201
|
Futai E, Osawa S, Cai T, Fujisawa T, Ishiura S, Tomita T. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities. J Biol Chem 2016; 291:435-46. [PMID: 26559975 PMCID: PMC4697183 DOI: 10.1074/jbc.m114.629287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 11/07/2015] [Indexed: 12/27/2022] Open
Abstract
γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.
Collapse
Affiliation(s)
- Eugene Futai
- From the Department of Molecular and Cell Biology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 981-8555, the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902,
| | - Satoko Osawa
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and
| | - Tetsuo Cai
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Fujisawa
- From the Department of Molecular and Cell Biology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 981-8555
| | - Shoichi Ishiura
- the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902
| | - Taisuke Tomita
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
202
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
203
|
Drosophila melanogaster as a Model for Studies on the Early Stages of Alzheimer's Disease. Methods Mol Biol 2016; 1303:227-39. [PMID: 26235070 DOI: 10.1007/978-1-4939-2627-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit flies (Drosophila melanogaster) have been widely used to study the cellular and molecular basis of human neurodegenerative disease. The biological similarities between the human and the fly have been explored successfully to further investigate the pathological basis of Alzheimer's disease (AD). Here, we discuss transgenic Drosophila models systems and the methodologies that have been employed in the study of AD.
Collapse
|
204
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
205
|
Barrett MA, Alsop RJ, Hauß T, Rheinstädter MC. The Position of Aβ22-40 and Aβ1-42 in Anionic Lipid Membranes Containing Cholesterol. MEMBRANES 2015; 5:824-43. [PMID: 26633529 PMCID: PMC4704014 DOI: 10.3390/membranes5040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Amyloid-β peptides interact with cell membranes in the human brain and are associated with neurodegenerative diseases, such as Alzheimer's disease. An emerging explanation of the molecular mechanism, which results in neurodegeneration, places the cause of neurotoxicity of the amyloid- peptides on their potentially negative interaction with neuronal membranes. It is known that amyloid-β peptides interact with the membrane, modifying the membrane's structural and dynamic properties. We present a series of X-ray diffraction experiments on anionic model lipid membranes containing various amounts of cholesterol. These experiments provide experimental evidence for an interaction of both the full length amyloid-β1-42 peptide, and the peptide fragment amyloid-β22-40 with anionic bilayer containing cholesterol. The location of the amyloid-β peptides was determined from these experiments, with the full length peptide embedding into the membrane, and the peptide fragment occupying 2 positions-on the membrane surface and embedded into the membrane core.
Collapse
Affiliation(s)
- Matthew A Barrett
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany.
| | - Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| | - Thomas Hauß
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany.
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
206
|
Späni C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F, Gericke C, Nitsch RM, Kulic L. Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer's disease lacking functional B and T cells. Acta Neuropathol Commun 2015; 3:71. [PMID: 26558367 PMCID: PMC4642668 DOI: 10.1186/s40478-015-0251-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction In Alzheimer’s disease, accumulation and pathological aggregation of amyloid β-peptide is accompanied by the induction of complex immune responses, which have been attributed both beneficial and detrimental properties. Such responses implicate various cell types of the innate and adaptive arm of the immunesystem, both inside the central nervous system, and in the periphery. To investigate the role of the adaptive immune system in brain β-amyloidosis, PSAPP transgenic mice, an established mouse model of Alzheimer’s disease, were crossbred with the recombination activating gene-2 knockout (Rag2 ko) mice lacking functional B and T cells. In a second experimental paradigm, aged PSAPP mice were reconstituted with bone marrow cells from either Rag2 ko or wildtype control mice. Results Analyses from both experimental approaches revealed reduced β-amyloid pathology and decreased brain amyloid β-peptide levels in PSAPP mice lacking functional adaptive immune cells. The decrease in brain β-amyloid pathology was associated with enhanced microgliosis and increased phagocytosis of amyloid β-peptide aggregates. Conclusion The results of this study demonstrate an impact of the adaptive immunity on cerebral β-amyloid pathology in vivo and suggest an influence on microglia-mediated amyloid β-peptide clearance as a possible underlying mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0251-x) contains supplementary material, which is available to authorized users.
Collapse
|
207
|
Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci 2015; 16:26417-51. [PMID: 26556341 PMCID: PMC4661820 DOI: 10.3390/ijms161125961] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells.
Collapse
Affiliation(s)
- Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Lucia Machova Urdzikova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| |
Collapse
|
208
|
Modulation of BAG3 Expression and Proteasomal Activity by sAPPα Does Not Require Membrane-Tethered Holo-APP. Mol Neurobiol 2015; 53:5985-5994. [PMID: 26526841 DOI: 10.1007/s12035-015-9501-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Maintenance of intracellular proteostasis is essential for neuronal function, and emerging data support the view that disturbed proteostasis plays an important role in brain aging and the pathogenesis of age-related neurodegenerative disorders such as Alzheimer's disease (AD). sAPPalpha (sAPPα), the extracellularly secreted N-terminal alpha secretase cleavage product of the amyloid precursor protein (APP), has an established function in neuroprotection. Recently, we provided evidence that membrane-bound holo-APP functionally cooperates with sAPPα to mediate neuroprotection via activation of the Akt survival signaling pathway and sAPPα directly affects proteostasis. Here, we demonstrate that in addition to its anti-apoptotic function, sAPPα has effects on neuronal proteostasis under conditions of proteasomal stress. In particular, recombinant sAPPα significantly suppressed MG132-triggered expression of the co-chaperone BAG3 and aggresome formation, and it partially rescued proteasomal activity in a dose-dependent manner in SH-SY5Y neuroblastoma cells. In analogy, sAPPα was able to inhibit MG132-induced BAG3 expression in primary hippocampal neurons. Strikingly, these sAPPα-induced changes were unaltered in APP-depleted SH-SY5Y cells and APP-deficient neurons, demonstrating that holo-APP is not required for this particular function of sAPPα. Importantly, recombinant sAPPbeta (sAPPβ) failed to modulate BAG3 expression and proteostasis in APP-proficient wild-type (wt) cells, indicating that these biological effects are highly selective for sAPPα. In conclusion, we demonstrate that modulation of proteostasis is a distinct biological function of sAPPα and does not require surface-bound holo-APP. Our data shed new light on the physiological functions of APP and the interplay between APP processing and proteostasis during brain aging.
Collapse
|
209
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
210
|
Biundo F, Ishiwari K, Del Prete D, D'Adamio L. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory. Neurobiol Learn Mem 2015; 126:18-30. [PMID: 26528887 DOI: 10.1016/j.nlm.2015.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Mutations in Amyloid β Precursor Protein (APP) and in genes that regulate APP processing--such as PSEN1/2 and ITM2b/BRI2--cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16-17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16-17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Keita Ishiwari
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Dolores Del Prete
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Luciano D'Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States.
| |
Collapse
|
211
|
Herpes Simplex Virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-β protein accumulation. Sci Rep 2015; 5:15444. [PMID: 26487282 PMCID: PMC4614347 DOI: 10.1038/srep15444] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that recurrent Herpes Simplex Virus type 1 (HSV-1) infection spreading to the CNS is a risk factor for Alzheimer’s Disease (AD) but the underlying mechanisms have not been fully elucidated yet. Here we demonstrate that in cultured mouse cortical neurons HSV-1 induced Ca2+-dependent activation of glycogen synthase kinase (GSK)-3. This event was critical for the HSV-1-dependent phosphorylation of amyloid precursor protein (APP) at Thr668 and the following intraneuronal accumulation of amyloid-β protein (Aβ). HSV-1-infected neurons also exhibited: i) significantly reduced expression of the presynaptic proteins synapsin-1 and synaptophysin; ii) depressed synaptic transmission. These effects depended on GSK-3 activation and intraneuronal accumulation of Aβ. In fact, either the selective GSK-3 inhibitor, SB216763, or a specific antibody recognizing Aβ (4G8) significantly counteracted the effects induced by HSV-1 at the synaptic level. Moreover, in neurons derived from APP KO mice and infected with HSV-1 Aβ accumulation was not found and synaptic protein expression was only slightly reduced when compared to wild-type infected neurons. These data further support our contention that HSV-1 infections spreading to the CNS may contribute to AD phenotype.
Collapse
|
212
|
Ourdev D, Foroutanpay BV, Wang Y, Kar S. The Effect of Aβ₁₋₄₂ Oligomers on APP Processing and Aβ₁₋₄₀ Generation in Cultured U-373 Astrocytes. NEURODEGENER DIS 2015; 15:361-8. [PMID: 26606591 DOI: 10.1159/000438923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) peptides are a family of proteins that are considered to be a principal aspect of Alzheimer's disease (AD), the most common cause of senile dementia affecting elderly individuals. These peptides result from the proteolytic processing of amyloid precursor protein (APP) by sequential cleavage mediated via β- and x03B3;-secretases. Evidence suggests that an overproduction and/or a lack of degradation may increase brain Aβ levels which, in turn, contribute to neuronal loss and development of AD. OBJECTIVES In this study, we seek to determine what effect Aβ has on APP processing in cultured astrocytes. METHODS Using the human astrocytoma cell line U-373, we investigated the effects induced by oligomeric Aβ1-42 treatment on the cellular levels/expression of APP and its products, C-terminal fragments αCTF and βCTF, and Aβ1-40. In conjunction with these experiments, we examined the relative levels and activity of β- and x03B3;-secretases in Aβ-treated astrocytes. RESULTS We report here that Aβ1-42 treatment of astrocytes increased the expression of APP and its cleaved products including Aβ1-40 in a time-dependent manner. CONCLUSIONS These results suggest that activated astrocytes can contribute to the development of AD by enhancing levels and processing of APP leading to an increased production/secretion of Aβ-related peptides.
Collapse
Affiliation(s)
- Dimitar Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada
| | | | | | | |
Collapse
|
213
|
Ben-Gedalya T, Moll L, Bejerano-Sagie M, Frere S, Cabral WA, Friedmann-Morvinski D, Slutsky I, Burstyn-Cohen T, Marini JC, Cohen E. Alzheimer's disease-causing proline substitutions lead to presenilin 1 aggregation and malfunction. EMBO J 2015; 34:2820-39. [PMID: 26438723 DOI: 10.15252/embj.201592042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Do different neurodegenerative maladies emanate from the failure of a mutual protein folding mechanism? We have addressed this question by comparing mutational patterns that are linked to the manifestation of distinct neurodegenerative disorders and identified similar neurodegeneration-linked proline substitutions in the prion protein and in presenilin 1 that underlie the development of a prion disorder and of familial Alzheimer's disease (fAD), respectively. These substitutions were found to prevent the endoplasmic reticulum (ER)-resident chaperone, cyclophilin B, from assisting presenilin 1 to fold properly, leading to its aggregation, deposition in the ER, reduction of γ-secretase activity, and impaired mitochondrial distribution and function. Similarly, reduced quantities of the processed, active presenilin 1 were observed in brains of cyclophilin B knockout mice. These discoveries imply that reduced cyclophilin activity contributes to the development of distinct neurodegenerative disorders, propose a novel mechanism for the development of certain fAD cases, and support the emerging theme that this disorder can stem from aberrant presenilin 1 function. This study also points at ER chaperones as targets for the development of counter-neurodegeneration therapies.
Collapse
Affiliation(s)
- Tziona Ben-Gedalya
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), The Hebrew University Medical School, Jerusalem, Israel
| | - Lorna Moll
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), The Hebrew University Medical School, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), The Hebrew University Medical School, Jerusalem, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wayne A Cabral
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, MD, USA
| | | | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine Hebrew University - Hadassah, Jerusalem, Israel
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, MD, USA
| | - Ehud Cohen
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
214
|
Maulik M, Peake K, Chung J, Wang Y, Vance JE, Kar S. APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer's disease. Hum Mol Genet 2015; 24:7132-50. [PMID: 26433932 DOI: 10.1093/hmg/ddv413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) peptides originating from β-amyloid precursor protein (APP) are critical in Alzheimer's disease (AD). Cellular cholesterol levels/distribution can regulate production and clearance of Aβ peptides, albeit with contradictory outcomes. To better understand the relationship between cholesterol homeostasis and APP/Aβ metabolism, we have recently generated a bigenic ANPC mouse line overexpressing mutant human APP in the absence of Niemann-Pick type C-1 protein required for intracellular cholesterol transport. Using this unique bigenic ANPC mice and complementary stable N2a cells, we have examined the functional consequences of cellular cholesterol sequestration in the endosomal-lysosomal system, a major site of Aβ production, on APP/Aβ metabolism and its relation to neuronal viability. Levels of APP C-terminal fragments (α-CTF/β-CTF) and Aβ peptides, but not APP mRNA/protein or soluble APPα/APPβ, were increased in ANPC mouse brains and N2a-ANPC cells. These changes were accompanied by reduced clearance of peptides and an increased level/activity of γ-secretase, suggesting that accumulation of APP-CTFs is due to decreased turnover, whereas increased Aβ levels may result from a combination of increased production and decreased turnover. APP-CTFs and Aβ peptides were localized primarily in early-/late-endosomes and to some extent in lysosomes/autophagosomes. Cholesterol sequestration impaired endocytic-autophagic-lysosomal, but not proteasomal, clearance of APP-CTFs/Aβ peptides. Moreover, markers of oxidative stress were increased in vulnerable brain regions of ANPC mice and enhanced β-CTF/Aβ levels increased susceptibility of N2a-ANPC cells to H2O2-induced toxicity. Collectively, our results show that cellular cholesterol sequestration plays a key role in APP/Aβ metabolism and increasing neuronal vulnerability to oxidative stress in AD-related pathology.
Collapse
Affiliation(s)
- Mahua Maulik
- Centre for Prions and Protein Folding Diseases, Centre for Neuroscience, Department of Medicine, and
| | | | - JiYun Chung
- Centre for Prions and Protein Folding Diseases, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Yanlin Wang
- Centre for Prions and Protein Folding Diseases, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Satyabrata Kar
- Centre for Prions and Protein Folding Diseases, Centre for Neuroscience, Department of Medicine, and Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
215
|
Ishtikhar M, Chandel TI, Ahmad A, Ali MS, Al-lohadan HA, Atta AM, Khan RH. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin. PLoS One 2015; 10:e0139027. [PMID: 26418451 PMCID: PMC4587963 DOI: 10.1371/journal.pone.0139027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/07/2015] [Indexed: 01/02/2023] Open
Abstract
Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh – 202002, India
| | - Tajjali Ilm Chandel
- Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh – 202002, India
| | - Aamir Ahmad
- Karmanos Cancer Institute, Wayne State University, School of Medicine, 707 HWCRC 4100 John R. St., Detroit, MI 48201, United States of America
| | - Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University PO Box-2455, Riyadh–11541, Saudi Arabia
| | - Hamad A. Al-lohadan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University PO Box-2455, Riyadh–11541, Saudi Arabia
| | - Ayman M. Atta
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University PO Box-2455, Riyadh–11541, Saudi Arabia
| | - Rizwan Hasan Khan
- Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh – 202002, India
| |
Collapse
|
216
|
Guo H, Cao M, Zou S, Ye B, Dong Y. Cranberry Extract Standardized for Proanthocyanidins Alleviates β-Amyloid Peptide Toxicity by Improving Proteostasis Through HSF-1 in Caenorhabditis elegans Model of Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2015; 71:1564-1573. [PMID: 26405062 DOI: 10.1093/gerona/glv165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
A growing body of evidence suggests that nutraceuticals with prolongevity properties may delay the onset of Alzheimer's disease (AD). We recently demonstrated that a proanthocyanidins-standardized cranberry extract has properties that prolong life span and promote innate immunity in Caenorhabditis elegans In this article, we report that supplementation of this cranberry extract delayed Aβ toxicity-triggered body paralysis in the C elegans AD model. Genetic analyses indicated that the cranberry-mediated Aβ toxicity alleviation required heat shock transcription factor (HSF)-1 rather than DAF-16 and SKN-1. Moreover, cranberry supplementation increased the transactivity of HSF-1 in an IIS-dependent manner. Further studies found that the cranberry extract relies on HSF-1 to significantly enhance the solubility of proteins in aged worms, implying an improved proteostasis in AD worms. Considering that HSF-1 plays a pivotal role in maintaining proteostasis, our results suggest that cranberry maintains the function of proteostasis through HSF-1, thereby protecting C elegans against Aβ toxicity. Together, our findings elucidated the mechanism whereby cranberry attenuated Aβ toxicity in C elegans and stressed the significance of proteostasis in the prevention of age-related diseases from a practical point of view.
Collapse
Affiliation(s)
- Hong Guo
- Department of Biological Sciences, Clemson University, South Carolina.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Cao
- Department of Biological Sciences, Clemson University, South Carolina.,Institute for Engaged Aging, Clemson University, Clemson, South Carolina
| | - Sige Zou
- Functional Genomics Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, South Carolina. .,Institute for Engaged Aging, Clemson University, Clemson, South Carolina
| |
Collapse
|
217
|
Kim S, Violette CJ, Ziff EB. Reduction of increased calcineurin activity rescues impaired homeostatic synaptic plasticity in presenilin 1 M146V mutant. Neurobiol Aging 2015; 36:3239-3246. [PMID: 26455952 DOI: 10.1016/j.neurobiolaging.2015.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases characterized by memory loss and cognitive impairment. Whereas most AD cases are sporadic, some are caused by mutations in early-onset familial AD (FAD) genes. One FAD gene encodes presenilin 1 (PS1), and a PS1 mutation in methionine 146 impairs homeostatic synaptic plasticity (HSP). We have previously shown that Ca(2+) and calcineurin activity are critical regulators of HSP. Here, we confirm that endoplasmic reticulum-mediated Ca(2+) signals are increased in mutant PS1 neurons. We further show that calcineurin activity is abnormally elevated in the mutant and that inhibition of increased calcineurin activity stabilizes GluA1 phosphorylation, promoting synaptic trafficking of Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, contributing to the recovery of impaired HSP found in the mutant. Because HSP is suggested to have roles during learning and memory formation, increased calcineurin activity-induced impairment of HSP can cause cognitive decline in FAD. Thus, reducing abnormally increased calcineurin activity in AD brain may be beneficial for improving AD-related cognitive decline.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA.
| | | | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
218
|
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol 2015; 7:29143. [PMID: 26385886 PMCID: PMC4575419 DOI: 10.3402/jom.v7.29143] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible etiology of late-onset AD (LOAD).
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
219
|
Lundgren JL, Ahmed S, Schedin-Weiss S, Gouras GK, Winblad B, Tjernberg LO, Frykman S. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem 2015; 135:606-15. [PMID: 26296617 DOI: 10.1111/jnc.13287] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022]
Abstract
Synaptic degeneration and accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain are hallmarks of Alzheimer disease. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP), by the β-secretase β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. However, Aβ generation is precluded if APP is cleaved by the α-secretase ADAM10 instead of BACE1. We have previously shown that Aβ can be produced locally at the synapse. To study the synaptic localization of the APP processing enzymes we used western blotting to demonstrate that, compared to total brain homogenate, ADAM10 and BACE1 were greatly enriched in synaptic vesicles isolated from rat brain using controlled-pore glass chromatography, whereas Presenilin1 was the only enriched component of the γ-secretase complex. Moreover, we detected ADAM10 activity in synaptic vesicles and enrichment of the intermediate APP-C-terminal fragments (APP-CTFs). We confirmed the western blotting findings using in situ proximity ligation assay to demonstrate close proximity of ADAM10 and BACE1 with the synaptic vesicle marker synaptophysin in intact mouse primary hippocampal neurons. In contrast, only sparse co-localization of active γ-secretase and synaptophysin was detected. These results indicate that the first step of APP processing occurs in synaptic vesicles whereas the final step is more likely to take place elsewhere.
Collapse
Affiliation(s)
- Jolanta L Lundgren
- Karolinska Institutet, Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Saheeb Ahmed
- European Neuroscience Institute, Göttingen, Germany
| | - Sophia Schedin-Weiss
- Karolinska Institutet, Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Gunnar K Gouras
- Lund University, Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund, Sweden
| | - Bengt Winblad
- Karolinska Institutet, Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Lars O Tjernberg
- Karolinska Institutet, Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Susanne Frykman
- Karolinska Institutet, Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| |
Collapse
|
220
|
Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Sci Rep 2015; 5:13842. [PMID: 26346625 PMCID: PMC4561911 DOI: 10.1038/srep13842] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer’s disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.
Collapse
|
221
|
Kwon B, Gamache T, Lee HK, Querfurth HW. Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1810-23. [DOI: 10.1016/j.bbadis.2015.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
|
222
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
223
|
Marciani DJ. Alzheimer's disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol 2015; 287:54-63. [PMID: 26439962 DOI: 10.1016/j.jneuroim.2015.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Despite significant advances in the development of Alzheimer's disease (AD) vaccines effective in animal models, these prototypes have been clinically unsuccessful; apparently the result of using immunogens modified to prevent inflammation. Hence, a new paradigm is needed that uses entire AD-associated immunogens, a notion supported by recent successful passive immunotherapy results, with adjuvants that induce Th2-only while inhibiting without abrogating Th1 immunity. Here, we discuss the obstacles to AD vaccine development and Th2-adjuvants that by acting on dendritic and T cells, would elicit regardless of the antigen a safe and effective antibody response, while preventing damaging neuroinflammation and ameliorating immunosenescence.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
224
|
C-Terminal Threonine Reduces Aβ43 Amyloidogenicity Compared with Aβ42. J Mol Biol 2015; 428:274-291. [PMID: 26122432 DOI: 10.1016/j.jmb.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/19/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Aβ43, a product of the proteolysis of the amyloid precursor protein APP, is related to Aβ42 by an additional Thr residue at the C-terminus. Aβ43 is typically generated at low levels compared with the predominant Aβ42 and Aβ40 forms, but it has been suggested that this longer peptide might have an impact on amyloid-β aggregation and Alzheimer's disease that is out of proportion to its brain content. Here, we report that both Aβ42 and Aβ43 spontaneously aggregate into mature amyloid fibrils via sequential appearance of the same series of oligomeric and protofibrillar intermediates, the earliest of which appears to lack β-structure. In spite of the additional β-branched amino acid at the C-terminus, Aβ43 fibrils have fewer strong backbone H-bonds than Aβ42 fibrils, some of which are lost at the C-terminus. In contrast to previous reports, we found that Aβ43 spontaneously aggregates more slowly than Aβ42. In addition, Aβ43 fibrils are very inefficient at seeding Aβ42 amyloid formation, even though Aβ42 fibrils efficiently seed amyloid formation by Aβ43 monomers. Finally, mixtures of Aβ42 and Aβ43 aggregate more slowly than Aβ42 alone. Both in this Aβ42/Aβ43 co-aggregation reaction and in cross-seeding by Aβ42 fibrils, the structure of the Aβ43 in the product fibrils is influenced by the presence of Aβ42. The results provide new details of amyloid structure and assembly pathways, an example of structural plasticity in prion-like replication, and data showing that low levels of Aβ43 in the brain are unlikely to favorably impact the aggregation of Aβ42.
Collapse
|
225
|
Pascual-Lucas M, Viana da Silva S, Di Scala M, Garcia-Barroso C, González-Aseguinolaza G, Mulle C, Alberini CM, Cuadrado-Tejedor M, Garcia-Osta A. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med 2015; 6:1246-62. [PMID: 25100745 PMCID: PMC4287930 DOI: 10.15252/emmm.201404228] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) was recently found to play a critical role in memory consolidation in rats and mice, and hippocampal or systemic administration of recombinant IGF2 enhances memory. Here, using a gene therapy-based approach with adeno-associated virus (AAV), we show that IGF2 overexpression in the hippocampus of aged wild-type mice enhances memory and promotes dendritic spine formation. Furthermore, we report that IGF2 expression decreases in the hippocampus of patients with Alzheimer's disease, and this leads us to hypothesize that increased IGF2 levels may be beneficial for treating the disease. Thus, we used the AAV system to deliver IGF2 or IGF1 into the hippocampus of the APP mouse model Tg2576 and demonstrate that IGF2 and insulin-like growth factor 1 (IGF1) rescue behavioural deficits, promote dendritic spine formation and restore normal hippocampal excitatory synaptic transmission. The brains of Tg2576 mice that overexpress IGF2 but not IGF1 also show a significant reduction in amyloid levels. This reduction probably occurs through an interaction with the IGF2 receptor (IGF2R). Hence, IGF2 and, to a lesser extent, IGF1 may be effective treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Maria Pascual-Lucas
- Neurosciences Division, Center for Applied Medical Research, CIMA University of Navarra, Pamplona, Spain
| | - Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, Université of Bordeaux CNRS UMR 5297, Bordeaux, France
| | - Marianna Di Scala
- Gene Therapy and Hepatology Division, Center for Applied Medical Research CIMA University of Navarra, Pamplona, Spain
| | - Carolina Garcia-Barroso
- Neurosciences Division, Center for Applied Medical Research, CIMA University of Navarra, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Hepatology Division, Center for Applied Medical Research CIMA University of Navarra, Pamplona, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, Université of Bordeaux CNRS UMR 5297, Bordeaux, France
| | | | - Mar Cuadrado-Tejedor
- Neurosciences Division, Center for Applied Medical Research, CIMA University of Navarra, Pamplona, Spain Department of Anatomy, School of Medicine University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurosciences Division, Center for Applied Medical Research, CIMA University of Navarra, Pamplona, Spain
| |
Collapse
|
226
|
Zeng L, Hu C, Zhang F, Xu DC, Cui MZ, Xu X. Cellular FLICE-like Inhibitory Protein (c-FLIP) and PS1-associated Protein (PSAP) Mediate Presenilin 1-induced γ-Secretase-dependent and -independent Apoptosis, Respectively. J Biol Chem 2015; 290:18269-80. [PMID: 26025363 DOI: 10.1074/jbc.m115.640177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Presenilin 1 (PS1) has been implicated in apoptosis; however, its mechanism remains elusive. We report that PS1-induced apoptosis was associated with cellular FLICE-like inhibitory protein (c-FLIP) turnover and that γ-secretase inhibitor blocked c-FLIP turnover and also partially blocked PS1-induced apoptosis. A complete inhibition of PS1-induced apoptosis was achieved by knockdown of PS1-associated protein (PSAP), a mitochondrial proapoptotic protein that forms a complex with Bax upon induction of apoptosis, in the presence of γ-secretase inhibitor. PS1-induced apoptosis was partially inhibited by knockdown of caspase-8, Fas-associated protein with death domain (FADD), or Bid. However, knockdown of Bax or overexpression of Bcl-2 resulted in complete inhibition of PS1-induced apoptosis. These data suggest that PS1 induces apoptosis through two pathways: the γ-secretase-dependent pathway mediated by turnover of c-FLIP and the γ-secretase-independent pathway mediated by PSAP-Bax complex formation. These two pathways converge on Bax to activate mitochondria-dependent apoptosis. These findings provide new insight into the mechanisms by which PS1 is involved in apoptosis and the mechanism by which PS1 exerts its pathogenic effects. In addition, our results suggest that PS2 induces apoptosis through a pathway that is different from that of PS1.
Collapse
Affiliation(s)
- Linlin Zeng
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, and
| | - Chen Hu
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, and the Department of Comparative and Experimental Medicine, University of Tennessee, Knoxville, Tennessee 37996 and
| | - Fuqiang Zhang
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, and
| | - Daniel C Xu
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Mei-Zhen Cui
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, and
| | - Xuemin Xu
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, and
| |
Collapse
|
227
|
Chen M. The Maze of APP Processing in Alzheimer's Disease: Where Did We Go Wrong in Reasoning? Front Cell Neurosci 2015; 9:186. [PMID: 26052267 PMCID: PMC4447002 DOI: 10.3389/fncel.2015.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
Why has Alzheimer’s disease (AD) remained a conundrum today? The main reason is the stagnation in understanding the origins of plaques and tangles. While they are widely thought to be the products of the “aberrant” pathways, we believe that plaques and tangles result from natural aging. From this new perspective, we have proposed that age-related inefficiency of α-secretase is the underpinning for Aβ overproduction. This view contrasts sharply with the current doctrine that Aβ overproduction is the product of the “overactivated” β- and γ-secretases. Following this doctrine, it has been claimed that the two secretases are “positively identified” and that their inhibitors have “successfully reduced Aβ levels.” But, why have these studies not led to the understanding of AD or successful clinical trials? And if so, where did they go off course in reasoning? These questions may touch the basics of biological science and must be answered. In this paper, I dissected several prevailing assumptions and some influential reports with an attempt to trace the origins of the conundrum. This work led me to an original model for Aβ overproduction and also to a serious question: given the universal knowledge that boosting α-secretase reduces Aβ, a straightforward highway for intervention, then why is there such an obsession on “inhibiting β- and γ-secretases,” a much more costly and twisting road even if possible? This issue requires the attention of policymakers and all researchers. I therefore call for a game change in AD study.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines VA Healthcare System , Bay Pines, FL , USA ; Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, FL , USA
| |
Collapse
|
228
|
Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Mol Cell Biol 2015; 35:2368-84. [PMID: 25939386 DOI: 10.1128/mcb.01338-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability.
Collapse
|
229
|
The crystal structure of DR6 in complex with the amyloid precursor protein provides insight into death receptor activation. Genes Dev 2015; 29:785-90. [PMID: 25838500 PMCID: PMC4403255 DOI: 10.1101/gad.257675.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 11/25/2022]
Abstract
Death receptor 6 (DR6) was recently shown to bind amyloid precursor protein (APP) via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Xu et al. report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6. The amyloid precursor protein (APP) has garnered considerable attention due to its genetic links to Alzheimer's disease. Death receptor 6 (DR6) was recently shown to bind APP via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Here, we report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6.
Collapse
|
230
|
Abstract
Alzheimer's disease (AD) is the foremost cause of dementia worldwide. Clinically, AD manifests as progressive memory impairment followed by a gradual decline in other cognitive abilities leading to complete functional dependency. Recent biomarker studies indicate that AD is characterized by a long asymptomatic phase, with the development of pathology occurring at least a decade prior to the onset of any symptoms. Current FDA-approved treatments target neurotransmitter abnormalities associated with the disease but do not affect what is believed to be the underlying etiology. In this review, we briefly discuss the most recent therapeutic strategies being employed in AD clinical trials, as well the scientific rationale with which they have been developed.
Collapse
|
231
|
Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr Biol 2015; 25:702-712. [PMID: 25754641 PMCID: PMC4366315 DOI: 10.1016/j.cub.2015.01.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging data suggest an important relationship between sleep and Alzheimer's disease (AD), but how poor sleep promotes the development of AD remains unclear. RESULTS Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ-induced hyperexcitability and suggest that defects in specific K(+) currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. CONCLUSIONS Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shahnaz R Lone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sha Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Zhang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam P Spira
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
232
|
Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M, Cohen Y, Chen W, Blevins J, Appleby BS, Surewicz K, Surewicz WK, Sajatovic M, Tatsuoka C, Zhang S, Mayo P, Butkiewicz M, Haines JL, Lerner AJ, Safar JG. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. ACTA ACUST UNITED AC 2015; 138:1009-22. [PMID: 25688081 DOI: 10.1093/brain/awv006] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic and environmental factors that increase the risk of late-onset Alzheimer disease are now well recognized but the cause of variable progression rates and phenotypes of sporadic Alzheimer's disease is largely unknown. We aimed to investigate the relationship between diverse structural assemblies of amyloid-β and rates of clinical decline in Alzheimer's disease. Using novel biophysical methods, we analysed levels, particle size, and conformational characteristics of amyloid-β in the posterior cingulate cortex, hippocampus and cerebellum of 48 cases of Alzheimer's disease with distinctly different disease durations, and correlated the data with APOE gene polymorphism. In both hippocampus and posterior cingulate cortex we identified an extensive array of distinct amyloid-β42 particles that differ in size, display of N-terminal and C-terminal domains, and conformational stability. In contrast, amyloid-β40 present at low levels did not form a major particle with discernible size, and both N-terminal and C- terminal domains were largely exposed. Rapidly progressive Alzheimer's disease that is associated with a low frequency of APOE e4 allele demonstrates considerably expanded conformational heterogeneity of amyloid-β42, with higher levels of distinctly structured amyloid-β42 particles composed of 30-100 monomers, and fewer particles composed of < 30 monomers. The link between rapid clinical decline and levels of amyloid-β42 with distinct structural characteristics suggests that different conformers may play an important role in the pathogenesis of distinct Alzheimer's disease phenotypes. These findings indicate that Alzheimer's disease exhibits a wide spectrum of amyloid-β42 structural states and imply the existence of prion-like conformational strains.
Collapse
Affiliation(s)
- Mark L Cohen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Chae Kim
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Mohamed ElHag
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Prachi Mehndiratta
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Termsarasab Pichet
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Frances Lissemore
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Michelle Shea
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Yvonne Cohen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Wei Chen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Janis Blevins
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Brian S Appleby
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 4 Department of Psychiatry, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Krystyna Surewicz
- 5 Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- 5 Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Martha Sajatovic
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 4 Department of Psychiatry, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Curtis Tatsuoka
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Shulin Zhang
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Ping Mayo
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Mariusz Butkiewicz
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Jonathan L Haines
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Alan J Lerner
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Jiri G Safar
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
233
|
Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Ronowska A, Pawełczyk T. Retinoic acid as a therapeutic option in Alzheimer's disease: a focus on cholinergic restoration. Expert Rev Neurother 2015; 15:239-49. [PMID: 25683350 DOI: 10.1586/14737175.2015.1008456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a potential therapeutic agent in neurodegenerative diseases including Alzheimer's disease. Retinoic acid was found to exert particularly strong enhancing effects on acetylcholine transmitter functions in brain cholinergic neurons, loss of which is tightly linked to the development of cognitive and memory deficits in course of different cholinergic encephalopathies. Here, we review cholinotrophic properties of retinoic acid and its derivatives, which may justify their application in the management of Alzheimer's disease and the related neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
234
|
Wang H. Fragile X mental retardation protein: from autism to neurodegenerative disease. Front Cell Neurosci 2015; 9:43. [PMID: 25729352 PMCID: PMC4325920 DOI: 10.3389/fncel.2015.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
235
|
Bastías-Candia S, Braidy N, Zolezzi JM, Inestrosa NC. Teneurins and Alzheimer's disease: a suggestive role for a unique family of proteins. Med Hypotheses 2015; 84:402-7. [PMID: 25665860 DOI: 10.1016/j.mehy.2015.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a debilitating age-related disorder characterized by distinct pathological hallmarks, such as progressive memory loss and cognitive impairment. During the last few years, several cellular signaling pathways have been associated with the pathogenesis of Alzheimer's disease, such as Notch, mTOR and Wnt. However, the potential factors that modulate these pathways and novel molecular mechanisms that might account for the pathogenesis of Alzheimer's disease or for therapy against this disease are still matters of intense research. Teneurins are members of a unique protein system that has recently been proposed as a novel and highly conserved regulatory signaling system in the vertebrate brain, so far related with neurite outgrowth and neuronal matching. The similitude in structure and function of teneurins with other cellular signaling pathways, suggests that they may play a critical role in Alzheimer's disease, either through the modulation of transcription factors due to the nuclear translocation of the teneurins intracellular domain, or through the activity of the corticotrophin releasing factor (CRF)-like peptide sequence, called teneurin C-terminal associated peptide. Moreover, the presence of Ca(2+)-binding motifs within teneurins structure and the Zic2-mediated Wnt/β-catenin signaling modulation, allows hypothesize a potential crosslink between teneurins and the Wnt signaling pathway, particularly. Herein, we aim to highlight the main characteristics of teneurins and propose, based on current knowledge of this family of proteins, an interesting review of their potential involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Sussy Bastías-Candia
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Juan M Zolezzi
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Nibaldo C Inestrosa
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
236
|
Carvalhal Marques F, Volovik Y, Cohen E. The Roles of Cellular and Organismal Aging in the Development of Late-Onset Maladies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:1-23. [DOI: 10.1146/annurev-pathol-012414-040508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, 91120 Jerusalem, Israel;
- Centre of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Yuli Volovik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, 91120 Jerusalem, Israel;
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, 91120 Jerusalem, Israel;
| |
Collapse
|
237
|
Khodakarami A, Saez I, Mels J, Vilchez D. Mediation of organismal aging and somatic proteostasis by the germline. Front Mol Biosci 2015; 2:3. [PMID: 25988171 PMCID: PMC4428440 DOI: 10.3389/fmolb.2015.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Experimental interventions that reduce reproduction cause an extension in lifespan. In invertebrates, such as Caenorhabditis elegans, the aging of the soma is regulated by signals from the germline. Indeed, ablation of germ cells significantly extends lifespan. Notably, germline-deficient animals exhibit heightened resistance to proteotoxic stress. This phenotype correlates with increased potential of intracellular clearance mechanisms such as the proteasome and autophagy in somatic tissues. Here we review the molecular mechanisms by which signals from the germline regulate lifespan in C. elegans with special emphasis on clearance mechanisms.
Collapse
Affiliation(s)
- Amirabbas Khodakarami
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - Isabel Saez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - Johanna Mels
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| |
Collapse
|
238
|
SAR-studies of γ-secretase modulators with PPARγ-agonistic and 5-lipoxygenase-inhibitory activity for Alzheimer's disease. Bioorg Med Chem Lett 2014; 25:841-6. [PMID: 25575659 DOI: 10.1016/j.bmcl.2014.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/23/2023]
Abstract
We present the design, synthesis and biological evaluation of compounds containing a 2-(benzylidene)hexanoic acid scaffold as multi-target directed γ-secretase-modulators. Broad structural variations were undertaken to elucidate the structure-activity-relationships at the 5-position of the aromatic core. Compound 13 showed the most potent activity profile with IC50 values of 0.79μM (Aβ42), 0.3μM (5-lipoxygenase) and an EC50 value of 4.64μM for PPARγ-activation. This derivative is the first compound exhibiting low micromolar to nanomolar activities for these three targets. Combining γ-secretase-modulation, PPARγ-agonism and inhibition of 5-lipoxygenase in one compound could be a novel disease-modifying multi-target-strategy for Alzheimer's disease to concurrently address the causative amyloid pathology and secondary pathologies like chronic brain inflammation.
Collapse
|
239
|
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology 2014; 96:255-62. [PMID: 25514383 DOI: 10.1016/j.neuropharm.2014.11.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France.
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France
| |
Collapse
|
240
|
Landry GJ, Liu-Ambrose T. Buying time: a rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer's disease. Front Aging Neurosci 2014; 6:325. [PMID: 25538616 PMCID: PMC4259166 DOI: 10.3389/fnagi.2014.00325] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
As of 2010, the worldwide economic impact of dementia was estimated at $604 billion USD; and without discovery of a cure or effective interventions to delay disease progression, dementia's annual global economic impact is expected to surpass $1 trillion USD as early as 2030. Alzheimer's disease (AD) is the leading cause of dementia accounting for over 75% of all cases. Toxic accumulation of amyloid beta (Aβ), either by overproduction or some clearance failure, is thought to be an underlying mechanism of the neuronal cell death characteristic of AD-though this amyloid hypothesis has been increasingly challenged in recent years. A compelling alternative hypothesis points to chronic neuroinflammation as a common root in late-life degenerative diseases including AD. Apolipoprotein-E (APOE) genotype is the strongest genetic risk factor for AD: APOE-ε4 is proinflammatory and individuals with this genotype accumulate more Aβ, are at high risk of developing AD, and almost half of all AD patients have at least one ε4 allele. Recent studies suggest a bidirectional relationship exists between sleep and AD pathology. Sleep may play an important role in Aβ clearance, and getting good quality sleep vs. poor quality sleep might reduce the AD risk associated with neuroinflammation and the ε4 allele. Taken together, these findings are particularly important given the sleep disruptions commonly associated with AD and the increased burden disrupted sleep poses for AD caregivers. The current review aims to: (1) identify individuals at high risk for dementia who may benefit most from sleep interventions; (2) explore the role poor sleep quality plays in exacerbating AD type dementia; (3) examine the science of sleep interventions to date; and (4) provide a road map in pursuit of comprehensive sleep interventions, specifically targeted to promote cognitive function and delay progression of dementia.
Collapse
Affiliation(s)
- Glenn J. Landry
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British ColumbiaVancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British ColumbiaVancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
241
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
242
|
Stallings JD, Ippolito DL, Rakesh V, Baer CE, Dennis WE, Helwig BG, Jackson DA, Leon LR, Lewis JA, Reifman J. Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC Genomics 2014; 15:1058. [PMID: 25471284 PMCID: PMC4302131 DOI: 10.1186/1471-2164-15-1058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023] Open
Abstract
Background The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. Results We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Conclusions Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1058) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D Stallings
- Environmental Health Program, U,S, Army Center for Environmental Health Research, Bldg, 568 Doughten Drive, MD 21702-5010 Fort Detrick, Maryland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Morishima-Kawashima M. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase. Front Physiol 2014; 5:463. [PMID: 25505888 PMCID: PMC4245903 DOI: 10.3389/fphys.2014.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/11/2014] [Indexed: 01/31/2023] Open
Abstract
Amyloid β-protein (Aβ) plays a central role in the pathogenesis of Alzheimer's disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF) of β-amyloid precursor protein (APP) by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD). The remaining βCTFs, which are truncated at the C-terminus (longer Aβs), are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Maho Morishima-Kawashima
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University Sapporo, Japan
| |
Collapse
|
244
|
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. Mol Neurodegener 2014; 9:51. [PMID: 25407337 PMCID: PMC4255655 DOI: 10.1186/1750-1326-9-51] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/14/2014] [Indexed: 02/28/2023] Open
Abstract
The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer’s Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better in depth understanding of the cascade. Particularly, the exact toxic forms of Aβ and Tau, the molecular link between them and their respective contributions to the disease process need to be identified in detail. Although the lack of final proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly Aβ-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate Aβ-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions, which are crucial for development of therapeutic strategies for Alzheimer’s Disease.
Collapse
Affiliation(s)
| | | | | | - Ilse Dewachter
- Catholic University of Louvain, Institute of Neuroscience, Alzheimer Dementia, Av, E, Mounier 53, Av, Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
245
|
Bicca MA, Costa R, Loch-Neckel G, Figueiredo CP, Medeiros R, Calixto JB. B₂ receptor blockage prevents Aβ-induced cognitive impairment by neuroinflammation inhibition. Behav Brain Res 2014; 278:482-91. [PMID: 25446751 DOI: 10.1016/j.bbr.2014.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Aβ-induced neuronal toxicity and memory loss is thought to be dependent on neuroinflammation, an important event in Alzheimer's disease (AD). Previously, we demonstrated that the blockage of the kinin B2 receptor (B2R) protects against the memory deficits induced by amyloid β (Aβ) peptide in mice. In this study, we aimed to investigate the role of B2R on Aβ-induced neuroinflammation in mice and the beneficial effects of B2R blockage in synapses alterations. EXPERIMENTAL APPROACH The selective kinin B2R antagonist HOE 140 (50 pmol/site) was given by intracerebroventricular (i.c.v.) route to male Swiss mice 2 h prior the i.c.v. injection of Aβ(1-40) (400 pmol/site) peptide. Animals were sacrificed, at specific time points after Aβ(1-40) injection (6 h, 1 day or 8 days), and the brain was collected in order to perform immunohistochemical analysis. Different groups of animals were submitted to behavioral cognition tests on day 14 after Aβ(1-40) administration. KEY RESULTS In this study, we report that the pre-treatment with the selective kinin B2R antagonist HOE 140 significantly inhibited Aβ-induced neuroinflammation in mice. B2R antagonism reduced microglial activation and the levels of pro-inflammatory proteins, including COX-2, iNOS and nNOS. Notably, these phenomena were accompanied by an inhibition of MAPKs (JNK and p38) and transcription factors (c-Jun and p65/NF-κB) activation. Finally, the anti-inflammatory effects of B2R antagonism provided significant protection against Aβ(1-40)-induced synaptic loss and cognitive impairment in mice. CONCLUSIONS AND IMPLICATIONS Collectively, these results suggest that B2R activation may play a critical role in Aβ-induced neuroinflammation, one of the most important contributors to AD progression, and its blockage can provide synapses protection.
Collapse
Affiliation(s)
- M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil
| | - R Costa
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil
| | - G Loch-Neckel
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil
| | - C P Figueiredo
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil
| | - R Medeiros
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil
| | - J B Calixto
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
246
|
Cortes-Canteli M, Mattei L, Richards AT, Norris EH, Strickland S. Fibrin deposited in the Alzheimer's disease brain promotes neuronal degeneration. Neurobiol Aging 2014; 36:608-17. [PMID: 25475538 DOI: 10.1016/j.neurobiolaging.2014.10.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has no effective treatment. Besides the well-known pathologic characteristics, this disease also has a vascular component, and substantial evidence shows increased thrombosis as well as a critical role for fibrin(ogen) in AD. This molecule has been implicated in neuroinflammation, neurovascular damage, blood-brain barrier permeability, vascular amyloid deposition, and memory deficits that are observed in AD. Here, we present evidence demonstrating that fibrin deposition increases in the AD brain and correlates with the degree of pathology. Moreover, we show that fibrin(ogen) is present in areas of dystrophic neurites and that a modest decrease in fibrinogen levels improves neuronal health and ameliorates amyloid pathology in the subiculum of AD mice. Our results further characterize the important role of fibrin(ogen) in this disease and support the design of therapeutic strategies aimed at blocking the interaction between fibrinogen and amyloid-β (Aβ) and/or normalizing the increased thrombosis present in AD.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Larissa Mattei
- Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Allison T Richards
- Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
247
|
Dal Prà I, Chiarini A, Pacchiana R, Gardenal E, Chakravarthy B, Whitfield JF, Armato U. Calcium-Sensing Receptors of Human Astrocyte-Neuron Teams: Amyloid-β-Driven Mediators and Therapeutic Targets of Alzheimer's Disease. Curr Neuropharmacol 2014; 12:353-64. [PMID: 25342943 PMCID: PMC4207075 DOI: 10.2174/1570159x12666140828214701] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022] Open
Abstract
It is generally assumed that the neuropathology of sporadic (late-onset or nonfamilial) Alzheimer’s disease (AD) is driven by the overproduction and spreading of first Amyloid-βx-42 (Aβ42) and later hyperphosphorylated (hp)-Tau oligomeric “infectious seeds”. Hitherto, only neurons were held to make and spread both oligomer types; astrocytes would just remove debris. However, we have recently shown that exogenous fibrillar or soluble Aβ peptides specifically bind and activate the Ca2+-sensing receptors (CaSRs) of untransformed human cortical adult astrocytes and postnatal neurons cultured in vitro driving them to produce, accrue, and secrete surplus endogenous Aβ42. While the Aβ-exposed neurons start dying, astrocytes survive and keep oversecreting Aβ42, nitric oxide (NO), and vascular endothelial growth factor (VEGF)-A. Thus astrocytes help neurons’ demise. Moreover, we have found that a highly selective allosteric CaSR agonist (“calcimimetic”), NPS R-568, mimics the just mentioned neurotoxic actions triggered by Aβ●CaSR signaling. Contrariwise, and most important, NPS 2143, a highly selective allosteric CaSR antagonist (“calcilytic”), fully suppresses all the Aβ●CaSR signaling-driven noxious actions. Altogether our findings suggest that the progression of AD neuropathology is promoted by unceasingly repeating cycles of accruing exogenous Aβ42 oligomers interacting with the CaSRs of swelling numbers of astrocyte-neuron teams thereby recruiting them to overrelease additional Aβ42 oligomers, VEGF-A, and NO. Calcilytics would beneficially break such Aβ/CaSR-driven vicious cycles and hence halt or at least slow the otherwise unstoppable spreading of AD neuropathology
Collapse
Affiliation(s)
- I Dal Prà
- Histology & Embryology Section, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - A Chiarini
- Histology & Embryology Section, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - R Pacchiana
- Histology & Embryology Section, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - E Gardenal
- Histology & Embryology Section, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - B Chakravarthy
- National Research Council of Canada, Ottawa, Ontario, Canada
| | - J F Whitfield
- National Research Council of Canada, Ottawa, Ontario, Canada
| | - U Armato
- Histology & Embryology Section, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| |
Collapse
|
248
|
Condic M, Oberstein TJ, Herrmann M, Reimann MC, Kornhuber J, Maler JM, Spitzer P. N-truncation and pyroglutaminylation enhances the opsonizing capacity of Aβ-peptides and facilitates phagocytosis by macrophages and microglia. Brain Behav Immun 2014; 41:116-25. [PMID: 24876064 DOI: 10.1016/j.bbi.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/18/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022] Open
Abstract
Abnormal accumulations of amyloid-β (Aβ)-peptides are one of the pathological hallmarks of Alzheimer's disease (AD). The precursor of the Aβ-peptides, the amyloid precursor protein (APP), is also found in peripheral blood cells, but its function in these cells remains elusive. We previously observed that mononuclear phagocytes release Aβ-peptides during activation and phagocytosis, suggesting a physiologic role in inflammatory processes. Here, we show that supplementing the media with soluble N-terminally truncated Aβ(2-40) and Aβ(2-42) as well as Aβ(1-42) induced the phagocytosis of polystyrene particles (PSPs) by primary human monocytes. If the PSPs were pre-incubated with Aβ-peptides, phagocytosis was induced by all tested Aβ-peptide species. N-terminally truncated Aβ(x-42) induced the phagocytosis of PSPs significantly more effectively than did Aβ(x-40). Similarly, the phagocytosis of Escherichia coli by GM-CSF- and M-CSF-elicited macrophages as well as microglia was particularly facilitated by pre-incubation with N-terminally truncated Aβ(x-42). The proinflammatory polarization of monocytes was indicated by the reduced MSRI expression and IL-10 secretion after phagocytosis of PSPs coated with Aβ(1-42), Aβ(2-42) and Aβ(3p-42). Polarization of the macrophages by GM-CSF reduced the phagocytic activity, but it did not affect the capabilities of Aβ-peptides to opsonize prey. Taken together, Aβ-peptides support phagocytosis as soluble factors and act as opsonins. Differential effects among the Aβ-peptide variants point to distinct mechanisms of interaction among monocytes/macrophages, prey and Aβ-peptides. A proinflammatory polarization induced by the phagocytosis of Aβ-peptide coated particles may provide a model for the chronic inflammatory reaction and sustained plaque deposition in AD.
Collapse
Affiliation(s)
- Mateja Condic
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine III, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Gluecksstraße 4a, D-91054 Erlangen, Germany
| | - Mareike Carola Reimann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| |
Collapse
|
249
|
Gu L, Liu C, Stroud JC, Ngo S, Jiang L, Guo Z. Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. J Biol Chem 2014; 289:27300-27313. [PMID: 25118290 PMCID: PMC4175361 DOI: 10.1074/jbc.m114.569004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Aβ42 oligomers play key roles in the pathogenesis of Alzheimer disease, but their structures remain elusive partly due to their transient nature. Here, we show that Aβ42 in a fusion construct can be trapped in a stable oligomer state, which recapitulates characteristics of prefibrillar Aβ42 oligomers and enables us to establish their detailed structures. Site-directed spin labeling and electron paramagnetic resonance studies provide structural restraints in terms of side chain mobility and intermolecular distances at all 42 residue positions. Using these restraints and other biophysical data, we present a novel atomic-level oligomer model. In our model, each Aβ42 protein forms a single β-sheet with three β-strands in an antiparallel arrangement. Each β-sheet consists of four Aβ42 molecules in a head-to-tail arrangement. Four β-sheets are packed together in a face-to-back fashion. The stacking of identical segments between different β-sheets within an oligomer suggests that prefibrillar oligomers may interconvert with fibrils via strand rotation, wherein β-strands undergo an ∼90° rotation along the strand direction. This work provides insights into rational design of therapeutics targeting the process of interconversion between toxic oligomers and non-toxic fibrils.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Cong Liu
- Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095,; Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China, and
| | - James C Stroud
- Department of Chemistry and Chemical Biology, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Sam Ngo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Lin Jiang
- Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095.
| |
Collapse
|
250
|
Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Ren C, Liu XG, Chui D, Liu G. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer's disease mouse model. Mol Brain 2014; 7:65. [PMID: 25213836 PMCID: PMC4172865 DOI: 10.1186/s13041-014-0065-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022] Open
Abstract
Background Profound synapse loss is one of the major pathological hallmarks associated with Alzheimer’s disease, which might underlie memory impairment. Our previous work demonstrates that magnesium ion is a critical factor in controlling synapse density/plasticity. Here, we tested whether elevation of brain magnesium, using a recently developed compound (magnesium-L-threonate, MgT), can ameliorate the AD-like pathologies and cognitive deficits in the APPswe/PS1dE9 mice, a transgenic mouse model of Alzheimer’s disease. Results MgT treatment reduced Aβ-plaque, prevented synapse loss and memory decline in the transgenic mice. Strikingly, MgT treatment was effective even when the treatment was given to the mice at the end-stage of their Alzheimer’s disease-like pathological progression. To explore how elevation of brain magnesium ameliorates the AD-like pathologies in the brain of transgenic mice, we studied molecules critical for APP metabolism and signaling pathways implicated in synaptic plasticity/density. In the transgenic mice, the NMDAR signaling pathway was downregulated, while the BACE1 expression were upregulated. MgT treatment prevented the impairment of these signaling pathways, stabilized BACE1 expression and reduced sAPPβ and β-CTF in the transgenic mice. At the molecular level, elevation of extracellular magnesium prevented the high Aβ-induced reductions in synaptic NMDARs by preventing calcineurin overactivation in hippocampal slices. Conclusions Our results suggest that elevation of brain magnesium exerts substantial synaptoprotective effects in a mouse model of Alzheimer’s disease, and hence it might have therapeutic potential for treating Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-014-0065-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|