201
|
Wielstra B, Arntzen JW. Extensive cytonuclear discordance in a crested newt from the Balkan Peninsula glacial refugium. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIntegration of multilocus data and species distribution modelling into phylogeography allows mitochondrial DNA (mtDNA)-based scenarios to be fine-tuned. We address the question of whether extensive mtDNA substructuring in the crested newt Triturus macedonicus from the Balkan Peninsula is matched in the nuclear genome. We determine the intraspecific population structure based on 52 nuclear DNA markers and project a species distribution model on climate layers for the Last Glacial Maximum. We show that T. macedonicus accumulated nuclear DNA population structure in an area predicted to have been climatically stable during the Pleistocene, with four nuclear DNA groups in the western part of the species range. The distribution of these nuclear DNA groups shows little agreement with that of mtDNA structuring, which shows three highly distinct species-specific clades and a fourth one introgressed from another crested newt species. This cytonuclear discordance conveys that historical biogeographical scenarios based on mtDNA exclusively should be interpreted with caution. Our findings further highlight the important role the Balkan Peninsula has played in the evolution and preservation of European biodiversity.
Collapse
Affiliation(s)
- Ben Wielstra
- Institute of Biology Leiden, Leiden University, RA, Leiden, The Netherlands
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
| |
Collapse
|
202
|
Bruce SA, Schiraldi NJ, Kamath PL, Easterday WR, Turner WC. A classification framework for Bacillus anthracis defined by global genomic structure. Evol Appl 2020; 13:935-944. [PMID: 32431744 PMCID: PMC7232756 DOI: 10.1111/eva.12911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole-genome sequence analysis of over 350 B. anthracis isolates was used to establish a new high-resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found. In addition, we demonstrate that plasmid genomic structure for this species is largely consistent with chromosomal population structure, suggesting vertical inheritance in this bacterium has contributed to its evolutionary persistence. This classification methodology is the first based on population genomic structure for this species and has potential use for local and broader institutions seeking to understand both disease outbreak origins and recent introductions. In addition, we provide access to a newly developed genotyping script as well as the full whole-genome sequence analyses output for this study, allowing future studies to rapidly employ and append their data in the context of this global collection. This framework may act as a powerful tool for public health agencies, wildlife disease laboratories, and researchers seeking to utilize and expand this classification scheme for further investigations into B. anthracis evolution.
Collapse
Affiliation(s)
- Spencer A. Bruce
- Department of Biological SciencesUniversity at Albany – State University of New YorkAlbanyNYUSA
| | - Nicholas J. Schiraldi
- Department of Information Technology ServicesUniversity at Albany – State University of New YorkAlbanyNYUSA
| | | | - W. Ryan Easterday
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | - Wendy C. Turner
- Department of Biological SciencesUniversity at Albany – State University of New YorkAlbanyNYUSA
| |
Collapse
|
203
|
Chamberland L, Salgado-Roa FC, Basco A, Crastz-Flores A, Binford GJ, Agnarsson I. Phylogeography of the widespread Caribbean spiny orb weaver Gasteracantha cancriformis. PeerJ 2020; 8:e8976. [PMID: 32391201 PMCID: PMC7196328 DOI: 10.7717/peerj.8976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.
Collapse
Affiliation(s)
- Lisa Chamberland
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Fabian C. Salgado-Roa
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Alma Basco
- University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
| | | | | | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
204
|
Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A, Steglich M, Conchillo-Solé O, Scherer IC, Mamat U, Luz CF, De Bruyne K, Utpatel C, Yero D, Gibert I, Daura X, Kampmeier S, Rahman NA, Kresken M, van der Werf TS, Alio I, Streit WR, Zhou K, Schwartz T, Rossen JWA, Farhat MR, Schaible UE, Nübel U, Rupp J, Steinmann J, Niemann S, Kohl TA. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun 2020; 11:2044. [PMID: 32341346 PMCID: PMC7184733 DOI: 10.1038/s41467-020-15123-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals. Multidrug resistance of the opportunistic pathogen Stenotrophomonas maltophilia is an increasing problem. Here, analyzing strains from 22 countries, the authors show that the S. maltophilia complex is divided into 23 monophyletic lineages and find evidence for intra-hospital transmission.
Collapse
Affiliation(s)
- Matthias I Gröschel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conor J Meehan
- School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- bioMérieux, Applied Maths NV, Keistraat 120, 9830, St-Martens-Latem, Belgium
| | - Aitor Gonzaga
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabell-Christin Scherer
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Uwe Mamat
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christian F Luz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Katrien De Bruyne
- bioMérieux, Applied Maths NV, Keistraat 120, 9830, St-Martens-Latem, Belgium
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Daniel Yero
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isidre Gibert
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | | | - Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany.,Rheinische Fachhochschule Köln gGmbH, Cologne, Germany
| | - Tjip S van der Werf
- Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ifey Alio
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Thomas Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Eggenstein- Leopoldshafen, Germany
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany.,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany.,Germany Center for Infection Research (DZIF), partner site Hannover - Braunschweig, Cologne, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Medical Center Essen, Essen, Germany.,Medical Microbiology and Infection Prevention, Institute of Clinical Hygiene, Paracelsus Medical Private University, Klinikum Nürnberg, Nuremberg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany. .,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany.
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany
| |
Collapse
|
205
|
Genomic Characterization of Neisseria gonorrhoeae Strains from 2016 U.S. Sentinel Surveillance Displaying Reduced Susceptibility to Azithromycin. Antimicrob Agents Chemother 2020; 64:AAC.02420-19. [PMID: 32071056 DOI: 10.1128/aac.02420-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
In 2016, the proportion of Neisseria gonorrhoeae isolates with reduced susceptibility to azithromycin rose to 3.6%. A phylogenetic analysis of 334 N. gonorrhoeae isolates collected in 2016 revealed a single, geographically diverse lineage of isolates with MICs of 2 to 16 μg/ml that carried a mosaic-like mtr locus, whereas the majority of isolates with MICs of ≥16 μg/ml appeared sporadically and carried 23S rRNA mutations. Continued molecular surveillance of N. gonorrhoeae isolates will identify new resistance mechanisms.
Collapse
|
206
|
Zhao J, Liu C, Liu Y, Zhang Y, Xiong Z, Fan Y, Zou X, Lu B, Cao B. Genomic characteristics of clinically important ST11 Klebsiella pneumoniae strains worldwide. J Glob Antimicrob Resist 2020; 22:519-526. [PMID: 32278068 DOI: 10.1016/j.jgar.2020.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES ST11 Klebsiella pneumoniae is among the most important clinical pathogens in China, and KL47 and KL64 are the dominant K types of these strains. Understanding the genomic characteristics of these strains would be critical to their anti-infection treatment. METHODS There were 364 genome sequences of ST11 K. pneumoniae strains isolated and collected from 13 countries from 2003 to 2018. These genome sequences included 338 downloaded from the National Center for Biotechnology Information (NCBI) database and 26 newly sequenced. Phylogenetic analyses of pan-genome and unique genes, and resistance and virulence gene analyses, were carried out to elucidate the molecular characteristics of these strains. RESULTS A total of 19 732 genes were identified from the 364 ST11 strains, and the pan-genome was open, indicating the genetic diversity of ST11 K. pneumoniae. These strains were clustered into three clades. Clade 1 contained the most various K types (14/15, 93.3%) and unique genes. KL47 and KL64 were the dominant K types of clades 2 and 3, accounting for 100% and 99.4% of strains in each clade, respectively. KL64 strains contained the most virulence genes, including iucA and rmpA, and the two genes tend to coexist. In addition, strains in clade 1 were isolated from all 13 countries; the strains in clades 2 and 3 were isolated mainly from China. CONCLUSIONS The ST11 K. pneumoniae strain of KL64 is a newly emerging superbug, with more resistance and virulence genes in China; this was significantly different from other countries, and we should be alert to the dissemination of this subclone.
Collapse
Affiliation(s)
- Jiankang Zhao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhujia Xiong
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
207
|
Kim S, Kim H, Kim Y, Kim M, Kwak H, Ryu S. Whole-Genome Sequencing-Based Characteristics in Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Retail Meats in Korea. Microorganisms 2020; 8:E508. [PMID: 32252466 PMCID: PMC7232390 DOI: 10.3390/microorganisms8040508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
The spread of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) has posed a critical health risk to both humans and animals, because resistance to beta-lactam antibiotics makes treatment for commonly infectious diseases more complicated. In this study, we report the prevalence and genetic characteristics of ESBL-ECs isolated from retail meat samples in Korea. A total of 1205 E. coli strains were isolated from 3234 raw meat samples, purchased from nationwide retail stores between 2015 and 2018. Antimicrobial susceptibility testing was performed for all isolates by a broth microdilution method, and the ESBL phenotype was determined according to the Clinical and Laboratory Standards Institute (CLSI) confirmatory method. All ESBL-EC isolates (n = 29) were subjected to whole-genome sequencing (WGS). The antimicrobial resistance genes, plasmid incompatibility types, E. coli phylogroups, and phylogenetic relations were investigated based on the WGS data. The prevalence of ESBL-ECs in chicken was significantly higher than that in other meat samples. The results in this study demonstrate that clonally diverse ESBL-ECs with a multidrug resistance phenotype were distributed nationwide, although their prevalence from retail meat was 0.9%. The dissemination of ESBL-ECs from retail meat poses a potential risk to consumers and food-handlers, suggesting that the continuous surveillance of ESBL-ECs in retail meat should be conducted at the national level.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Hyosun Kwak
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
208
|
Alfsnes K, Eldholm V, Olsen AO, Brynildsrud OB, Bohlin J, Steinbakk M, Caugant DA. Genomic epidemiology and population structure of Neisseria gonorrhoeae in Norway, 2016-2017. Microb Genom 2020; 6:e000359. [PMID: 32213251 PMCID: PMC7276708 DOI: 10.1099/mgen.0.000359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
This study presents the nationwide epidemiology of Neisseria gonorrhoeae, using whole-genome sequencing of all culture-positive cases, which comprise roughly 40 % of all cases of gonorrhea reported in Norway from 2016 to 2017. Isolates were assigned to sequence types and Bayesian analysis clusters and variation in genes coding for antibiotic resistance was linked to phenotypic resistance data. The study also included isolates taken from the same patients from different anatomical sites at one or more time points. Comparing these isolates allows for observation of patterns of infections, i.e. multiple reinfections of genetically related clones vs. reinfections of genetically distant clones, and quantification of the genomic variation of closely related isolates from samples taken from a patient within the same day. Demographically, the patients in the study could be split into two groups; one group of patients from the capital with a high proportion of men who have sex with men (MSM), and another consisting of young adults with transmission primarily between males and females from outside the capital. Some clusters of N. gonorrhoeae were restricted to one of these two demographic groups. Pairwise comparison of multiple isolates from the same patients revealed that most were reinfected with different clones. Observations of frequent reinfections in patients is a concern and should be taken into account in the development of improved information and treatment guidelines.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Olaug Olsen
- National Advisory Unit for Sexually Transmitted Infections, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martin Steinbakk
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Østfold Hospital Trust, Center for Laboratory Medicine, Grålum, Norway
| | - Dominique A. Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
209
|
Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci Rep 2020; 10:5443. [PMID: 32214186 PMCID: PMC7096523 DOI: 10.1038/s41598-020-62300-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 11/12/2022] Open
Abstract
Melioidosis is a severe disease caused by the environmental bacterium Burkholderia pseudomallei that affects both humans and animals throughout northern Australia, Southeast Asia and increasingly globally. While there is a considerable degree of genetic diversity amongst isolates, B. pseudomallei has a robust global biogeographic structure and genetic populations are spatially clustered in the environment. We examined the distribution and local spread of B. pseudomallei in Darwin, Northern Territory, Australia, which has the highest recorded urban incidence of melioidosis globally. We sampled soil and land runoff throughout the city centre and performed whole-genome sequencing (WGS) on B. pseudomallei isolates. By combining phylogenetic analyses, Bayesian clustering and spatial hot spot analysis our results demonstrate that some sequence types (STs) are widespread in the urban Darwin environment, while others are highly spatially clustered over a small geographic scale. This clustering matches the spatial distribution of clinical cases for one ST. Results also demonstrate a greater overall isolate diversity recovered from drains compared to park soils, further supporting the role drains may play in dispersal of B. pseudomallei STs in the environment. Collectively, knowledge gained from this study will allow for better understanding of B. pseudomallei phylogeography and melioidosis source attribution, particularly on a local level.
Collapse
|
210
|
Yang C, Zhu EJ, He QJ, Yi CH, Wang XB, Hu SJ, Wei SJ. Strong genetic differentiation among populations of Cheirotonus gestroi (Coleoptera: Euchiridae) in its native area sheds lights on species conservation. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:108-119. [PMID: 32202195 DOI: 10.1080/24701394.2020.1741565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-armed scarab (Cheirotonus gestroi) is an endangered large insect in southwestern China and neighboring countries; however, limited information is available regarding its population genetics, hindering conservation efforts. Therefore, we investigated the population genetic structure and evolutionary history of C. gestroi in southwestern China. Twenty-five haplotypes were obtained from 47 specimens across five populations. The Dawei Mountain (DWS) population differed from other populations by a high genetic distance. Population structure analysis generated three distinct clades, corresponding to Hengduan Mountains (HM), Ailao Mountains (AM), and Dawei Mountains (DM), and high-level genetic diversity was found in two HM populations. Collectively, the strong genetic differentiation among populations might be due to limited gene flow, geographical isolation, and habitat fragmentation. Therefore, while developing a conservation strategy, HM, AM, and DM groups should be defined as separate management units. Additionally, the DWS population should be given priority protection due to its uniqueness and low genetic diversity.
Collapse
Affiliation(s)
- Chen Yang
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - En-Jiao Zhu
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Qiu-Ju He
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China
| | - Chuan-Hui Yi
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Shao-Ji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, China.,Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
211
|
Bandrick M, Gutiérrez AH, Desai P, Rincon G, Martin WD, Terry FE, De Groot AS, Foss DL. T cell epitope content comparison (EpiCC) analysis demonstrates a bivalent PCV2 vaccine has greater T cell epitope overlap with field strains than monovalent PCV2 vaccines. Vet Immunol Immunopathol 2020; 223:110034. [PMID: 32278900 DOI: 10.1016/j.vetimm.2020.110034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
Porcine circovirus type 2 (PCV2) has one of the highest evolutionary rates among DNA viruses. Traditionally, PCV2 vaccines have been based on the 2a genotype as this was the first genotype discovered. Today, eight genotypes of PCV2 viruses have been identified, and, taken together with the rapid evolutionary rate, propensity to recombine, and high rate of vaccination, further variation in PCV2 is expected. For these reasons, there is a growing genetic gap between available vaccines and field strains. When selecting vaccines, it is important to consider vaccines that contain T cell epitopes that are well-matched to the circulating strains. To quantify the relatedness between PCV2 vaccines and field strains, we predicted and compared their T cell epitope content and calculated Epitope Content Comparison (EpiCC) scores using established in silico tools. T cell epitopes predicted to bind common class I and class II swine leukocyte antigen (SLA) alleles were identified from two major structural proteins, the capsid (encoded by ORF2) and the replicase (encoded by ORF1). The T cell epitope content of three commercial PCV2a-based vaccines (a baculovirus expressed PCV2a ORF2 [VacAlt], a PCV1-PCV2a chimeric virus vaccine [VacA] and a combination cPCV2a-cPCV2b chimeric virus vaccine [VacAB]) and an experimental PCV2b ORF2-based chimeric virus vaccine [VacB] (Table 1), were compared to that of 161 PCV2 field strains (representing genotypes a-f). The T cell epitope content and conservation between vaccine and field strains varied. While all vaccine strains provided broad coverage of the field strains including heterologous genotypes, none of the vaccines covered all the putative T cell epitopes identified in the field strains. PCV2a-based vaccine strains generally scored higher in terms of conserved epitope content against PCV2a field isolates but were not identical. The PCV2b-based vaccine strain had higher scores against PCV2b and PCV2d field strains. The combination PCV2a-PCV2b vaccine (VacAB) had, on average, the highest EpiCC score. PCV2 continues to evolve and EpiCC analysis provides a new tool to assess the possible impact of virus genetic divergence on T cell epitope coverage of vaccine strains. Given that multiple genotypes are currently found and may co-exist on farms, this analysis suggests that a combination of PCV2a and PCV2b vaccine strains may be required to provide optimal coverage of current and future field isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States; Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
212
|
Břinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, Cowley L, Wadsworth CB, Grad YH, Kucherov G, O'Grady J, Baym M, Hanage WP. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat Microbiol 2020; 5:455-464. [PMID: 32042129 PMCID: PMC7044115 DOI: 10.1038/s41564-019-0656-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022]
Abstract
Surveillance of drug-resistant bacteria is essential for healthcare providers to deliver effective empirical antibiotic therapy. However, traditional molecular epidemiology does not typically occur on a timescale that could affect patient treatment and outcomes. Here, we present a method called 'genomic neighbour typing' for inferring the phenotype of a bacterial sample by identifying its closest relatives in a database of genomes with metadata. We show that this technique can infer antibiotic susceptibility and resistance for both Streptococcus pneumoniae and Neisseria gonorrhoeae. We implemented this with rapid k-mer matching, which, when used on Oxford Nanopore MinION data, can run in real time. This resulted in the determination of resistance within 10 min (91% sensitivity and 100% specificity for S. pneumoniae and 81% sensitivity and 100% specificity for N. gonorrhoeae from isolates with a representative database) of starting sequencing, and within 4 h of sample collection (75% sensitivity and 100% specificity for S. pneumoniae) for clinical metagenomic sputum samples. This flexible approach has wide application for pathogen surveillance and may be used to greatly accelerate appropriate empirical antibiotic treatment.
Collapse
Affiliation(s)
- Karel Břinda
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alanna Callendrello
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Derek R MacFadden
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Themoula Charalampous
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robyn S Lee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Cowley
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Crista B Wadsworth
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gregory Kucherov
- CNRS/LIGM Université Paris-Est, Marne-la-Vallée, France
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Justin O'Grady
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
213
|
Abstract
Enterococcus faecium is one of the most frequent nosocomial pathogens of hospital-acquired infections. E. faecium has gained resistance against most commonly available antibiotics, most notably, against ampicillin, gentamicin, and vancomycin, which renders infections difficult to treat. Many antibiotic resistance traits, in particular, vancomycin resistance, can be encoded in autonomous and extrachromosomal elements called plasmids. These sequences can be disseminated to other isolates by horizontal gene transfer and confer novel mechanisms to source specificity. In our study, we elucidated the total plasmid content, referred to as the plasmidome, of 1,644 E. faecium isolates by using short- and long-read whole-genome technologies with the combination of a machine-learning classifier. This was fundamental to investigate the full collection of plasmid sequences present in our collection (pan-plasmidome) and to observe the potential transfer of plasmid sequences between E. faecium hosts. We observed that E. faecium isolates from hospitalized patients carried a larger number of plasmid sequences compared to that from other sources, and they elucidated different configurations of plasmidome populations in the hospital environment. We assessed the contribution of different genomic components and observed that plasmid sequences have the highest contribution to source specificity. Our study suggests that E. faecium plasmids are regulated by complex ecological constraints rather than physical interaction between hosts. Enterococcus faecium is a gut commensal of humans and animals but is also listed on the WHO global priority list of multidrug-resistant pathogens. Many of its antibiotic resistance traits reside on plasmids and have the potential to be disseminated by horizontal gene transfer. Here, we present the first comprehensive population-wide analysis of the pan-plasmidome of a clinically important bacterium, by whole-genome sequence analysis of 1,644 isolates from hospital, commensal, and animal sources of E. faecium. Long-read sequencing on a selection of isolates resulted in the completion of 305 plasmids that exhibited high levels of sequence modularity. We further investigated the entirety of all plasmids of each isolate (plasmidome) using a combination of short-read sequencing and machine-learning classifiers. Clustering of the plasmid sequences unraveled different E. faecium populations with a clear association with hospitalized patient isolates, suggesting different optimal configurations of plasmids in the hospital environment. The characterization of these populations allowed us to identify common mechanisms of plasmid stabilization such as toxin-antitoxin systems and genes exclusively present in particular plasmidome populations exemplified by copper resistance, phosphotransferase systems, or bacteriocin genes potentially involved in niche adaptation. Based on the distribution of k-mer distances between isolates, we concluded that plasmidomes rather than chromosomes are most informative for source specificity of E. faecium.
Collapse
|
214
|
Lee RS, Proulx JF, McIntosh F, Behr MA, Hanage WP. Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing. eLife 2020; 9:e53245. [PMID: 32014110 PMCID: PMC7012596 DOI: 10.7554/elife.53245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis disproportionately affects the Canadian Inuit. To address this, it is imperative we understand transmission dynamics in this population. We investigate whether 'deep' sequencing can provide additional resolution compared to standard sequencing, using a well-characterized outbreak from the Arctic (2011-2012, 50 cases). Samples were sequenced to ~500-1000x and reads were aligned to a novel local reference genome generated with PacBio SMRT sequencing. Consensus and heterogeneous variants were identified and compared across genomes. In contrast with previous genomic analyses using ~50x depth, deep sequencing allowed us to identify a novel super-spreader who likely transmitted to up to 17 other cases during the outbreak (35% of the remaining cases that year). It is increasingly evident that within-host diversity should be incorporated into transmission analyses; deep sequencing may facilitate more accurate detection of super-spreaders and transmission clusters. This has implications not only for TB, but all genomic studies of transmission - regardless of pathogen.
Collapse
Affiliation(s)
- Robyn S Lee
- Epidemiology Division, Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
- Center for Communicable Disease DynamicsHarvard TH Chan School of Public HealthBostonUnited States
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
| | | | - Fiona McIntosh
- The Research Institute of McGill University Health CentreMontréalCanada
| | - Marcel A Behr
- The Research Institute of McGill University Health CentreMontréalCanada
| | - William P Hanage
- Center for Communicable Disease DynamicsHarvard TH Chan School of Public HealthBostonUnited States
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
| |
Collapse
|
215
|
Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, Aung EE, Nugroho C, Roman-Reyna V, Burgos MR, Capistrano P, Dossa SG, Onaga G, Saloma C, Cruz CV, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. THE ISME JOURNAL 2020; 14:492-505. [PMID: 31666657 PMCID: PMC6976662 DOI: 10.1038/s41396-019-0545-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
Abstract
The impact of modern agriculture on the evolutionary trajectory of plant pathogens is a central question for crop sustainability. The Green Revolution replaced traditional rice landraces with high-yielding varieties, creating a uniform selection pressure that allows measuring the effect of such intervention. In this study, we analyzed a unique historical pathogen record to assess the impact of a major resistance gene, Xa4, in the population structure of Xanthomonas oryzae pv. oryzae (Xoo) collected in the Philippines in a span of 40 years. After the deployment of Xa4 in the early 1960s, the emergence of virulent pathogen groups was associated with the increasing adoption of rice varieties carrying Xa4, which reached 80% of the total planted area. Whole genomes analysis of a representative sample suggested six major pathogen groups with distinctive signatures of selection in genes related to secretion system, cell-wall degradation, lipopolysaccharide production, and detoxification of host defense components. Association genetics also suggested that each population might evolve different mechanisms to adapt to Xa4. Interestingly, we found evidence of strong selective sweep affecting several populations in the mid-1980s, suggesting a major bottleneck that coincides with the peak of Xa4 deployment in the archipelago. Our study highlights how modern agricultural practices facilitate the adaptation of pathogens to overcome the effects of standard crop improvement efforts.
Collapse
Affiliation(s)
- Ian Lorenzo Quibod
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Genelou Atieza-Grande
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Eula Gems Oreiro
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Denice Palmos
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Marian Hanna Nguyen
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sapphire Thea Coronejo
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ei Ei Aung
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cipto Nugroho
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Assessment Institute for Agricultural Technology Southeast Sulawesi, Indonesian Agency for Agricultural Research and Development, Jl. M. Yamin No. 89 Puwatu, Kendari, 93114, Indonesia
| | - Veronica Roman-Reyna
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria Ruby Burgos
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Pauline Capistrano
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sylvestre G Dossa
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Food and Agriculture Organization of the United Nations, Immeuble Bel Espace-Batterie IV, Libreville, Gabon
| | - Geoffrey Onaga
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cynthia Saloma
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Casiana Vera Cruz
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ricardo Oliva
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
216
|
Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu Y, Didelot X, Yang R, Pan J, Cui Y. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis 2020; 14:e0008046. [PMID: 32069325 PMCID: PMC7048298 DOI: 10.1371/journal.pntd.0008046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains.
Collapse
Affiliation(s)
- Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhou Sun
- Institution of Infectious Disease Control, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
217
|
Mäklin T, Kallonen T, David S, Boinett CJ, Pascoe B, Méric G, Aanensen DM, Feil EJ, Baker S, Parkhill J, Sheppard SK, Corander J, Honkela A. High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Res 2020; 5:14. [PMID: 34746439 PMCID: PMC8543175 DOI: 10.12688/wellcomeopenres.15639.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Determining the composition of bacterial communities beyond the level of a genus or species is challenging because of the considerable overlap between genomes representing close relatives. Here, we present the mSWEEP pipeline for identifying and estimating the relative sequence abundances of bacterial lineages from plate sweeps of enrichment cultures. mSWEEP leverages biologically grouped sequence assembly databases, applying probabilistic modelling, and provides controls for false positive results. Using sequencing data from major pathogens, we demonstrate significant improvements in lineage quantification and detection accuracy. Our pipeline facilitates investigating cultures comprising mixtures of bacteria, and opens up a new field of plate sweep metagenomics.
Collapse
Affiliation(s)
- Tommi Mäklin
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Teemu Kallonen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Christine J. Boinett
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David M. Aanensen
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jukka Corander
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Antti Honkela
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
218
|
Yan J, Xue J, Chen Y, Chen S, Wang Q, Zhang C, Wu S, Lv H, Yu Y, van der Veen S. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother 2020; 74:29-37. [PMID: 30329062 DOI: 10.1093/jac/dky412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives Development of resistance in Neisseria gonorrhoeae to ceftriaxone monotherapy or ceftriaxone plus azithromycin dual therapy is a global public health concern. The aim of this study was to analyse the trend in antimicrobial resistance in Hangzhou, China, over the period 2015-17. Methods In total, 379 clinical isolates were collected from seven hospitals and antimicrobial susceptibility was determined using the agar dilution method. Isolates showing resistance to ceftriaxone, azithromycin or cefixime were analysed for the presence of resistance determinants. STs were determined with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) method and phylogenetic analysis and strain clustering was determined using porB and tbpB sequences. Results Ceftriaxone resistance, decreased susceptibility to ceftriaxone and azithromycin resistance were observed in 3%, 17% and 21% of the isolates, respectively. This resulted in 5% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Importantly, resistance levels to ceftriaxone and azithromycin increased over the study period, resulting in 5% ceftriaxone resistance, 27% decreased susceptibility to ceftriaxone and 35% azithromycin resistance in 2017 and 11% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Phylogenetic and cluster analysis showed the emergence and expansion in 2017 of a clonally related cluster containing strains with high abundance of decreased susceptibility to ceftriaxone and/or cefixime, which was related to the presence of the mosaic penA allele X. Co-resistance to azithromycin was also observed in this cluster. Conclusions Our findings have major implications for the future reliability of ceftriaxone monotherapy and ceftriaxone plus azithromycin dual therapy in China.
Collapse
Affiliation(s)
- Jing Yan
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Xue
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Chen
- Clinical Laboratory Department, Hangzhou Third Hospital, Hangzhou, China
| | - Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanling Zhang
- Clinical Laboratory, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huoyang Lv
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
219
|
Abstract
S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments. Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population. IMPORTANCES. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.
Collapse
|
220
|
Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T, Mainil JG, Piérard D, Yoshino S, Kimata K, Isobe J, Seto K, Etoh Y, Narimatsu H, Saito S, Yatsuyanagi J, Lee K, Iyoda S, Ohnishi M, Ooka T, Gotoh Y, Ogura Y, Hayashi T. Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genom 2020; 6:e000323. [PMID: 31935184 PMCID: PMC7067040 DOI: 10.1099/mgen.0.000323] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Phages and plasmids play important roles in bacterial evolution and diversification. Although many draft genomes have been generated, phage and plasmid genomes are usually fragmented, limiting our understanding of their dynamics. Here, we performed a systematic analysis of 239 draft genomes and 7 complete genomes of Shiga toxin (Stx)-producing Escherichia coli O145:H28, the major virulence factors of which are encoded by prophages (PPs) or plasmids. The results indicated that PPs are more stably maintained than plasmids. A set of ancestrally acquired PPs was well conserved, while various PPs, including Stx phages, were acquired by multiple sublineages. In contrast, gains and losses of a wide range of plasmids have frequently occurred across the O145:H28 lineage, and only the virulence plasmid was well conserved. The different dynamics of PPs and plasmids have differentially impacted the pangenome of O145:H28, with high proportions of PP- and plasmid-associated genes in the variably present and rare gene fractions, respectively. The dynamics of PPs and plasmids have also strongly impacted virulence gene repertoires, such as the highly variable distribution of stx genes and the high conservation of a set of type III secretion effectors, which probably represents the core effectors of O145:H28 and the genes on the virulence plasmid in the entire O145:H28 population. These results provide detailed insights into the dynamics of PPs and plasmids, and show the application of genomic analyses using a large set of draft genomes and appropriately selected complete genomes.
Collapse
Affiliation(s)
- Keiji Nakamura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Murase
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mitsuhiko P. Sato
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Tokyo, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | | | | | - Shuji Yoshino
- Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | | | | | - Kazuko Seto
- Osaka Institute of Public Health, Osaka, Japan
| | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | | | - Shioko Saito
- Akita Research Center for Public Health and Environment, Akita, Japan
| | - Jun Yatsuyanagi
- Akita Research Center for Public Health and Environment, Akita, Japan
| | - Kenichi Lee
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tadasuke Ooka
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Gotoh
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
221
|
Martín-Vide C, Vega-Rodríguez MA, Wheeler T. PathOGiST: A Novel Method for Clustering Pathogen Isolates by Combining Multiple Genotyping Signals. ALGORITHMS FOR COMPUTATIONAL BIOLOGY 2020. [PMCID: PMC7197062 DOI: 10.1007/978-3-030-42266-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this paper we study the problem of clustering bacterial isolates into epidemiologically related groups from next-generation sequencing data. Existing methods for this problem mainly use a single genotyping signal, and either use a distance-based method with a pre-specified number of clusters, or a phylogenetic tree-based method with a pre-specified threshold. We propose PathOGiST, an algorithmic framework for clustering bacterial isolates by leveraging multiple genotypic signals and calibrated thresholds. PathOGiST uses different genotypic signals, clusters the isolates based on these individual signals with correlation clustering, and combines the clusterings based on the individual signals through consensus clustering. We implemented and tested PathOGiST on three different bacterial pathogens - Escherichia coli, Yersinia pseudotuberculosis, and Mycobacterium tuberculosis - and we conclude by discussing further avenues to explore.
Collapse
|
222
|
Lowe M, Kock MM, Coetzee J, Hoosien E, Peirano G, Strydom KA, Ehlers MM, Mbelle NM, Shashkina E, Haslam DB, Dhawan P, Donnelly RJ, Chen L, Kreiswirth BN, Pitout JDD. Klebsiella pneumoniae ST307 with bla OXA-181, South Africa, 2014-2016. Emerg Infect Dis 2019; 25:739-747. [PMID: 30882333 PMCID: PMC6433043 DOI: 10.3201/eid2504.181482] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae sequence type (ST) 307 is an emerging global antimicrobial drug-resistant clone. We used whole-genome sequencing and PCR to characterize K. pneumoniae ST307 with oxacillinase (OXA) 181 carbapenemase across several private hospitals in South Africa during 2014-2016. The South Africa ST307 belonged to a different clade (clade VI) with unique genomic characteristics when compared with global ST307 (clades I-V). Bayesian evolution analysis showed that clade VI emerged around March 2013 in Gauteng Province, South Africa, and then evolved during 2014 into 2 distinct lineages. K. pneumoniae ST307 clade VI with OXA-181 disseminated over a 15-month period within 42 hospitals in 23 cities across 6 northeastern provinces, affecting 350 patients. The rapid expansion of ST307 was most likely due to intrahospital, interhospital, intercity, and interprovince movements of patients. This study highlights the importance of molecular surveillance for tracking emerging antimicrobial clones.
Collapse
|
223
|
Forcina G, Guerrini M, Barbanera F. Non-native and hybrid in a changing environment: conservation perspectives for the last Italian red-legged partridge (Alectoris rufa) population with long natural history. ZOOLOGY 2019; 138:125740. [PMID: 31935616 DOI: 10.1016/j.zool.2019.125740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
The ever-increasing biotic homogenization - especially when associated with introgressive hybridization - raises concern for the reduction of the spatial component of diversity in wildlife worldwide. Nonetheless, there is a growing attention to the potential conservation value of hybridization in fastening the adaptive evolutionary responses to rapidly changing selective pressures. Under these premises, we investigated the genetic affinity of the red-legged partridge (Alectoris rufa) population inhabiting Elba Island (Italy) in the context of the overall species phylogeography and particularly of the nominate subspecies it is traditionally ascribed to. Although notoriously hybrid with the congeneric A. chukar, this island population is of undisputedly value because of its long natural history and self-sustainability. As such, its adaptive conservation management calls for a comprehensive knowledge including the assessment of its geographic origin. For this purpose, 110 fecal samples were collected across Elba, genotyped at their joint Cytochrome-b and Control Region genes (2,249 characters), and compared with 149 conspecifics from all over the species distribution range. We confirmed a widespread A. chukar mitochondrial DNA introgression in Elba partridges, whereas their expected formal assignment to the nominate subspecies from Italy and France was rejected, since these turned out to be closely related to conspecifics from the Iberian Peninsula. This counterintuitive result found support in a large variety of literary sources and compelling evidences from personal testimonies revealing recent intense management with farm-reared birds of Spanish origin. Although the nativeness of Elba partridges was disproved, we advise local authorities to keep warranting the ongoing conservation efforts - and especially restore the connectivity between the western and eastern island sub-populations - as this resource may still be conceived as the ultimate repository for part of the otherwise extinct Italian A. r. rufa genome. Indeed, the admixture with conspecifics from the Iberian Peninsula does not necessarily mean that the entirety of the native nuclear genome of Elba partridges has been wiped out. Furthermore, these latter represent an interesting case study in conservation biology to investigate the possible role played by introgressive hybridization in the adaptation to recent land use and vegetation cover changes associated with rural abandonment in an insular yet heavily anthropized context.
Collapse
Affiliation(s)
- Giovanni Forcina
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy
| | - Monica Guerrini
- Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy
| | - Filippo Barbanera
- Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy.
| |
Collapse
|
224
|
Fenderson LE, Kovach AI, Llamas B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol Ecol 2019; 29:218-246. [DOI: 10.1111/mec.15315] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/22/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lindsey E. Fenderson
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
225
|
Yuan C, Yin Z, Wang J, Qian C, Wei Y, Zhang S, Jiang L, Liu B. Comparative Genomic Analysis of Citrobacter and Key Genes Essential for the Pathogenicity of Citrobacter koseri. Front Microbiol 2019; 10:2774. [PMID: 31866966 PMCID: PMC6908497 DOI: 10.3389/fmicb.2019.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Citrobacter species are opportunistic bacterial pathogens that have been implicated in both nosocomial and community-acquired infections. Among the genus Citrobacter, Citrobacter koseri is often isolated from clinical material, and has been known to cause meningitis and brain abscess in neonates and immunocompromised individuals. The virulence determinants of Citrobacter, however, remain largely unknown. Based on traditional methods, the genus Citrobacter has been divided into 11 species, but this has been problematic. Here, we determined an improved, detailed, and more accurate phylogeny of the genus Citrobacter based on whole genome sequence (WGS) data from 129 Citrobacter genomes, 31 of which were sequenced in this study. A maximum likelihood (ML) phylogeny constructed with core genome single-nucleotide polymorphisms (SNPs) classified all Citrobacter isolates into 11 distinct groups, with all C. koseri strains clustering into a single group. For comprehensive and systematic comparative genomic analyses, we investigated the distribution of virulence factors, resistance genes, and macromolecular secretion systems among the Citrobacter genus. Moreover, combined with group-specific genes analysis, we identified a key gene cluster for iron transport, which is present in the C. koseri group, but absent in other the groups, suggesting that the high-pathogenicity island (HPI) cluster may be important for the pathogenicity of C. koseri. Animal experiments showed that loss of the HPI cluster significantly decreased C. koseri virulence in mice and rat. Further, we provide evidence to explain why Citrobacter freundii is less susceptible than C. koseri to several antibiotics in silico. Overall, our data reveal novel virulence clusters specific to the predominantly pathogenic C. koseri strains, which form the basis for elucidating the virulence mechanisms underlying these important pathogens.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Junyue Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA College, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| |
Collapse
|
226
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|
227
|
Cao L, Gao Y, Gong Y, Chen J, Chen M, Hoffmann A, Wei S. Population analysis reveals genetic structure of an invasive agricultural thrips pest related to invasion of greenhouses and suitable climatic space. Evol Appl 2019; 12:1868-1880. [PMID: 31700532 PMCID: PMC6824073 DOI: 10.1111/eva.12847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Biological invasions of pests into climatically unsuitable areas can be facilitated by human-regulated environments, in which case there may be an impact on genetic structure through population processes and/or adaptation. Here, we investigated the population genetic structure of an invasive agricultural pest, Thrips palmi, in China, which has expanded its distribution range through using greenhouses. Early invaded populations showed a relatively higher level of genetic diversity than recently expanded greenhouse populations. Strong population genetic structure corresponded to a pattern of isolation by distance, with no recent gene flow and low historical gene flow among populations, reflecting limited ongoing dispersal. A genetic signature of population expansion was detected in early invaded populations and three northern populations from greenhouses, suggesting that the greenhouse environments facilitated expansion of this species. Redundancy analysis showed that the independent effects of environment and geography could explain 51.68% and 32.06% of the genetic variance, respectively. These findings point to climate- and greenhouse-related spatial expansion, with the potential for adaptation by T. palmi. They emphasize the contribution of human-regulated environments on the successes of this invasive species, a situation likely to apply to other invasive species that use greenhouse environments.
Collapse
Affiliation(s)
- Li‐Jun Cao
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Yong‐Fu Gao
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Ya‐Jun Gong
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jin‐Cui Chen
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Min Chen
- Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Ary Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneParkvilleVICAustralia
| | - Shu‐Jun Wei
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
228
|
Potter RF, Burnham CAD, Dantas G. In Silico Analysis of Gardnerella Genomospecies Detected in the Setting of Bacterial Vaginosis. Clin Chem 2019; 65:1375-1387. [PMID: 31462445 PMCID: PMC7055668 DOI: 10.1373/clinchem.2019.305474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gardnerella vaginalis is implicated as one of the causative agents of bacterial vaginosis, but it can also be isolated from the vagina of healthy women. Previous efforts to study G. vaginalis identified 4 to 6 clades, but average nucleotide identity analysis indicates that G. vaginalis may be multiple species. Recently, Gardnerella was determined to be 13 genomospecies, with Gardnerella piottii, Gardnerella leopoldii, and Gardnerella swidsinkii delineated as separate species. METHODS We accessed 103 publicly available genomes annotated as G. vaginalis. We performed comprehensive taxonomic and phylogenomic analysis to quantify the number of species called G. vaginalis, the similarity of their core genes, and their burden of their accessory genes. We additionally analyzed publicly available metatranscriptomic data sets of bacterial vaginosis to determine whether the newly delineated genomospecies are present, and to identify putative conserved features of Gardnerella pathogenesis. RESULTS Gardnerella could be classified into 8 to 14 genomospecies depending on the in silico classification tools used. Consensus classification identified 9 different Gardnerella genomospecies, here annotated as GS01 through GS09. The genomospecies could be readily distinguished by the phylogeny of their shared genes and burden of accessory genes. All of the new genomospecies were identified in metatranscriptomes of bacterial vaginosis. CONCLUSIONS Multiple Gardnerella genomospecies operating in isolation or in concert with one another may be responsible for bacterial vaginosis. These results have important implications for future efforts to understand the evolution of the Gardnerella genomospecies, host-pathogen interactions of the genomospecies during bacterial vaginosis, diagnostic assay development for bacterial vaginosis, and metagenomic investigations of the vaginal microbiota.
Collapse
Affiliation(s)
- Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO;
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
229
|
Richards VP, Velsko IM, Alam MT, Zadoks RN, Manning SD, Pavinski Bitar PD, Hassler HB, Crestani C, Springer GH, Probert BM, Town CD, Stanhope MJ. Population Gene Introgression and High Genome Plasticity for the Zoonotic Pathogen Streptococcus agalactiae. Mol Biol Evol 2019; 36:2572-2590. [PMID: 31350563 PMCID: PMC6805230 DOI: 10.1093/molbev/msz169] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated 12 major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of 11 populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Irina M Velsko
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Md Tauqeer Alam
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ruth N Zadoks
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Hayley B Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Chiara Crestani
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
| | - Garrett H Springer
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Brett M Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | | | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
230
|
Willemse N, van der Ark KCH, Stockhofe-Zurwieden N, Smith H, Picavet DI, van Solt-Smits C, Wisselink HJ, Schultsz C, de Greeff A. Clonal expansion of a virulent Streptococcus suis serotype 9 lineage distinguishable from carriage subpopulations. Sci Rep 2019; 9:15429. [PMID: 31659179 PMCID: PMC6817849 DOI: 10.1038/s41598-019-51576-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus suis is a porcine pathogen, causing severe invasive infections. S. suis serotype 9 is increasingly causing disease in Dutch and Chinese pig herds, but it is unknown whether all serotype 9 isolates are equally virulent and markers that can identify virulent strains are not available. Therefore, discrimination between virulent isolates and carriage isolates typically not associated with disease, is currently not possible. We collected tonsillar S. suis isolates from 6 herds not previously diagnosed with S. suis infections, and clinical S. suis isolates of previously diseased pigs. We confirmed the virulence of a virulent type strain and one representative clinical isolate, and the lack of virulence of two carriage isolates, in a pig infection model. Phylogenetic analysis of whole genome sequences of 124 isolates resulted in 10 groups, of which two were almost uniquely populated by clinical isolates. The population structure of S. suis serotype 9 appears highly diverse. However, analysis of the capsule loci sequences showed variation in a single region which fully correlated with a virulent genotype. Transmission electron microscopy suggested differences in capsule thickness between carriage and clinical genotypes. In conclusion, we found that that the S. suis serotype 9 population in the Netherlands is diverse. A distinct virulence-associated lineage was identified and could be discriminated based on the capsule locus sequence. Whilst the difference in virulence cannot be directly attributed to the DNA sequence, the correlation of capsule locus sequence with virulence could be used in the development of diagnostic tests to identify potential virulent S. suis serotype 9 in pigs.
Collapse
Affiliation(s)
- Niels Willemse
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Kees C H van der Ark
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Norbert Stockhofe-Zurwieden
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Hilde Smith
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Daisy I Picavet
- EMCA Amsterdam, Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Henk J Wisselink
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, Paasheuvelweg 25, 1105, BP, Amsterdam, The Netherlands.
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221, RA, Lelystad, The Netherlands
| |
Collapse
|
231
|
Lee RS, Gonçalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, Kwong JC, Schultz MB, Bulach DM, Seemann T, Stinear TP, Howden BP. The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. J Antimicrob Chemother 2019; 73:3268-3278. [PMID: 30189014 DOI: 10.1093/jac/dky331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm. Methods A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid. Results vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission. Conclusions Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.
Collapse
Affiliation(s)
- Robyn S Lee
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Level 5, Boston, MA, USA
| | - Anders Gonçalves da Silva
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Janet Strachan
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Susan Ballard
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Glen P Carter
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Mark B Schultz
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Dieter M Bulach
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics Group, Lab-14, 700 Swanston Street, Carlton, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria, Australia.,Infectious Diseases Department, Austin Health, Studley Rd, Heidelberg, Victoria, Australia
| |
Collapse
|
232
|
Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weill FX, Howden BP, Valcanis M, De Lappe N, Cormican M, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen TNT, Ha Thanh T, Voong VP, Duong VT, Nguyen PHL, Turner P, Wick R, Ceyssens PJ, Thwaites G, Holt KE, Thomson NR, Rabaa MA, Baker S. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 2019; 10:4828. [PMID: 31645551 PMCID: PMC6811581 DOI: 10.1038/s41467-019-12823-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella sonnei increasingly dominates the international epidemiological landscape of shigellosis. Treatment options for S. sonnei are dwindling due to resistance to several key antimicrobials, including the fluoroquinolones. Here we analyse nearly 400 S. sonnei whole genome sequences from both endemic and non-endemic regions to delineate the evolutionary history of the recently emergent fluoroquinolone-resistant S. sonnei. We reaffirm that extant resistant organisms belong to a single clonal expansion event. Our results indicate that sequential accumulation of defining mutations (gyrA-S83L, parC-S80I, and gyrA-D87G) led to the emergence of the fluoroquinolone-resistant S. sonnei population around 2007 in South Asia. This clone was then transmitted globally, resulting in establishments in Southeast Asia and Europe. Mutation analysis suggests that the clone became dominant through enhanced adaptation to oxidative stress. Experimental evolution reveals that under fluoroquinolone exposure in vitro, resistant S. sonnei develops further intolerance to the antimicrobial while the susceptible counterpart fails to attain complete resistance.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Christine Boinett
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Niall De Lappe
- National Salmonella, Shigella, and Listeria monocytogenes Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Phat Voong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phu Huong Lan Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, The Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
233
|
Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R, Carter GP, Lee JYH, Lam MMC, Grayson ML, Ballard SA, Mahony AA, Grabsch EA, Kotsanas D, Korman TM, Coombs GW, Robinson JO, Gonçalves da Silva A, Seemann T, Howden BP, Johnson PDR, Stinear TP. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 2019; 10:10/452/eaar6115. [PMID: 30068573 DOI: 10.1126/scitranslmed.aar6115] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/10/2018] [Accepted: 04/03/2018] [Indexed: 11/03/2022]
Abstract
Alcohol-based disinfectants and particularly hand rubs are a key way to control hospital infections worldwide. Such disinfectants restrict transmission of pathogens, such as multidrug-resistant Staphylococcus aureus and Enterococcus faecium Despite this success, health care infections caused by E. faecium are increasing. We tested alcohol tolerance of 139 hospital isolates of E. faecium obtained between 1997 and 2015 and found that E. faecium isolates after 2010 were 10-fold more tolerant to killing by alcohol than were older isolates. Using a mouse gut colonization model of E. faecium transmission, we showed that alcohol-tolerant E. faecium resisted standard 70% isopropanol surface disinfection, resulting in greater mouse gut colonization compared to alcohol-sensitive E. faecium We next looked for bacterial genomic signatures of adaptation. Alcohol-tolerant E. faecium accumulated mutations in genes involved in carbohydrate uptake and metabolism. Mutagenesis confirmed the roles of these genes in the tolerance of E. faecium to isopropanol. These findings suggest that bacterial adaptation is complicating infection control recommendations, necessitating additional procedures to prevent E. faecium from spreading in hospital settings.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew H Buultjens
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Margaret M C Lam
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - M Lindsay Grayson
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Victoria 3800, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew A Mahony
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Elizabeth A Grabsch
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - J Owen Robinson
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics, University of Melbourne, Carlton, Victoria 3053, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Paul D R Johnson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia. .,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
234
|
D'Souza AW, Potter RF, Wallace M, Shupe A, Patel S, Sun X, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat Commun 2019; 10:4569. [PMID: 31594927 PMCID: PMC6783542 DOI: 10.1038/s41467-019-12563-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that infect patients also contaminate hospital surfaces. These contaminants impact hospital infection control and epidemiology, prompting quantitative examination of their transmission dynamics. Here we investigate spatiotemporal and phylogenetic relationships of multidrug resistant (MDR) bacteria on intensive care unit surfaces from two hospitals in the United States (US) and Pakistan collected over one year. MDR bacteria isolated from 3.3% and 86.7% of US and Pakistani surfaces, respectively, include common nosocomial pathogens, rare opportunistic pathogens, and novel taxa. Common nosocomial isolates are dominated by single lineages of different clones, are phenotypically MDR, and have high resistance gene burdens. Many resistance genes (e.g., blaNDM, blaOXA carbapenamases), are shared by multiple species and flanked by mobilization elements. We identify Acinetobacter baumannii and Enterococcus faecium co-association on multiple surfaces, and demonstrate these species establish synergistic biofilms in vitro. Our results highlight substantial MDR pathogen burdens in hospital built-environments, provide evidence for spatiotemporal-dependent transmission, and demonstrate potential mechanisms for multi-species surface persistence.
Collapse
Affiliation(s)
- Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela Shupe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan
| | - Jennie H Kwon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan.
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
235
|
Furfaro LL, Chang BJ, Kahler CM, Payne MS. Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates. PLoS One 2019; 14:e0223256. [PMID: 31577825 PMCID: PMC6774530 DOI: 10.1371/journal.pone.0223256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
As a leading cause of neonatal sepsis, Streptococcus agalactiae, commonly known as Group B Streptococcus, is a major neonatal pathogen. Current global screening practices employ risk- or culture-based protocols for detection of these organisms. In Western Australia (WA), universal culture-based screening is provided, with subsequent intrapartum antibiotic prophylaxis for all S. agalactiae-positive women during labour. Widespread antibiotic exposure is not ideal and this is one of the factors driving development of vaccines against S. agalactiae. Vaccine candidates have focused on the capsule, surface proteins and pilus types, however, capsule serotypes are known to vary geographically. The aim of this study was to use genome sequencing to gain an understanding of the circulating genotypes in WA, and to assess variations in the associated gene pools. We sequenced 141 antenatal carriage (vaginal/rectal) isolates and 10 neonatal invasive disease isolates from WA. Based on the global PubMLST database, the 151 strains were characterised into 30 sequence types, with clustering of these mainly into clonal complexes 1, 12, 17, 19 and 23. Of the genes encoding eleven surface proteins that were analysed, the most prevalent were fbp, lmb and scpB which were present in ≥ 98% of isolates. A cluster of non-haemolytic isolates, one of which was a neonatal invasive disease isolate, appeared to lack the entire cyl locus. Admixture analysis of population structure revealed evidence of genetic transfer among the WA isolates across structural groups. When compared against the PubMLST S. agalactiae data, WA isolates showed high levels of strain diversity with minimal apparent clustering. This is the first whole genome sequence study of WA S. agalactiae isolates and also represents the first addition of Australian isolate data to PubMLST. This report provides insight into the distribution and diversity of vaccine targets of S. agalactiae within Western Australia, indicating that the most appropriate capsular vaccine for this population would be the proposed pentavalent (Cps Ia, Ib, II, III and V) preparation, whilst vaccines targeting surface proteins should ideally utilise Fbp, Lmb and/or ScpB.
Collapse
Affiliation(s)
- Lucy L. Furfaro
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- * E-mail:
| | - Barbara J. Chang
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Charlene M. Kahler
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew S. Payne
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
236
|
Li J, Bi Z, Ma S, Chen B, Cai C, He J, Schwarz S, Sun C, Zhou Y, Yin J, Hulth A, Wang Y, Shen Z, Wang S, Wu C, Nilsson LE, Walsh TR, Börjesson S, Shen J, Sun Q, Wang Y. Inter-host Transmission of Carbapenemase-Producing Escherichia coli among Humans and Backyard Animals. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107009. [PMID: 31642700 PMCID: PMC6910777 DOI: 10.1289/ehp5251] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND The rapidly increasing dissemination of carbapenem-resistant Enterobacteriaceae (CRE) in both humans and animals poses a global threat to public health. However, the transmission of CRE between humans and animals has not yet been well studied. OBJECTIVES We investigated the prevalence, risk factors, and drivers of CRE transmission between humans and their backyard animals in rural China. METHODS We conducted a comprehensive sampling strategy in 12 villages in Shandong, China. Using the household [residents and their backyard animals (farm and companion animals)] as a single surveillance unit, we assessed the prevalence of CRE at the household level and examined the factors associated with CRE carriage through a detailed questionnaire. Genetic relationships among human- and animal-derived CRE were assessed using whole-genome sequencing-based molecular methods. RESULTS A total of 88 New Delhi metallo-β-lactamases-type carbapenem-resistant Escherichia coli (NDM-EC), including 17 from humans, 44 from pigs, 12 from chickens, 1 from cattle, and 2 from dogs, were isolated from 65 of the 746 households examined. The remaining 12 NDM-EC were from flies in the immediate backyard environment. The NDM-EC colonization in households was significantly associated with a) the number of species of backyard animals raised/kept in the same household, and b) the use of human and/or animal feces as fertilizer. Discriminant analysis of principal components (DAPC) revealed that a large proportion of the core genomes of the NDM-EC belonged to strains from hosts other than their own, and several human isolates shared closely related core single-nucleotide polymorphisms and blaNDM genetic contexts with isolates from backyard animals. CONCLUSIONS To our knowledge, we are the first to report evidence of direct transmission of NDM-EC between humans and animals. Given the rise of NDM-EC in community and hospital infections, combating NDM-EC transmission in backyard farm systems is needed. https://doi.org/10.1289/EHP5251.
Collapse
Affiliation(s)
- Jiyun Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhenwang Bi
- Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shizhen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baoli Chen
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Research and Innovation Office, Murdoch University, Murdoch, Australia
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Yin
- School of Health Care Management, Shandong University, Jinan, China
- NHC Key Laboratory of Health Economics and Policy Research (Shandong University), Jinan, China
| | - Anette Hulth
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Yongqiang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lennart E. Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Stefan Börjesson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Sun
- School of Health Care Management, Shandong University, Jinan, China
- NHC Key Laboratory of Health Economics and Policy Research (Shandong University), Jinan, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
237
|
Independent Evolution with the Gene Flux Originating from Multiple Xanthomonas Species Explains Genomic Heterogeneity in Xanthomonas perforans. Appl Environ Microbiol 2019; 85:AEM.00885-19. [PMID: 31375496 DOI: 10.1128/aem.00885-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
Xanthomonas perforans is the predominant pathogen responsible for bacterial leaf spot of tomato and X. euvesicatoria for that of pepper in the southeast United States. Previous studies have indicated significant changes in the X. perforans population collected from Florida tomato fields over the span of 2 decades, including a shift in race and diversification into three phylogenetic groups driven by genome-wide homologous-recombination events derived from X. euvesicatoria In our sampling of Xanthomonas strains associated with bacterial spot disease in Alabama, we were readily able to isolate X. perforans from symptomatic pepper plants grown in several Alabama counties, indicating a recent shift in the host range of the pathogen. To investigate the diversity of these pepper-pathogenic strains and their relation to populations associated with tomatoes grown in the southeast United States, we sequenced the genomes of eight X. perforans strains isolated from tomatoes and peppers grown in Alabama and compared them with previously published genome data available from GenBank. Surprisingly, reconstruction of the X. perforans core genome revealed the presence of two novel genetic groups in Alabama that each harbored a different transcription activation-like effector (TALE). While one TALE, AvrHah1, was associated with an emergent lineage pathogenic to both tomato and pepper, the other was identified as a new class within the AvrBs3 family, here designated PthXp1, and was associated with enhanced symptom development on tomato. Examination of patterns of homologous recombination across the larger X. euvesicatoria species complex revealed a dynamic pattern of gene flow, with multiple donors of Xanthomonas spp. associated with diverse hosts of isolation.IMPORTANCE Bacterial leaf spot of tomato and pepper is an endemic plant disease with a global distribution. In this study, we investigated the evolutionary processes leading to the emergence of novel X. perforans lineages identified in Alabama. While one lineage was isolated from symptomatic tomato and pepper plants, confirming the host range expansion of X. perforans, the other lineage was isolated from tomato and acquired a novel transcription activation-like effector, here designated PthXp1. Functional analysis of PthXp1 indicated that it does not induce Bs4-mediated resistance in tomato and contributes to virulence, providing an adaptive advantage to strains on tomato. Our findings also show that different phylogenetic groups of the pathogen have experienced independent recombination events originating from multiple Xanthomonas species. This suggests a continuous gene flux between related xanthomonads associated with diverse plant hosts that results in the emergence of novel pathogen lineages and associated phenotypes, including host range.
Collapse
|
238
|
Li XP, Sun RY, Song JQ, Fang LX, Zhang RM, Lian XL, Liao XP, Liu YH, Lin J, Sun J. Within-host heterogeneity and flexibility of mcr-1 transmission in chicken gut. Int J Antimicrob Agents 2019; 55:105806. [PMID: 31533074 DOI: 10.1016/j.ijantimicag.2019.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To characterize the colistin-resistant bacterial population in the gut and assess diversity of mcr-1 transmission within a single individual. METHODS Large numbers of isolates (>100 colonies/chicken cecum sample) were collected from nine randomly selected mcr-1-positive chickens in China and used for comprehensive microbiological, molecular and comparative genomics analyses. RESULTS Of 1273 colonies, 968 were mcr-1 positive (962 Escherichia coli, two Escherichia fergusonii, two Klebsiella pneumoniae and two Klebsiella quasipneumoniae). One to six colistin-resistant species and three to 10 E. coli pulsed-field gel electrophoresis (PFGE) clusters could be identified from each sample. Whole-genome sequencing (WGS) analysis of the representative E. coli strains revealed three to nine sequence types observed in a single chicken host. The mcr-1 genes are located in either chromosomes or plasmids of different types, including IncI2 (n=30), IncHI2 (n=14), IncX4 (n=4), p0111(n=2) and IncHI1(n=1). Strikingly, in single cecum samples, one to five Inc type plasmids harbouring mcr-1 could be identified. Great diversity was also observed for the same IncI2 plasmid within a single chicken host. In addition, up to eight genetic contexts of the mcr-1 gene occurred within a single chicken. CONCLUSIONS There is extensive heterogeneity and flexibility of mcr-1 transmission in chicken gut due to bacterial species differences, distant clonal relatedness of isolates, many types and variations of mcr-positive plasmids, and the flexible genetic context of the mcr-1 gene. These compelling findings indicate that the gut is a 'melting pot' for active horizontal transfer of the mcr-1 gene.
Collapse
Affiliation(s)
- Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China; Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jia-Qi Song
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA.
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China.
| |
Collapse
|
239
|
Comparative phylogeography of two hemipteran species (Geisha distinctissima and Megacopta cribraria) in the Zhoushan Archipelago of China reveals contrasting genetic structures despite concordant historical demographies. Heredity (Edinb) 2019; 124:207-222. [PMID: 31501533 DOI: 10.1038/s41437-019-0265-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/08/2022] Open
Abstract
Continental islands are useful models to explore the roles of shared historical factors in the evolution of sympatric species. However, China's largest continental group of islands, the Zhoushan Archipelago, was neglected by most studies focusing on biodiversity hotspots. Here we investigated the phylogeographic patterns and the historical demography of two sympatric hemipteran insects (Geisha distinctissima and Megacopta cribraria), which shared historical factors in the Zhoushan Archipelago. The results based on mtDNA (COX1, COX2-COX3, and CYTB) and nDNA (28S and ITS2) showed that G. distinctissima diverged into three genetic lineages (L1-L3) ~8.9-13.7 thousand years ago (kya), which coincided with the period of island isolation. However, the three lineages exhibit no clear phylogeographic patterns for frequent asymmetrical gene flow (starting around 5 kya) from the mainland and adjacent islands to other distant islands due to subsequent human activities. In contrast, only one genetic lineage exists for M. cribraria, without any phylogeographic structures. The ancestral range in the mainland as well as in neighboring islands, together with the frequent asymmetrical gene flow of M. cribraria (from the mainland and neighboring islands to more distant islands) within the last 5000 years suggests that human activities may have lead to the colonization of this species in the Zhoushan Archipelago. The contrasting genetic structures indicate shared historical factors but independent evolutionary histories for the two sympatric species in the Zhoushan Archipelago. Our demographic analysis clearly showed that both species underwent population expansion before 5 kya during the post-LGM (Last Glacial Maximum), which indicates that the two species shared concordant historical demographies. This result suggests that the population size of the two species was affected similarly by the climatic oscillations of post-LGM in Eastern China. Together, our findings reveal that the two insect species in the Zhoushan Archipelago exhibit contrasting genetic structures despite concordant historical demographies, which provides an important framework for the exploration of the evolution patterns of sympatric species in the continental island.
Collapse
|
240
|
|
241
|
Whole-genome sequencing reveals recent and frequent genetic recombination between clonal lineages of Cryphonectria parasitica in western Europe. Fungal Genet Biol 2019; 130:122-133. [DOI: 10.1016/j.fgb.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
|
242
|
Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK, Stenger DC, Almeida RPP, Bergsma-Vlami M, Westenberg M, Cobine PA, De La Fuente L. Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa. THE ISME JOURNAL 2019; 13:2319-2333. [PMID: 31110262 PMCID: PMC6776109 DOI: 10.1038/s41396-019-0423-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Adam C Retchless
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Maria Bergsma-Vlami
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA.
| |
Collapse
|
243
|
Asgharzadeh A, Kaboli M, Rajabi-Maham H, Naderi M. Phylogeny and genetic structure of the Yellow ground squirrel, Spermophilus fulvus (Lichtenstein, 1823), in Iran. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
244
|
Shen Y, Lv Z, Yang L, Liu D, Ou Y, Xu C, Liu W, Yuan D, Hao Y, He J, Li X, Zhou Y, Walsh TR, Shen J, Xia J, Ke Y, Wang Y. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. ENVIRONMENT INTERNATIONAL 2019; 130:104708. [PMID: 31202027 DOI: 10.1016/j.envint.2019.03.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Since its discovery in 2015, the mobile colistin resistance gene mcr-1 has been reported in bacteria from >50 countries. Although aquaculture-associated bacteria may act as a significant reservoir for colistin resistance, systematic investigations of mcr-1 in the aquaculture supply chain are scarce. OBJECTIVES We investigated the presence of colistin resistance determinants in the aquaculture supply chain in south China and determined their characteristics and relationships. METHODS A total of 250 samples were collected from a duck-fish integrated fishery, slaughter house, and market in Guangdong Province, China, in July 2017. Colistin-resistant bacteria were isolated on colistin-supplemented CHROMagar Orientation plates, and the species were identified by matrix-assisted laser desorption/ionization time-of-flight assay. The presence of mcr genes was confirmed by polymerase chain reaction analysis. We examined the minimum inhibitory concentrations (MICs) of 16 antimicrobial agents against the isolates using agar diffusion and broth microdilution methods. Whole-genome sequencing (WGS) was used to explore the molecular characteristics and relationships of mcr-1-positive Escherichia coli (MCRPEC). RESULTS Overall, 143 (57.2%) colistin-resistant bacteria were isolated, of which, 56 (22.4%, including 54 Escherichia coli and two Klebsiella pneumoniae) and four Aeromonas species were positive for mcr-1 and mcr-3, respectively. The animal-derived MCRPEC were significantly more prevalent in integrated fishery samples (40.0%) than those in market (4.8%, P<0.01) samples but not in slaughter house (28.0%, P=0.164). All MCRPEC were highly resistant to ampicillin, tetracycline, and compound sulfamethoxazole (>90%) but were susceptible to carbapenems and tigecycline. WGS analysis suggested that mcr-1 was mainly contained on plasmids, including IncHI2 (29.6%), IncI2 (27.8%), IncX4 (14.8%), and IncP (11.1%). Genomic analysis suggested mcr-1 transmission via the aquatic food chain. CONCLUSIONS MCRPEC were highly prevalent in the aquaculture supply chain, with the isolates showing resistance to most antibiotics. The data suggested mcr-1 could be transferred to humans via the aquatic food chain. Taking the "One Health" perspective, aquaculture should be incorporated into systematic surveillance programs with animal, human, and environmental monitoring.
Collapse
Affiliation(s)
- Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lu Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanran Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyan Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiwen Liu
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dongmei Yuan
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuxin Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China; Department of Medical Microbiology and Infectious Disease, Institute of Infection and Immunity, Heath Park Hospital, Cardiff, United Kingdom
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjie Xia
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuebin Ke
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
245
|
Arimizu Y, Kirino Y, Sato MP, Uno K, Sato T, Gotoh Y, Auvray F, Brugere H, Oswald E, Mainil JG, Anklam KS, Döpfer D, Yoshino S, Ooka T, Tanizawa Y, Nakamura Y, Iguchi A, Morita-Ishihara T, Ohnishi M, Akashi K, Hayashi T, Ogura Y. Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains. Genome Res 2019; 29:1495-1505. [PMID: 31439690 PMCID: PMC6724679 DOI: 10.1101/gr.249268.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023]
Abstract
How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)–producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)–encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.
Collapse
Affiliation(s)
- Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yumi Kirino
- Laboratory of Veterinary Radiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Uno
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Toshio Sato
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Hubert Brugere
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France.,CHU de Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | - Jacques G Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animal Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - Kelly S Anklam
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Tanizawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoko Morita-Ishihara
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
246
|
Kumar N, Browne HP, Viciani E, Forster SC, Clare S, Harcourt K, Stares MD, Dougan G, Fairley DJ, Roberts P, Pirmohamed M, Clokie MRJ, Jensen MBF, Hargreaves KR, Ip M, Wieler LH, Seyboldt C, Norén T, Riley TV, Kuijper EJ, Wren BW, Lawley TD. Adaptation of host transmission cycle during Clostridium difficile speciation. Nat Genet 2019; 51:1315-1320. [PMID: 31406348 DOI: 10.1038/s41588-019-0478-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
Bacterial speciation is a fundamental evolutionary process characterized by diverging genotypic and phenotypic properties. However, the selective forces that affect genetic adaptations and how they relate to the biological changes that underpin the formation of a new bacterial species remain poorly understood. Here, we show that the spore-forming, healthcare-associated enteropathogen Clostridium difficile is actively undergoing speciation. Through large-scale genomic analysis of 906 strains, we demonstrate that the ongoing speciation process is linked to positive selection on core genes in the newly forming species that are involved in sporulation and the metabolism of simple dietary sugars. Functional validation shows that the new C. difficile produces spores that are more resistant and have increased sporulation and host colonization capacity when glucose or fructose is available for metabolism. Thus, we report the formation of an emerging C. difficile species, selected for metabolizing simple dietary sugars and producing high levels of resistant spores, that is adapted for healthcare-mediated transmission.
Collapse
Affiliation(s)
- Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Elisa Viciani
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | - Derek J Fairley
- Belfast Health and Social Care Trust, Belfast, Northern, Ireland
| | | | | | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Margaret Ip
- Department of Microbiology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lothar H Wieler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Robert Koch Institute, Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Jena, Germany
| | - Torbjörn Norén
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Laboratory Medicine, Örebro University Hospital Örebro, Örebro, Sweden
| | - Thomas V Riley
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,School of Pathology & Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Ed J Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
247
|
Vilne B, Meistere I, Grantiņa-Ieviņa L, Ķibilds J. Machine Learning Approaches for Epidemiological Investigations of Food-Borne Disease Outbreaks. Front Microbiol 2019; 10:1722. [PMID: 31447800 PMCID: PMC6691741 DOI: 10.3389/fmicb.2019.01722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases (FBDs) are infections of the gastrointestinal tract caused by foodborne pathogens (FBPs) such as bacteria [Salmonella, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)] and several viruses, but also parasites and some fungi. Artificial intelligence (AI) and its sub-discipline machine learning (ML) are re-emerging and gaining an ever increasing popularity in the scientific community and industry, and could lead to actionable knowledge in diverse ranges of sectors including epidemiological investigations of FBD outbreaks and antimicrobial resistance (AMR). As genotyping using whole-genome sequencing (WGS) is becoming more accessible and affordable, it is increasingly used as a routine tool for the detection of pathogens, and has the potential to differentiate between outbreak strains that are closely related, identify virulence/resistance genes and provide improved understanding of transmission events within hours to days. In most cases, the computational pipeline of WGS data analysis can be divided into four (though, not necessarily consecutive) major steps: de novo genome assembly, genome characterization, comparative genomics, and inference of phylogeny or phylogenomics. In each step, ML could be used to increase the speed and potentially the accuracy (provided increasing amounts of high-quality input data) of identification of the source of ongoing outbreaks, leading to more efficient treatment and prevention of additional cases. In this review, we explore whether ML or any other form of AI algorithms have already been proposed for the respective tasks and compare those with mechanistic model-based approaches.
Collapse
Affiliation(s)
- Baiba Vilne
- Institute of Food Safety, Animal Health and Environment—“BIOR”, Riga, Latvia
- SIA net-OMICS, Riga, Latvia
| | - Irēna Meistere
- Institute of Food Safety, Animal Health and Environment—“BIOR”, Riga, Latvia
| | | | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment—“BIOR”, Riga, Latvia
| |
Collapse
|
248
|
Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tromas N, Shapiro BJ. Coherence of Microcystis species revealed through population genomics. ISME JOURNAL 2019; 13:2887-2900. [PMID: 31363173 DOI: 10.1038/s41396-019-0481-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
Abstract
Microcystis is a genus of freshwater cyanobacteria, which causes harmful blooms in ecosystems worldwide. Some Microcystis strains produce harmful toxins such as microcystin, impacting drinking water quality. Microcystis colony morphology, rather than genetic similarity, is often used to classify Microcystis into morphospecies. Yet colony morphology is a plastic trait, which can change depending on environmental and laboratory culture conditions, and is thus an inadequate criterion for species delineation. Furthermore, Microcystis populations are thought to disperse globally and constitute a homogeneous gene pool. However, this assertion is based on relatively incomplete characterization of Microcystis genomic diversity. To better understand these issues, we performed a population genomic analysis of 33 newly sequenced genomes mainly from Canada and Brazil. We identified 17 Microcystis clusters of genomic similarity, five of which correspond to monophyletic clades containing at least three newly sequenced genomes. Four out of these five clades match to named morphospecies. Notably, M. aeruginosa is paraphyletic, distributed across 12 genomic clusters, suggesting it is not a coherent species. A few clades of closely related isolates are specific to a unique geographic location, suggesting biogeographic structure over relatively short evolutionary time scales. Higher homologous recombination rates within than between clades further suggest that monophyletic groups might adhere to a Biological Species-like concept, in which barriers to gene flow maintain species distinctness. However, certain genes-including some involved in microcystin and micropeptin biosynthesis-are recombined between monophyletic groups in the same geographic location, suggesting local adaptation.
Collapse
Affiliation(s)
| | - Yves Terrat
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Alessandra Giani
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nicolas Tromas
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
249
|
The impact of antimicrobials on gonococcal evolution. Nat Microbiol 2019; 4:1941-1950. [PMID: 31358980 PMCID: PMC6817357 DOI: 10.1038/s41564-019-0501-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
The sexually transmitted pathogen Neisseria gonorrhoeae
is regarded as being on the way to becoming an untreatable superbug. Despite its
clinical importance, little is known about its emergence and evolution, and how
this corresponds with the introduction of antimicrobials. We present a
genome-based phylogeographic analysis of 419 gonococcal isolates from across the
globe. Results indicate that modern gonococci originated in Europe or Africa,
possibly as late as the 16th century and subsequently disseminated
globally. We provide evidence that the modern gonococcal population has been
shaped by antimicrobial treatment of sexually transmitted and other infections,
leading to the emergence of two major lineages with different evolutionary
strategies. The well-described multi-resistant lineage is associated with high
rates of homologous recombination and infection in high-risk sexual networks. A
second, multi-susceptible lineage is more associated with heterosexual networks,
with potential implications for infection control.
Collapse
|
250
|
Zanella L, Riquelme I, Buchegger K, Abanto M, Ili C, Brebi P. A reliable Epstein-Barr Virus classification based on phylogenomic and population analyses. Sci Rep 2019; 9:9829. [PMID: 31285478 PMCID: PMC6614506 DOI: 10.1038/s41598-019-45986-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 90% of the human population, playing a key role in the origin and progression of malignant and non-malignant diseases. Many attempts have been made to classify EBV according to clinical or epidemiological information; however, these classifications show frequent incongruences. For instance, they use a small subset of genes for sorting strains but fail to consider the enormous genomic variability and abundant recombinant regions present in the EBV genome. These could lead to diversity overestimation, alter the tree topology and misinterpret viral types when classified, therefore, a reliable EBV phylogenetic classification is needed to minimize recombination signals. Recombination events occur 2.5-times more often than mutation events, suggesting that recombination has a much stronger impact than mutation in EBV genomic diversity, detected within common ancestral node positions. The Hierarchical Bayesian Analysis of Population Structure (hierBAPS) resulted in the differentiation of 12 EBV populations showed seven monophyletic and five paraphyletic. The populations identified were related to geographic location, of which three populations (EBV-p1/Asia/GC, EBV-p2/Asia II/Tumors and EBV-p4/China/NPC) were related to tumor development. Therefore, we proposed a new consistent and non-simplistic EBV classification, beneficial in minimizing the recombination signal in the phylogeny reconstruction, investigating geography relationship and even infer associations to human diseases. These EBV classifications could also be useful in developing diagnostic applications or defining which strains need epidemiological surveillance.
Collapse
Affiliation(s)
- Louise Zanella
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Michel Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|