201
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
202
|
|
203
|
Anelli V, Gault CR, Cheng AB, Obeid LM. Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 2007; 283:3365-3375. [PMID: 18055454 DOI: 10.1074/jbc.m708241200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a sphingolipid metabolite that plays an important role in the regulation of cell survival, growth, migration, and angiogenesis, acts both inside the cells and as an extracellular mediator through binding to five G protein-coupled receptors (S1P(1-5)). Sphingosine kinase 1 (SK1), the enzyme responsible for S1P production, is overexpressed in many solid tumors, including gliomas. One common feature of these tumors is the presence of "hypoxic regions," characterized by cells expressing high levels of hypoxia-inducible factors HIF-1alpha and HIF-2alpha, two transcription regulators that modulate the levels of proteins with crucial roles in tumor progression. So far, nothing is known about the role and the regulation of SK1 during tumor-induced hypoxia or about SK1 regulation and HIFs. Here we investigated the role of HIF-1alpha and HIF-2alpha in the regulation of SK1 during hypoxic stress in glioma-derived U87MG cells. We report that hypoxia increases SK1 mRNA levels, protein expression, and enzyme activity, followed by intracellular S1P production and S1P release. Interestingly, knockdown of HIF-2alpha by small interfering RNA abolished the induction of SK1 and the production of extracellular S1P after CoCl(2) treatment, whereas HIF-1alpha small interfering RNA resulted in an increase of HIF-2alpha and of SK1 protein levels. Moreover, using chromatin immunoprecipitation analysis, we demonstrate that HIF-2alpha binds the SK1 promoter. Functionally, we demonstrate that conditioned medium from hypoxia-treated tumor cells results in neoangiogenesis in human umbilical vein endothelial cells in a S1P receptor-dependent manner. These studies provide evidence of a link between S1P production as a potent angiogenic agent and the hypoxic phenotype observed in many tumors.
Collapse
Affiliation(s)
- Viviana Anelli
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403; Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, Segrate, Milan 20090, Italy
| | - Christopher R Gault
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy B Cheng
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403
| | - Lina M Obeid
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401.
| |
Collapse
|
204
|
Culver CA, Laster SM. Adenovirus type 5 exerts multiple effects on the expression and activity of cytosolic phospholipase A2, cyclooxygenase-2, and prostaglandin synthesis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4170-9. [PMID: 17785856 DOI: 10.4049/jimmunol.179.6.4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we examine how infection of murine and human fibroblasts by adenovirus (Ad) serotype 5 (Ad5) affects the expression and activity of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of PGs. Our experiments showed that infection with Ad5 is accompanied by the rapid activation of cPLA2 and the cPLA2-dependent release of [3H]arachidonic acid ([3H]AA). Increased expression of COX-2 was also observed after Ad infection, as was production of PGE2 and PGI2. Later, however, as the infection progressed, release of [3H]AA and production of PGs stopped. Late-stage Ad5-infected cells also did not release [3H]AA or PGs following treatment with a panel of biologically diverse agents. Experiments with UV-inactivated virus confirmed that Ad infection is accompanied by the activation of a host-dependent response that is later inhibited by the virus. Investigations of the mechanism of suppression of the PG pathway by Ad5 did not reveal major effects on the expression or activity of cPLA2 or COX-2. We did note a change in the intracellular position of cPLA2 and found that cPLA2 did not translocate normally in infected cells, raising the possibility that Ad5 interferes with the PG pathway by interfering with the intracellular movement of cPLA2. Taken together, these data reveal dynamic interactions between Ad5 and the lipid mediator pathways of the host and highlight a novel mechanism by which Ad5 evades the host immune response. In addition, our results offer insight into the inflammatory response induced by many Ad vectors lacking early region gene products.
Collapse
Affiliation(s)
- Carolyn A Culver
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
205
|
Alvarez SE, Milstien S, Spiegel S. Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007; 18:300-7. [PMID: 17904858 DOI: 10.1016/j.tem.2007.07.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that has been implicated in many biological processes, including cell migration, survival, proliferation, angiogenesis and immune and allergic responses. S1P levels inside cells are regulated tightly by the balance between its synthesis by sphingosine kinases and degradation by S1P lyases and S1P phosphatases. Activation of sphingosine kinase by any of a variety of agonists increases S1P levels, which in turn can function intracellularly as a second messenger or in an autocrine and/or paracrine fashion to activate and signal through S1P receptors present on the surface of the cell. This review summarizes recent findings on the roles of S1P as a mediator of the actions of cytokines, growth factors and hormones.
Collapse
Affiliation(s)
- Sergio E Alvarez
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
206
|
Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. Pharmacol Ther 2007; 115:390-9. [PMID: 17669501 PMCID: PMC2082108 DOI: 10.1016/j.pharmthera.2007.05.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many cellular processes, acting not only as an extracellular ligand to its specific G protein-coupled receptors, but also as a putative intracellular messenger with yet unidentified targets. Mast cells are tissue-dwelling pivotal early effectors of allergic responses, which produce and secrete S1P that can bind to its receptors present on mast cells to influence their activation and functions. In this review, we will first discuss the current knowledge of S1P production by two isozymes of sphingosine kinase (SphK). Mechanisms of SphK activation will be discussed, with an emphasis on experimental approaches developed to study their differential activation and biological roles in the context of mast cells. The relevance of mast cells in the etiology of allergic disorders, asthma and anaphylaxis is well established. In this review, this concept will be revisited, focusing on the contribution of S1P production and secretion to the symptoms associated with dysregulated inflammatory responses. To conclude, counteracting the proinflammatory effects of S1P could be envisioned as a therapeutic strategy to treat allergic disorders, exacerbated airway inflammation, and anaphylactic reactions, and various options will be discussed, such as the development of pharmacological tools to inhibit SphKs, S1P neutralizing monoclonal antibody, and S1P receptor antagonists.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
207
|
Donati C, Nincheri P, Cencetti F, Rapizzi E, Farnararo M, Bruni P. Tumor necrosis factor-alpha exerts pro-myogenic action in C2C12 myoblasts via sphingosine kinase/S1P2 signaling. FEBS Lett 2007; 581:4384-8. [PMID: 17719579 DOI: 10.1016/j.febslet.2007.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/01/2007] [Accepted: 08/03/2007] [Indexed: 11/20/2022]
Abstract
In this study, we report that low doses of tumor necrosis factor-alpha (TNFalpha) promote myogenesis in C2C12 myoblasts. Moreover, the cytokine increased sphingosine kinase (SphK) activity and induced SphK1 translocation to membranes. The inhibition of SphK functionality by various approaches abrogated the pro-myogenic effect of TNFalpha. Moreover, silencing of S1P(2) impaired the positive action of TNFalpha on myogenesis. These results represent the first evidence that SphK/S1P(2) axis is required for the regulation of myogenesis by TNFalpha. In view of the physiological role of TNFalpha in muscle regeneration, the present finding reinforces the notion that SphK/S1P(2) signaling is critically implicated in myogenesis.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
208
|
Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS. The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages. J Biol Chem 2007; 282:23147-62. [PMID: 17519232 DOI: 10.1074/jbc.m700193200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.
Collapse
Affiliation(s)
- David J Kusner
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52245, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Bot M, Nofer JR, van Berkel TJC, Biessen EAL. Lysophospholipids: two-faced mediators in atherosclerosis. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.3.341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
210
|
Bandhuvula P, Saba JD. Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 2007; 13:210-7. [PMID: 17416206 DOI: 10.1016/j.molmed.2007.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/26/2007] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that promotes cell survival, proliferation and migration, platelet aggregation, mediates ischemic preconditioning, and is essential for angiogenesis and lymphocyte trafficking. Sphingosine-1-phosphate lyase (SPL) is the enzyme responsible for the irreversible degradation of S1P and is, thus, in a strategic position to regulate these same processes by removing available S1P signaling pools, that is, silencing the siren. In fact, recent studies have implicated SPL in the regulation of immunity, cancer surveillance and other physiological processes. Here, we summarize the current understanding of SPL function and regulation, and discuss how SPL might facilitate cancer chemoprevention and serve as a target for modulation of immune responses in transplantation settings and in the treatment of autoimmune disease.
Collapse
|
211
|
Pilorget A, Demeule M, Barakat S, Marvaldi J, Luis J, Béliveau R. Modulation of P-glycoprotein function by sphingosine kinase-1 in brain endothelial cells. J Neurochem 2007; 100:1203-10. [PMID: 17316399 DOI: 10.1111/j.1471-4159.2006.04295.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
P-glycoprotein (P-gp), an ABC-transporter highly expressed in brain capillaries, protects the brain by extruding xenobiotics. However, its overexpression has also been associated with the multidrug resistance phenotype in tumors. Here, we have investigated the regulation of P-gp transport activity by sphingosine kinase 1 (SphK-1) in brain endothelial cells. We first demonstrated that SphK-1 is overexpressed in endothelial cells (EC) isolated from rat brain tumors compared with EC from normal brain. We also provide evidence that the overexpression of SphK-1 in the cerebral EC line RBE4 leads to the up-regulation of P-gp, both at the gene and protein levels, and that this modulation depends on the catalytic activity of SphK-1. Moreover, we determined the effect of sphingosine-1-phosphate (S1P), the product of SphK-1, on P-gp function. S1P strongly stimulates P-gp transport activity, without modulating its expression. Finally, we found that the S1P-mediated stimulation of P-gp activity is mediated by S1P-1 and S1P-3 receptors at the RBE4 cell surface. Altogether, these results indicate that SphK-1 and its product S1P are involved in the control of P-gp activity in RBE4 cells. Since SphK-1 is overexpressed in EC from brain tumors, these data also suggest that this kinase and its product could contribute to the acquisition and the maintenance of the multidrug resistance phenotype in brain tumor-derived endothelial cells.
Collapse
Affiliation(s)
- Anthony Pilorget
- Laboratoire de Médecine Moléculaire, Centre de Cancérologie Charles-Bruneau, Hôpital Sainte-Justine-UQAM, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
212
|
Masuko K, Murata M, Nakamura H, Yudoh K, Nishioka K, Kato T. Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes. BMC Musculoskelet Disord 2007; 8:29. [PMID: 17374154 PMCID: PMC1847513 DOI: 10.1186/1471-2474-8-29] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 03/20/2007] [Indexed: 12/04/2022] Open
Abstract
Background Sphingosine-1-phosphate (S1P), a downstream metabolite of ceramide, induces various bioactivities via two distinct pathways: as an intracellular second messenger or through receptor activation. The receptor for S1P (S1PR) is the family of Endothelial differentiation, sphingolipid G-protein-coupled receptor (EDG). We have here attempted to reveal the expression of EDG/S1PR in human articular chondrocytes (HAC), exploring the implications of S1P in cartilage degradation. Methods Articular cartilage specimens were obtained from patients with rheumatoid arthritis (RA), osteoarthritis (OA) or traumatic fracture (representing normal chondrocytes) who underwent joint surgery. Isolated HAC were cultured in vitro by monolayer and stimulated with S1P in the presence or absence of inhibitors of signaling molecules. Stimulated cells and culture supernatants were collected and subjected to analyses using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results All of the tested HAC samples showed positive results in terms of EDG/S1PR expression in basal condition. When HAC was stimulated with S1P, a significant increase in prostaglandin (PG) E2 production was observed together with enhanced expression of cyclooxygenase (COX)-2. S1P stimulated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in HAC, and the PGE2 induction was abrogated by PD98059 and SB203580. Pertussis toxin inhibited the PGE2 induction from HAC by S1P, suggesting an essential role for Gi protein. S1P also attenuated the expression of proteoglycan aggrecan, a component of cartilage matrix, in HAC at transcriptional level. Conclusion It was suggested that the S1P-induced PGE2 was at least in part involved in the aggrecan-suppressing effect of S1P, seeing as COX inhibitors attenuated the effect. Accordingly, S1P might play an important role in cartilage degradation in arthritides.
Collapse
Affiliation(s)
- Kayo Masuko
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Minako Murata
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Nakamura
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudoh
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kusuki Nishioka
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Tomohiro Kato
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
213
|
Payne SG, Oskeritzian CA, Griffiths R, Subramanian P, Barbour SE, Chalfant CE, Milstien S, Spiegel S. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; 109:1077-85. [PMID: 17008548 PMCID: PMC1785128 DOI: 10.1182/blood-2006-03-011437] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023] Open
Abstract
FTY720 is a potent immunomodulator drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. FTY720 is phosphorylated in vivo by sphingosine kinase 2 to FTY720-phosphate, which acts as a potent sphingosine-1-phosphate (S1P) receptor agonist. However, in contrast to S1P, FTY720 has no effect on mast-cell degranulation, yet significantly reduces antigen-induced secretion of PGD2 and cysteinyl-leukotriene. Unexpectedly, this effect of FTY720 was independent of its phosphorylation and S1P receptor functions. The rate-limiting step in the biosynthesis of all eicosanoids is the phospholipase A2 (PLA2)-mediated release of arachidonic acid from glycerol phospholipids. Although FTY720 also reduced arachidonic acid release in response to antigen, it had no effect on translocation of cPLA2 or ERK1/2 activation, suggesting that it does not interfere with FcepsilonRI-mediated events leading to cPLA2 activation. Remarkably, however, FTY720 drastically inhibited recombinant cPLA2alpha activity, whereas FTY720-phosphate, sphingosine, or S1P had no effect. This study has uncovered a unique action of FTY720 as an inhibitor of cPLA2alpha and hence on production of all eicosanoids. Our results have important implications for the potential therapeutic mechanism of action of FTY720 in eicosanoid-driven inflammatory disorders such as asthma and multiple sclerosis.
Collapse
Affiliation(s)
- Shawn G Payne
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2007; 9:809-24. [PMID: 16083344 DOI: 10.1517/14728222.9.4.809] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) have recently emerged as an important target for therapeutic intervention in cancer and potentially other human diseases. By modulating the acetylation status of histones, histone deacetylase inhibitors (HDACIs) alter the transcription of genes involved in cell growth, maturation, survival and apoptosis, among other processes. Early clinical results suggest a potentially useful role for HDACIs in the treatment of certain forms of lymphoma (e.g., cutaneous T cell lymphoma) and acute leukaemia. An unresolved question is how HDACIs induce cell death in tumour cells. Recent studies suggest that acetylation of nonhistone proteins may play an important role in the biological effects of this class of compounds, and may explain lack of correlation between histone acetylation and induction of cell death by HDACIs in some circumstances. Recently, attention has focussed on the effects of HDACIs on disruption of co-repressor complexes, induction of oxidative injury, upregulation of the expression of death receptors, generation of lipid second messengers such as ceramide, interference with the function of chaperone proteins and modulation of the activity of NF-kappaB as critical determinants of lethality. Aside from providing critical insights into the mechanism of action of HDACIs in neoplastic disease, these findings may provide a foundation for the rational development of combination studies, involving HDACIs in combination with either conventional cytotoxic drugs as well as more novel targeted agents.
Collapse
Affiliation(s)
- Roberto R Rosato
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | |
Collapse
|
215
|
Maceyka M, Milstien S, Spiegel S. Measurement of mammalian sphingosine-1-phosphate phosphohydrolase activity in vitro and in vivo. Methods Enzymol 2007; 434:243-56. [PMID: 17954251 DOI: 10.1016/s0076-6879(07)34013-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipid metabolites have emerged as key players in diverse processes including cell migration, growth, and apoptosis. Ceramide and sphingosine typically inhibit cell growth and induce apoptosis, while sphingosine-1-phosphate (S1P) promotes cell growth, inhibits apoptosis, and induces cell migration. Thus, enzymes that regulate the levels of these sphingolipid metabolites are of critical importance to understanding cell fate. There are two known mammalian isoforms of S1P phosphohydrolases (SPP1 and SPP2) that reversibly degrade S1P to sphingosine. This chapter discusses the importance of SPPs and describes assays that can be used to measure the activity of these two specific S1P phosphohydrolases in cells and cell lysates.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | |
Collapse
|
216
|
Raymond MN, Bole-Feysot C, Banno Y, Tanfin Z, Robin P. Endothelin-1 inhibits apoptosis through a sphingosine kinase 1-dependent mechanism in uterine leiomyoma ELT3 cells. Endocrinology 2006; 147:5873-82. [PMID: 16959847 DOI: 10.1210/en.2006-0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uterine leiomyomas, or fibroids, are the most common tumors of the myometrium. The ELT3 cell line, derived from Eker rat leiomyoma, has been successfully used as a model for the study of leiomyomas. We have demonstrated previously the potent mitogenic properties of the peptidic hormone endothelin (ET)-1 in this cell line. Here we investigated the antiapoptotic effect of ET-1 in ELT3 cells. We found that 1) serum starvation of ELT3 cells induced an apoptotic process characterized by cytochrome c release from mitochondria, caspase-3/7 activation, nuclei condensation and DNA fragmentation; 2) ET-1 prevented the apoptotic process; and 3) this effect of ET-1 was fully reproduced by ETB agonists. In contrast, no antiapoptotic effect of ET-1 was observed in normal myometrial cells. A pharmacological approach showed that the effect of ET-1 on caspase-3/7 activation in ELT3 cells was not dependent on phosphatidylinositol 3-kinase, ERK1/2, or phospholipase D activities. However, inhibitors of sphingosine kinase-1 (SphK1), dimethylsphingosine and threo-dihydrosphingosine, reduced the effect of ET-1 by about 50%. Identical results were obtained when SphK1 expression was down-regulated in ELT3 cells transfected with SphK1 small interfering RNA. Furthermore, serum starvation induced a decrease in SphK1 activity that was prevented by ET-1 without affecting the level of SphK1 protein expression. Finally, sphingosine 1-phosphate, the product of SphK activity, was as efficient as ET-1 in inhibiting serum starvation-induced caspase-3/7 activation. Together, these results demonstrate that ET-1 possesses a potent antiapoptotic effect in ELT3 cells that involves sphingolipid metabolism through the activation of SphK1.
Collapse
Affiliation(s)
- Marie-Noëlle Raymond
- Signalisation et Régulations Cellulaires, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8619, Bâtiment 430, Université Paris Sud, 91 S/R/C 405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
217
|
Ki SH, Choi MJ, Lee CH, Kim SG. Galpha12 specifically regulates COX-2 induction by sphingosine 1-phosphate. Role for JNK-dependent ubiquitination and degradation of IkappaBalpha. J Biol Chem 2006; 282:1938-47. [PMID: 17098744 DOI: 10.1074/jbc.m606080200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays a critical role in vasodilatation and local inflammatory responses during platelet aggregation and thrombosis. Sphingosine 1-phosphate (S1P), a sphingolipid released from activated platelets, stimulates COX-2 induction and activates G-protein-coupled receptors coupled to Galpha family members. In this study, we investigated whether Galpha(12) family regulates COX-2 induction by S1P and investigated the molecular basis of this COX-2 regulation. Gene knock-out and chemical inhibitor experiments revealed that the S1P induction of COX-2 requires Galpha(12) but not Galpha(13), Galpha(q), or Galpha(i/o). The specific role of Galpha(12) in COX-2 induction by S1P was verified by promoter luciferase assay, Galpha(12) transfection, and knockdown experiments. Experiments using siRNAs specifically directed against S1P(1-5) showed that S1P(1), S1P(3), and S1P(5) are necessary for the full activation of COX-2 induction. Gel shift, immunocytochemistry, chromatin immunoprecipitation, and NF-kappaB site mutation analyses revealed the role of NF-kappaBin COX-2 gene transcription by S1P. Galpha(12) deficiency did not affect S1P-mediated IkappaBalpha phosphorylation but abrogated IkappaBalpha ubiquitination and degradation. Moreover, the inhibition of S1P activation of JNK abolished IkappaBalpha ubiquitination. Consistently, JNK transfection restored the ability of S1P to degrade IkappaBalpha during Galpha(12) deficiency. S1P injection induced COX-2 in the lungs and livers of mice and increased plasma prostaglandin E(2), and these effects were prevented by Galpha(12) deficiency. Our data indicate that, of the Galpha proteins coupled to S1P receptors, Galpha(12) specifically regulates NF-kappaB-mediated COX-2 induction by S1P downstream of S1P(1), S1P(3), and S1P(5), in a process mediated by the JNK-dependent ubiquitination and degradation of IkappaBalpha.
Collapse
Affiliation(s)
- Sung Hwan Ki
- National Research Laboratory, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
218
|
Oskouian B, Sooriyakumaran P, Borowsky AD, Crans A, Dillard-Telm L, Tam YY, Bandhuvula P, Saba JD. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci U S A 2006; 103:17384-9. [PMID: 17090686 PMCID: PMC1859938 DOI: 10.1073/pnas.0600050103] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingolipid metabolites such as sphingosine-1-phosphate (S1P) and ceramide modulate apoptosis during development and in response to stress. In general, ceramide promotes apoptosis, whereas S1P stimulates cell proliferation and protects against apoptosis. S1P is irreversibly degraded by the enzyme S1P lyase (SPL). In this study, we show a crucial role for SPL in mediating cellular responses to stress. SPL expression in HEK293 cells potentiated apoptosis in response to stressful stimuli including DNA damage. This effect seemed to be independent of ceramide generation but required SPL enzymatic activity and the actions of p38 MAP kinase, p53, p53-inducible death domain protein (PIDD), and caspase-2 as shown by molecular and chemical inhibition of each of these targets. Further, SPL expression led to constitutive activation of p38. Endogenous SPL expression was induced by DNA damage in WT cells, whereas SPL knockdown diminished apoptotic responses. Importantly, SPL expression was significantly down-regulated in human colon cancer tissues in comparison with normal adjacent tissues, as determined by quantitative real-time PCR (Q-PCR) and immunohistochemical analysis. Down-regulation of S1P phosphatases was also observed, suggesting that colon cancer cells manifest a block in S1P catabolism. In addition, SPL expression and activity were down-regulated in adenomatous lesions of the Min mouse model of intestinal tumorigenesis. Taken together, these results indicate that endogenous SPL may play a physiological role in stress-induced apoptosis and provide an example of altered SPL expression in a human tumor. Our findings suggest that genetic or epigenetic changes affecting intestinal S1P metabolism may correlate with and potentially contribute to carcinogenesis.
Collapse
Affiliation(s)
- Babak Oskouian
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
| | - Prathap Sooriyakumaran
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
| | | | - Angelina Crans
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
| | - Lisa Dillard-Telm
- Center for Comparative Medicine, University of California, Davis, CA 95616
| | - Yuen Yee Tam
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
| | - Padmavathi Bandhuvula
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
| | - Julie D. Saba
- *Children's Hospital Oakland Research Institute Center for Cancer Research, Oakland, CA 94609; and
- To whom correspondence should be addressed at:
Children's Hospital Oakland Research Institute (CHORI), 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673. E-mail:
| |
Collapse
|
219
|
Mechtcheriakova D, Wlachos A, Sobanov J, Kopp T, Reuschel R, Bornancin F, Cai R, Zemann B, Urtz N, Stingl G, Zlabinger G, Woisetschläger M, Baumruker T, Billich A. Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 2006; 19:748-60. [PMID: 17113265 DOI: 10.1016/j.cellsig.2006.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/17/2006] [Indexed: 12/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) levels in cells and, consequently, its bioactivity as a signalling molecule are controlled by the action of enzymes responsible for its synthesis and degradation. In the present report, we examined alterations in expression patterns of enzymes involved in S1P-metabolism (sphingosine kinases including their splice variants, sphingosine 1-phosphate phosphatases, and sphingosine 1-phosphate lyase) under certain inflammatory conditions. We found that sphingosine kinase type 1 (SPHK1) mRNA could be triggered in a cell type-specific manner; individual SPHK1 splice variants were induced with similar kinetics. Remarkably, expression and activity of S1P phosphatase 2 (SPP2) was found to be highly upregulated by inflammatory stimuli in a variety of cells (e.g., neutrophils, endothelial cells). Bandshift analysis using oligonucleotides spanning predicted NFkappaB sites within the SPP2 promoter and silencing of NFkappaB/RelA via RelA-directed siRNA demonstrated that SPP2 is an NFkappaB-dependent gene. Silencing of SPP2 expression in endothelial cells, in turn, led to a marked reduction of TNF-alpha-induced IL-1beta mRNA and protein and to a partial reduction of induced IL-8, suggesting a pro-inflammatory role of SPP2. Notably, up-regulation of SPP2 was detected in samples of lesional skin of patients with psoriasis, an inflammatory skin disease. This study provides detailed insights into the regulation of SPP2 gene expression and suggests that SPP2 might be a novel player in pro-inflammatory signalling.
Collapse
Affiliation(s)
- Diana Mechtcheriakova
- Novartis Institutes for BioMedical Research, Vienna, Brunnerstrasse 59, A-1235 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Ogretmen B. Sphingolipids in cancer: Regulation of pathogenesis and therapy. FEBS Lett 2006; 580:5467-76. [PMID: 16970943 DOI: 10.1016/j.febslet.2006.08.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids are known to play important roles in the regulation of cell proliferation, response to chemotherapeutic agents, and/or prevention of cancer. Recently, significant progress has been made in the identification of the enzymes and their biochemical functions involved in sphingolipid metabolism. In addition, development of new techniques for the quantitative analysis of sphingolipids at their physiological levels has facilitated studies to examine distinct functions of these bioactive sphingolipids in cancer pathogenesis and therapy. This review will focus on the recent developments regarding the roles of bioactive sphingolipids in the regulation of cell growth/proliferation, and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, 29425, USA.
| |
Collapse
|
221
|
Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2016-26. [PMID: 16996023 DOI: 10.1016/j.bbamem.2006.08.007] [Citation(s) in RCA: 375] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 12/31/2022]
Abstract
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the "sphingolipid rheostat", producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.
Collapse
Affiliation(s)
- Nitai C Hait
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Richmond, VA 23298-0614, USA
| | | | | | | | | |
Collapse
|
222
|
Jiang X, Han X. Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: a shotgun lipidomics approach. J Lipid Res 2006; 47:1865-73. [PMID: 16682747 PMCID: PMC2141545 DOI: 10.1194/jlr.d600012-jlr200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here, we have extended shotgun lipidomics for the characterization and quantitation of sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (DHS1P) in crude lipid extracts in the presence of ammonium hydroxide by using precursor ion scanning of m/z 79.0 (corresponding to [PO(3)](-)) in the negative-ion mode. It is demonstrated that a broad linear dynamic range for the quantitation of both S1P and DHS1P and a detection limit at low amol/mul concentration are achieved using this approach. The developed method for the quantitation of sphingoid base-1-phosphates is generally simpler and more efficient than other previously published methods. Multiple factors influencing the quantitation of sphingoid base-1-phosphates, including ion suppression, extraction efficiency, and potential overlapping with other molecular species, were examined extensively and/or are discussed. Mass levels of S1P and DHS1P in multiple biological samples, including human plasma, mouse plasma, and mouse brain tissues (e.g., cortex, cerebellum, spinal cord, and brain stem), were determined by the developed methodology. Accordingly, this technique, as a new addition to shotgun lipidomics technology, will be extremely useful for understanding the pathways of sphingolipid metabolism and for exploring the important roles of sphingoid base-1-phosphates in a wide range of physiological and pathological studies.
Collapse
Affiliation(s)
- Xuntian Jiang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
223
|
Zeidan YH, Pettus BJ, Elojeimy S, Taha T, Obeid LM, Kawamori T, Norris JS, Hannun YA. Acid Ceramidase but Not Acid Sphingomyelinase Is Required for Tumor Necrosis Factor-α-induced PGE2 Production. J Biol Chem 2006; 281:24695-703. [PMID: 16803890 DOI: 10.1074/jbc.m604713200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are well established effectors of signal transduction downstream of the tumor necrosis factor (TNF) receptor. In a previous study, we showed that the sphingosine kinase/sphingosine 1-phosphate (S1P) pathway couples TNF receptor to induction of the cyclooxygenase 2 gene and prostaglandin synthesis (Pettus, B. J., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., Chalfant, C. E., Obeid, L. M., and Hannun, Y. A. (2003) FASEB J. 17, 1411-1421). In this study, the requirement for acid sphingomyelinase and sphingomyelin metabolites in the TNFalpha/prostaglandin E(2) (PGE(2)) pathway was investigated. The amphiphilic compound desipramine, a frequently employed inhibitor of acid sphingomyelinase (ASMase), blocked PGE(2) production. However, the action of desipramine was independent of its action on ASMase, since neither genetic loss of ASMase (Niemann-Pick fibroblasts) nor knockdown of ASMase using RNA interference affected TNFalpha-induced PGE(2) synthesis. Further investigations revealed that desipramine down-regulated acid ceramidase (AC), but not sphingosine kinase, at the protein level. This resulted in a time-dependent drop in sphingosine and S1P levels. Moreover, exogenous administration of either sphingosine or S1P rescued PGE(2) biosynthesis after desipramine treatment. Interestingly, knockdown of endogenous AC by RNA interference attenuated cyclooxygenase 2 induction by TNFalpha and subsequent PGE(2) biosynthesis. Taken together, these results define a novel role for AC in the TNFalpha/PGE(2) pathway. In addition, the results of this study warrant careful reconsideration of desipramine as a specific inhibitor for ASMase.
Collapse
Affiliation(s)
- Youssef H Zeidan
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Dragusin M, Wehner S, Kelly S, Wang E, Merrill AH, Kalff JC, van Echten-Deckert G. Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB J 2006; 20:1930-2. [PMID: 16877527 DOI: 10.1096/fj.05-5518fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Postoperative ileus, a major cause of morbidity after abdominal surgery, is characterized by intestinal dysmotility and inflammation. The aim was to investigate the involvement of sphingolipids in postoperative intestinal inflammation using a standardized rat model of intestinal surgical manipulation. Sphingolipid analysis (ESI-MS) of intestinal muscularis after manipulation revealed a time-dependent increase of sphingosine 1-phosphate (S1P) and of ceramide 1-phosphate (C1P). We therefore established a culture system of primary rat intestinal smooth muscle cells and examined the potential role of these sphingolipids in intestinal inflammation. Incubation of cells with either of the two sphingolipid-phosphates resulted in an elevated production of PGE(2). Further analysis revealed that S1P enhances cyclooxygenase 2 (COX-2) expression whereas C1P increases release of arachidonic acid, indicating an enhanced phospholipase A(2) activity. S1P-induced COX-2 expression was pertussis toxin sensitive, suggesting the involvement of Gi/o protein-coupled S1P receptors. Further downstream mediators of S1P induced COX-2 expression appear to be extracellular regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Collectively, our results demonstrate that intestinal smooth muscle cells represent a major target for both C1P and S1P activity. Thus, the sustained elevated concentration of the two bioactive sphingolipids in this tissue could at least in part explain postoperative intestinal dysmotility.
Collapse
Affiliation(s)
- Mihaela Dragusin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
225
|
El Alwani M, Wu BX, Obeid LM, Hannun YA. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther 2006; 112:171-83. [PMID: 16759708 DOI: 10.1016/j.pharmthera.2006.04.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/06/2006] [Indexed: 12/13/2022]
Abstract
Inflammation is viewed as a protective response against insults to the organism. It involves the recruitment of many cell types and the production of various inflammatory mediators in attempts to contain and reverse the insult. However, inflammation can lead to irreversible tissue destruction by itself and, therefore, can represent a disease state that causes significant morbidity and mortality. Understanding the molecular mechanisms controlling the inflammatory response is essential to formulate therapeutic strategies for the treatment of inflammatory conditions. In fact, substantial research has unveiled important aspects of the inflammatory machinery, both at the cellular and molecular levels. Recently, sphingolipids (SLs) have emerged as signaling molecules that regulate many cell functions, and ample evidence emphasizes their role in the regulation of inflammatory responses. Here, we review the role of bioactive SL as regulators and mediators of inflammatory responses.
Collapse
Affiliation(s)
- Mazen El Alwani
- Department of Medicine, Division of General Internal Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
226
|
Ségui B, Andrieu-Abadie N, Jaffrézou JP, Benoist H, Levade T. Sphingolipids as modulators of cancer cell death: potential therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2104-20. [PMID: 16925980 DOI: 10.1016/j.bbamem.2006.05.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 05/04/2006] [Accepted: 05/06/2006] [Indexed: 02/07/2023]
Abstract
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.
Collapse
Affiliation(s)
- Bruno Ségui
- INSERM U.466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
227
|
Taha TA, Hannun YA, Obeid LM. Sphingosine kinase: biochemical and cellular regulation and role in disease. BMB Rep 2006; 39:113-31. [PMID: 16584625 DOI: 10.5483/bmbrep.2006.39.2.113] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids have emerged as molecules whose metabolism is regulated leading to generation of bioactive products including ceramide, sphingosine, and sphingosine-1-phosphate. The balance between cellular levels of these bioactive products is increasingly recognized to be critical to cell regulation; whereby, ceramide and sphingosine cause apoptosis and growth arrest phenotypes, and sphingosine-1-phosphate mediates proliferative and angiogenic responses. Sphingosine kinase is a key enzyme in modulating the levels of these lipids and is emerging as an important and regulated enzyme. This review is geared at mechanisms of regulation of sphingosine kinase and the coming to light of its role in disease.
Collapse
Affiliation(s)
- Tarek Assad Taha
- Department of Medicine, Medical University of South Carolina, USA
| | | | | |
Collapse
|
228
|
Zhang YH, Vasko MR, Nicol GD. Intracellular sphingosine 1-phosphate mediates the increased excitability produced by nerve growth factor in rat sensory neurons. J Physiol 2006; 575:101-13. [PMID: 16740613 PMCID: PMC1819432 DOI: 10.1113/jphysiol.2006.111575] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our previous studies found that nerve growth factor (NGF), via ceramide, enhanced the number of action potentials (APs) evoked by a ramp of depolarizing current in capsaicin-sensitive sensory neurons. Ceramide can be metabolized by ceramidase to sphingosine (Sph), and Sph to sphingosine 1-phosphate (S1P) by sphingosine kinase. It is well established that each of these products of sphingomyelin metabolism can act as intracellular signalling molecules. This raises the question as to whether the enhanced excitability produced by NGF was mediated directly by ceramide or required additional metabolism to Sph and/or S1P. Sph applied externally did not affect the neuronal excitability, whereas internally perfused Sph augmented the number of APs evoked by the depolarizing ramp. Furthermore, internally perfused S1P enhanced the number of evoked APs. This sensitizing action of NGF, ceramide and internally perfused Sph was abolished by dimethylsphingosine (DMS), an inhibitor of sphingosine kinase. In contrast, internally perfused S1P enhanced the number of evoked APs in the presence of DMS. These observations support the idea that the metabolism of ceramide/Sph to S1P is critical for the sphingolipid-induced modulation of excitability. Both internally perfused Sph and S1P inhibited the outward K+ current by 25-35% for the step to +60 mV. The Sph- and S1P-sensitive currents had very similar current-voltage relations, suggesting that they were likely to be the same. In addition, the Sph-induced suppression of the K+ current was blocked by pretreatment with DMS. These findings demonstrate that intracellular S1P derived from ceramide acts as an internal second messenger to regulate membrane excitability; however, the effector system whereby S1P modulates excitability remains undetermined.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
229
|
Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J Neurophysiol 2006; 96:1042-52. [PMID: 16723416 DOI: 10.1152/jn.00120.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is released by immune cells and is thought to play a key role in chemotaxis and the onset of the inflammatory response. The question remains whether this lipid mediator also contributes to the enhanced sensitivity of nociceptive neurons that is associated with inflammation. Therefore we examined whether S1P alters the excitability of small diameter, capsaicin-sensitive sensory neurons by measuring action potential (AP) firing and two of the membrane currents critical in regulating the properties of the AP. External application of S1P augments the number of APs evoked by a depolarizing current ramp. The enhanced firing is associated with a decrease in the rheobase and an increase in the resistance at firing threshold although neither the firing threshold nor the resting membrane potential are changed. Treatment with S1P enhanced the tetrodotoxin-resistant sodium current and decreased the total outward potassium current (IK). When sensory neurons were internally perfused with GDP-beta-S, a blocker of G protein activation, the S1P-induced increase in APs was completely blocked and suggests the excitatory actions of S1P are mediated through G-protein-coupled receptors called endothelial differentiation gene or S1PR. In contrast, internal perfusion with GDP-beta-S and S1P increased the number of APs evoked by the current ramp. These results and our finding that the mRNAs for S1PRs are expressed in both the intact dorsal root ganglion and cultures of adult sensory neurons supports the notion that S1P acts on S1PRs linked to G proteins. Together these findings demonstrate that S1P can regulate the excitability of small diameter sensory neurons by acting as an external paracrine-type ligand through activation of G-protein-coupled receptors and thus may contribute to the hypersensitivity during inflammation.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Ganglia, Spinal/physiology
- Lysophospholipids/pharmacology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Patch-Clamp Techniques
- Polymerase Chain Reaction
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/physiology
- Receptors, Lysosphingolipid/drug effects
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/physiology
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
230
|
Adibhatla RM, Hatcher JF, Dempsey RJ. Lipids and lipidomics in brain injury and diseases. AAPS JOURNAL 2006; 8:E314-21. [PMID: 16796382 PMCID: PMC3231558 DOI: 10.1007/bf02854902] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipidomics is systems-level analysis and characterization of lipids and their interacting moieties. The amount of information in the genomic and proteomic fields is greater than that in the lipidomics field, because of the complex nature of lipids and the limitations of tools for analysis. The main innovation during recent years that has spurred advances in lipid analysis has been the development of new mass spectroscopic techniques, particularly the "soft ionization" techniques electrospray ionization and matrix-assisted laser desorption/ionization. Lipid metabolism may be of particular importance for the central nervous system, as it has a high concentration of lipids. The crucial role of lipids in cell signaling and tissue physiology is demonstrated by the many neurological disorders, including bipolar disorders and schizophrenia, and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick diseases, that involve deregulated lipid metabolism. Altered lipid metabolism is also believed to contribute to cerebral ischemic (stroke) injury. Lipidomics will provide a molecular signature to a certain pathway or a disease condition. Lipidomic analyses (characterizing complex mixtures of lipids and identifying previously unknown changes in lipid metabolism) together with RNA silencing, using small interfering RNA (siRNA), may provide powerful tools to elucidate the specific roles of lipid intermediates in cell signaling and open new opportunities for drug development.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, H4-330, Clinical Science Center, 600 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
231
|
Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006; 38:1654-61. [PMID: 16713323 DOI: 10.1016/j.biocel.2006.03.021] [Citation(s) in RCA: 409] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/21/2006] [Accepted: 03/31/2006] [Indexed: 01/22/2023]
Abstract
Cyclooxygenease-2 (COX-2) is the key enzyme regulating the production of prostaglandins, central mediators of inflammation. The expression of cyclooxygenease-2 is induced by several extra cellular signals including pro-inflammatory and growth-promoting stimuli. All signals converge to the activation of mitogen-activated protein kinases (MAPK) that regulate cyclooxygenease-2 mRNA levels both at the transcriptional and post-transcriptional level. The machinery appears to be highly specialized involving activation of distinct signalling molecules depending on the type of extracellular stimulus. Expression of cyclooxygenease-2 mRNA is regulated by several transcription factors including the cyclic-AMP response element binding protein (CREB), nuclear factor kappa B (NFkB) and the CCAAT-enhancer binding protein (C/EBP). Cyclooxygenease-2 is also affected post-transcriptionaly, at the level of mRNA stability. Finally, cyclooxygenease-2 can be affected directly at its enzymatic activity by nitric oxide and nitric oxide synthase (iNOS). Each step of cyclooxygenease-2 regulation can be used as potential therapeutic target.
Collapse
Affiliation(s)
- Christos Tsatsanis
- Department of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Crete GR-710 03, Greece.
| | | | | | | |
Collapse
|
232
|
Kitano M, Hla T, Sekiguchi M, Kawahito Y, Yoshimura R, Miyazawa K, Iwasaki T, Sano H, Saba JD, Tam YY. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. ACTA ACUST UNITED AC 2006; 54:742-53. [PMID: 16508938 DOI: 10.1002/art.21668] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Sphingosine 1-phosphate (S1P) is involved in various pathologic conditions and has been implicated as an important mediator of angiogenesis, inflammation, cancer, and autoimmunity. This study was undertaken to examine the role of S1P/S1P1 signaling in the pathogenesis of rheumatoid arthritis (RA). METHODS We examined S1P1 messenger RNA (mRNA) and protein levels in RA synoviocytes and MH7A cells by reverse transcriptase-polymerase chain reaction and Western blotting. We also performed S1P1 immunohistochemistry analysis in synovial tissue from 28 RA patients and 18 osteoarthritis (OA) patients. We investigated the effects of S1P on proliferation by WST-1 assay, and its effects on tumor necrosis factor alpha (TNFalpha)- or interleukin-1beta (IL-1beta)-induced cyclooxygenase 2 (COX-2) expression and prostaglandin E2 (PGE2) production in RA synoviocytes and MH7A cells by Western blotting and enzyme-linked immunosorbent assay, respectively. Finally, we examined whether these effects of S1P were sensitive to pertussis toxin (PTX), an inhibitor of the Gi/Go proteins. RESULTS S1P1 mRNA and protein were detected in RA synoviocytes and MH7A cells. S1P1 was more strongly expressed in synovial lining cells, vascular endothelial cells, and inflammatory mononuclear cells of RA synovium compared with OA synovium. S1P increased the proliferation of RA synoviocytes and MH7A cells. S1P alone significantly enhanced COX-2 expression and PGE2 production. Moreover, S1P enhanced expression of COX-2 and production of PGE2 induced by stimulation with TNFalpha or IL-1beta in RA synoviocytes and MH7A cells. These effects of S1P were inhibited by pretreatment with PTX. CONCLUSION These findings suggest that S1P signaling via S1P receptors plays an important role in cell proliferation and inflammatory cytokine-induced COX-2 expression and PGE2 production by RA synoviocytes. Thus, regulation of S1P/S1P1 signaling may represent a novel therapeutic target in RA.
Collapse
|
233
|
Hemmings DG. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:18-29. [PMID: 16570136 DOI: 10.1007/s00210-006-0046-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two related lysosphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediate diverse cellular responses through signals transduced by either activation of G-protein coupled receptors or possibly by acting intracellularly. Vascular responses to S1P and SPC measured both in vivo and in dissected vessels show predominantly vasoconstriction with some evidence for vasodilation. Although stimulation with S1P or SPC generally leads to similar vascular responses, the signalling pathways stimulated to produce these responses are often distinct. Nevertheless, mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+, which both increase [Ca2+]i, occur in response to S1P and SPC. Both mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+ occur in response to S1P and SPC. As well, both S1P and SPC induce Ca2+-sensitization in vascular smooth muscle which is mediated through Rho kinase activation. In the endothelium, S1P and SPC stimulate the production of the vasodilator, nitric oxide through activation of endothelial nitric oxide synthase. This activation occurs through phosphorylation by Akt and through binding of Ca2+-calmodulin upon increased [Ca2+]i. These lysosphingolipids also activate cyclooxygenase-2 which produces prostaglandins with both vasoconstrictor and vasodilator properties. A balance between the signals inducing vasodilation versus the signals inducing vasoconstriction will determine the vascular outcome. Thus, perturbations in S1P and SPC concentrations, relative expression of receptors or downstream signalling pathways may provide a mechanism for pathophysiological conditions such as hypertension. Given this background, recent studies examining a potential role for S1P and SPC in hypertension and vascular dysfunction in aging are discussed.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, 227 Heritage Medical Research Center, T6G 2S2, Edmonton, Alberta, Canada.
| |
Collapse
|
234
|
Czyborra C, Bischoff A, Michel MC. Indomethacin differentiates the renal effects of sphingosine-1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:37-44. [PMID: 16521006 DOI: 10.1007/s00210-006-0037-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/10/2006] [Indexed: 12/26/2022]
Abstract
The sphingomyelin breakdown products sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) constrict intrarenal microvessels in vitro in a pertussis toxin (PTX) sensitive manner, and S1P also reduces renal blood flow in vivo. Nevertheless, both S1P and SPC have been reported to enhance diuresis and natriuresis. This pattern is similar to that of neuropeptide Y, which also reduces renal blood flow and enhances diuresis and natriuresis. The latter effects are inhibited by the cyclooxygenase inhibitor indomethacin, and various S1P and SPC responses have also been linked to the cyclooxygenase pathway. Therefore, we have investigated whether indomethacin can alter the renal effects of S1P and SPC in anaesthetised rats in vivo. In line with earlier experiments S1P bolus injections dose-dependently reduced renal blood flow (by up to 4.8 +/- 0.5 ml min(-1)), and this was not significantly affected by indomethacin treatment (5 mg kg(-1) i.p.). Infusion of S1P but not of SPC (30 microg kg(-1) min(-1) each) for 60 min reduced renal blood flow by up to 0.8 +/- 0.2 ml min(-1), and this was not markedly altered by indomethacin. Despite the differential renovascular effect, both S1P and SPC enhanced diuresis by up to 215 +/- 65 and 201 +/- 58 microl 15 min(-1) respectively, and natriuresis by up to 25 +/- 9 and 29 +/- 11 micromol 15 min(-1) respectively. While indomethacin abolished the SPC-induced diuresis and natriuresis, it, if anything, slightly enhanced the diuretic and natriuretic effect of S1P. To determine whether tubular SPC effects are receptor-mediated, PTX experiments were performed. SPC-induced enhancements of diuresis and natriuresis were abolished by PTX. We conclude that S1P, SPC and neuropeptide Y exhibit distinct patterns of modulation of renal function and that indomethacin allows such effects to be differentiated.
Collapse
Affiliation(s)
- Claudia Czyborra
- Department of Medicine, University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
235
|
Skaznik-Wikiel ME, Kaneko-Tarui T, Kashiwagi A, Pru JK. Sphingosine-1-Phosphate Receptor Expression and Signaling Correlate with Uterine Prostaglandin-Endoperoxide Synthase 2 Expression and Angiogenesis During Early Pregnancy1. Biol Reprod 2006; 74:569-76. [PMID: 16319286 DOI: 10.1095/biolreprod.105.046714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Signaling mechanisms coordinating uterine angiogenesis and tissue remodeling during decidualization are not completely understood. Prostanoid signaling is thought to play a functionally important role in each of these events. In the present study, we demonstrate that the subfamily of G-protein-coupled receptors that binds and becomes activated by the terminal signaling lipid in the sphingolipid pathway, sphingosine-1-phosphate (S1P), were expressed during uterine decidualization. Three of the five known S1P receptors, termed endothelial differentiation genes (Edg; Edg1, Edg3, and Edg5) were upregulated in the uterine deciduum from Day of Pregnancy (DOP) 4.5 to 7.5, while Edg6 and Edg8 expression remained unchanged. Consistent with angiogenesis in general during decidualization, we believe EDG1 and EDG5 to be regulated by the embryo because no microvascular expression for these receptors was observed in oil-induced deciduomas. Observed expression of EDG1 and EDG5 showed a similar expression pattern to that previously reported for prostaglandin-endoperoxide synthase 2 (PTGS2), transitioning from the sublumenal stromal compartment in the antimesometrial pole (DOP 5) to the microvasculature of the mesometrial pole (DOP 7). Furthermore, these two receptors colocalized with PTGS2 at three additional sites at the maternal:fetal interface throughout pregnancy. Treatment of cultured predecidualized stromal cells with S1P resulted in upregulation of Ptgs2 mRNA and PTGS2 protein, but not the downstream enzyme prostacyclin synthase. These combined results suggest the existence of a link between the sphingolipid and prostanoid signaling pathways in uterine physiology, and that, based on their expression pattern, S1P receptors function to coordinate uterine mesometrial angiogenesis during the implantation phase of early gestation.
Collapse
Affiliation(s)
- Malgorzata E Skaznik-Wikiel
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
236
|
Darwiche N, Abou-Lteif G, Najdi T, Kozhaya L, Abou Tayyoun A, Bazarbachi A, Dbaibo G. Human T-cell lymphotropic virus type I-transformed T-cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide. Biochem J 2006; 392:231-9. [PMID: 16086670 PMCID: PMC1317682 DOI: 10.1042/bj20050578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment with the synthetic retinoid HPR [N-(4-hydroxyphenyl)-retinamide] causes growth arrest and apoptosis in HTLV-I (human T-cell lymphotropic virus type-I)-positive and HTLV-I-negative malignant T-cells. It was observed that HPR-mediated growth inhibition was associated with ceramide accumulation only in HTLV-I-negative cells. The aim of the present study was to investigate the mechanism by which HPR differentially regulates ceramide metabolism in HTLV-I-negative and HTLV-I-positive malignant T-cells. Clinically achievable concentrations of HPR caused early dose-dependent increases in ceramide levels only in HTLV-I-negative cells and preceded HPR-induced growth suppression. HPR induced de novo synthesis of ceramide in HTLV-I-negative, but not in HTLV-I-positive, cells. Blocking ceramide glucosylation in HTLV-I-positive cells, which leads to accumulation of endogenous ceramide, rendered these cells more sensitive to HPR. Exogenous cell-permeant ceramides that function partially by generating endogenous ceramide induced growth suppression in all tested malignant lymphocytes, were consistently found to be less effective in HTLV-I-positive cells confirming their defect in de novo ceramide synthesis. Owing to its multipotent activities, the HTLV-I-encoded Tax protein was suspected to inhibit ceramide synthesis. Tax-transfected Molt-4 and HELA cells were less sensitive to HPR and C6-ceramide mediated growth inhibition respectively and produced lower levels of endogenous ceramide. Together, these results indicate that HTLV-I-positive cells are defective in de novo synthesis of ceramide and that therapeutic modalities that bypass this defect are more likely to be successful.
Collapse
Affiliation(s)
- Nadine Darwiche
- *Department of Biology, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| | - Ghada Abou-Lteif
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tarek Najdi
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Lina Kozhaya
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| | | | - Ali Bazarbachi
- ‡Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan S. Dbaibo
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
- §Department of Pediatrics, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| |
Collapse
|
237
|
Hammad SM, Taha TA, Nareika A, Johnson KR, Lopes-Virella MF, Obeid LM. Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 2006; 79:126-40. [PMID: 16516816 DOI: 10.1016/j.prostaglandins.2005.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 02/03/2023]
Abstract
The transformation of macrophages into foam cells is a critical event in the development of atherosclerosis. The most studied aspect of this process is the uptake of modified LDL through the scavenger receptors. Another salient aspect is the effect of modified LDL immune complexes on macrophages activation and foam cell formation. Macrophages internalize oxidized LDL immune complexes (oxLDL-IC) via the Fc-gamma receptor and transform into activated foam cells. In this study we examined the effect of oxLDL-IC on sphingosine kinase 1 (SK1), an enzyme implicated in mediating pro-survival and inflammatory responses through the generation of the signaling molecule sphingosine-1-phosphate (S1P). Intriguingly, oxLDL-IC, but not oxLDL alone, induced an immediate translocation and release of SK1 into the conditioned medium as evidenced by fluorescence confocal microscopy. Immunoblot analysis of cell lysates and conditioned medium revealed a decrease in intracellular SK1 protein levels accompanied by a concomitant increase in extracellular SK1 levels. Furthermore, measurement of S1P formation showed that the activity of cell-associated SK decreased in response to oxLDL-IC compared to oxLDL alone, whereas the activity of SK increased extracellularly. Blocking oxLDL-IC binding to Fc-gamma receptors resulted in decreased levels of extracellular S1P. The data also show that cell survival of human U937 cells exposed to oxLDL-IC increased compared to oxLDL alone. Exogenously added S1P further increased cell survival induced by oxLDL-IC. Taken together, these findings indicate that S1P may be generated extracellularly in response to modified LDL immune complexes and may therefore promote cell survival and prolong cytokine release by activated macrophages.
Collapse
Affiliation(s)
- Samar M Hammad
- Division of Endocrinology Diabetes & Medical Genetics, Medical University of South Carolina, 114 Doughty Street, 630B, PO Box 250776, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
238
|
Wendler CC, Rivkees SA. Sphingosine-1-phosphate inhibits cell migration and endothelial to mesenchymal cell transformation during cardiac development. Dev Biol 2006; 291:264-77. [PMID: 16434032 DOI: 10.1016/j.ydbio.2005.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 11/19/2005] [Accepted: 12/06/2005] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite that exerts important effects on numerous cellular events via cell surface receptors, S1P(1-5). S1P influences differentiation, proliferation, and migration during vascular development. However, the effects of S1P signaling on early cardiac development are not well understood. To address this issue, we examined the expression of S1P regulatory enzymes and S1P receptors during cardiac development. We observed that enzymes that regulate S1P levels, sphingosine kinase and sphingosine-1-phosphate phosphatase, are expressed in the developing heart. In addition, RT-PCR revealed that four of the five known S1P receptors (S1P(1-4)) are also expressed in the developing heart. Next, effects of altered S1P levels on whole embryo and atrioventricular (AV) canal cultures were investigated. We demonstrate that inactivation of the S1P producing enzyme, sphingosine kinase, leads to cell death in cardiac tissue which is rescued by exogenous S1P treatment. Other experiments reveal that increased S1P concentration prevents alterations in cell morphology that are required for cell migration. This effect results in reduced cell migration and inhibited mesenchymal cell formation in AV canal cushion tissue. These data indicate that S1P, locally maintained within a specific concentration range, is an important and necessary component of early heart development.
Collapse
Affiliation(s)
- Christopher C Wendler
- Section of Developmental Endocrinology and Biology, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
239
|
Yang J, Castle BE, Hanidu A, Stevens L, Yu Y, Li X, Stearns C, Papov V, Rajotte D, Li J. Sphingosine kinase 1 is a negative regulator of CD4+ Th1 cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:6580-8. [PMID: 16272312 DOI: 10.4049/jimmunol.175.10.6580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD4+ Th1 cells produce IFN-gamma, TNF-alpha, and IL-2. These Th1 cytokines play critical roles in both protective immunity and inflammatory responses. In this study we report that sphingosine kinase 1 (SPHK1), but not SPHK2, is highly expressed in DO11.10 Th1 cells. The expression of SPHK1 in Th1 cells requires TCR signaling and new protein synthesis. SPHK1 phosphorylates sphingosine to form sphingosine-1-phosphate. Sphingosine-1-phosphate plays important roles in inhibition of apoptosis, promotion of cell proliferation, cell migration, calcium mobilization, and activation of ERK1/2. When SPHK1 expression was knocked down by SPHK1 short interfering RNA, the production of IL-2, TNF-alpha, and IFN-gamma by Th1 cells in response to TCR stimulation was enhanced. Consistently, overexpression of dominant-negative SPHK1 increased the production of IL-2, TNF-alpha, and IFN-gamma in Th1 cells. Furthermore, overexpression of SPHK1 in Th1 and Th0 cells decreased the expression of IL-2, TNF-alpha, and IFN-gamma. Several chemokines, including Th2 chemokines CCL17 and CCL22, were up-regulated by SPHK1 short interfering RNA and down-regulated by overexpression of SPHK1. We also showed that Th2 cells themselves express CCL17 and CCL22. Finally, we conclude that SPHK1 negatively regulates the inflammatory responses of Th1 cells by inhibiting the production of proinflammatory cytokines and chemokines.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chemokine CCL17
- Chemokine CCL22
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Female
- Gene Expression
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/immunology
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th2 Cells/enzymology
- Th2 Cells/immunology
- Transfection
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Jianfei Yang
- R&D Center, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Taha TA, Kitatani K, El-Alwani M, Bielawski J, Hannun YA, Obeid LM. Loss of sphingosine kinase‐1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 2005; 20:482-4. [PMID: 16507765 DOI: 10.1096/fj.05-4412fje] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activation of sphingosine kinase-1 (SK1) by overexpression or agonist stimulation promotes cell proliferation, survival, and anti-apoptosis. Studies on the function of endogenous SK1 are lacking. Endogenous SK1 has been shown to be down-regulated under stress, and knockdown of the enzyme reduces the percentage of viable MCF-7 breast cancer cells (Taha, T. A. et al. 2004. J. Biol. Chem. 279, 20546-20554). In this study, we examined the mechanisms by which SK1 loss affects the growth of cells. Knockdown of the enzyme by small interfering RNA caused cell cycle arrest and induced apoptosis. Cell death involved effector caspase activation, cytochrome c release and Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown upstream of the mitochondrial pathway of apoptosis. SK1 knockdown also induced significant increases in ceramide levels in whole cells and in mitochondria enriched fractions of cells. Inhibition of de novo sphingolipid biosynthesis with myriocin significantly attenuated Bax oligomerization and downstream caspase activation after SK1 loss. These studies for the first time implicate endogenous SK1 as an important survival enzyme in MCF-7 cells and link the biological consequences of knocking down the enzyme to its biochemical role as a regulator of sphingolipid metabolism.
Collapse
Affiliation(s)
- Tarek A Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
241
|
Kawamori T, Osta W, Johnson KR, Pettus BJ, Bielawski J, Tanaka T, Wargovich MJ, Reddy BS, Hannun YA, Obeid LM, Zhou D. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 2005; 20:386-8. [PMID: 16319132 DOI: 10.1096/fj.05-4331fje] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine kinase 1 (SK1) phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has the ability to promote cell proliferation and survival and stimulate angiogenesis. The SK1/S1P pathway also plays a critical role in regulation of cyclooxygenase-2 (COX-2), a well-established pathogenic factor in colon carcinogenesis. Therefore, we examined the expression of SK1 and COX-2 in rat colon tumors induced by azoxymethane (AOM) and the relationship of these two proteins in normal and malignant intestinal epithelial cells. Strongly positive SK1 staining was found in 21/28 (75%) of rat colon adenocarcinomas induced by AOM, whereas no positive SK1 staining was observed in normal mucosa. The increase in SK1 and COX-2 expression in AOM-induced rat colon adenocarcinoma was confirmed at the level of mRNA by real-time RT-PCR. In addition, it was found that 1) down-regulation of SK1 in HT-29 human colon cancer cells by small interfering RNA (siRNA) decreases COX-2 expression and PGE2 production; 2) overexpression of SK1 in RIE-1 rat intestinal epithelial cells induces COX-2 expression; and 3) S1P stimulates COX-2 expression and PGE2 production in HT-29 cells. These results suggest that the SK1/S1P pathway may play an important role in colon carcinogenesis, in part, by regulating COX-2 expression and PGE2 production.
Collapse
Affiliation(s)
- Toshihiko Kawamori
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Bu S, Yamanaka M, Pei H, Bielawska A, Bielawski J, Hannun YA, Obeid L, Trojanowska M. Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. FASEB J 2005; 20:184-6. [PMID: 16278291 DOI: 10.1096/fj.05-4646fje] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine kinase (SphK) is a conserved lipid kinase that catalyzes formation of important regulators of inter- and intracellular signaling, sphingosine-1 phosphate (S1P), and dihydrosphingosine 1-phosphate (dhS1P). In this study, we investigated the role of SphK1 in the regulation of expression of matrix metalloproteinase 1 (MMP1) in dermal fibroblasts, a key event in regulation of extra cellular matrix. We show that overexpression of SphK1 up-regulated MMP1 protein, MMP1 mRNA, and MMP1 promoter activity, and this action of SphK1 required activation of the ERK1/2-Ets1 and NF-kappaB pathways. Furthermore, experiments using SphK1 specific siRNA demonstrated that SphK1 is required for the TNF-alpha stimulation of MMP1. Additional data revealed a specific role of dhS1P, and not S1P, as a mediator of SphK1-dependent activation of ERK1/2 and up-regulation of MMP1. The stimulatory effect of dhS1P was sensitive to pertussis toxin, suggesting a possible involvement of a G-protein-coupled receptor. In contrast, S1P, but not dhS1P, stimulated the induction of COX-2, which demonstrated selective actions of these two closely related bioactive lipids. In conclusion, this study describes a novel mode of SphK1 signaling through generation of dhS1P with a key role in mediating transcriptional responses to TNF-alpha. This is the first report of selective function of dhS1P as compared with the better studied S1P.
Collapse
Affiliation(s)
- Shizhong Bu
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Wu W, Silbajoris RA, Whang YE, Graves LM, Bromberg PA, Samet JM. p38 and EGF receptor kinase-mediated activation of the phosphatidylinositol 3-kinase/Akt pathway is required for Zn2+-induced cyclooxygenase-2 expression. Am J Physiol Lung Cell Mol Physiol 2005; 289:L883-9. [PMID: 15980035 DOI: 10.1152/ajplung.00197.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.
Collapse
Affiliation(s)
- Weidong Wu
- Division of Immunology and Infectious Disease, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
244
|
Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 2005; 118:4605-12. [PMID: 16219683 DOI: 10.1242/jcs.02637] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphorylated sphingolipid metabolites sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) have emerged as potent bioactive agents. Recent studies have begun to define new biological functions for these lipids. Generated by sphingosine kinases and ceramide kinase, they control numerous aspects of cell physiology, including cell survival and mammalian inflammatory responses. Interestingly, S1P is involved in cyclooxygenase-2 induction and C1P is required for the activation and translocation of cPLA2. This suggests that these two sphingolipid metabolites may act in concert to regulate production of eicosanoids, important inflammatory mediators. Whereas S1P functions mainly via G-protein-coupled receptors, C1P appears to bind directly to targets such as cPLA2 and protein phosphatase 1/2A. S1P probably also has intracellular targets, and in plants it appears to directly regulate the G protein α subunit GPA1.
Collapse
Affiliation(s)
- Charles E Chalfant
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA.
| | | |
Collapse
|
245
|
He X, Dagan A, Gatt S, Schuchman EH. Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. Anal Biochem 2005; 340:113-22. [PMID: 15802137 DOI: 10.1016/j.ab.2005.01.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/17/2022]
Abstract
Ceramide and sphingosine are sphingolipids with important functional and structural roles in cells. In this paper we report a new enzyme-based method to simultaneously quantify the levels of ceramide and sphingosine in biological samples. This method utilizes purified human recombinant acid ceramidase to completely hydrolyze ceramide to sphingosine, followed by derivatization of the latter with naphthalene-2,3-dialdehyde (NDA) and quantification by reverse-phase high-performance liquid chromatography. The limits of detection for sphingosine-NDA and ceramidase-derived sphingosine-NDA were 9.6 and 12.3 fmol, respectively, and the limits of quantification were 34.2 and 45.7 fmol, respectively. The recovery of sphingosine and ceramide standards quantified by this assay were between 95.6 and 104.6%. The relative standard deviations for the intra- and interday sphingosine assay were 2.1 and 4.5%, respectively, and those for the ceramide assay were 3.3 and 4.1%, respectively. To validate this procedure, we quantified ceramide and sphingosine in mouse plasma, white blood cells, and hemoglobin, the first reported time that the amounts of these lipids have been documented in individual blood components. We also used this technique to evaluate the ability of a novel ceramide analog, AD2646, to inhibit the hydrolytic activity of acid ceramidase. The results demonstrate that this new procedure can provide sensitive, reproducible, and simultaneous ceramide and sphingosine quantification. The technique also may be used for determining the activity and inhibition of ceramidases and may be adapted for quantifying sphingomyelin and sphingosine-1-phosphate levels. In the future it could be an important tool for investigators studying the role of ceramide/sphingosine metabolism in signal transduction, cell growth and differentiation, and cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
246
|
Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH, Milstien S, Spiegel S. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 2005; 280:37118-29. [PMID: 16118219 DOI: 10.1074/jbc.m502207200] [Citation(s) in RCA: 501] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca(2+) transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [(3)H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, Bielawski J, Obeid LM, Hannun YA. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 2005; 68:330-5. [PMID: 15900018 DOI: 10.1124/mol.104.008722] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) to induce the major inflammatory mediator prostaglandin (PG) E(2) depends on the activation of two rate-limiting enzymes, phospholipase A(2) (PLA(2)) and cyclooxygenase 2 (COX-2). PLA(2) acts to generate arachidonic acid, which serves as the precursor substrate for COX-2 in the metabolic pathway leading to PGE(2) production. However, less is known about the mechanisms that coordinate the regulation of these two enzymes. We have provided prior evidence that sphingosine kinase 1 and its bioactive lipid product sphingosine-1-phosphate (S1P) mediate the effects of cytokines on COX-2 induction, whereas ceramide kinase and its distinct product, ceramide-1-phosphate (C1P), are required for the activation and translocation of cPLA(2) (FASEB J 17:1411-1421. 2003; J Biol Chem 278:38206-38213, 2003; J Biol Chem 279:11320-11326, 2004). Herein, we show that these two pathways are independent but coordinated, resulting in synergistic induction of PGE(2). Moreover, the combination of both S1P and C1P recapitulates the temporal and spatial activation of cPLA(2) and with COX-2 seen IL-1beta. Taken together, the results provide, for the first time, a mechanism that assures the coordinate expression and activation in time and space of COX-2 and cPLA(2), assuring maximal production of PGE(2).
Collapse
Affiliation(s)
- Benjamin J Pettus
- Department of Biochemistry and Molecular Biology, Room 501, Basic Science Building, Medical University of South Carolina, 173 Ashley Avenue, P.O. Box 250509, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Berdyshev EV, Gorshkova IA, Garcia JGN, Natarajan V, Hubbard WC. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal Biochem 2005; 339:129-36. [PMID: 15766719 DOI: 10.1016/j.ab.2004.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 12/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (DHS1P) are important signaling sphingolipids. The presence of nanomolar levels of S1P and DHS1P in tissues, cells, and biological fluids requires a highly sensitive and selective assay method for their reliable detection and quantitation. Preliminary findings employing positive ion electrospray ionization (ESI) liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis indicated significant sample carryover from previous injections of authentic standards of S1P and DHS1P. This article details a negative ion ESI LC-MS/MS technique following modification of the zwitterionic nature of S1P and DHS1P via derivatization. A highly selective and sensitive LC-MS/MS technique capable of reliable detection of less than 50 fmol of the derivatives of S1P and DHS1P without significant sample carryover was developed. Standard curves for S1P and DHS1P are linear over wide ranges (0-300 pmol) of analyte concentrations with correlation coefficients (r2) greater than 0.995. The levels of S1P and DHS1P in human platelet poor plasma were 590.8+/-42.1 and 130.7+/-20.7 pmol/ml, respectively. The levels of S1P and DHS1P in fetal bovine serum were 141.7+/-4.6 and 0.6+/-0.2 pmol/ml, respectively. The addition of sphingosine (1 microM) to human pulmonary artery endothelial cells in culture resulted in a more than 20-fold increase in the cellular level of S1P, whereas the level of DHS1P was unchanged.
Collapse
Affiliation(s)
- Evgeny V Berdyshev
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University, MFL Building, Center Tower, Room 683, 5200 Eastern Avenue, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
249
|
Baumruker T, Bornancin F, Billich A. The role of sphingosine and ceramide kinases in inflammatory responses. Immunol Lett 2005; 96:175-85. [PMID: 15585321 DOI: 10.1016/j.imlet.2004.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 12/20/2022]
Abstract
The 1-phosphates of sphingosine and ceramide (S1P and C1P) have emerged as key representatives of a new group of lipid signalling molecules. S1P is known to act both as an extracellular mediator and as an intracellular 'second messenger,' while C1P currently is only known for its intracellular actions. Therefore, sphingosine and ceramide kinases, the enzymes involved in the generation of these lipid mediators, are now in the spotlight. This review summarizes current information on structure, localization, substrate specificity, activation, and binding partners of these kinases, and then focuses on discoveries in relation to immune cell regulation and inflammation, addressing in particular mast cell activation and degranulation, IL-12 signalling, prostaglandin biosynthesis, monocyte activation, and neutrophil priming.
Collapse
Affiliation(s)
- Thomas Baumruker
- Novartis Institute for BioMedical Research Vienna, Brunner Strasse 59, A-1235 Vienna, Austria.
| | | | | |
Collapse
|
250
|
Hait NC, Sarkar S, Le Stunff H, Mikami A, Maceyka M, Milstien S, Spiegel S. Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 2005; 280:29462-9. [PMID: 15951439 DOI: 10.1074/jbc.m502922200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sphingosine 1-phosphate (S1P), produced by two sphingosine kinase isoenzymes, denoted SphK1 and SphK2, is the ligand for a family of five specific G protein-coupled receptors that regulate cytoskeletal rearrangements and cell motility. Whereas many growth factors stimulate SphK1, much less is known of the regulation of SphK2. Here we report that epidermal growth factor (EGF) stimulated SphK2 in HEK 293 cells. This is the first example of an agonist-dependent regulation of SphK2. Chemotaxis of HEK 293 cells toward EGF was inhibited by N,N-dimethylsphingosine, a competitive inhibitor of both SphKs, implicating S1P generation in this process. Down-regulating expression of SphK1 in HEK 293 cells with a specific siRNA abrogated migration toward EGF, whereas decreasing SphK2 expression had no effect. EGF contributes to the invasiveness of human breast cancer cells, and EGF receptor expression is associated with poor prognosis. EGF also stimulated SphK2 in MDA-MB-453 breast cancer cells. Surprisingly, however, down-regulation of SphK2 in these cells completely eliminated migration toward EGF without affecting fibronectin-induced haptotaxis. Our results suggest that SphK2 plays an important role in migration of MDA-MB-453 cells toward EGF.
Collapse
Affiliation(s)
- Nitai C Hait
- Department of Biochemistry and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, 23298, USA
| | | | | | | | | | | | | |
Collapse
|