201
|
Guilbride DL, Gawlinski P, Guilbride PDL. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS One 2010; 5:e10685. [PMID: 20502667 PMCID: PMC2873430 DOI: 10.1371/journal.pone.0010685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/16/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. METHODOLOGY/PRINCIPAL FINDINGS We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. CONCLUSIONS/SIGNIFICANCE We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.
Collapse
|
202
|
Abstract
The past decade has seen an unprecedented surge in political commitment and international funding for malaria control. Coverage with existing control methods (ie, vector control and artemisinin-based combination therapy) is increasing, and, in some Asian and African countries, childhood morbidity and mortality from malaria caused by Plasmodium falciparum are starting to decline. Consequently, there is now renewed interest in the possibility of malaria elimination. But the ability of the parasite to develop resistance to antimalarial drugs and increasing insecticide resistance of the vector threaten to reduce and even reverse current gains. Plasmodium vivax, with its dormant liver stage, will be particularly difficult to eliminate, and access to effective and affordable treatment at community level is a key challenge. New drugs and insecticides are needed urgently, while use of an effective vaccine as part of national malaria control programmes remains an elusive goal. This Seminar, which is aimed at clinicians who manage children with malaria, especially in resource-poor settings, discusses present knowledge and controversies in relation to the epidemiology, pathophysiology, diagnosis, treatment, and prevention of malaria in children.
Collapse
Affiliation(s)
- Jane Crawley
- Medical Research Council Clinical Trials Unit, London, UK
| | | | | | | |
Collapse
|
203
|
Transcriptional analysis of the pre-erythrocytic stages of the rodent malaria parasite, Plasmodium yoelii. PLoS One 2010; 5:e10267. [PMID: 20422005 PMCID: PMC2858153 DOI: 10.1371/journal.pone.0010267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/25/2010] [Indexed: 11/19/2022] Open
Abstract
The molecular biology of the clinically silent pre-erythrocytic stages of mammalian Plasmodium spp, composed of both the sporozoite and liver stages, has remained largely uncharacterized. Improved understanding of the biological processes required for progression through the pre-erythrocytic stages could lead to the identification of novel drug and vaccine targets. To gain insights into the molecular events that occur during the pre-erythrocytic stages of Plasmodium, comparative transcriptional analysis was performed on radiation attenuated sporozoites (RAS), wild type sporozoites (wtSPZ) and liver stage parasites collected either 24 hours (24hrLS) or 48 hours (48hrLS) after mice were infected with Plasmodium yoelii. Our results revealed 1100 Plasmodium genes that were differentially expressed in one or more constituents of the pre-erythrocytic stages relative to the mixed blood stages. Overall, the transcriptional profile of P. yoelii gradually became more similar to the mixed blood stages as pre-erythrocytic stage development progressed into the mature liver stage schizont. The transcriptional profiles of RAS and wtSPZ were found to be nearly identical. Likewise, the transcriptional profile of 24hrLS was very similar to that of the 48hrLS parasites. The largest differences in gene expression were observed when comparing wtSPZ or RAS to either of the liver stage samples. Further characterization of the differentially expressed genes identified in this study could help elucidate the biological mechanisms employed by Plasmodium during the pre-erythrocytic stages.
Collapse
|
204
|
Vaughan AM, Wang R, Kappe SHI. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. HUMAN VACCINES 2010; 6:107-13. [PMID: 19838068 DOI: 10.4161/hv.6.1.9654] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria remains one of the most significant infectious diseases affecting human populations in developing countries. The quest for an efficacious malaria vaccine has been ongoing for nearly a century with limited success. The identification of malaria parasite antigens focused efforts on the development of subunit vaccines but has so far yielded only one partially efficacious vaccine candidate, RTS/S. The lack of high vaccine efficacy observed to date with subunit vaccine candidates raises doubts that the development of a single antigen or even a multi-antigen malaria subunit vaccine is possible. Fortunately, it has been demonstrated in animal studies and experimental clinical studies that immunizations with live-attenuated sporozoite stages of the malaria parasite confer long lasting, sterile protection against infection, providing a benchmark for vaccine development. These early successful vaccinations with live-attenuated malaria parasites did not however, promote a developmental path forward for such a vaccine approach. The discovery of genetically engineered parasite strains that are fully attenuated during the early asymptomatic liver infection and confer complete sterile protection in animal malaria models support the development of a live attenuated sporozoite vaccine for Plasmodium falciparum and its accelerated safety and efficacy testing in malaria challenge models and in malaria endemic areas.
Collapse
|
205
|
Aly ASI, Downie MJ, Mamoun CB, Kappe SHI. Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice. Cell Microbiol 2010; 12:930-8. [DOI: 10.1111/j.1462-5822.2010.01441.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
206
|
Abstract
Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines.
Collapse
|
207
|
Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine 2009; 27 Suppl 6:G67-71. [DOI: 10.1016/j.vaccine.2009.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/25/2009] [Accepted: 10/02/2009] [Indexed: 01/01/2023]
|
208
|
Aly ASI, Vaughan AM, Kappe SHI. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 2009; 63:195-221. [PMID: 19575563 DOI: 10.1146/annurev.micro.091208.073403] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and pre-erythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
209
|
Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun 2009; 78:145-53. [PMID: 19858306 DOI: 10.1128/iai.00740-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protection against liver-stage malaria relies on the induction of high frequencies of antigen-specific CD8+ T cells. We have previously reported high protective levels against mouse malaria, albeit short-lived, by a single vaccination with adenoviral vectors coding for a liver-stage antigen (ME.TRAP). Here, we report that prime-boost regimens using modified vaccinia virus Ankara (MVA) and adenoviral vectors encoding ME.TRAP can enhance both short- and long-term sterile protection against malaria. Protection persisted for at least 6 months when simian adenoviruses AdCh63 and AdC9 were used as priming vectors. Kinetic analysis showed that the MVA boost made the adenoviral-primed T cells markedly more polyfunctional, with the number of gamma interferon (INF-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-2 (IL-2) triple-positive and INF-gamma and TNF-alpha double-positive cells increasing over time, while INF-gamma single-positive cells declined with time. However, IFN-gamma production prevailed as the main immune correlate of protection, while neither an increase of polyfunctionality nor a high integrated mean fluorescence intensity (iMFI) correlated with protection. These data highlight the ability of optimized viral vector prime-boost regimens to generate more protective and sustained CD8+ T-cell responses, and our results encourage a more nuanced assessment of the importance of inducing polyfunctional CD8(+) T cells by vaccination.
Collapse
|
210
|
Nguyen TV, Sacci JB, de la Vega P, John CC, James AA, Kang AS. Characterization of immunoglobulin G antibodies to Plasmodium falciparum sporozoite surface antigen MB2 in malaria exposed individuals. Malar J 2009; 8:235. [PMID: 19852802 PMCID: PMC2772840 DOI: 10.1186/1475-2875-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND MB2 protein is a sporozoite surface antigen on the human malaria parasite Plasmodium falciparum. MB2 was identified by screening a P. falciparum sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of P. falciparum-infected irradiated mosquitoes. It is not known whether natural exposure to P. falciparum also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of P. falciparum infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite. METHODS Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an in vitro inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of P. falciparum infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya. RESULTS Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells in vitro. Analysis of serum from five human volunteers that were immunized via the bites of P. falciparum infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that recognize regions of MB2 that contain a repeat motif in immunoblots. Sequence analysis of eleven field isolates and four laboratory strains showed that these antigenic regions of the basic domain of the MB2 gene are highly conserved in parasites obtained from different parts of the world. Moreover, anti-MB2 antibodies also were detected in the plasma of 83% of the individuals living in a malaria endemic area of Kenya (n = 41). CONCLUSION A preliminary analysis of the human humoral response against MB2 indicates that it may be an additional highly conserved target for immune intervention at the pre-erythrocytic stage of P. falciparum life cycle.
Collapse
Affiliation(s)
- Thanh V Nguyen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- NeoGenomics California, 6 Morgan, Suite 150, Irvine, CA 92618, USA
| | - John B Sacci
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Room 324 660 W Redwood Street, Baltimore, MD 21201, USA
| | - Patricia de la Vega
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Room 324 660 W Redwood Street, Baltimore, MD 21201, USA
- Department of Cell Mediated Immunity, Division of Malaria Vaccine Development, US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, USA
| | - Chandy C John
- Global Pediatrics Program and Division of Pediatric Infectious Diseases, University of MN Medical School, 420 Delaware Street, SE, MMC #296, 850-Mayo, Minneapolis, MN 55455, USA
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-3900, USA
| | - Angray S Kang
- The School of Life Sciences, Department of Molecular and Applied Biosciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
211
|
Ballou WR. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol 2009; 31:492-500. [PMID: 19691554 DOI: 10.1111/j.1365-3024.2009.01143.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RTS,S is the world's most advanced malaria vaccine candidate and is intended to protect infants and young children living in malaria endemic areas of sub-Saharan Africa against clinical disease caused by Plasmodium falciparum. Recently, a pivotal Phase III efficacy trial of RTS,S began in Africa. The goal of the programme has been to develop a vaccine that will be safe and effective when administered via the Expanded Program for Immunization (EPI) and significantly reduce the risk of clinically important malaria disease during the first years of life. If a similar reduction in the risk of severe malaria and other important co-morbidities associated with malaria infection can be achieved, then the vaccine could become a major new tool for reducing the burden of malaria in sub-Saharan Africa. Encouraging data from the ongoing phase II programme suggest that these goals may indeed be achievable. This review discusses some of the unique challenges that were faced during the development of this vaccine, highlights the complexity of developing new vaccine technologies and illustrates the power of partnerships in the ongoing fight against this killer disease.
Collapse
Affiliation(s)
- W R Ballou
- Infectious Diseases Development, Global Health Division, Bill & Melinda Gates Foundation, PO Box 23350, Seattle, WA, USA.
| |
Collapse
|
212
|
Abstract
Immunization with attenuated pre-erythrocytic malaria parasites can confer sterile protection against malaria in humans and rodents, and a single pre-erythrocytic antigen incorporated in a subunit vaccine has substantially reduced clinical Plasmodium falciparum malaria episodes in African infants during phase 2 trials. Building upon this success has been hindered by technical obstacles that limit research on pre-erythrocytic parasites, especially the liver stage (LS) parasites, and by an incomplete understanding of the immune mechanisms that confer protection in humans. Recent improvements in growing and isolating LS parasites have allowed progress in defining the transcriptome and proteome of the LS parasite, although more work remains to be done particularly for the early LS parasite of P. falciparum. Next generation pre-erythrocytic antigens can be assessed and prioritized based on immunization studies in animals, and on models of immunity such as attenuated parasite vaccines that confer sterile protection or naturally acquired LS-specific immune responses that correlate with protection in endemic areas. Although mechanisms of protection in humans remain poorly understood, the availability of a human malaria challenge model for early clinical testing of candidate vaccines is a valuable tool to confirm which immunogens should move forward to larger field trials.
Collapse
Affiliation(s)
- C Speake
- Malaria Program, Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | |
Collapse
|
213
|
Rodríguez A, Mintardjo R, Tax D, Gillissen G, Custers J, Pau MG, Klap J, Santra S, Balachandran H, Letvin NL, Goudsmit J, Radošević K. Evaluation of a prime-boost vaccine schedule with distinct adenovirus vectors against malaria in rhesus monkeys. Vaccine 2009; 27:6226-33. [DOI: 10.1016/j.vaccine.2009.07.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/24/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
|
214
|
Plassmeyer ML, Reiter K, Shimp RL, Kotova S, Smith PD, Hurt DE, House B, Zou X, Zhang Y, Hickman M, Uchime O, Herrera R, Nguyen V, Glen J, Lebowitz J, Jin AJ, Miller LH, MacDonald NJ, Wu Y, Narum DL. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem 2009; 284:26951-63. [PMID: 19633296 PMCID: PMC2785382 DOI: 10.1074/jbc.m109.013706] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/17/2009] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (R(h) 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21-25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.
Collapse
Affiliation(s)
- Matthew L. Plassmeyer
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Karine Reiter
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Richard L. Shimp
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Svetlana Kotova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul D. Smith
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Darrell E. Hurt
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Brent House
- United States Navy, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Xiaoyan Zou
- United States Navy, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Yanling Zhang
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Merrit Hickman
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Onyinyechukwu Uchime
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Raul Herrera
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Vu Nguyen
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jacqueline Glen
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jacob Lebowitz
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Albert J. Jin
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Louis H. Miller
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nicholas J. MacDonald
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Yimin Wu
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - David L. Narum
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
215
|
|
216
|
Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJF, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Rénia L, van der Ven A, Hermsen CC, Sauerwein R. Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 2009; 361:468-77. [PMID: 19641203 DOI: 10.1056/nejmoa0805832] [Citation(s) in RCA: 469] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. METHODS We exposed 15 healthy volunteers--with 10 assigned to a vaccine group and 5 assigned to a control group--to bites of mosquitoes once a month for 3 months while they were receiving a prophylactic regimen of chloroquine. The vaccine group was exposed to mosquitoes that were infected with Plasmodium falciparum, and the control group was exposed to mosquitoes that were not infected with the malaria parasite. One month after the discontinuation of chloroquine, protection was assessed by homologous challenge with five mosquitoes infected with P. falciparum. We assessed humoral and cellular responses before vaccination and before the challenge to investigate correlates of protection. RESULTS All 10 subjects in the vaccine group were protected against a malaria challenge with the infected mosquitoes. In contrast, patent parasitemia (i.e., parasites found in the blood on microscopical examination) developed in all five control subjects. Adverse events were mainly reported by vaccinees after the first immunization and by control subjects after the challenge; no serious adverse events occurred. In this model, we identified the induction of parasite-specific pluripotent effector memory T cells producing interferon-gamma, tumor necrosis factor alpha, and interleukin-2 as a promising immunologic marker of protection. CONCLUSIONS Protection against a homologous malaria challenge can be induced by the inoculation of intact sporozoites. (ClinicalTrials.gov number, NCT00442377.)
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci U S A 2009; 106:13004-9. [PMID: 19625622 DOI: 10.1073/pnas.0906387106] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Falciparum malaria is initiated when Anopheles mosquitoes transmit the Plasmodium sporozoite stage during a blood meal. Irradiated sporozoites confer sterile protection against subsequent malaria infection in animal models and humans. This level of protection is unmatched by current recombinant malaria vaccines. However, the live-attenuated vaccine approach faces formidable obstacles, including development of accurate, reproducible attenuation techniques. We tested whether Plasmodium falciparum could be attenuated at the early liver stage by genetic engineering. The P. falciparum genetically attenuated parasites (GAPs) harbor individual deletions or simultaneous deletions of the sporozoite-expressed genes P52 and P36. Gene deletions were done by double-cross-over recombination to avoid genetic reversion of the knockout parasites. The gene deletions did not affect parasite replication throughout the erythrocytic cycle, gametocyte production, mosquito infections, and sporozoite production rates. However, the deletions caused parasite developmental arrest during hepatocyte infection. The double-gene deletion line exhibited a more severe intrahepatocytic growth defect compared with the single-gene deletion lines, and it did not persist. This defect was assessed in an in vitro liver-stage growth assay and in a chimeric mouse model harboring human hepatocytes. The strong phenotype of the double knockout GAP justifies its human testing as a whole-organism vaccine candidate using the established sporozoite challenge model. GAPs might provide a safe and reproducible platform to develop an efficacious whole-cell malaria vaccine that prevents infection at the preerythrocytic stage.
Collapse
|
218
|
Kun JF, de Carvalho EG. Novel therapeutic targets in Plasmodium falciparum: aquaglyceroporins. Expert Opin Ther Targets 2009; 13:385-94. [PMID: 19335062 DOI: 10.1517/14728220902817839] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Malaria is caused by the intracellular parasite Plasmodium falciparum. The constant need for novel malaria therapies is due to the development of resistance against existing drugs. OBJECTIVE To summarise attempts to investigate parasitic aquaporins as drug targets in malaria. METHODS Starting with a summary of the history of malaria we present aquaporin structure and function relationships. Potential interactions of inhibitors with plasmodial AQP (PfAQP) are discussed. PfAQP blockage is examined in the light of recent work on knock-out parasites. Since PfAQP is able to transport other small solutes the parasites are sensitive to other compounds which are harmless to the human host. RESULTS/CONCLUSIONS Total blockage of PfAQP may not lead to the death of the parasite but application of PfAQP as a vehicle for toxic substances may be a further pathway for research.
Collapse
Affiliation(s)
- Jürgen F Kun
- Department of Parasitology, Institute for Tropical Medicine, Tübingen, Germany.
| | | |
Collapse
|
219
|
Woodberry T, Pinzon-Charry A, Piera KA, Panpisutchai Y, Engwerda CR, Doolan DL, Salwati E, Kenangalem E, Tjitra E, Price RN, Good MF, Anstey NM. Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) in acute malaria. Malar J 2009; 8:122. [PMID: 19500406 PMCID: PMC2700129 DOI: 10.1186/1475-2875-8-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/07/2009] [Indexed: 11/23/2022] Open
Abstract
Background The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans. Methods PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ ELISPOT assay and ELISA. Results HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80% of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent 28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even in individuals exposed to malaria for at least two years. Conclusion The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT epitopes, the specificity of responses for Plasmodia and associations with protection are required. Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent IgG responses distinguish HGXPRT from other malaria antigens.
Collapse
Affiliation(s)
- Tonia Woodberry
- International Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Radosević K, Rodriguez A, Lemckert A, Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 2009; 8:577-92. [PMID: 19397415 DOI: 10.1586/erv.09.14] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.
Collapse
Affiliation(s)
- Katarina Radosević
- Immunology and Proof of Concept, Innovation & Discovery Lab, Crucell Holland BV, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
221
|
Overstreet MG, Cockburn IA, Chen YC, Zavala F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an 'unnatural' immune response. Immunol Rev 2009; 225:272-83. [PMID: 18837788 DOI: 10.1111/j.1600-065x.2008.00671.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Immunization with high doses of irradiated sporozoites delivered by the bites of infected mosquitoes has been shown to induce protective responses against malaria, mediated in part by CD8(+) T cells. In contrast, natural transmission involving low exposure to live sporozoite antigen fails to elicit strong immunity. In this review, we examine how irradiated sporozoite immunization breaks the natural host-parasite interaction and induces protective CD8(+) T cells. Upon biting, the malaria-infected mosquitoes deposit parasites in the skin, many of which eventually exit to the bloodstream and infect hepatocytes. However, certain antigens, including the circumsporozoite (CS) protein, remain in the skin and are presented in the draining lymph node. These antigens prime specific CD8(+) T cells, which migrate to the liver where they eliminate parasitized hepatocytes. We discuss the relevance of the different tissue compartments involved in the induction and effector phases of this response, as well as the cellular requirements for priming and memory development of CD8(+) T cells, which include a complete dependence on dendritic cells and a near absolute need for CD4(+) T-cell help. Finally, we discuss the impact of the immunodominant CS protein on this protection and the implications of these findings for vaccine design.
Collapse
Affiliation(s)
- Michael Glen Overstreet
- Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
222
|
|
223
|
Abstract
Comparison of the proteomes of malaria sporozoites at different stages and mutation of selected genes reveals proteins necessary for infection of the vertebrate host. The malaria parasite sporozoite proteome changes during maturation, revealing proteins specifically expressed in the stage that infects the human host.
Collapse
Affiliation(s)
- Marissa Vignali
- Malaria Program, Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
224
|
Gonzalez-Aseguinolaza G. Malaria vaccine: the latest news from RTS,S/AS01E vaccine. Expert Rev Vaccines 2009; 8:285-288. [DOI: 10.1586/14760584.8.3.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
225
|
Kumar KA, Baxter P, Tarun AS, Kappe SHI, Nussenzweig V. Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. PLoS One 2009; 4:e4480. [PMID: 19214236 PMCID: PMC2637429 DOI: 10.1371/journal.pone.0004480] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/10/2008] [Indexed: 11/18/2022] Open
Abstract
Immunization with radiation attenuated Plasmodium sporozoites (RAS) elicits sterile protective immunity against sporozoite challenge in murine models and in humans. Similarly to RAS, the genetically attenuated sporozoites (GAPs) named uis3(-), uis4(-) and P36p(-) have arrested growth during the liver stage development, and generate a powerful protective immune response in mice. We compared the protective mechanisms in P. yoelii RAS, uis3(-) and uis4(-) in BALB/c mice. In RAS and GAPs, sterile immunity is only achieved after one or more booster injections. There were no differences in the immune responses to the circumsporozoite protein (CSP) generated by RAS and GAPs. To evaluate the role of non-CSP T-cell antigens we immunized antibody deficient, CSP-transgenic BALB/c mice, that are T cell tolerant to CSP, with P. yoelii RAS or with uis3(-) or uis4(-) GAPs, and challenged them with wild type sporozoites. In every instance the parasite liver stage burden was approximately 3 logs higher in antibody deficient CSP transgenic mice as compared to antibody deficient mice alone. We conclude that CSP is a powerful protective antigen in both RAS and GAPs viz., uis3(-) and uis4(-) and that the protective mechanisms are similar independently of the method of sporozoite attenuation.
Collapse
Affiliation(s)
- Kota Arun Kumar
- Department of Pathology, Micheal Hidelberg Division of Immunology, New York University School of Medicine, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
226
|
Abstract
Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.
Collapse
Affiliation(s)
- Denise L Doolan
- Queensland Institute of Medical Research, The Bancroft Centre, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|
227
|
Chattopadhyay R, Conteh S, Li M, James ER, Epstein JE, Hoffman SL. The Effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine. Vaccine 2008; 27:3675-80. [PMID: 19071177 DOI: 10.1016/j.vaccine.2008.11.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/05/2008] [Accepted: 11/17/2008] [Indexed: 11/25/2022]
Abstract
We are developing a radiation attenuated Plasmodium falciparum sporozoite (PfSPZ) malaria vaccine. An important step was to determine the minimum dose of irradiation required to adequately attenuate each sporozoite. This was studied in the Plasmodium yoelii rodent model system. Exposure to 100 Gy completely attenuated P. yoelii sporozoites (PySPZ). Next we demonstrated that immunization of mice intravenously with 3 doses of 750 PySPZ that had received 200 Gy, double the radiation dose required for attenuation, resulted in 100% protection. These results support the contention that a radiation attenuated sporozoite vaccine for malaria will be safe and effective at a range of radiation doses.
Collapse
Affiliation(s)
- Rana Chattopadhyay
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD 20850, United States
| | | | | | | | | | | |
Collapse
|
228
|
Vanderberg JP. Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond. Vaccine 2008; 27:2-9. [PMID: 18973784 DOI: 10.1016/j.vaccine.2008.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
Abstract
Advances towards protective vaccines against malaria were made feasible by the development of a rodent model of mammalian malaria that allowed production of all stages of the malaria parasite for study. Investigations with sporozoites (the stage transmitted by mosquitoes in their saliva) demonstrated that immunization with radiation-attenuated sporozoites could produce a solid, sterile immunity, first shown in studies with mice and later with human volunteers. Protective immune mechanisms involve anti-sporozoite antibodies that immobilize sporozoites injected into the skin by mosquitoes, followed by CD4+ and CD8+ T-cells acting against liver stage parasites produced by sporozoites that have escaped antibody-based immunity and invaded hepatocytes. Two alternative approaches now being used in human trials are immunization with intact, attenuated sporozoites vs. immunization with "sub-unit" vaccines based on immunogenic components of sporozoites or liver stage parasites. In addition to immunization against these pre-erythrocytic stages, encouraging progress is being made on immunization against blood stage parasites and on immunization for production of transmission-blocking antibodies. There is reason to be optimistic that one or more of the approaches will work on a large scale, and that a multi-stage vaccine may be able to combine several of these approaches in a sequential immunological assault against the malaria parasite as it progresses through its stages.
Collapse
Affiliation(s)
- Jerome P Vanderberg
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
229
|
Vaughan AM, Aly ASI, Kappe SHI. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host Microbe 2008; 4:209-18. [PMID: 18779047 DOI: 10.1016/j.chom.2008.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/20/2008] [Indexed: 12/24/2022]
Abstract
In malaria, the red blood cell-infectious form of the Plasmodium parasite causes illness and the possible death of infected hosts. The initial infection in the liver caused by the mosquito-borne sporozoite parasite stage, however, causes little pathology and no symptoms. Nevertheless, pre-erythrocytic parasite stages are attracting passionate research efforts not least because they are the most promising targets for malaria vaccine development. Here, we review how the infectious sporozoite makes its way to the liver and subsequently develops within hepatocytes. We discuss the factors, both parasite and host, involved in the interactions that occur during this "silent" phase of infection.
Collapse
|
230
|
Abstract
The demonstration of efficacy of two candidate malaria vaccines in children living in malaria-endemic areas, namely RTS,S from the circumsporozoite protein that reduced infection and clinical malaria in Mozambique, and an asexual blood-stage vaccine combining MSP1/MSP2/RESA that reduced parasite density in Papua New Guinea, allows one to believe that a malaria vaccine will be available for the fight against malaria in the next decade. Even if long-lasting impregnated bednets and indoor residual spraying have proven to be effective in reducing malaria transmission, these interventions may not be sufficient in the long-run since they rely on too few compounds and are, thus, vulnerable to the emergence of resistance. New tools, such as malaria vaccines, may, therefore, provide an added value to achieve the goal of local elimination and subsequent eradication of malaria. A promising candidate for that purpose would be a highly efficacious multicomponent vaccine that includes at least a sexual-stage antigen, the appropriate initial setting would be an area with low endemicity and limited population exchange, and the most suitable mode of delivery would be mass vaccination. For nonimmune populations, such as travelers visiting malaria-endemic areas, the usefulness of the first generation of malaria vaccine(s) will be limited, since the level of protection that is foreseen is unlikely to achieve that of malaria chemoprophylaxis. Only long-term travelers, expatriates and soldiers might realistically benefit from a pre-erythrocytic and/or blood-stage vaccine with an intermediate level of efficacy.
Collapse
|
231
|
Abstract
Advances in our understanding of the molecular and cell biology of the malaria parasite have led to new vaccine development efforts resulting in a pipeline of over 40 candidates undergoing clinical phase I-III trials. Vaccine-induced CD4+ and CD8+ T cells specific for pre-erythrocytic stage antigens have been found to express cytolytic and multi-cytokine effector functions that support a key role for these T cells within the hepatic environment. However, little is known of the cellular interactions that occur during the effector phase in which the intracellular hepatic stage of the parasite is targeted and destroyed. This review focuses on cell biological aspects of the interaction between malaria-specific effector cells and the various antigen-presenting cells that are known to exist within the liver, including hepatocytes, dendritic cells, Kupffer cells, stellate cells and sinusoidal endothelia. Considering the unique immune properties of the liver, it is conceivable that these different hepatic antigen-presenting cells fulfil distinct but complementary roles during the effector phase against Plasmodium liver stages.
Collapse
Affiliation(s)
- Ute Frevert
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25 St, New York, NY 10010, USA.
| | | |
Collapse
|
232
|
Ravi G, Ella K, Lakshmi Narasu M. Development of pilot scale production process and characterization of a recombinant multiepitope malarial vaccine candidate FALVAC-1A expressed in Escherichia coli. Protein Expr Purif 2008; 61:57-64. [PMID: 18619853 DOI: 10.1016/j.pep.2008.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 11/28/2022]
Abstract
Among the four human malarial species, Plasmodium falciparum causes most of the mortality associated with malaria. Several approaches are being pursued to develop a suitable malaria vaccine since it may be the most effective weapon to fight against malaria. A highly immunogenic, synthetic protein consisting of 21 epitopes from pre-erythrocytic and blood stages of P. falciparum (FALVAC-1A) was constructed and expressed in Escherichia coli. This vaccine candidate was highly immunogenic and induced protective antibodies in rabbits when produced through lab-scale processes in milligram quantities. In order to take this vaccine candidate for further clinical trial, we optimized the process for industrial scale production and purification. Here we describe various methods used in pilot scale production and characterization of FALVAC-1A. A fed-batch cultivation process in a bioreactor at 10-L scale was optimized to express the protein in high yields as inclusion bodies in E. coli cells with the recombinant plasmids. Methods to solubilize, capture and purify the target protein from the inclusion bodies were optimized and the resultant protein was >95% pure based on SDS-PAGE and RP-HPLC. This protein was then refolded and nativity was confirmed by Far-UV CD spectroscopy. Final purified protein was characterized to estimate yield, purity, mass and confirmed to be free of host cell proteins, nucleic acids and bacterial endotoxins. This study confirms that industrial scale clinical grade FALVAC-1A can be produced in a cost-effective manner for clinical trials.
Collapse
Affiliation(s)
- G Ravi
- Bharat Biotech International Limited, Genome Valley, Shameerpet Mandal, Turkapally, R.R. District, Hyderabad 500078, Andhra Pradesh, India.
| | | | | |
Collapse
|
233
|
Tyagi RK, Sharma PK, Vyas SP, Mehta A. Various carrier system(s)- mediated genetic vaccination strategies against malaria. Expert Rev Vaccines 2008; 7:499-520. [PMID: 18444895 DOI: 10.1586/14760584.7.4.499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multiantigen approach to develop an effective vaccine against complex pathogens, such as Plasmodium spp., that cause severe malaria. The capacity of multisubunit DNA vaccines encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and IFN-gamma responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be multi-immune (i.e., capable of eliciting more than one type of immune response, including cell-mediated and humoral). In the case of malaria parasites, a cytotoxic T-lymphocyte response is categorically needed against the intracellular hepatocyte stage while a humoral response, with antibodies targeted against antigens from all stages of the life cycle, is also needed. Therefore, the key to success for any DNA-based therapy is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of nonviral DNA-mediated gene-transfer techniques, such as liposomes, virosomes, microspheres and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. In addition, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells. Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. This review comprises various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccines.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Biomedical Parasitology Unit, Pasteur Institute, 25-28 Rue Du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
234
|
Thompson J, Millington OR, Garside P, Brewer JM. What can transgenic parasites tell us about the development of Plasmodium-specific immune responses? Parasite Immunol 2008; 30:223-33. [PMID: 18324925 DOI: 10.1111/j.1365-3024.2007.01011.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria infects 500 million people and kills an estimated 2.7 million annually, representing one of the most significant diseases in the world. However, efforts to develop effective vaccines have met with limited success. One reason is our lack of basic knowledge of how and where the immune system responds to parasite antigens. This is important as the early events during induction of an immune response influence the acquisition of effector function and development of memory responses. Our knowledge of the interactions of Plasmodia with the host immune system has largely been derived through in vitro study. This is a significant issue as the component parts of the immune system do not work in isolation and their interactions occur in distinct and specialized micro- and macro-anatomical locations that can only be assessed in the physiological context, in vivo. In this context, the availability of transgenic malaria parasites over the last 10 years has greatly enhanced our ability to understand and evaluate factors involved in host-parasite interactions in vivo. In this article, we review the current status of this area and speculate on what parasite transgenesis approaches will tell us about the development of Plasmodium-specific immune responses in the future.
Collapse
Affiliation(s)
- J Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | | | | |
Collapse
|
235
|
|
236
|
Pinzon-Charry A, Good MF. Malaria vaccines: the case for a whole-organism approach. Expert Opin Biol Ther 2008; 8:441-8. [DOI: 10.1517/14712598.8.4.441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
237
|
Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol 2008; 82:3822-33. [PMID: 18256155 DOI: 10.1128/jvi.02568-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 5 (AdH5) vector vaccines elicit strong immune responses to the encoded antigen and have been used in various disease models. We designed AdH5 vectors expressing antigen under the control of a human cytomegalovirus (HCMV) immediate-early promoter containing its intron A sequence. The transcriptional levels of antigen and immune responses to antigen for vectors with the HCMV promoter with the intron A sequence (LP) were greater than those for AdH5 vectors using the HCMV promoter sequence without intron A (SP). We compared an E1E3-deleted AdH5 adenoviral vector, which affords more space for insertion of foreign sequences, and showed it to be as immunogenic as an E1-deleted AdH5 vector. Neutralizing antibodies to AdH5 limit the efficacy of vaccines based on the AdH5 serotype, and simian adenoviral vectors offer an attractive option to overcome this problem. We constructed E1E3-deleted human and simian adenoviral vectors encoding the pre-erythrocytic-stage malarial antigen Plasmodium berghei circumsporozoite protein. We compared the immunogenicity and efficacy of AdC6, a recombinant simian adenovirus serotype 6 vector, in a murine malaria model to those of AdH5 and the poxviral vectors MVA and FP9. AdC6 induced sterile protection from a single dose in 90% of mice, in contrast to AdH5 (25%) and poxviral vectors MVA and FP9 (0%). Adenoviral vectors maintained potent CD8(+) T-cell responses for a longer period after immunization than did poxviral vectors and mainly induced an effector memory phenotype of cells. Significantly, AdC6 was able to maintain protection in the presence of preexisting immunity to AdH5.
Collapse
|
238
|
Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen. Vaccine 2008; 26:1072-82. [DOI: 10.1016/j.vaccine.2007.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/07/2007] [Accepted: 12/16/2007] [Indexed: 11/20/2022]
|
239
|
Sedegah M, Weiss WW, Hoffman SL. Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites. Parasite Immunol 2008; 29:559-65. [PMID: 17944745 PMCID: PMC2955969 DOI: 10.1111/j.1365-3024.2007.00976.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An attenuatedPlasmodium falciparum sporozoite (PfSPZ) vaccine is under development, in part, based on studies in mice withP. berghei. We usedP. berghei andP. yoelii to study vaccine-induced protection against challenge with a species of parasite different from the immunizing parasite in BALB/c mice. One-hundred percent of mice were protected against homologous challenge. Seventy-nine percent immunized with attenuatedP. berghei sporozoite (PbSPZ)(six experiments) were protected against challenge withP. yoelii sporozoite (PySPZ), and 63% immunized with attenuatedPySPZ(three experiments) were protected against challenge withPbSPZ. Antibodies in sera of immunized mice only recognized homologous sporozoites and could not have mediated protection against heterologous challenge. Immunization with attenuatedPySPZ orPbSPZ induced CD8+ T cell-dependent protection against heterologous challenge. Immunization with attenuatedPySPZ induced CD8+ T cell-dependent protection against homologous challenge. However, homologous protection induced by attenuatedPbSPZ was not dependent on CD8+ or CD4+ T cells, and depletion of both populations only reduced protection by 36%. Immunization of C57BL/10 mice withPbSPZ induced CD8+ T cell-dependent protection againstP. berghei, but no protection againstP. yoelii. The cross-protection data in BALB/c mice support testing a human vaccine based on attenuatedPfSPZ for its efficacy againstP. vivax.
Collapse
Affiliation(s)
- M Sedegah
- Malaria Program, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | |
Collapse
|
240
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
241
|
Titrating Theileria parva: single stocks against combination of stocks. Exp Parasitol 2007; 118:522-30. [PMID: 18155195 DOI: 10.1016/j.exppara.2007.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 11/04/2007] [Accepted: 11/06/2007] [Indexed: 11/22/2022]
Abstract
Theileria parva is the causative agent of East Coast fever (ECF), an important cattle disease in East and Central Africa. One of the methods for control of ECF is 'infection and treatment', a procedure in which an animal is infected with the live parasite and at the same time treated with a long-acting oxytetracycline formulation, restraining the infection and allowing a protective cellular immune response to develop. Optimal immunizing doses were estimated using models of trichotomous response: dysimmunization (death or severe reaction during immunization), immunization failure (death or severe reaction during lethal challenge) and successful immunization (neither dysimmunization nor immunization failure). In this paper we present methods of interpreting immunization trials and apply these methods to previously unpublished data from two such trials: one with a mixture of three T. parva stocks and one with a single T. parva stock. We explain why titration trials conducted with a cocktail of antigens could predict a suboptimal immunization dose. Indeed it is possible for a combination of three individually efficient stocks to result in a mixture with which optimal immunization response might be difficult to achieve, because of averaging effects. The corresponding interpretation provides insights into why standard immunization trials for T. parva have not yielded the results that might be expected of them. The results of this work may also have implications for the use of antigen cocktails in cancer, HIV and malaria vaccine trials.
Collapse
|
242
|
Abstract
PURPOSE OF REVIEW This review examines the potential of current preerythrocytic stage malaria vaccine approaches to reduce the global burden of malaria. RECENT FINDINGS Radiation-attenuated parasite vaccines induce lasting sterile protection in all models tested. Inherent safety concerns in conjunction with challenges to produce and deliver a radiation-attenuated parasite vaccine have prevented its mass production and application. Recent advances in genetic engineering and initiatives in production process development of live attenuated malaria vaccines, however, will overcome roadblocks that currently prevent their large-scale application. Development of preerythrocytic subunit vaccines has focused on the circumsporozoite protein and the thrombospondin related anonymous protein, yet the most advanced circumsporozoite protein-based vaccine confers limited protection against infection in malaria endemic areas. Work in rodent malaria models demonstrated that circumsporozoite protein-based immunity is not required for to achieve sterile protection. SUMMARY We conclude that preerythrocytic malaria vaccine efforts should focus on two major areas: development of a safe live attenuated sporozoite vaccine with its accelerated testing in malaria endemic areas and identification of as yet unknown antigens that reproduce sterilizing immune responses induced by vaccination with whole parasites. The sporozoite challenge model provides a unique opportunity to rapidly test preerythrocytic vaccine candidates.
Collapse
|
243
|
Okitsu SL, Silvie O, Westerfeld N, Curcic M, Kammer AR, Mueller MS, Sauerwein RW, Robinson JA, Genton B, Mazier D, Zurbriggen R, Pluschke G. A virosomal malaria peptide vaccine elicits a long-lasting sporozoite-inhibitory antibody response in a phase 1a clinical trial. PLoS One 2007; 2:e1278. [PMID: 18060072 PMCID: PMC2093993 DOI: 10.1371/journal.pone.0001278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/06/2007] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Peptides delivered on the surface of influenza virosomes have been shown to induce solid humoral immune responses in experimental animals. High titers of peptide-specific antibodies were also induced in a phase 1a clinical trial in volunteers immunized with virosomal formulations of two peptides derived from the circumsporozoite protein (CSP) and the apical membrane antigen 1 (AMA-1) of Plasmodium falciparum. The main objective of this study was to perform a detailed immunological and functional analysis of the CSP-specific antibodies elicited in this phase 1a trial. METHODOLOGY/PRINCIPAL FINDINGS 46 healthy malaria-naïve adults were immunized with virosomal formulations of two peptide-phosphatidylethanolamine conjugates, one derived from the NANP repeat region of P. falciparum CSP (designated UK-39) the other from P. falciparum AMA-1 (designated AMA49-C1). The two antigens were delivered in two different concentrations, alone and in combination. One group was immunized with empty virosomes as control. In this report we show a detailed analysis of the antibody response against UK-39. Three vaccinations with a 10 microg dose of UK-39 induced high titers of sporozoite-binding antibodies in all volunteers. This IgG response was affinity maturated and long-lived. Co-administration of UK-39 and AMA49-C1 loaded virosomes did not interfere with the immunogenicity of UK-39. Purified total IgG from UK-39 immunized volunteers inhibited sporozoite migration and invasion of hepatocytes in vitro. Sporozoite inhibition closely correlated with titers measured in immunogenicity assays. CONCLUSIONS Virosomal delivery of a short, conformationally constrained peptide derived from P. falciparum CSP induced a long-lived parasite-inhibitory antibody response in humans. Combination with a second virosomally-formulated peptide derived from P. falciparum AMA-1 did not interfere with the immunogenicity of either peptide, demonstrating the potential of influenza virosomes as a versatile, human-compatible antigen delivery platform for the development of multivalent subunit vaccines. TRIAL REGISTRATION ClinicalTrials.gov NCT00400101.
Collapse
Affiliation(s)
- Shinji L. Okitsu
- Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
| | - Olivier Silvie
- INSERM/UPMC UMR S U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Faculté de Médecine Pierre et Marie Curie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | | | - Marija Curcic
- Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
| | | | | | - Robert W. Sauerwein
- Department of Medical Microbiology, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | - John A. Robinson
- Institute of Organic Chemistry, University of Zurich, Zurich, Switzerland
| | - Blaise Genton
- Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
| | - Dominique Mazier
- INSERM/UPMC UMR S U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Faculté de Médecine Pierre et Marie Curie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | | | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical Institute, Basel, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
244
|
Preclinical evaluation of the safety and immunogenicity of a vaccine consisting of Plasmodium falciparum liver-stage antigen 1 with adjuvant AS01B administered alone or concurrently with the RTS,S/AS01B vaccine in rhesus primates. Infect Immun 2007; 76:229-38. [PMID: 17954725 DOI: 10.1128/iai.00977-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence suggest that targeting pre-erythrocytic-stage parasites for malaria vaccine development can provide sterile immunity. The objectives of this study were (i) to evaluate preclinically the safety and immunogenicity of a new recombinant pre-erythrocytic-stage antigen, liver-stage antigen 1 (LSA1), in nonhuman primates; and (ii) to investigate the potential for immune interference between LSA1 and the leading malaria vaccine candidate, RTS,S, by comparing the immune responses after single-antigen vaccination to responses after simultaneous administration of both antigens at separate sites. Using a rhesus monkey model, we found that LSA1 formulated with the GlaxoSmithKline proprietary adjuvant system AS01B (LSA1/AS01B) was safe and immunogenic, inducing high titers of antigen-specific antibody and CD4+ T-cell responses, as monitored by the production of interleukin-2 and gamma interferon, using intracellular cytokine staining. RTS,S/AS01B vaccination was well tolerated and demonstrated robust antibody and moderate CD4+ T-cell responses to circumsporozoite protein (CSP) and HBsAg. Positive CD8+ T-cell responses to HBsAg were detected, whereas the responses to CSP and LSA1 were negligible. For both LSA1/AS01B and RTS,S/AS01B, no statistically significant differences were observed between individual and concurrent administration in the magnitude or duration of antibody and T-cell responses. Our results revealed that both pre-erythrocytic-stage antigens were safe and immunogenic, administered either separately or simultaneously to rhesus monkeys, and that no significant immune cross interference occurred with concurrent separate-site administration. The comparison of the profiles of immune responses induced by separate-site and single-site vaccinations with LSA1 and RTS,S warrants further investigation.
Collapse
|
245
|
Ocaña-Morgner C, Wong KA, Lega F, Dotor J, Borras-Cuesta F, Rodriguez A. Role of TGF-beta and PGE2 in T cell responses during Plasmodium yoelii infection. Eur J Immunol 2007; 37:1562-74. [PMID: 17474154 DOI: 10.1002/eji.200737068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During an acute blood-stage malaria infection, T cell responses to malaria and other bystander antigens are inhibited. Plasmodium infection induces strong cytokine responses that facilitate parasite clearance but may interfere with T cell functions, as some of the soluble immune mediators induced are also general inhibitors of T cell responses. Using a malaria mouse model, we have analyzed the cytokines produced by dendritic cells in response to P. yoelii infection that have potential T cell inhibitory activity. We found that during acute infection DC migrate to the spleen and secrete TGF-beta, prostaglandin E2 (PGE2) and IL-10. We have analyzed the role of these general T cell inhibitors in a particular T cell response of evident importance in malaria infections: the CD8+ T cells generated against the liver-stage of the disease. During blood-stage infection, inhibition of the activity of TGF-beta and PGE2 restores the CD8+ T cell responses generated by sporozoites, increasing protection against re-infection. Our findings suggest that the strong cytokine response induced by blood-stage P. yoelii infection affects host T cell responses, inhibiting protective CD8+ T cells against the liver-stage of the disease.
Collapse
Affiliation(s)
- Carlos Ocaña-Morgner
- New York University School of Medicine, Department of Medical Parasitology, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
246
|
Hoffman BU, Chattopadhyay R. Plasmodium falciparum: effect of radiation on levels of gene transcripts in sporozoites. Exp Parasitol 2007; 118:247-52. [PMID: 17935717 DOI: 10.1016/j.exppara.2007.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/13/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Humans immunized by the bites of irradiated Plasmodium falciparum (Pf) sporozoite-infected mosquitoes are protected against malaria. Radiation attenuates the sporozoites preventing them from fully developing and replicating in hepatocytes, but the effects of radiation on gene expression in sporozoites are unknown. We used RT-PCR (35 cycles of PCR followed by densitometry) to assess the expression of ten genes in Pf sporozoites, and in sporozoites irradiated with 15,000cGy. Irradiation reduced expression substantially (>60%) of two DNA repair genes; moderately (30-60%) of PfUIS3, the Pf orthologue of PbUIS3, a gene up-regulated in Plasmodium berghei sporozoites and of a third DNA repair gene; and minimally (<30%) of the Pf18S ribosomal RNA, PfCSP, PfSSP2/TRAP, and PfCELTOS genes. Irradiation increased expression of PfSPATR minimally. PfLSA1 RNA was not detectable in sporozoites. These results establish that radiation of sporozoites affects gene expression levels and provide the foundation for studies to identify specific genes involved in attenuation and protective immunity.
Collapse
Affiliation(s)
- Benjamin U Hoffman
- Protein Potential LLC, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
247
|
Druilhe P, Barnwell JW. Pre-erythrocytic stage malaria vaccines: time for a change in path. Curr Opin Microbiol 2007; 10:371-8. [PMID: 17709281 DOI: 10.1016/j.mib.2007.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 07/25/2007] [Indexed: 11/17/2022]
Abstract
Vaccines against the pre-erythrocytic stages of malaria hold the greatest promise as an effective intervention tool against malaria, as shown by immunization with radiation-attenuated sporozoites over four decades ago. To date, however, the development of subunit vaccines, while generating high expectations and investment, has not lived up at all to the promise. This path has been characterized by insufficient research into both identification of key defense mechanisms in humans and the discovery of better antigens, focusing rather on a technological race of how to present mainly a single antigen. The lack of success has also led, perhaps from desperation, to a revival of the live attenuated sporozoite approach, handicapped, however, by major bottlenecks in production, safety, and regulatory issues. It should now be clear that the field can no longer continue to succeed in mice and fail in the clinic. We advocate here in favor of a third option, relying on an understanding of the basis of attenuated sporozoite immunity in humans, to provide leads to the discovery of critical immunogens and the use of models with validated relevance to the human situation in order to rationalize and renew the promise of pre-erythrocytic subunit vaccines.
Collapse
Affiliation(s)
- Pierre Druilhe
- Biomedical Parasitology Unit, Department of Parasitology & Mycology, Pasteur Institute, Paris, France.
| | | |
Collapse
|
248
|
Westerfeld N, Pluschke G, Zurbriggen R. Optimized Malaria-antigens delivered by immunostimulating reconstituted influenza virosomes. Wien Klin Wochenschr 2007; 118:50-7. [PMID: 17131241 DOI: 10.1007/s00508-006-0684-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malaria remains a serious cause of morbidity and mortality in millions of individuals each year. The development of widespread resistance of the parasite to drugs as well as resistance of the transmitting mosquito-vector to insecticides in combination with the poor economic situation of many malaria-endemic countries make the development of an effective and inexpensive treatment and prevention a main focus of research. Vaccines remain to be one of the most cost effective and feasible means of disease control and have remarkable success in the control of many infectious disease: eradication of small pox, virtual eradication of polio and the reduction of measles and diphtheria. Next generation vaccines should focus on specific antigens rather than whole inactivated or attenuated pathogens, since the requirements by regulatory authorities concerning safety are becoming more stringent over time. But sub-unit and in particular peptide-based vaccines are poorly immunogenic themselves, and alum represents only a sub-optimal adjuvant for recombinant proteins and synthetic peptides. This emphasizes the need for suitable carrier- and adjuvant systems promoting protective immune responses by delivering protein and peptide antigens in an appropriate conformation. Here, we review the development of a new approach combining peptide-based malaria vaccine candidate antigens with an immune stimulatory carrier-system based on influenza virosomes focusing on the induction of protective antibodies.
Collapse
|
249
|
Okitsu SL, Kienzl U, Moehle K, Silvie O, Peduzzi E, Mueller MS, Sauerwein RW, Matile H, Zurbriggen R, Mazier D, Robinson JA, Pluschke G. Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation. ACTA ACUST UNITED AC 2007; 14:577-87. [PMID: 17524988 DOI: 10.1016/j.chembiol.2007.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/13/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a leading candidate antigen for inclusion in a malaria subunit vaccine. We describe here the design of a conformationally constrained synthetic peptide, designated UK-39, which has structural and antigenic similarity to the NPNA-repeat region of native CSP. NMR studies on the antigen support the presence of helical turn-like structures within consecutive NPNA motifs in aqueous solution. Intramuscular delivery of UK-39 to mice and rabbits on the surface of reconstituted influenza virosomes elicited high titers of sporozoite crossreactive antibodies. Influenza virus proteins were crucially important for the immunostimulatory activity of the virosome-based antigen delivery system, as a liposomal formulation of UK-39 was not immunogenic. IgG antibodies elicited by UK-39 inhibited invasion of hepatocytes by P. falciparum sporozoites, but not by antigenically distinct P. yoelii sporozoites. Our approach to optimized virosome-formulated synthetic peptide vaccines should be generally applicable for other infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Shinji L Okitsu
- Molecular Immunology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Mueller AK, Deckert M, Heiss K, Goetz K, Matuschewski K, Schlüter D. Genetically attenuated Plasmodium berghei liver stages persist and elicit sterile protection primarily via CD8 T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:107-15. [PMID: 17591958 PMCID: PMC1941586 DOI: 10.2353/ajpath.2007.060792] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Live-attenuated Plasmodium liver stages remain the only experimental model that confers complete sterile protection against malaria. Irradiation-attenuated Plasmodium parasites mediate protection primarily by CD8 T cells. In contrast, it is unknown how genetically attenuated liver stage parasites provide protection. Here, we show that immunization with uis3(-) sporozoites does not cause breakthrough infection in T and B-cell-deficient rag1(-/-) and IFN-gamma(-/-) mice. However, protection was abolished in these animals, suggesting a crucial role for adaptive immune responses and interferon-gamma. Although uis3(-) immunization induced Plasmodium-specific antibodies, B- cell-deficient mice immunized with uis3(-) sporozoites were completely protected against wild-type sporozoite challenge infection. T-cell depletion experiments before parasite challenge showed that protection is primarily mediated by CD8 T cells. In good agreement, adoptive transfer of total spleen cells and enriched CD8 T cells from immunized animals conferred sterile protection against malaria transmission to recipient mice, whereas adoptive transfer of CD4 T cells was less protective. Importantly, primaquine treatment completely abolished the uis3(-)-mediated protection, indicating that persistence of uis3(-)-attenuated liver stages is crucial for their protective action. These findings establish the basic immune mechanisms underlying protection induced by genetically attenuated Plasmodium parasites and substantiate their use as vaccines against malaria.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Department of Parasitology, Heidelberg University School of Medicine, Im Neuenheimer Feld 324, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|