201
|
Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci 2014; 34:418-33. [PMID: 24403142 DOI: 10.1523/jneurosci.2712-13.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By combining experimental neuron models and mathematical tools, we developed a "systems" approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration.
Collapse
|
202
|
Abstract
Purpose of review The aims of this review is to suggest a new nomenclature and classification system for the diseases currently categorized as neurodegeneration with brain iron accumulation (NBIA) or dystonia-parkinsonism, and to discuss the mechanisms implicated in the pathogenesis of these diseases. Recent findings NBIA is a disease category encompassing syndromes with iron accumulation and prominent dystonia–parkinsonism. However, as there are many diseases with similar clinical presentations but without iron accumulation and/or known genetic cause, the current classification system and nomenclature remain confusing. The pathogenetic mechanisms of these diseases and the causes of gross iron accumulation and significant burden of neuroaxonal spheroids are also elusive. Recent genetic and functional studies have identified surprising links between NBIA, Parkinson's disease and lysosomal storage disorders (LSD) with the common theme being a combined lysosomal–mitochondrial dysfunction. We hypothesize that mitochondria and lysosomes form a functional continuum with a predominance of mitochondrial and lysosomal pathways in NBIA and LSD, respectively, and with Parkinson's disease representing an intermediate form of disease. Summary During the past 18 months, important advances have been made towards understanding the genetic and pathological underpinnings of the pallidopyramidal syndromes with important implications for clinical practice and future treatment developments.
Collapse
|
203
|
Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 2014; 111:2626-31. [PMID: 24510904 DOI: 10.1073/pnas.1318306111] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.
Collapse
|
204
|
Surfactant secretion in LRRK2 knock-out rats: changes in lamellar body morphology and rate of exocytosis. PLoS One 2014; 9:e84926. [PMID: 24465451 PMCID: PMC3897396 DOI: 10.1371/journal.pone.0084926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.
Collapse
|
205
|
McBrayer M, Nixon RA. Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime. Biochem Soc Trans 2013; 41:1495-502. [PMID: 24256243 PMCID: PMC3960943 DOI: 10.1042/bst20130201] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function compromises assembly and proton-pumping activity of the vacuolar-ATPase on lysosomes, leading to defective lysosomal acidification and marked impairment of autophagy. Additional dysregulation of cellular Ca2+ by mutant PS1 in FAD has been ascribed to altered ion channels in the endoplasmic reticulum; however, rich stores of Ca2+ in lysosomes are also abnormally released in PS1-deficient cells secondary to the lysosomal acidification defect. The resultant rise in cytosolic Ca2+ activates Ca2+-dependent enzymes, contributing substantially to calpain overactivation that is a final common pathway leading to neurofibrillary degeneration in all forms of AD (Alzheimer's disease). In the present review, we discuss the close inter-relationships among deficits of lysosomal function, autophagy and Ca2+ homoeostasis as a pathogenic process in PS1-related FAD and their relevance to sporadic AD.
Collapse
Affiliation(s)
- MaryKate McBrayer
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg NY 10962
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg NY 10962
- Department of Psychiatry, New York University Langone Medical Center, 550 1 Avenue, New York NY 10016
- Department of Cell Biology, New York University Langone Medical Center, 550 1 Avenue, New York NY 10016
| |
Collapse
|
206
|
Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MPM, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA. Inhibition of LRRK2 kinase activity stimulates macroautophagy. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2900-2910. [PMID: 23916833 PMCID: PMC3898616 DOI: 10.1016/j.bbamcr.2013.07.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 02/05/2023]
Abstract
Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific targets for disease modifying therapies in patients.
Collapse
Affiliation(s)
- Claudia Manzoni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Adamantios Mamais
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Reta Lila Weston Institute and Queen Square Brain Bank, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Sybille Dihanich
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rosella Abeti
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marc P M Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Helene Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sharon A Tooze
- London Research Institute, Cancer Research UK, Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Reta Lila Weston Institute and Queen Square Brain Bank, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
207
|
Manzoni C, Mamais A, Dihanich S, McGoldrick P, Devine MJ, Zerle J, Kara E, Taanman JW, Healy DG, Marti-Masso JF, Schapira AH, Plun-Favreau H, Tooze S, Hardy J, Bandopadhyay R, Lewis PA. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun 2013; 441:862-6. [PMID: 24211199 PMCID: PMC3858825 DOI: 10.1016/j.bbrc.2013.10.159] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022]
Abstract
LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.
Collapse
Affiliation(s)
- Claudia Manzoni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Adamantios Mamais
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Sybille Dihanich
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Phillip McGoldrick
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael J. Devine
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julia Zerle
- Helmholtz Zentrum München, GmbH Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Eleanna Kara
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Daniel G. Healy
- Beaumont Hospital, 9 Beaumont Rd, Dublin 9, Co. Dublin, Ireland
| | | | - Anthony H. Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Helene Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sharon Tooze
- London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Patrick A. Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
208
|
Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 2013; 23:2055-77. [PMID: 24282027 PMCID: PMC3959816 DOI: 10.1093/hmg/ddt600] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein–protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1–3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology.
Collapse
Affiliation(s)
- Klodjan Stafa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Much excitement surrounded the proposal that a family of endo-lysosomal channels, the two-pore channels (TPCs) were the long sought after targets of the Ca(2+) -mobilising messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, the role of TPCs in NAADP signalling may be more complex than originally envisaged. First, NAADP may not bind directly to TPCs but via an accessory protein. Second, two papers recently challenged the notion that TPCs are NAADP-regulated Ca(2+) channels by suggesting that they are highly selective Na(+) channels regulated by the lipid phosphatidylinositol 3,5-bisphosphate and by ATP. This paper aims critically to evaluate the evidence for TPCs as NAADP targets and to discuss how the new findings fit in with what we know about endo-lysosomal Ca(2+) stores.
Collapse
|
210
|
Abstract
Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow-up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Collapse
|
211
|
Verma M, Steer EK, Chu CT. ERKed by LRRK2: a cell biological perspective on hereditary and sporadic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1273-81. [PMID: 24225420 DOI: 10.1016/j.bbadis.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/14/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
The leucine rich repeat kinase 2 (LRRK2/dardarin) is implicated in autosomal dominant familial and sporadic Parkinson's disease (PD); mutations in LRRK2 account for up to 40% of PD cases in some populations. LRRK2 is a large protein with a kinase domain, a GTPase domain, and multiple potential protein interaction domains. As such, delineating the functional pathways for LRRK2 and mechanisms by which PD-linked variants contribute to age-related neurodegeneration could result in pharmaceutically tractable therapies. A growing number of recent studies implicate dysregulation of mitogen activated protein kinases 3 and 1 (also known as ERK1/2) as possible downstream mediators of mutant LRRK2 effects. As these master regulators of growth, differentiation, neuronal plasticity and cell survival have also been implicated in other PD models, a set of common cell biological pathways may contribute to neuronal susceptibility in PD. Here, we review the literature on several major cellular pathways impacted by LRRK2 mutations--autophagy, microtubule/cytoskeletal dynamics, and protein synthesis--in context of potential signaling crosstalk involving the ERK1/2 and Wnt signaling pathways. Emerging implications for calcium homeostasis, mitochondrial biology and synaptic dysregulation are discussed in relation to LRRK2 interactions with other PD gene products. It has been shown that substantia nigra neurons in human PD and Lewy body dementia patients exhibit cytoplasmic accumulations of ERK1/2 in mitochondria, autophagosomes and bundles of intracellular fibrils. Both experimental and human tissue data implicate pathogenic changes in ERK1/2 signaling in sporadic, toxin-based and mutant LRRK2 settings, suggesting engagement of common cell biological pathways by divergent PD etiologies.
Collapse
Affiliation(s)
- Manish Verma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Erin K Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
212
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
213
|
Lam AK, Galione A, Lai FA, Zissimopoulos S. Hax-1 identified as a two-pore channel (TPC)-binding protein. FEBS Lett 2013; 587:3782-6. [DOI: 10.1016/j.febslet.2013.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
214
|
Lu Y, Hao B, Graeff R, Yue J. NAADP/TPC2/Ca(2+) Signaling Inhibits Autophagy. Commun Integr Biol 2013; 6:e27595. [PMID: 24753792 PMCID: PMC3984295 DOI: 10.4161/cib.27595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022] Open
Abstract
Nicotinic adenine acid dinucleotide phosphate (NAADP) is one of the most potent endogenous Ca(2+) mobilizing messengers. NAADP mobilizes Ca(2+) from an acidic lysosome-related store, which can be subsequently amplified into global Ca(2+) waves by calcium-induced calcium release (CICR) from ER/SR via Ins(1,4,5)P 3 receptors or ryanodine receptors. A body of evidence indicates that 2 pore channel 2 (TPC2), a new member of the superfamily of voltage-gated ion channels containing 12 putative transmembrane segments, is the long sought after NAADP receptor. Activation of NAADP/TPC2/Ca(2+) signaling inhibits the fusion between autophagosome and lysosome by alkalizing the lysosomal pH, thereby arresting autophagic flux. In addition, TPC2 is downregulated during neural differentiation of mouse embryonic stem (ES) cells, and TPC2 downregulation actually facilitates the neural lineage entry of ES cells. Here we propose the mechanism underlying how NAADP-induced Ca(2+) release increases lysosomal pH and discuss the role of TPC2 in neural differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Physiology; University of Hong Kong; Hong Kong, PR China
| | - Baixia Hao
- Department of Physiology; University of Hong Kong; Hong Kong, PR China
| | - Richard Graeff
- Department of Physiology; University of Hong Kong; Hong Kong, PR China
| | - Jianbo Yue
- Department of Physiology; University of Hong Kong; Hong Kong, PR China
| |
Collapse
|
215
|
Zhou N, Zhang J, Feng L, Lu B, Wang Z, Sun R, Wu C, Bao J. IntApop: a web service for predicting apoptotic protein interactions in humans. Biosystems 2013; 114:238-44. [PMID: 24120734 DOI: 10.1016/j.biosystems.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 01/31/2023]
Abstract
Apoptosis, a type of cell death, is necessary for maintaining tissue homeostasis and removing malignant cells. Interrupted apoptosis process contributes to carcinogenesis, developmental defects, autoimmune diseases and neurological disorders. Due to the complexity of the process, the molecular dynamics and relative interactions of individual proteins responsible for the activation or inhibition of apoptosis should be researched systematically. In this study, we integrate known protein interactions from databases DIP, IntAct, MINT, HPRD and BioGRID by Naïve Bayes classifier. The receiver operation characteristic (ROC) curve with the area under the ROC curve (AUC) of 0.797 indicates it has a good performance in prediction. Then, we predict the global human apoptotic protein interactions network. Within it, we not only identify the already known interactions of caspases (caspase-8/-10, caspase-9, caspase-3/-6/-7) and Bcl-2 family, but also reveal that Bid can interact with casein kinases (CSK21/22/2B, KC1A, KC1E); both of B2LA1 and B2CL2 can interact with Bid, Bax and Bak; caspase-8 interacts with autophagic proteins (MLP3B, MLP3A and LRRk2). Consequently, we make an initial step to develop the web service IntApop that provides an appropriate platform for apoptosis researchers, systems biologists and translational clinician scientists to predict apoptotic protein interactions in human. In addition, the interaction network can be visualized online, making it a widely applicable systems biology tool for apoptosis and cancer researchers.
Collapse
Affiliation(s)
- Nan Zhou
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 2013; 4:272. [PMID: 24106480 PMCID: PMC3788328 DOI: 10.3389/fphys.2013.00272] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/11/2013] [Indexed: 11/13/2022] Open
Abstract
Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Laboratory of Excellence, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Ion Channels Science and Therapeutics, INSERM, U-1003, Université Lille 1 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
217
|
Sheng Z, Zhang S, Bustos D, Kleinheinz T, Le Pichon CE, Dominguez SL, Solanoy HO, Drummond J, Zhang X, Ding X, Cai F, Song Q, Li X, Yue Z, van der Brug MP, Burdick DJ, Gunzner-Toste J, Chen H, Liu X, Estrada AA, Sweeney ZK, Scearce-Levie K, Moffat JG, Kirkpatrick DS, Zhu H. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 2013; 4:164ra161. [PMID: 23241745 DOI: 10.1126/scitranslmed.3004485] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser(1292) occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser(1292) autophosphorylation. Mutation of Ser(1292) to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser(1292) as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser(1292) autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser(1292) autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.
Collapse
Affiliation(s)
- Zejuan Sheng
- Department of Neurosciences, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
The N-terminal region of two-pore channel 1 regulates trafficking and activation by NAADP. Biochem J 2013; 453:147-51. [PMID: 23634879 DOI: 10.1042/bj20130474] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
TPCs (two-pore channels) are NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive Ca2+-permeable ion channels expressed on acidic organelles. In the present study we show that deletion of the N-terminal region redirects TPC1 to the ER (endoplasmic reticulum). The introduction of fluorophores at the N-terminus of TPC1 does not affect its subcellular location, but does reversibly abolish NAADP sensitivity. Our results reveal a dual role for the N-terminus in localization and function of TPC1.
Collapse
|
219
|
Lu Y, Hao BX, Graeff R, Wong CWM, Wu WT, Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 2013; 288:24247-24263. [PMID: 23836916 PMCID: PMC3745369 DOI: 10.1074/jbc.m113.484253] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/01/2013] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.
Collapse
Affiliation(s)
- Yingying Lu
- From the Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Bai-Xia Hao
- From the Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Richard Graeff
- From the Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Connie W. M. Wong
- Department of Anatomy and State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China, and
| | - Wu-Tian Wu
- Department of Anatomy and State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China, and
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jianbo Yue
- From the Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
220
|
East DA, Campanella M. Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 2013; 9:1710-9. [PMID: 24121708 DOI: 10.4161/auto.25367] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calcium (Ca (2+)) has long been known as a ubiquitous intracellular second messenger, exploited by cells to control processes as diverse as development, proliferation, learning, muscle contraction and secretion. The spatial and temporal patterns of these Ca (2+)-associated signals, as well as their amplitude, is precisely controlled to create gradients of the ion, varying considerably depending on cell type and function. Tuning of intracellular Ca (2+) is achieved in part by the buffering role of mitochondria, whose unperturbed function is essential for maintaining cellular energy balance. Quality of mitochondria is ensured by the process of targeted autophagy or mitophagy, which depends on a molecular cascade driving the catabolic process of autophagy toward damaged or deficient organelles for elimination via the lysosomal pathway. Nonspecific and targeted autophagy are highly regulated processes fundamental to cell growth and tissue homeostasis, allowing resources to be reallocated in nutrient-deprived cells as well as being instrumental in the repair of damaged organelles or the elimination of those in excess. Given the role of Ca (2+) signaling in many fundamental cellular processes requiring precise regulation, the involvement of Ca (2+) in autophagy is still somewhat ill-defined, and only in the past few years has evidence emerged linking the two. This mini-review aims to summarize recent work implicating Ca (2+) as an important regulator of autophagy, outlining a role for Ca (2+) that may be even more critical in the regulation of targeted mitochondrial autophagy.
Collapse
Affiliation(s)
- Daniel A East
- Royal Veterinary College; University of London; London, UK
| | | |
Collapse
|
221
|
Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19:983-97. [PMID: 23921753 DOI: 10.1038/nm.3232] [Citation(s) in RCA: 1541] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/03/2013] [Indexed: 02/08/2023]
Abstract
Autophagy is a lysosomal degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and protein aggregates. These substrates reach lysosomes by several distinct mechanisms, including delivery within endosomes as well as autophagosomes. Completion of digestion involves dynamic interactions among compartments of the autophagic and endocytic pathways. Neurons are particularly vulnerable to disruptions of these interactions, especially as the brain ages. Not surprisingly, mutations of genes regulating autophagy cause neurodegenerative diseases across the age spectrum with exceptional frequency. In late-onset disorders such as Alzheimer's disease, amyotrophic lateral sclerosis and familial Parkinson's disease, defects arise at different stages of the autophagy pathway and have different implications for pathogenesis and therapy. This Review provides an overview of the role of autophagy in neurodegenerative disease, focusing particularly on less frequently considered lysosomal clearance mechanisms and their considerable impact on disease. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.
| |
Collapse
|
222
|
Michail S, Bultron G, Depaolo RW. Genetic variants associated with Crohn's disease. APPLICATION OF CLINICAL GENETICS 2013; 6:25-32. [PMID: 23935379 PMCID: PMC3735034 DOI: 10.2147/tacg.s33966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crohn’s disease is an immune-related disorder characterized by inflammation of the gastrointestinal mucosa, which can occur in any area throughout the digestive tract. This life-long disease commonly presents with abdominal pain, diarrhea, vomiting, and weight loss. While the exact etiology of this disease is largely unknown, it is thought to arise from an interaction between microbial, immunological, and environmental factors in a genetically susceptible host, whereby the immune system attacks the intestine as it cross reacts against gut microbial antigens. The study of genetic variants associated with Crohn’s disease has shed light on our understanding of disease pathophysiology. A large number of genetic variants identified in Crohn’s disease are related to genes targeting microbial recognition and bacterial wall sensing, the most common being NOD2/CARD15 gene. This review will discuss the recent advance in our knowledge of genetic variants of this disease and how they influence the disease course and prognosis.
Collapse
Affiliation(s)
- Sonia Michail
- The University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
223
|
Decuypere JP, Paudel RC, Parys J, Bultynck G. Intracellular Ca(2+) signaling: A novel player in the canonical mTOR-controlled autophagy pathway. Commun Integr Biol 2013; 6:e25429. [PMID: 24265855 PMCID: PMC3829968 DOI: 10.4161/cib.25429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Functional intracellular Ca(2+) signaling is essential for the upregulation of the canonical mTOR-controlled autophagy pathway triggered by rapamycin or by nutrient deprivation. Moreover, modifications in the Ca(2+)-signaling machinery coincide with autophagy stimulation. This results in enhanced intracellular Ca(2+) signaling essential for driving the autophagy process. Yet, the mechanisms upstream (the players causing the changes in Ca(2+) signaling) and downstream (the targets of the altered Ca(2+) signals) of this Ca(2+)-dependent autophagy pathway remain elusive. Here, we speculate about these mechanisms based on our current knowledge.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling; Department of Cellular and Molecular Medicine; KU Leuven; Leuven, Belgium ; Current affiliation: Laboratory of Abdominal Transplant Surgery; Department of Microbiology and Immunology; University Hospitals Leuven; KU Leuven; Leuven, Belgium
| | | | | | | |
Collapse
|
224
|
Ness D, Ren Z, Gardai S, Sharpnack D, Johnson VJ, Brennan RJ, Brigham EF, Olaharski AJ. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. PLoS One 2013; 8:e66164. [PMID: 23799078 PMCID: PMC3682960 DOI: 10.1371/journal.pone.0066164] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Daniel Ness
- Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Zhao Ren
- Assay Development, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Shyra Gardai
- Exploratory Biology, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | | | - Victor J. Johnson
- Burleson Research Technologies Inc. (BRT), Morrisville, North Carolina, United States of America
| | | | - Elizabeth F. Brigham
- Pharmacology, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Andrew J. Olaharski
- Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
225
|
Rideout HJ, Stefanis L. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson's disease. Neurochem Res 2013; 39:576-92. [PMID: 23729298 DOI: 10.1007/s11064-013-1073-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/18/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, widely expressed protein of largely unknown function. Mutations in the gene encoding LRRK2 have been linked to multiple diseases, including a prominent association with familial and sporadic Parkinson's disease (PD), as well as inflammatory bowel disorders such as Crohn's disease. The LRRK2 protein possesses both kinase and GTPase signaling domains, as well as multiple protein interaction domains. Experimental studies in both cellular and in vivo models of mutant LRRK2-induced neurodegeneration have given clues to potential function(s) of LRRK2, yet much remains unknown. For example, while it is known that intact kinase and GTPase activity are required for mutant forms of the protein to trigger cell death, the specific targets of these enzymatic activities that mediate the death of neurons are not known. In this review, we discuss the evidence linking LRRK2 to various cellular/neuronal activities such as extrinsic death and inflammatory signaling, lysosomal protein degradation, the cytoskeletal system and neurite outgrowth, vesicle trafficking, mitochondrial dysfunction, as well as multiple points of interaction with several other genes linked to the pathogenesis of PD. In order for more effective therapeutic strategies to be envisioned and implemented, the mechanisms underlying LRRK2-mediated neurodegeneration need to be better characterized. Furthermore, insights into LRRK2-associated PD pathogenesis can potentially advance our understanding of the more common sporadic forms of PD.
Collapse
Affiliation(s)
- Hardy J Rideout
- Laboratory of Neurodegenerative Diseases, Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece,
| | | |
Collapse
|
226
|
Berwick DC, Harvey K. LRRK2: an éminence grise of Wnt-mediated neurogenesis? Front Cell Neurosci 2013; 7:82. [PMID: 23754980 PMCID: PMC3668263 DOI: 10.3389/fncel.2013.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023] Open
Abstract
The importance of leucine-rich repeat kinase 2 (LRRK2) to mature neurons is well-established, since mutations in PARK8, the gene encoding LRRK2, are the most common known cause of Parkinson’s disease. Nonetheless, despite the LRRK2 knockout mouse having no overt neurodevelopmental defect, numerous lines of in vitro data point toward a central role for this protein in neurogenesis. Roles for LRRK2 have been described in many key processes, including neurite outgrowth and the regulation of microtubule dynamics. Moreover, LRRK2 has been implicated in cell cycle control, suggesting additional roles in neurogenesis that precede terminal differentiation. However, we contend that the suggested function of LRRK2 as a scaffolding protein at the heart of numerous Wnt signaling cascades provides the most tantalizing link to neurogenesis in the developing brain. Numerous lines of evidence show a critical requirement for multiple Wnt pathways in the development of certain brain regions, not least the dopaminergic neurons of the ventral mid-brain. In conclusion, these observations indicate a function of LRRK2 as a subtle yet critical mediator of the action of Wnt ligands on developing neurons. We suggest that LRRK2 loss- or gain-of-function are likely modifiers of developmental phenotypes seen in animal models of Wnt signaling deregulation, a hypothesis that can be tested by cross-breeding relevant genetically modified experimental strains.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, University College London School of Pharmacy, University College London London, UK
| | | |
Collapse
|
227
|
Manzoni C, Lewis PA. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB J 2013; 27:3424-9. [PMID: 23682122 DOI: 10.1096/fj.12-223842] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The past decade has witnessed huge advances in our understanding of the genetics underlying Parkinson's disease. Identifying commonalities in the biological function of genes linked to Parkinson's provides an opportunity to elucidate pathways that lead to neuronal degeneration and eventually to disease. We propose that the genetic forms of Parkinson's disease largely associated with α-synuclein-positive neuropathology (SNCA, LRRK2, and GBA) are brought together by involvement in the autophagy/lysosomal pathway and that this represents a unifying pathway to disease in these cases.
Collapse
Affiliation(s)
- Claudia Manzoni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | |
Collapse
|
228
|
Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 2013; 16:394-406. [PMID: 23455607 PMCID: PMC3609872 DOI: 10.1038/nn.3350] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. We found LRRK2 to be degraded in lysosomes by chaperone-mediated autophagy (CMA), whereas the most common pathogenic mutant form of LRRK2, G2019S, was poorly degraded by this pathway. In contrast to the behavior of typical CMA substrates, lysosomal binding of both wild-type and several pathogenic mutant LRRK2 proteins was enhanced in the presence of other CMA substrates, which interfered with the organization of the CMA translocation complex, resulting in defective CMA. Cells responded to such LRRK2-mediated CMA compromise by increasing levels of the CMA lysosomal receptor, as seen in neuronal cultures and brains of LRRK2 transgenic mice, induced pluripotent stem cell-derived dopaminergic neurons and brains of Parkinson's disease patients with LRRK2 mutations. This newly described LRRK2 self-perpetuating inhibitory effect on CMA could underlie toxicity in Parkinson's disease by compromising the degradation of α-synuclein, another Parkinson's disease-related protein degraded by this pathway.
Collapse
Affiliation(s)
- Samantha J. Orenstein
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sheng-Hang Kuo
- Department of Neurology, Columbia University Medical School, New York, NY, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Esperanza Arias
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiroshi Koga
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Etty Cortes
- Department of Neurology, Columbia University Medical School, New York, NY, USA
- Taub Institute, Columbia University Medical School, New York, NY, USA
| | - Lawrence S. Honig
- Department of Neurology, Columbia University Medical School, New York, NY, USA
- Taub Institute, Columbia University Medical School, New York, NY, USA
| | - William Dauer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Antonella Consiglio
- Institute for Biomedicine (IBUB), University of Barcelona, Barcelona Spain
- Deparment of Biomedical Science and Biotechnology, University of Brescia, Brescia, Italy
| | - Angel Raya
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Insitucio Catalana de Recerca I Estudies Avancas (ICREA) and Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - David Sulzer
- Department of Neurology, Columbia University Medical School, New York, NY, USA
- Department of Psychiatry and Pharmacology, Columbia University Medical School, New York, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
229
|
Gan-Or Z, Ozelius LJ, Bar-Shira A, Saunders-Pullman R, Mirelman A, Kornreich R, Gana-Weisz M, Raymond D, Rozenkrantz L, Deik A, Gurevich T, Gross SJ, Schreiber-Agus N, Giladi N, Bressman SB, Orr-Urtreger A. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology 2013; 80:1606-10. [PMID: 23535491 DOI: 10.1212/wnl.0b013e31828f180e] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To study the possible association of founder mutations in the lysosomal storage disorder genes HEXA, SMPD1, and MCOLN1 (causing Tay-Sachs, Niemann-Pick A, and mucolipidosis type IV diseases, respectively) with Parkinson disease (PD). METHODS Two PD patient cohorts of Ashkenazi Jewish (AJ) ancestry, that included a total of 938 patients, were studied: a cohort of 654 patients from Tel Aviv, and a replication cohort of 284 patients from New York. Eight AJ founder mutations in the HEXA, SMPD1, and MCOLN1 genes were analyzed. The frequencies of these mutations were compared to AJ control groups that included large published groups undergoing prenatal screening and 282 individuals matched for age and sex. RESULTS Mutation frequencies were similar in the 2 groups of patients with PD. The SMPD1 p.L302P was strongly associated with a highly increased risk for PD (odds ratio 9.4, 95% confidence interval 3.9-22.8, p < 0.0001), as 9/938 patients with PD were carriers of this mutation compared to only 11/10,709 controls. CONCLUSIONS The SMPD1 p.L302P mutation is a novel risk factor for PD. Although it is rare on a population level, the identification of this mutation as a strong risk factor for PD may further elucidate PD pathogenesis and the role of lysosomal pathways in disease development.
Collapse
Affiliation(s)
- Ziv Gan-Or
- Genetic Institute and Movement Disorders Unit, Parkinson Center, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VMY. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 2013; 288:15194-210. [PMID: 23532841 DOI: 10.1074/jbc.m113.457408] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic α-synuclein (α-syn) aggregates, referred to as Lewy bodies, are pathological hallmarks of a number of neurodegenerative diseases, most notably Parkinson disease. Activation of macroautophagy is suggested to facilitate degradation of certain proteinaceous inclusions, but it is unclear if this pathway is capable of degrading α-syn aggregates. Here, we examined this issue by utilizing cellular models in which intracellular Lewy body-like α-syn inclusions accumulate after internalization of pre-formed α-syn fibrils into α-syn-expressing HEK293 cells or cultured primary neurons. We demonstrate that α-syn inclusions cannot be effectively degraded, even though they co-localize with essential components of both the autophagic and proteasomal protein degradation pathways. The α-syn aggregates persist even after soluble α-syn levels have been substantially reduced, suggesting that once formed, the α-syn inclusions are refractory to clearance. Importantly, we also find that α-syn aggregates impair overall macroautophagy by reducing autophagosome clearance, which may contribute to the increased cell death that is observed in aggregate-bearing cells.
Collapse
Affiliation(s)
- Selcuk A Tanik
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
231
|
Abstract
The PD (Parkinson's disease) protein LRRK2 (leucine-rich repeat kinase 2) occurs in cells as a highly phosphorylated protein, with the majority of phosphosites clustering in the region between the ankyrin repeat and leucine-rich repeat domains. The observation that several pathogenic variants of LRRK2 display strongly reduced cellular phosphorylation suggests that phosphorylation of LRRK2 is involved in the PD pathological process. Furthermore, treatment of cells with inhibitors of LRRK2 kinase activity, which are currently considered as potential disease-modifying therapeutics for PD, leads to a rapid decrease in the phosphorylation levels of LRRK2. For these reasons, understanding the cellular role and regulation of LRRK2 as a kinase and as a substrate has become the focus of intense investigation. In the present review, we discuss what is currently known about the cellular phosphorylation of LRRK2 and how this relates to its function and dysfunction.
Collapse
|
232
|
A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochem Soc Trans 2013; 40:1140-6. [PMID: 22988879 DOI: 10.1042/bst20120138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) represent a significant component of both sporadic and familial PD (Parkinson's disease). Pathogenic mutations cluster in the enzymatic domains of LRRK2, and kinase activity seems to correlate with cytotoxicity, suggesting the possibility of kinase-based therapeutic strategies for LRRK2-associated PD. Apart from cytotoxicity, changes in autophagy have consistently been observed upon overexpression of mutant, or knockdown of endogenous, LRRK2. However, delineating the precise mechanism(s) by which LRRK2 regulates autophagy has been difficult. Recent data suggest a mechanism involving late steps in autophagic-lysosomal clearance in a manner dependent on NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive lysosomal Ca2+ channels. In the present paper, we review our current knowledge of the link between LRRK2 and autophagic-lysosomal clearance, including regulation of Ca2+-dependent events involving NAADP.
Collapse
|
233
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are a relatively common cause of inherited PD (Parkinson's disease), but the mechanism(s) by which mutations lead to disease are poorly understood. In the present paper, I discuss what is known about LRRK2 in cellular models, focusing specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a strong effect on the length of neurites on these cells, whether this is true toxicity or not is unclear. Also, LRRK2 mutants can promote the redistribution of LRRK2 from diffuse cytosolic staining to more discrete structures, at least at high expression levels achieved in transfection experiments. The relevance of these phenotypes for PD is not yet clear, and a great deal of work is needed to understand them in more depth.
Collapse
|
234
|
Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Biochem Soc Trans 2013; 40:1095-101. [PMID: 22988872 DOI: 10.1042/bst20120123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are associated with both familial and sporadic PD (Parkinson's disease). LRRK1 (leucine-rich repeat kinase 1) shares a similar domain structure with LRRK2, but it is not linked to PD. LRRK proteins belong to a gene family known as ROCO, which codes for large proteins with several domains. All ROCO proteins have a ROC (Ras of complex proteins) GTPase domain followed by a domain of unknown function [COR (C-terminal of ROC)]. LRRK2, LRRK1 and other ROCO proteins also possess a kinase domain. To date, the function of LRRK1 and both the physiological and the pathological roles of LRRK2 are only beginning to unfold. The comparative analysis of these two proteins is a strategy to single out the specific properties of LRRKs to understand their cellular physiology. This comparison is the starting point to unravel the pathways that may lead to PD and eventually to develop therapeutic strategies for its treatment. In the present review, we discuss recently published results on LRRK2 and its paralogue LRRK1 concerning their evolutionary significance, biochemical properties and potential functional roles.
Collapse
|
235
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of PD (Parkinson's disease). To investigate how mutations in LRRK2 cause PD, we generated LRRK2 mutant mice either lacking its expression or expressing the R1441C mutant form. Homozygous R1441C knockin mice exhibit no dopaminergic neurodegeneration or alterations in steady-state levels of striatal dopamine, but they show impaired dopamine neurotransmission, as was evident from reductions in amphetamine-induced locomotor activity and stimulated catecholamine release in cultured chromaffin cells as well as impaired dopamine D2 receptor-mediated functions. Whereas LRRK2-/- brains are normal, LRRK2-/- kidneys at 20 months of age develop striking accumulation and aggregation of α-synuclein and ubiquitinated proteins, impairment of the autophagy-lysosomal pathway, and increases in apoptotic cell death, inflammatory responses and oxidative damage. Our further analysis of LRRK2-/- kidneys at multiple ages revealed unique age-dependent biphasic alterations of the autophagic activity, which is unchanged at 1 month of age, enhanced at 7 months, but reduced at 20 months. Levels of α-synuclein and protein carbonyls, a general oxidative damage marker, are also decreased in LRRK2-/- kidneys at 7 months of age. Interestingly, this biphasic alteration is associated with increased levels of lysosomal proteins and proteases as well as progressive accumulation of autolysosomes and lipofuscin granules. We conclude that pathogenic mutations in LRRK2 impair the nigrostriatal dopaminergic pathway, and LRRK2 plays an essential role in the dynamic regulation of autophagy function in vivo.
Collapse
|
236
|
Bayliss JA, Andrews ZB. Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabolic neuroprotection. Ther Adv Endocrinol Metab 2013; 4:25-36. [PMID: 23515333 PMCID: PMC3593299 DOI: 10.1177/2042018813479645] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a circulating orexigenic signal that rises with prolonged fasting and falls postprandially. Ghrelin regulates energy homeostasis by stimulating appetite and body weight; however, it also has many nonmetabolic functions including enhanced learning and memory, anxiolytic effects as well as being neuroprotective. In Parkinson's disease, ghrelin enhances dopaminergic survival via reduced microglial and caspase activation and improved mitochondrial function. As mitochondrial dysfunction contributes to Parkinson's disease, any agent that enhances mitochondrial function could be a potential therapeutic target. We propose that ghrelin provides neuroprotective effects via AMPK (5' adenosine monophosphate-activated protein kinase) activation and enhanced mitophagy (removal of damaged mitochondria) to ultimately enhance mitochondrial bioenergetics. AMPK activation shifts energy balance from a negative to a neutral state and has a role in regulating mitochondrial biogenesis and reducing reactive oxygen species production. Mitophagy is important in Parkinson's disease because damaged mitochondria produce reactive oxygen species resulting in damage to intracellular proteins, lipids and DNA predisposing them to neurodegeneration. Many genetic mutations linked to Parkinson's disease are due to abnormal mitochondrial function and mitophagy, for example LRRK2, PINK1 and Parkin. An interaction between ghrelin and these classic Parkinson's disease markers has not been observed, however by enhancing mitochondrial function, ghrelin or AMPK is a potential therapeutic target for slowing the progression of Parkinson's disease symptoms, both motor and nonmotor.
Collapse
|
237
|
Abstract
In 2004 it was first shown that mutations in LRRK2 can cause Parkinson's disease. This initial discovery was quickly followed by the observation that a single particular mutation is a relatively common cause of Parkinson's disease across varied populations. Further genetic investigation has revealed a variety of genetic ties to Parkinson's disease across this gene. These include common alleles with quite broad effects on risk, likely through both alterations at the protein sequence level, and in the context of expression. A great deal of functional characterization of LRRK2 and disease-causing mutations in this protein has occurred over the last 9 years, and considerable progress has been made. Particular attention has been paid to the kinase activity of LRRK2 as a therapeutic target, and while it is no means certain that this is viable target it is likely that this hypothesis will be tested in clinical trials sooner rather than later. We believe that the future goals for LRRK2 research are, while challenging, relatively clear and that the next 10 years of research promises to be perhaps more exciting than the last.
Collapse
Affiliation(s)
- Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
- Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
| | - Patrick A. Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
238
|
Bravo-San Pedro JM, Niso-Santano M, Gómez-Sánchez R, Pizarro-Estrella E, Aiastui-Pujana A, Gorostidi A, Climent V, López de Maturana R, Sanchez-Pernaute R, López de Munain A, Fuentes JM, González-Polo RA. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci 2013; 70:121-36. [PMID: 22773119 PMCID: PMC11113213 DOI: 10.1007/s00018-012-1061-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/29/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson's disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.
Collapse
Affiliation(s)
- José M. Bravo-San Pedro
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Rubén Gómez-Sánchez
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Elisa Pizarro-Estrella
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Ana Aiastui-Pujana
- Neuroscience Area, Instituto Biodonostia and CIBERNED, 20014 San Sebastián, Spain
| | - Ana Gorostidi
- Neuroscience Area, Instituto Biodonostia and CIBERNED, 20014 San Sebastián, Spain
| | - Vicente Climent
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Rakel López de Maturana
- Laboratorio de Células madre y Neurorreparación, Fundación Inbiomed, 20009 San Sebastián, Spain
| | | | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Biodonostia, Servicio de Neurología, Hospital Donostia, 20014 San Sebastián, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| |
Collapse
|
239
|
Cherra SJ, Steer E, Gusdon AM, Kiselyov K, Chu CT. Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:474-84. [PMID: 23231918 DOI: 10.1016/j.ajpath.2012.10.027] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) have been associated with familial and sporadic cases of Parkinson disease. Mutant LRRK2 causes in vitro and in vivo neurite shortening, mediated in part by autophagy, and a parkinsonian phenotype in transgenic mice; however, the underlying mechanisms remain unclear. Because mitochondrial content/function is essential for dendritic morphogenesis and maintenance, we investigated whether mutant LRRK2 affects mitochondrial homeostasis in neurons. Mouse cortical neurons expressing either LRRK2 G2019S or R1441C mutations exhibited autophagic degradation of mitochondria and dendrite shortening. In addition, mutant LRRK2 altered the ability of the neurons to buffer intracellular calcium levels. Either calcium chelators or inhibitors of voltage-gated L-type calcium channels prevented mitochondrial degradation and dendrite shortening. These data suggest that mutant LRRK2 causes a deficit in calcium homeostasis, leading to enhanced mitophagy and dendrite shortening.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
240
|
A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:324521. [PMID: 23251830 PMCID: PMC3518055 DOI: 10.1155/2012/324521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative disorder, and its molecular etiopathogenesis remains poorly understood. The discovery of monogenic forms has significantly advanced our understanding of the molecular mechanisms underlying PD, as it allows generation of cellular and animal models carrying the mutant gene to define pathological pathways. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause dominantly inherited PD, and variations increase risk, indicating that LRRK2 is an important player in both genetic and sporadic forms of the disease. G2019S, the most prominent pathogenic mutation, maps to the kinase domain and enhances enzymatic activity of LRRK2, which in turn seems to correlate with cytotoxicity. Since kinases are druggable targets, this has raised great hopes that disease-modifying therapies may be developed around modifying LRRK2 enzymatic activity. Apart from cytotoxicity, changes in autophagy have been consistently reported in the context of G2019S mutant LRRK2. Here, we will discuss current knowledge about mechanism(s) by which mutant LRRK2 may regulate autophagy, which highlights additional putative therapeutic targets.
Collapse
|
241
|
Protein clearance mechanisms of alpha-synuclein and amyloid-Beta in lewy body disorders. Int J Alzheimers Dis 2012; 2012:391438. [PMID: 23133788 PMCID: PMC3485523 DOI: 10.1155/2012/391438] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/30/2012] [Indexed: 12/30/2022] Open
Abstract
Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most-if not all-neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance-in particular of Asyn and Abeta-in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets.
Collapse
|
242
|
Belluzzi E, Greggio E, Piccoli G. Presynaptic dysfunction in Parkinson's disease: a focus on LRRK2. Biochem Soc Trans 2012; 40:1111-1116. [PMID: 22988874 DOI: 10.1042/bst20120124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PD (Parkinson's disease) is a common neurodegenerative disease clinically characterized by bradykinesia, rigidity and resting tremor. Recent studies have proposed that synaptic dysfunction, implicated in numerous studies of animal models of PD, might be a key factor in PD. The molecular defects that lead to PD progression might be hidden at the presynaptic neuron: in fact accumulating evidence has shown that the majority of the genes linked to PD play a critical role at the presynaptic site. In the present paper, we focus on the presynaptic function of LRRK2 (leucine-rich repeat kinase 2), a protein that mutated represents the main genetic cause of familial PD described to date. Neurotransmission relies on proper presynaptic vesicle trafficking; defects in this process, variation in dopamine flow and alteration of presynaptic plasticity have been reported in several animal models of LRRK2 mutations. Furthermore, impaired dopamine turnover has been described in presymptomatic LRRK2 PD patients. Thus, given the pathological events occurring at the synapses of PD patients, the presynaptic site may represent a promising target for early diagnostic therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Belluzzi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padua, Italy
| | | | | |
Collapse
|
243
|
Bai R, You W, Chen J, Huang H, Ke C. Molecular cloning and expression analysis of GABA(A) receptor-associated protein (GABARAP) from small abalone, Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2012; 33:675-682. [PMID: 22771962 DOI: 10.1016/j.fsi.2012.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/03/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
GABA(A) receptor-associated protein (GABARAP), a multifunctional protein participating in autophagy process, is evolutionarily conserved and involves in innate immunity in eukaryotic cells, but currently there is no research on the relationship between GABARAP and innate immunity in mollusc. In the present study, the GABARAP full-length cDNA and its genomic DNA were firstly cloned from small abalone (Haliotis diversicolor), which was named as saGABARAP. Its full-length cDNA is 963 bp with a 354 bp open reading frame encoding a protein of 117 aa, a 276 bp 5'-UTR, and a 333 bp 3'-UTR including a poly(A) tail, two typical polyadenylation signals (AATAA) and two RNA instability motifs (ATTTA). The deduced protein has an estimated molecular weight of 13.9 kDa and a predicted PI of 8.73. Its genomic DNA comprises 4352 bp, containing three exons and two introns. Quantitative real-time PCR analysis revealed that saGABARAP was constitutively expressed in all examined tissues, with the highest expression level in hepatopancreas, and was upregulated in hepatopancreas and hemocytes after bacterial challenge. In addition, saGABARAP was ubiquitously expressed at all examined embryonic and larval development stages. These results suggested that saGABARAP could respond to bacteria challenge and may play a vital role in the adult innate immune system against pathogens and the development process of abalone embryo and larvae.
Collapse
Affiliation(s)
- Rongyao Bai
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
244
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is an enzyme implicated in human disease, containing kinase and GTPase functions within the same multidomain open reading frame. Dominant mutations in the LRRK2 gene are the most common cause of familial PD (Parkinson's disease). Additionally, in genome-wide association studies, the LRRK2 locus has been linked to risk of PD, Crohn's disease and leprosy, and LRRK2 has also been linked with cancer. Despite its association with human disease, very little is known about its pathophysiology. Recent reports suggest a functional association between LRRK2 and autophagy. Implications of this set of data for our understanding of LRRK2′s role in physiology and disease are discussed in the present paper.
Collapse
|
245
|
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of familial Parkinson's disease (PD), whereas common variation at the LRRK2 locus is associated with an increased risk of idiopathic PD. Considerable progress has been made toward understanding the biological functions of LRRK2 and the molecular mechanisms underlying the pathogenic effects of disease-associated mutations. The development of neuronal culture models and transgenic or viral-based rodent models have proved useful for identifying a number of emerging pathways implicated in LRRK2-dependent neuronal damage, including the microtubule network, actin cytoskeleton, autophagy, mitochondria, vesicular trafficking, and protein quality control. However, many important questions remain to be posed and answered. Elucidating the molecular mechanisms and pathways underlying LRRK2-mediated neurodegeneration is critical for the identification of new molecular targets for therapeutic intervention in PD. In this review we discuss recent advances and unanswered questions in understanding the pathophysiology of LRRK2.
Collapse
|
246
|
Parkinson's disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies. PARKINSONS DISEASE 2012; 2012:151039. [PMID: 22970411 PMCID: PMC3437299 DOI: 10.1155/2012/151039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022]
Abstract
Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.
Collapse
|
247
|
Henderson P, Stevens C. The role of autophagy in Crohn's disease. Cells 2012; 1:492-519. [PMID: 24710487 PMCID: PMC3901108 DOI: 10.3390/cells1030492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/05/2023] Open
Abstract
(Macro)-autophagy is a homeostatic process by which eukaryotic cells dispose of protein aggregates and damaged organelles. Autophagy is also used to degrade micro-organisms that invade intracellularly in a process termed xenophagy. Genome-wide association scans have recently identified autophagy genes as conferring susceptibility to Crohn's disease (CD), one of the chronic inflammatory bowel diseases, with evidence suggesting that CD arises from a defective innate immune response to enteric bacteria. Here we review the emerging role of autophagy in CD, with particular focus on xenophagy and enteric E. coli strains with an adherent and invasive phenotype that have been consistently isolated from CD patients with ileal disease.
Collapse
Affiliation(s)
- Paul Henderson
- Department of Child Life and Health, 20 Sylvan Place, University of Edinburgh, Edinburgh EH9 1UW, UK.
| | - Craig Stevens
- Gastrointestinal Unit, Institute for Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
248
|
Abstract
Parkinson's disease is a debilitating disorder characterized by a progressive loss of dopaminergic neurons caused by programmed cell death. The aim of this review is to provide an up-to-date summary of the major programmed cell death pathways as they relate to PD. For a long time, programmed cell death has been synonymous with apoptosis but there now is evidence that other types of programmed cell death exist, such as autophagic cell death or programmed necrosis, and that these types of cell death are relevant to PD. The pathways and signals covered here include namely the death receptors, BCL-2 family, caspases, calpains, cdk5, p53, PARP-1, autophagy, mitophagy, mitochondrial fragmentation, and parthanatos. The review will present evidence from postmortem PD studies, toxin-induced models (especially MPTP/MPP+, 6-hydroxydopamine and rotenone), and from α-synuclein, LRRK2, Parkin, DJ-1, and PINK1 genetic models of PD, both in vitro and in vivo.
Collapse
Affiliation(s)
- Katerina Venderova
- University of the Pacific, Thomas J. Long School of Pharmacy, Department of Physiology and Pharmacology, Stockton, CA 95211, USA.
| | | |
Collapse
|
249
|
Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol 2012; 124:153-72. [PMID: 22744791 DOI: 10.1007/s00401-012-1004-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022]
Abstract
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Anatomy and Cell Biology, Ruprecht-Karls University Heidelberg, INF 307, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
250
|
Greggio E, Civiero L, Bisaglia M, Bubacco L. Parkinson's disease and immune system: is the culprit LRRKing in the periphery? J Neuroinflammation 2012; 9:94. [PMID: 22594666 PMCID: PMC3391996 DOI: 10.1186/1742-2094-9-94] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/17/2012] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain kinase/GTPase that has been recently linked to three pathological conditions: Parkinson’s disease; Crohn’s disease; and leprosy. Although LRRK2 physiological function is poorly understood, a potential role in inflammatory response is suggested by its high expression in immune cells and tissues, its up-regulation by interferon γ, and its function as negative regulator of the immune response transcription factor NFAT1. In this review we discuss the most recent findings regarding how LRRK2 could be a player in the inflammatory response and we propose a scenario where the detrimental effects mediated by Parkinson’s disease LRRK2 mutations may initiate in the periphery and extend to the central nervous system as a consequence of increased levels of pro-inflammatory factors permeable to the blood brain barrier.
Collapse
Affiliation(s)
- Elisa Greggio
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35121, Italy.
| | | | | | | |
Collapse
|