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography–mass spectrometry peptide mapping. J Chromatogr A 2011; 1218:8140-9. [DOI: 10.1016/j.chroma.2011.08.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
244
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
245
|
Yagi Y, Yamamoto S, Kakehi K, Hayakawa T, Ohyama Y, Suzuki S. Application of partial-filling capillary electrophoresis using lectins and glycosidases for the characterization of oligosaccharides in a therapeutic antibody. Electrophoresis 2011; 32:2979-85. [DOI: 10.1002/elps.201100126] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
246
|
Liu L, Stadheim A, Hamuro L, Pittman T, Wang W, Zha D, Hochman J, Prueksaritanont T. Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: a comparative study with CHO produced materials. Biologicals 2011; 39:205-10. [PMID: 21723741 DOI: 10.1016/j.biologicals.2011.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 12/22/2022] Open
Abstract
A glycoengineered Pichia pastoris host was used to produce an IgG1 with either afucosylated N-glycosylation (afucosylated biantennary complex) or without N-glycosylation (N297A) while a wild type P. pastoris host was used to produce an IgG1 containing fungal-type N- and O-linked glycosylation. The PK properties of these antibodies were compared to a commercial IgG1 produced in CHO cells following intravenous administration in wild type C57B6, FcγR-/- or hFcRn transgenic mice. MAbs produced in glycoengineered yeast exhibited similar PK properties in wild type mice or FcγR-/- mice with respect to clearance (CL), volume of distribution at steady-state (Vss) and half-life (t(1/2)) to that produced in mammalian (CHO) cells, while the mAb produced in wild type yeast exhibited ∼2-3-fold faster CL, which might be due to the high mannose content interacting with mannose receptors. Furthermore, in vitro binding affinity to human FcRn or mouse FcRn was similar between the reference mAb and mAbs produced in humanized yeast, and the glycovariants produced in humanized yeast exhibited similar PK patterns in human FcRn transgenic mice and in wild type mice. These results suggest the potential application of P. pastoris as a production platform for clinically viable mAbs.
Collapse
Affiliation(s)
- Liming Liu
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Lattová E, Bartusik D, Spicer V, Jellusova J, Perreault H, Tomanek B. Alterations in glycopeptides associated with herceptin treatment of human breast carcinoma mcf-7 and T-lymphoblastoid cells. Mol Cell Proteomics 2011; 10:M111.007765. [PMID: 21610100 DOI: 10.1074/mcp.m111.007765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic humanized monoclonal antibody IgG1 known as Herceptin® has shown remarkable antitumor effects. Although this type of therapy has increased the cancer-free survival of patients, not all tumors respond to this treatment and cancers often develop resistance to the antibody. Despite the fact that Herceptin function has been extensively studied, the precise mechanism underlying its antitumor activity still remains incompletely defined. We previously demonstrated on human breast MCF-7 carcinoma and T-lymphoblastoid CEM cells that monoclonal antibody in combination with Lipoplex consisting of Lipofectamine mixed with plasmid DNA showed a more profound effect on cancer cell viability than antibody alone. The analyses of N-glycans isolated from cancer cells showed dramatic differences in profiles when cells were exposed to Herceptin. Moreover, the investigation of glycosylated peptides from the same cancer cell models after treatment revealed further alterations in the post-translational modifications. Tandem mass spectra obtained from the samples treated confirmed the presence of a series of glycopeptides bearing characteristic oligosaccharides as described in IgG1. However some of them differed by mass differences that corresponded to peptide backbones not described previously and more of them were detected from Herceptin treated samples than from cells transfected with Heceptin/Lipoplex. The results indicate that the presence of Lipoplex prevents antibody transformation and elongates its proper function. The better understanding of the multipart changes described in the glycoconjugates could provide new insights into the mechanism by which antibody induces regression in cancers.
Collapse
Affiliation(s)
- Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
248
|
Pacis E, Yu M, Autsen J, Bayer R, Li F. Effects of cell culture conditions on antibody N-linked glycosylation-what affects high mannose 5 glycoform. Biotechnol Bioeng 2011; 108:2348-58. [DOI: 10.1002/bit.23200] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/28/2011] [Accepted: 04/25/2011] [Indexed: 01/18/2023]
|
249
|
Zeck A, Pohlentz G, Schlothauer T, Peter-Katalinić J, Regula JT. Cell Type-Specific and Site Directed N-Glycosylation Pattern of FcγRIIIa. J Proteome Res 2011; 10:3031-9. [DOI: 10.1021/pr1012653] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Zeck
- Proteinanalytics, Biologics Research (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Gottfried Pohlentz
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Tilman Schlothauer
- Proteinanalytics, Biologics Research (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jörg Thomas Regula
- Proteinanalytics, Biologics Research (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
250
|
Palmberger D, Rendić D, Tauber P, Krammer F, Wilson IB, Grabherr R. Insect cells for antibody production: Evaluation of an efficient alternative. J Biotechnol 2011; 153:160-6. [DOI: 10.1016/j.jbiotec.2011.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/03/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022]
|