201
|
Xia J, Liu Y, Yao S, Li M, Zhu M, Huang K, Gao L, Xia T. Characterization and Expression Profiling of Camellia sinensis Cinnamate 4-hydroxylase Genes in Phenylpropanoid Pathways. Genes (Basel) 2017; 8:E193. [PMID: 28763022 PMCID: PMC5575657 DOI: 10.3390/genes8080193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Cinnamate 4-hydroxylase (C4H), a cytochrome P450-dependent monooxygenase, participates in the synthesis of numerous polyphenoid compounds, such as flavonoids and lignins. However, the C4H gene number and function in tea plants are not clear. We screened all available transcriptome and genome databases of tea plants and three C4H genes were identified and named CsC4Ha, CsC4Hb, and CsC4Hc, respectively. Both CsC4Ha and CsC4Hb have 1518-bp open reading frames that encode 505-amino acid proteins. CsC4Hc has a 1635-bp open reading frame that encodes a 544-amino acid protein. Enzymatic analysis of recombinant proteins expressed in yeast showed that the three enzymes catalyzed the formation of p-coumaric acid (4-hydroxy trans-cinnamic acid) from trans-cinnamic acid. Quantitative real-time PCR (qRT-PCR) analysis showed that CsC4Ha was highly expressed in the 4th leaf, CsC4Hb was highly expressed in tender leaves, while CsC4Hc was highly expressed in the young stems. The three CsC4Hs were induced with varying degrees by abiotic stress treatments. These results suggest they may have different subcellular localization and different physiological functions.
Collapse
Affiliation(s)
- Jinxin Xia
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Ming Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Mengqing Zhu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Keyi Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| |
Collapse
|
202
|
A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 2017; 49:1364-1372. [PMID: 28740263 DOI: 10.1038/ng.3919] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr9.02, associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.
Collapse
|
203
|
Le Roy J, Blervacq AS, Créach A, Huss B, Hawkins S, Neutelings G. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC PLANT BIOLOGY 2017; 17:124. [PMID: 28705193 PMCID: PMC5513022 DOI: 10.1186/s12870-017-1072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Bast fibres are characterized by very thick secondary cell walls containing high amounts of cellulose and low lignin contents in contrast to the heavily lignified cell walls typically found in the xylem tissues. To improve the quality of the fiber-based products in the future, a thorough understanding of the main cell wall polymer biosynthetic pathways is required. In this study we have carried out a characterization of the genes involved in lignin biosynthesis in flax along with some of their regulation mechanisms. RESULTS We have first identified the members of the phenylpropanoid gene families through a combination of in silico approaches. The more specific lignin genes were further characterized by high throughput transcriptomic approaches in different organs and physiological conditions and their cell/tissue expression was localized in the stems, roots and leaves. Laccases play an important role in the polymerization of monolignols. This multigenic family was determined and a miRNA was identified to play a role in the posttranscriptional regulation by cleaving the transcripts of some specific genes shown to be expressed in lignified tissues. In situ hybridization also showed that the miRNA precursor was expressed in the young xylem cells located near the vascular cambium. The results obtained in this work also allowed us to determine that most of the genes involved in lignin biosynthesis are included in a unique co-expression cluster and that MYB transcription factors are potentially good candidates for regulating these genes. CONCLUSIONS Target engineering of cell walls to improve plant product quality requires good knowledge of the genes responsible for the production of the main polymers. For bast fiber plants such as flax, it is important to target the correct genes from the beginning since the difficulty to produce transgenic material does not make possible to test a large number of genes. Our work determined which of these genes could be potentially modified and showed that it was possible to target different regulatory pathways to modify lignification.
Collapse
Affiliation(s)
- Julien Le Roy
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne-Sophie Blervacq
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne Créach
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Brigitte Huss
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
204
|
Abdollahi Mandoulakani B, Eyvazpour E, Ghadimzadeh M. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). PHYTOCHEMISTRY 2017; 139:1-7. [PMID: 28366608 DOI: 10.1016/j.phytochem.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 05/09/2023]
Abstract
Basil (Ocimum basilicum L.), a medicinal plant of the Lamiaceae family, is used in traditional medicine; its essential oil is a rich source of phenylpropanoids. Methylchavicol and methyleugenol are the most important constituents of basil essential oil. Drought stress is proposed to enhance the essential oil composition and expression levels of the genes involved in its biosynthesis. In the current investigation, an experiment based on a completely randomized design (CRD) with three replications was conducted in the greenhouse to study the effect of drought stress on the expression level of four genes involved in the phenylpropanoid biosynthesis pathway in O. basilicum c.v. Keshkeni luvelou. The genes studied were chavicol O-methyl transferase (CVOMT), eugenol O-methyl transferase (EOMT), cinnamate 4-hydroxylase (C4H), 4-coumarate coA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). The effect of drought stress on the essential oil compounds and their relationship with the expression levels of the studied genes were also investigated. Plants were subjected to levels of 100%, 75%, and 50% of field capacity (FC) at the 6-8 leaf stage. Essential oil compounds were identified by gas chromatography/mass spectrometry (GC-MS) at flowering stage and the levels of gene expression were determind by real time PCR in plant leaves at the same stage. Results showed that drought stress increased the amount of methylchavicol, methyleugenol, β-Myrcene and α-bergamotene. The maximum amount of these compounds was observed at 50% FC. Real-time PCR analysis revealed that severe drought stress (50% FC) increased the expression level of CVOMT and EOMT by about 6.46 and 46.33 times, respectively, whereas those of CAD relatively remained unchanged. The expression level of 4CL and C4H reduced under drought stress conditions. Our results also demonstrated that changes in the expression levels of CVOMT and EOMT are significantly correlated with methylchavicol (r = 0.94, P ≤ 0.05) and methyleugenol (r = 0.98, P ≤ 0.05) content. Thus, drought stress probably increases the methylchavicol and methyleugenol content, in part, through increasing the expression levels of CVOMT and EOMT.
Collapse
Affiliation(s)
- Babak Abdollahi Mandoulakani
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran; Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Elham Eyvazpour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Morteza Ghadimzadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
205
|
Basile L, Tugnoli A, Cozzani V. Influence of Macrocomponents on the Pyrolysis Heat Demand of Lignocellulosic Biomass. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucia Basile
- LISES—Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Alessandro Tugnoli
- LISES—Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Valerio Cozzani
- LISES—Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
206
|
Baldi P, Moser M, Brilli M, Vrhovsek U, Pindo M, Si-Ammour A. Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development. PLANTA 2017; 245:1021-1035. [PMID: 28188424 DOI: 10.1007/s00425-017-2660-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
A coordinated regulation of different branches of the flavonoid pathway was highlighted that may contribute to elucidate the role of this important class of compounds during the early stages of apple fruit development. Apple (Malus × domestica Borkh.) is an economically important fruit appreciated for its organoleptic characteristics and its benefits for human health. The first stages after fruit set represent a very important and still poorly characterized developmental process. To enable the profiling of genes involved in apple early fruit development, we combined the suppression subtractive hybridization (SSH) protocol to next-generation sequencing. We identified and characterized genes induced and repressed during fruit development in the apple cultivar 'Golden Delicious'. Our results showed an opposite regulation of genes coding for enzymes belonging to flavonoid and monolignol pathways, with a strong induction of the former and a simultaneous repression of the latter. Two isoforms of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, key enzymes located at the branching point between flavonoid and monolignol pathways, showed opposite expression patterns during the period in analysis, suggesting a possible regulation mechanism. A targeted metabolomic analysis supported the SSH results and revealed an accumulation of the monomers catechin and epicatechin as well as several forms of procyanidin oligomers in apple fruitlets starting early after anthesis, together with a decreased production of other classes of flavonoids such as some flavonols and the dihydrochalcone phlorizin. Moreover, gene expression and metabolites accumulation of 'Golden Delicious' were compared to a wild apple genotype of Manchurian crabapple (Malus mandshurica (Maxim.) Kom.). Significant differences in both gene expression and metabolites accumulation were found between the two genotypes.
Collapse
Affiliation(s)
- Paolo Baldi
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy.
| | - Mirko Moser
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy
| | - Matteo Brilli
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy
| | - Massimo Pindo
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy
| | - Azeddine Si-Ammour
- Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all' Adige, Italy
| |
Collapse
|
207
|
de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae? PLANT & CELL PHYSIOLOGY 2017; 58:934-945. [PMID: 28340089 DOI: 10.1093/pcp/pcx037] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 05/21/2023]
Abstract
The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | - Laura E Rose
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence in Plant Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| |
Collapse
|
208
|
Liu Y, Wei M, Hou C, Lu T, Liu L, Wei H, Cheng Y, Wei Z. Functional Characterization of Populus PsnSHN2 in Coordinated Regulation of Secondary Wall Components in Tobacco. Sci Rep 2017; 7:42. [PMID: 28246387 PMCID: PMC5428377 DOI: 10.1038/s41598-017-00093-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Wood formation is a biological process during which the most abundant lignocellulosic biomass on earth is produced. Although a number of transcription factors have been linked to the regulation of wood formation process, none of them has been demonstrated to be a higher hierarchical regulator that coordinately regulates secondary wall biosynthesis genes. Here, we identified a Populus gene, PsnSHN2, a counterpart of the Arabidopsis AP2/ERF type transcription factor, SHINE2. PsnSHN2 is predominantly expressed in xylem tissues and acted evidently as a high hierarchical transcriptional activator. Overexpression of PsnSHN2 in tobacco significantly altered the expression of both transcription factors and biosynthesis genes involved in secondary wall formation, leading to the thickened secondary walls and the changed cell wall composition. The most significant changes occurred in the contents of cellulose and hemicellulose that increased 37% and 28%, respectively, whereas the content of lignin that decreased 34%. Furthermore, PsnSHN2 activated or repressed the promoter activities of transcription factors involved in secondary wall biosynthesis and bound to five cis-acting elements enriched in the promoter regions of these transcription factors. Taken together, our results suggest PsnSHN2 coordinately regulate secondary wall formation through selective up/down-regulation of its downstream transcription factors that control secondary wall formation.
Collapse
Affiliation(s)
- Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Minjing Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Cong Hou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Tingting Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | | | - Hairong Wei
- School of Forest Resource and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| |
Collapse
|
209
|
Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, Ulloa RM. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. PHYSIOLOGIA PLANTARUM 2017; 159:244-261. [PMID: 27716933 DOI: 10.1111/ppl.12517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (β-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development.
Collapse
Affiliation(s)
- Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Sneha Bhogale
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| |
Collapse
|
210
|
Nanda S, Mohanty JN, Mishra R, Joshi RK. Metabolic Engineering of Phenylpropanoids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
211
|
Chao N, Li N, Qi Q, Li S, Lv T, Jiang XN, Gai Y. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. PLANTA 2017; 245:61-75. [PMID: 27580618 DOI: 10.1007/s00425-016-2591-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants. Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.
Collapse
Affiliation(s)
- Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ning Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tong Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiang-Ning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, 100083, China.
| |
Collapse
|
212
|
Hao Y, Chen F, Wu G, Gao W. Impact of Postharvest Nitric Oxide Treatment on Lignin Biosynthesis-Related Genes in Wax Apple (Syzygium samarangense) Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8483-8490. [PMID: 27787989 DOI: 10.1021/acs.jafc.6b03281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The role of nitric oxide (NO) during storage in wax apple through NO (10 μL/L) fumigate fruit was investigated. Wax apple fruit treated with NO had a significantly lower rate of weight loss, a softening index, and loss of firmness during storage. The transcriptional profile of 10 genes involved in lignin biosynthesis has been analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR analysis showed nine genes regulated in the wax apple (p < 0.05) upon NO fumigation, which coincided with the enzyme activity results (NO group lower than control group in peroxidase, phenylalanine ammonia-lyase, and 4-coumarate-CoA ligase), whose total lignin content decreased upon treatment with NO. These results indicate that NO treatment can effectively delay the softening and senescence of wax apple fruit and play an important regulatory role in lignin biosynthesis.
Collapse
Affiliation(s)
- Yuqi Hao
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Fahe Chen
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Guangbin Wu
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Weiya Gao
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| |
Collapse
|
213
|
Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. PHYTOCHEMISTRY 2016; 131:26-43. [PMID: 27569707 PMCID: PMC5048601 DOI: 10.1016/j.phytochem.2016.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.
Collapse
Affiliation(s)
- William R Chezem
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
214
|
Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL) Related Genes and Expression Profiling during Fruit Development in the Chinese Pear. Genes (Basel) 2016; 7:genes7100089. [PMID: 27775579 PMCID: PMC5083928 DOI: 10.3390/genes7100089] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/24/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.
Collapse
|
215
|
Miao L, Zhang L, Raboanatahiry N, Lu G, Zhang X, Xiang J, Gan J, Fu C, Li M. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1403. [PMID: 27708656 PMCID: PMC5030298 DOI: 10.3389/fpls.2016.01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/02/2016] [Indexed: 05/25/2023]
Abstract
Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in 'Phenylpropanoid biosynthesis' pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways.
Collapse
Affiliation(s)
- Liyun Miao
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Chunhua Fu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
216
|
Bhattacharyya D, Hazra S, Banerjee A, Datta R, Kumar D, Chakrabarti S, Chattopadhyay S. Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. PLANT MOLECULAR BIOLOGY 2016; 92:1-23. [PMID: 27387305 DOI: 10.1007/s11103-016-0492-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/14/2016] [Indexed: 05/06/2023]
Abstract
Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.
Collapse
Affiliation(s)
- Dipto Bhattacharyya
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 570-752, Republic of Korea
| | - Saptarshi Hazra
- Plant Biology Lab., Organic and Medicinal Chemistry Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Anindyajit Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Riddhi Datta
- Plant Biology Lab., Organic and Medicinal Chemistry Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Deepak Kumar
- Plant Biology Lab., Organic and Medicinal Chemistry Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Lab., Organic and Medicinal Chemistry Division, CSIR-Indian Institute Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
217
|
Cao S, Li H, Yao X, Li L, Jiang L, Zhang Q, Zhang J, Liu D, Lu H. Enzymatic characterization of two acetyl-CoA synthetase genes from Populus trichocarpa. SPRINGERPLUS 2016; 5:818. [PMID: 27390658 PMCID: PMC4916118 DOI: 10.1186/s40064-016-2532-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022]
Abstract
The acetyl-CoA synthetase (ACS) family is a subfamily of adenylate-forming enzymes, which has a close evolutionary relationship with the 4-coumarate:CoA ligase (4CL) family. In this study, two ACS genes were cloned from Populus trichocarpa and were named PtrACS1 and PtrACS2. Bioinformatics characterization of PtrACS1 and PtrACS2 showed that they contained the key ACS residues and a putative peroxisome targeting sequence 1 (PTS1) at the end of the C-terminal sequence. Real-time PCR results showed that PtrACS1 and PtrACS2 were expressed in the phloem, xylem, leaves, and roots of one-year-old P. trichocarpa, but were expressed primarily in the leaves. The ACS enzyme activity was higher in leaves than other tissues in P. trichocarpa. Two overexpressed recombinant proteins showed no catalytic activity toward the substrates of 4CL, but did have notable catalytic activity toward sodium acetate and substrates of ACS. The relative activities of PtrACS1 and PtrACS2 were 194.16 ± 11.23 and 422.25 ± 21.69 μM min(-1) mg(-1), respectively. The K m and V max of PtrACS1 were 0.25 mM and 698.85 μM min(-1) mg(-1), while those for PtrACS2 were 0.72 mM and 245.96 μM min(-1) mg(-1), respectively. Our results revealed that both proteins belong to the ACS family, and provide a theoretical foundation for the identification and functional analysis of members of the adenylate-forming enzyme superfamily.
Collapse
Affiliation(s)
- Shan Cao
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Hui Li
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Xiaoyun Yao
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Lihong Li
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Luyao Jiang
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Qiang Zhang
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Jiaxue Zhang
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| | - Di Liu
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China
| | - Hai Lu
- College of Life Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China.,National Engineering Laboratory for Tree Breeding, Beijing, 100083 People's Republic of China
| |
Collapse
|
218
|
Nguyen VP, Cho JS, Choi YI, Lee SW, Han KH, Ko JH. Evaluation of a novel promoter from Populus trichocarpa for mature xylem tissue specific gene delivery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:226-233. [PMID: 27038601 DOI: 10.1016/j.plaphy.2016.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Wood (i.e., secondary xylem) is an important raw material for many industrial applications. Mature xylem (MX) tissue-specific genetic modification offers an effective means to improve the chemical and physical properties of the wood. Here, we describe a promoter that drives strong gene expression in a MX tissue-specific manner. Using whole-transcriptome genechip analyses of different tissue types of poplar, we identified five candidate genes that had strong expression in the MX tissue. The putative promoter sequences of the five MX-specific genes were evaluated for their promoter activity in both transgenic Arabidopsis and poplar. Among them, we found the promoter of Potri.013G007900.1 (called the PtrMX3 promoter) had the strongest activity in MX and thus was further characterized. In the stem and root tissues of transgenic Arabidopsis plants, the PtrMX3 promoter activity was found exclusively in MX tissue. MX-specific activity of the promoter was reproduced in the stem tissue of transgenic poplar plants. The PtrMX3 promoter activity was not influenced by abiotic stresses or exogenously applied growth regulators, indicating the PtrMX3 promoter is bona fide MX tissue-specific. Our study provides a strong MX-specific promoter for MX-specific modifications of woody biomass.
Collapse
Affiliation(s)
- Van Phap Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Sang-Won Lee
- Department of Genetic Engineering & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI 48824-1222, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
219
|
Hue HTT, Ha DTT, Hai NV, Hien LTT. Isolation and characterization of the 4-coumarate:coenzyme A ligase (4CL1) promoter from Eucalyptus camaldulensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:399-405. [PMID: 27729726 PMCID: PMC5039157 DOI: 10.1007/s12298-016-0369-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 05/09/2023]
Abstract
The most important enzyme of the phenylpropanoid pathway, 4-coumarate:coenzyme A ligase (4CL), is encoded by several homologous genes including 4CL1. The 4CL1 promoter is a tissue-specific gene expression element, particularly active in the secondary xylem or older stems. In this study, the 1127 bp 5'- upstream region of the 4CL1 coding sequence from Eucalyptus camaldulensis, Euc4CL1, was isolated and characterized. Essential putative cis-elements in the Euc4CL1 promoter included: a TATA-box at -22/-28 position, two CCAAT-boxes at -256/-260 and -277/-281 positions, respectively, an AC-element at -328/-336 and A-boxes at -115/-120 and -990/-995 positions. To investigate the effect of the Euc4CL1 promoter on gene expression, a plant transformation vector, pEuc4CL1p, containing the reporter gene for β-glucuronidase (GUS) under the control of Euc4CL1 promoter was constructed based on the pBI101 backbone and introduced in tobacco plants. Stable expression of the GUS gene in transgenic lines was analysed by a histochemical GUS assay. The results indicated the specific expression of the GUS gene in the stem xylem cells of transgenic tobacco lines was controlled by the Euc4CL1 promoter. The observations suggest the isolated Euc4CL1 promoter is a potential candidate for driving the expression of a foreign gene in plant xylem tissues.
Collapse
Affiliation(s)
- Huynh Thi Thu Hue
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Duong Thi Thu Ha
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Thi Thu Hien
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
220
|
Obudulu O, Bygdell J, Sundberg B, Moritz T, Hvidsten TR, Trygg J, Wingsle G. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genomics 2016; 17:119. [PMID: 26887814 PMCID: PMC4758094 DOI: 10.1186/s12864-016-2458-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/09/2016] [Indexed: 01/08/2023] Open
Abstract
Background Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. Results We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20–160 μm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. Conclusion Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2458-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ogonna Obudulu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden. .,Computational life science cluster (CLiC), Umeå University, Umeå, Sweden.
| | - Joakim Bygdell
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden. .,Computational life science cluster (CLiC), Umeå University, Umeå, Sweden.
| | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187, Umeå, Sweden. .,Computational life science cluster (CLiC), Umeå University, Umeå, Sweden. .,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.
| | - Johan Trygg
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden. .,Computational life science cluster (CLiC), Umeå University, Umeå, Sweden.
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
| |
Collapse
|
221
|
Shaipulah NFM, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, Haring MA, Dudareva N, Schuurink RC. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. PLANT PHYSIOLOGY 2016; 170:717-31. [PMID: 26620524 PMCID: PMC4734575 DOI: 10.1104/pp.15.01646] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/25/2015] [Indexed: 05/06/2023]
Abstract
Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
Collapse
Affiliation(s)
- Nur Fariza M Shaipulah
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Joëlle K Muhlemann
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Benjamin D Woodworth
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Alex Van Moerkercke
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Julian C Verdonk
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Aldana A Ramirez
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Michel A Haring
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Natalia Dudareva
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| |
Collapse
|
222
|
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC PLANT BIOLOGY 2016; 16:28. [PMID: 26811086 PMCID: PMC4727291 DOI: 10.1186/s12870-016-0717-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Mark C Jordan
- Morden Reasearch and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
223
|
Shinya T, Iwata E, Nakahama K, Fukuda Y, Hayashi K, Nanto K, Rosa AC, Kawaoka A. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition. FRONTIERS IN PLANT SCIENCE 2016; 7:443. [PMID: 27148283 PMCID: PMC4829581 DOI: 10.3389/fpls.2016.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2016] [Indexed: 05/16/2023]
Abstract
Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants.
Collapse
Affiliation(s)
- Tomotaka Shinya
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Eiji Iwata
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Katsuhiko Nakahama
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Yujiroh Fukuda
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Kazunori Hayashi
- Forest Research Division, Amapa Frorestal e Celulose S.A.Santana, Brazil
| | - Kazuya Nanto
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
| | - Antonio C. Rosa
- Forest Research Division, Amapa Frorestal e Celulose S.A.Santana, Brazil
| | - Akiyoshi Kawaoka
- Agri-Biotechnology Research Laboratory, Nippon Paper Industries Co., Ltd.Tokyo, Japan
- *Correspondence: Akiyoshi Kawaoka,
| |
Collapse
|
224
|
Systematic analysis of O -methyltransferase gene family and identification of potential members involved in the formation of O -methylated flavonoids in Citrus. Gene 2016; 575:458-472. [DOI: 10.1016/j.gene.2015.09.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
|
225
|
Cloning and expression analysis of phenylalanine ammonia-lyase (PAL) gene family and cinnamate 4-hydroxylase (C4H) from Dryopteris fragrans. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
226
|
Gopalakrishnan Nair PM, Chung IM. Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
227
|
Muthamilarasan M, Khan Y, Jaishankar J, Shweta S, Lata C, Prasad M. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering. FRONTIERS IN PLANT SCIENCE 2015; 6:965. [PMID: 26583030 PMCID: PMC4631826 DOI: 10.3389/fpls.2015.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.
Collapse
Affiliation(s)
| | - Yusuf Khan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shweta Shweta
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Charu Lata
- Division of Plant-Microbe Interactions, CSIR-National Botanical Research InstituteLucknow, India
| | - Manoj Prasad
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
228
|
Yoon J, Choi H, An G. Roles of lignin biosynthesis and regulatory genes in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:902-12. [PMID: 26297385 PMCID: PMC5111759 DOI: 10.1111/jipb.12422] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/19/2015] [Indexed: 05/02/2023]
Abstract
Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non-lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Heebak Choi
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Gynheung An
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Graduate School of BiotechnologyKyung Hee UniversityYongin446‐701Korea
| |
Collapse
|
229
|
Fernández-Pérez F, Pomar F, Pedreño MA, Novo-Uzal E. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:192-9. [PMID: 26398803 DOI: 10.1016/j.plantsci.2015.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/15/2015] [Accepted: 08/03/2015] [Indexed: 05/23/2023]
Abstract
Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.
Collapse
Affiliation(s)
| | - Federico Pomar
- Deparment of Animal Biology, Plant Biology and Ecology, University of A Coruña, A Coruña 15071, Spain
| | - María A Pedreño
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain
| | - Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
230
|
Xu RX, Zhao Y, Gao S, Zhang YY, Li DD, Lou HX, Cheng AX. Functional characterization of a plastidal cation-dependent O-methyltransferase from the liverwort Plagiochasma appendiculatum. PHYTOCHEMISTRY 2015; 118:33-41. [PMID: 26277769 DOI: 10.1016/j.phytochem.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/26/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs), known to be involved in phenylpropanoid metabolism and lignin synthesis, have been characterized from several higher plant species, which also harbor CCoAOMT-like enzymes responsible for methylation of a variety of flavonoids, anthocyanins, coumarins and phenylpropanoids. Here, a gene encoding a CCoAOMT (PaOMT1) was isolated from a sequenced cDNA library of the liverwort species Plagiochasma appendiculatum, a species belonging to the Family Aytoniaceae. The full-length cDNA sequence of PaOMT1 contains 909 bp, and is predicted to encode a protein with 302 amino acids. The gene products were 40-50% identical to CCoAOMT sequences of other plants. Experiments based on recombinant PaOMT1 showed that the enzyme was able to methylate phenylpropanoids, flavonoids and coumarins, with a preference for the flavonoid quercetin (19). Although the substrate selectivity and biochemical feature of PaOMT1 is similar to CCoAOMT-like enzymes, the sequence alignment results indicated PaOMT1 is closer to true CCoAOMT enzymes. A phylogenetic analysis indicated that PaOMT1 is intermediate between true CCoAOMTs and CCoAOMT-like enzymes. The transient expression of a PaOMT1-GFP fusion in tobacco demonstrated that PaOMT1 is directed to the plastids. PaOMT1 may represent an ancestral form of higher plant true CCoAOMT and CCoAOMT-like enzymes. This is the first time an O-methyltransferase was characterized in liverworts.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu Zhao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu-Ying Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dan-Dan Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
231
|
Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genet 2015; 11:e1005471. [PMID: 26393916 PMCID: PMC4579128 DOI: 10.1371/journal.pgen.1005471] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/27/2015] [Indexed: 01/17/2023] Open
Abstract
Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, blue-copper-binding protein (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance.
Collapse
Affiliation(s)
- Hongtao Ji
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Youning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Catherine Cloix
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Kexue Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gareth I. Jenkins
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Shuangfeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhonglin Shang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yiting Shi
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuhua Yang
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
232
|
Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress. Genes (Basel) 2015; 6:901-17. [PMID: 26393655 PMCID: PMC4584335 DOI: 10.3390/genes6030901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
4-Coumarate:CoA ligase (4CL) genes are critical for the biosynthesis of plant phenylpropanoids. Here we identified 20 4CL genes in the genomes of two desert poplars (Populus euphratica and P. pruinosa) and salt-sensitive congener (P. trichocarpa), but 12 in Salix suchowensis (Salix willow). Phylogenetic analyses clustered all Salicaceae 4CL genes into two clades, and one of them (corresponding to the 4CL-like clade from Arabidopsis) showed signals of adaptive evolution, with more genes retained in Populus than Salix and Arabidopsis. We also found that 4CL12 (in 4CL-like clade) showed positive selection along the two desert poplar lineages. Transcriptional profiling analyses indicated that the expression of 4CL2, 4CL11, and 4CL12 changed significantly in one or both desert poplars in response to salt stress compared to that of in P. trichocarpa. Our results suggest that the evolution of the 4CL genes may have contributed to the development of salt tolerance in the two desert poplars.
Collapse
|
233
|
Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) Codd). Molecules 2015; 20:16833-51. [PMID: 26389875 PMCID: PMC6332037 DOI: 10.3390/molecules200916833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
Phenylalanine ammonia-lyase (PAL) is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L.) Codd), a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1), suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins) biosynthesis in Coleus at the molecular level.
Collapse
|
234
|
Pietrowska-Borek M, Nuc K, Guranowski A. Exogenous adenosine 5'-phosphoramidate behaves as a signal molecule in plants; it augments metabolism of phenylpropanoids and salicylic acid in Arabidopsis thaliana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:144-152. [PMID: 26079287 DOI: 10.1016/j.plaphy.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Katarzyna Nuc
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Andrzej Guranowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| |
Collapse
|
235
|
Noda S, Koshiba T, Hattori T, Yamaguchi M, Suzuki S, Umezawa T. The expression of a rice secondary wall-specific cellulose synthase gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/63. PLANTA 2015; 242:589-600. [PMID: 26070439 DOI: 10.1007/s00425-015-2343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
A rice MYB transcription factor, OsMYB58/63, was found to directly upregulate the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 ( OsCesA7 ); in contrast, the Arabidopsis putative orthologs AtMYB58 and AtMYB63 have been shown to specifically activate lignin biosynthesis. Although indirect evidence has shown that grass plants are similar to but partially different from dicotyledonous ones in transcriptional regulation of lignocellulose biosynthesis, little is known about the differences. This study showed that a rice MYB transcription factor, OsMYB58/63, directly upregulated the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 (OsCesA7). Gene co-expression analysis showed that, in rice, OsMYB58/63 and several rice MYB genes were co-expressed with genes encoding lignocellulose biosynthetic enzymes. The expression levels of OsMYB55/61, OsMYB55/61-L, OsMYB58/63, and OsMYB42/85 were commonly found to be high in culm internodes and nodes. All four MYB transcription factors functioned as transcriptional activators in yeast cells. OsMYB58/63 most strongly transactivated the expression of OsCesA7 in rice protoplasts. Moreover, recombinant OsMYB58/63 protein was bound to two distinct cis-regulatory elements, AC-II and SMRE3, in the OsCesA7 promoter. This is in sharp contrast to the role of Arabidopsis orthologs, AtMYB58 and AtMYB63, which had been reported to specifically activate lignin biosynthesis. The promoter analysis revealed that AC elements, which are the binding sites for MYB58 and MYB63, were lacking in cellulose and xylan biosynthetic genes in Arabidopsis, but present in cellulose, xylan, and lignin biosynthetic genes in rice, implying that the difference of transcriptional regulation between rice and Arabidopsis is due to the distinct composition of promoters. Our results provide a new insight into transcriptional regulation in grass lignocellulose biosynthesis.
Collapse
Affiliation(s)
- Soichiro Noda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
236
|
Vicentini R, Bottcher A, Brito MDS, dos Santos AB, Creste S, Landell MGDA, Cesarino I, Mazzafera P. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content. PLoS One 2015; 10:e0134909. [PMID: 26241317 PMCID: PMC4524650 DOI: 10.1371/journal.pone.0134909] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022] Open
Abstract
Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome.
Collapse
Affiliation(s)
- Renato Vicentini
- Systems Biology Laboratory, Centre for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
- * E-mail:
| | - Alexandra Bottcher
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Michael dos Santos Brito
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Silvana Creste
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
237
|
Tang X, Zhuang Y, Qi G, Wang D, Liu H, Wang K, Chai G, Zhou G. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci Rep 2015; 5:12240. [PMID: 26179205 PMCID: PMC4503951 DOI: 10.1038/srep12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Zhuang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huanhuan Liu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kairong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
238
|
Ma QH, Luo HR. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat. PLANTA 2015; 242:113-22. [PMID: 25854602 DOI: 10.1007/s00425-015-2295-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/30/2015] [Indexed: 05/09/2023]
Abstract
TaCCoAOMT1 is located in wheat chromosome 7A and highly expressed in stem and root. It is important for lignin biosynthesis, and associated with stem maturity but not lodging resistance. Caffeoyl coenzyme A 3-O-methyltransferases (CCoAOMTs) are one important class of enzymes to carry out the transfer of the methyl group from S-adenosylmethionine to the hydroxyl group, and play important roles in lignin and flavonoids biosynthesis. In the present study, sequences for CCoAOMT from the wheat genome were analyzed. One wheat CCoAOMT that belonged to bona fide subclade involved in lignin biosynthesis, namely TaCCoAOMT1, was obtained by the prokaryotic expression in E. coli. The three-dimensional structure prediction showed a highly similar structure of TaCCoAOMT1 with MsCCoAOMT. Recombinant TaCCoAOMT1 protein could only use caffeoyl CoA and 5-hydroxyferuloyl CoA as effective substrates and caffeoyl CoA as the best substrate. TaCCoAOMT1 had a narrow optimal pH and thermal stability. The TaCCoAOMT1 gene was highly expressed in wheat stem and root tissues, paralleled CCoAOMT enzyme activity. TaCCoAOMT1 mRNA abundance and enzyme activity increased linearly with stem maturity, but showed little difference between wheat lodging-resistant (H4546) and lodging-sensitive (C6001) cultivars in elongation, heading and milky stages. These data suggest that TaCCoAOMT1 is an important CCoAOMT for lignin biosynthesis that is critical for stem development, but not directly associated with lodging-resistant trait in wheat.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China,
| | | |
Collapse
|
239
|
van Parijs FRD, Ruttink T, Boerjan W, Haesaert G, Byrne SL, Asp T, Roldán-Ruiz I, Muylle H. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:877-92. [PMID: 25683375 DOI: 10.1111/plb.12316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.
Collapse
Affiliation(s)
- F R D van Parijs
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - T Ruttink
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - W Boerjan
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - G Haesaert
- Faculty Bioscience Engineering, Department of Applied Biosciences, Ghent University, Gent, Belgium
| | - S L Byrne
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - T Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - I Roldán-Ruiz
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - H Muylle
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| |
Collapse
|
240
|
Fornalé S, Rencoret J, Garcia-Calvo L, Capellades M, Encina A, Santiago R, Rigau J, Gutiérrez A, Del Río JC, Caparros-Ruiz D. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:272-82. [PMID: 26025540 DOI: 10.1016/j.plantsci.2015.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 05/21/2023]
Abstract
Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves.
Collapse
Affiliation(s)
- Silvia Fornalé
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | | | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Universidad de León, 24071 León, Spain.
| | - Rogelio Santiago
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO) (unidad asociada a la Misión Biológica de Galicia, CSIC), Dpto. Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, Campus As Lagoas Marcosende, 36310, Vigo, Spain.
| | - Joan Rigau
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | - José-Carlos Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | - David Caparros-Ruiz
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| |
Collapse
|
241
|
Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JAP, Grima-Pettenati J. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. THE NEW PHYTOLOGIST 2015; 206:1297-313. [PMID: 25684249 DOI: 10.1111/nph.13313] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.
Collapse
Affiliation(s)
- Victor Carocha
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia de Química Biológica (ITQB), Biotecnologia de Células Vegetais, Av. da República, 2781-157, Oeiras, Portugal
- Instituto de Investigação Científica e Tropical (IICT/MNE), Palácio Burnay, Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Marçal Soler
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Hua Cassan-Wang
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Pedro Fevereiro
- Instituto de Tecnologia de Química Biológica (ITQB), Biotecnologia de Células Vegetais, Av. da República, 2781-157, Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Campo Grande, 1749-016, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Jorge A P Paiva
- Instituto de Investigação Científica e Tropical (IICT/MNE), Palácio Burnay, Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Jacqueline Grima-Pettenati
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
242
|
Zhang W, Wei R, Chen S, Jiang J, Li H, Huang H, Yang G, Wang S, Wei H, Liu G. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis. PHYSIOLOGIA PLANTARUM 2015; 154:283-96. [PMID: 25393559 DOI: 10.1111/ppl.12306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/23/2014] [Accepted: 11/02/2014] [Indexed: 05/02/2023]
Abstract
We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Rui Wei
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
- Harbin Research Institute of Forestry Machinery, State Forestry Administration, Harbin, 150086, China
| | - Su Chen
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jing Jiang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Huiyu Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Haijiao Huang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Guang Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Shuo Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Hairong Wei
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Guifeng Liu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
243
|
Labeeuw L, Martone PT, Boucher Y, Case RJ. Ancient origin of the biosynthesis of lignin precursors. Biol Direct 2015; 10:23. [PMID: 25994183 PMCID: PMC4455696 DOI: 10.1186/s13062-015-0052-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/31/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. To determine the taxonomic distribution of the lignin biosynthesis genes, we screened all publicly available genomes of algae and their closest non-photosynthetic relatives, as well as representative land plants. We also performed phylogenetic analysis of these genes to decipher the evolution and origin(s) of lignin biosynthesis. RESULTS Enzymes involved in making p-coumaryl alcohol, the simplest lignin monomer, are found in a variety of photosynthetic eukaryotes, including diatoms, dinoflagellates, haptophytes, cryptophytes as well as green and red algae. Phylogenetic analysis of these enzymes suggests that they are ancient and spread to some secondarily photosynthetic lineages when they acquired red and/or green algal endosymbionts. In some cases, one or more of these enzymes was likely acquired through lateral gene transfer (LGT) from bacteria. CONCLUSIONS Genes associated with p-coumaryl alcohol biosynthesis are likely to have evolved long before the transition of photosynthetic eukaryotes to land. The original function of this lignin precursor is therefore unlikely to have been related to water transport. We suggest that it participates in the biological defense of some unicellular and multicellular algae.
Collapse
Affiliation(s)
- Leen Labeeuw
- Department of Biological Sciences, University of Alberta, Edmonton, AB, , T6G 2E9, , Canada.
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British, Columbia, BC, , V6T 1Z4, , Canada.
| | - Yan Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, , T6G 2E9, , Canada.
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, , T6G 2E9, , Canada.
| |
Collapse
|
244
|
Li Y, Wang X, Chen T, Yao F, Li C, Tang Q, Sun M, Sun G, Hu S, Yu J, Song S. RNA-Seq Based De Novo Transcriptome Assembly and Gene Discovery of Cistanche deserticola Fleshy Stem. PLoS One 2015; 10:e0125722. [PMID: 25938435 PMCID: PMC4418726 DOI: 10.1371/journal.pone.0125722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/18/2015] [Indexed: 11/19/2022] Open
Abstract
Backgrounds Cistanche deserticola is a completely non-photosynthetic parasitic plant with great medicinal value and mainly distributed in desert of Northwest China. Its dried fleshy stem is a crucial tonic in traditional Chinese medicine with roles of mainly improving male sexual function and strengthening immunity, but few mechanistic studies have been conducted partly due to the lack of genomic and transcriptomic resources. Results In this study, we performed deep transcriptome sequencing in fleshy stem of C. deserticola, and about 80 million reads were generated using Illumina pair-end sequencing on HiSeq2000 platform. Using trinity assembler, we obtained 95,787 transcript sequences with transcript lengths ranging from 200bp to 15,698bp, having an average length of 950 bases and the N50 length of 1,519 bases. 63,957 transcripts were identified actively expressed with FPKM ≥ 0.5, in which 30,098 transcripts were annotated with gene descriptions or gene ontology terms by sequence similarity analyses against several public databases (Uniprot, NR and Nt at NCBI, and KEGG). Furthermore, we identified key enzyme genes involved in biosynthesis of lignin and phenylethanoid glycosides (PhGs) which are known to be the primary active ingredients. Four phenylalanine ammonia-lyase (PAL) genes, the first key enzyme in lignin and PhG biosynthesis, were identified based on sequences comparison and phylogenetic analysis. Two biosynthesis pathways of PhGs were also proposed for the first time. Conclusions In all, we completed a global analysis of the C. deserticola fleshy stem transcriptome using RNA-seq technology. A collection of enzyme genes related to biosynthesis of lignin and phenylethanoid glysides were identified from the assembled and annotated transcripts, and the gene family of PAL was also predicted. The sequence data from this study will provide a valuable resource for conducting future phenylethanoid glysides biosynthesis researches and functional genomic studies in this important medicinal plant.
Collapse
Affiliation(s)
- Yuli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Yao
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuiping Li
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qingli Tang
- HongKui CongRong Group, Alashan, Inner Mongolia, China
| | - Min Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Gaoyuan Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
245
|
Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:514-25. [PMID: 25418842 DOI: 10.1111/pbi.12276] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 05/03/2023]
Abstract
Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.
Collapse
Affiliation(s)
- Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Kim JI, Dolan WL, Anderson NA, Chapple C. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. THE PLANT CELL 2015; 27:1529-46. [PMID: 25944103 PMCID: PMC4456644 DOI: 10.1105/tpc.15.00127] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/05/2015] [Accepted: 04/20/2015] [Indexed: 05/17/2023]
Abstract
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Whitney L Dolan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nickolas A Anderson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
247
|
Tang R, Zhang XQ, Li YH, Xie XM. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 2015; 93:145-58. [PMID: 24840831 DOI: 10.1007/s12041-014-0355-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.
Collapse
Affiliation(s)
- Ran Tang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | | | | | | |
Collapse
|
248
|
Fujimoto T, Mizukubo T, Abe H, Seo S. Sclareol induces plant resistance to root-knot nematode partially through ethylene-dependent enhancement of lignin accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:398-407. [PMID: 25423264 DOI: 10.1094/mpmi-10-14-0320-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN) is one of the most devastating parasitic nematodes of plants. Although some secondary metabolites released by the host plant play roles as defense substances against parasitic nematodes, the mechanism underlying the induction of such defense responses is not fully understood. We found that sclareol, a natural diterpene known as an antimicrobial and defense-related molecule, inhibited RKN penetration of tomato and Arabidopsis roots. Sclareol induced genes related to ethylene (ET) biosynthesis and signaling and phenylpropanoid metabolism in Arabidopsis roots. In roots of ein2-1, an ET-insensitive mutant line, both sclareol-induced inhibition of RKN penetration and sclareol-induced enhancement of lignin accumulation were abolished. A mutant defective in lignin accumulation did not exhibit such inhibition. Sclareol also activated MPK3 and MPK6, Arabidopsis mitogen-activated protein kinases whose activation is required for triggering ET biosynthesis. Sclareol-induced inhibition of RKN penetration was exhibited by mutants of neither MPK3 nor MPK6. Treatment with a biosynthetic precursor of ET was insufficient compared with sclareol treatment to inhibit RKN penetration, suggesting the existence of an ET-independent signaling pathway leading to RKN resistance. These results suggested that sclareol induced resistance to RKN penetration partially through ET-dependent accumulation of lignin in roots.
Collapse
Affiliation(s)
- Taketo Fujimoto
- 1 National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | | | | | | |
Collapse
|
249
|
Wang B, Sun W, Li Q, Li Y, Luo H, Song J, Sun C, Qian J, Zhu Y, Hayward A, Xu H, Chen S. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. PLANTA 2015; 241:711-25. [PMID: 25471478 DOI: 10.1007/s00425-014-2212-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/23/2014] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Twenty-nine genes related to phenolic acid biosynthesis were identified in the Salvia miltiorrhiza genome. Nineteen of these are described for the first time, with ten genes experimentally correlating to phenolic acid biosynthesis. Vast stores of secondary metabolites exist in plants, many of which possess biological activities related to human health. Phenolic acid derivatives are a class of valuable bioactive pharmaceuticals abundant in the widely used Chinese medicinal herb, Salvia miltiorrhiza. The biosynthetic pathway for phenolic acids differs in this species from that of other investigated plants. However, the molecular basis for this is unknown, with systematic analysis of the genes involved not yet performed. As the first step towards unraveling this complex biosynthetic pathway in S. miltiorrhiza, the current genome assembly was searched for putatively involved genes. Twenty-nine genes were revealed, 19 of which are described here for the first time. These include 15 genes predicted in the phenylpropanoid pathway; seven genes in the tyrosine-derived pathway; six genes encoding putative hydroxycinnamoyltransferases, and one CYP98A, namely CYP98A78. The promoter regions, gene structures and expression patterns of these genes were examined. Furthermore, conserved domains and phylogenetic relationships with homologous proteins in other species were revealed. Most of the key enzymes, including 4-coumarate: CoA ligase, 4-hydroxyphenylpyruvate reductase and hydroxycinnamoyltransferase, were found in multiple copies, each exhibiting different characteristics. Ten genes putatively involved in rosmarinic acid biosynthesis are also described. These findings provide a foundation for further analysis of this complex and diverse pathway, with potential to enhance the synthesis of water-soluble medicinal compounds in S. miltiorrhiza.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Chakraborty A, Sarkar D, Satya P, Karmakar PG, Singh NK. Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genomics 2015; 290:1523-42. [PMID: 25724692 DOI: 10.1007/s00438-015-1013-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/15/2015] [Indexed: 01/09/2023]
Abstract
We generated the bast transcriptomes of a deficient lignified phloem fibre mutant and its wild-type jute (Corchorus capsularis) using Illumina paired-end sequencing. A total of 34,163 wild-type and 29,463 mutant unigenes, with average lengths of 1442 and 1136 bp, respectively, were assembled de novo, ~77-79 % of which were functionally annotated. These annotated unigenes were assigned to COG (~37-40 %) and GO (~22-28 %) classifications and mapped to 189 KEGG pathways (~19-21 %). We discovered 38 and 43 isoforms of 16 and 10 genes of the upstream shikimate-aromatic amino acid and downstream monolignol biosynthetic pathways, respectively, rendered their sequence similarities, confirmed the identities of 22 of these candidate gene families by phylogenetic analyses and reconstructed the pathway leading to lignin biosynthesis in jute fibres. We also identified major genes and bast-related transcription factors involved in secondary cell wall (SCW) formation. The quantitative RT-PCRs revealed that phenylalanine ammonia-lyase 1 (CcPAL1) was co-down-regulated with several genes of the upstream shikimate pathway in mutant bast tissues at an early growth stage, although its expression relapsed to the normal level at the later growth stage. However, cinnamyl alcohol dehydrogenase 7 (CcCAD7) was strongly down-regulated in mutant bast tissues irrespective of growth stages. CcCAD7 disruption at an early growth stage was accompanied by co-up-regulation of SCW-specific genes cellulose synthase A7 (CcCesA7) and fasciclin-like arabinogalactan 6 (CcFLA6), which was predicted to be involved in coordinating the S-layers' deposition in the xylan-type jute fibres. Our results identified CAD as a promising target for developing low-lignin jute fibres using genomics-assisted molecular approaches.
Collapse
Affiliation(s)
- Avrajit Chakraborty
- Biotechnology Unit, Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata, 700 120, West Bengal, India
| | | | | | | | | |
Collapse
|