201
|
Betekhtin A, Rojek M, Milewska-Hendel A, Gawecki R, Karcz J, Kurczynska E, Hasterok R. Spatial Distribution of Selected Chemical Cell Wall Components in the Embryogenic Callus of Brachypodium distachyon. PLoS One 2016; 11:e0167426. [PMID: 27893856 PMCID: PMC5125709 DOI: 10.1371/journal.pone.0167426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic callus in this species is missing. Therefore, using the immunocytochemical approach, we targeted 17 different antigens of which five were against the arabinogalactan proteins (AGP), three were against extensins, six recognised pectic epitopes and two recognised hemicelluloses. These studies were complemented by histological and scanning electron microscopy (SEM) analyses. We revealed that the characteristic cell wall components of Brachypodium embryogenic calli are AGP epitopes that are recognised by the JIM16 and LM2 antibodies, an extensin epitope that is recognised by the JIM11 antibody and a pectic epitopes that is recognised by the LM6 antibody. Furthermore, we demonstrated that AGPs and pectins are the components of the extracellular matrix network in Brachypodium embryogenic culture. Additionally, SEM analysis demonstrated the presence of an extracellular matrix on the surface of the calli cells. In conclusion, the chemical compositions of the cell walls and ECMSN of Brachypodium callus show spatial differences that correlate with the embryogenic character of the cells. Thus, the distribution of pectins, AGPs and hemicelluloses can be used as molecular markers of embryogenic cells. The presented data extends the knowledge about the chemical composition of the embryogenic callus cells of Brachypodium.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Gawecki
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
202
|
Yoshimi Y, Sugawara Y, Hori C, Igarashi K, Kaneko S, Tsumuraya Y, Kotake T. A protease/peptidase from culture medium of Flammulina velutipes that acts on arabinogalactan-protein. Biosci Biotechnol Biochem 2016; 81:475-481. [PMID: 27884087 DOI: 10.1080/09168451.2016.1258985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arabinogalactan-proteins (AGPs) are highly diverse plant proteoglycans found on the plant cell surface. AGPs have large arabinogalactan (AG) moieties attached to a core-protein rich in hydroxyproline (Hyp). The AG undergoes hydrolysis by various glycoside hydrolases, most of which have been identified, whereas the core-proteins is presumably degraded by unknown proteases/peptidases secreted from fungi and bacteria in nature. Although several enzymes hydrolyzing other Hyp-rich proteins are known, the enzymes acting on the core-proteins of AGPs remain to be identified. The present study describes the detection of protease/peptidase activity toward AGP core-proteins in the culture medium of winter mushroom (Flammulina velutipes) and partial purification of the enzyme by several conventional chromatography steps. The enzyme showed higher activity toward Hyp residues than toward proline and alanine residues and acted on core-proteins prepared from gum arabic. Since the activity was inhibited in the presence of Pefabloc SC, the enzyme is probably a serine protease.
Collapse
Affiliation(s)
- Yoshihisa Yoshimi
- a Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Yumi Sugawara
- b Faculty of Science, Department of Biochemistry and Molecular Biology , Saitama University , Saitama , Japan
| | - Chiaki Hori
- c Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Kiyohiko Igarashi
- d Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Satoshi Kaneko
- e Faculty of Agriculture , University of the Ryukyus , Nishinohara-cho , Japan
| | - Yoichi Tsumuraya
- a Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Toshihisa Kotake
- a Graduate School of Science and Engineering , Saitama University , Saitama , Japan.,f Institute for Environmental Science and Technology , Saitama University , Saitama , Japan
| |
Collapse
|
203
|
Pillitteri LJ, Guo X, Dong J. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination. Cell Mol Life Sci 2016; 73:4213-4229. [PMID: 27286799 PMCID: PMC5522748 DOI: 10.1007/s00018-016-2290-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
Asymmetric cell division is a fundamental mechanism that generates cell diversity while maintaining self-renewing stem cell populations in multicellular organisms. Both intrinsic and extrinsic mechanisms underpin symmetry breaking and differential daughter cell fate determination in animals and plants. The emerging picture suggests that plants deal with the problem of symmetry breaking using unique cell polarity proteins, mobile transcription factors, and cell wall components to influence asymmetric divisions and cell fate. There is a clear role for altered auxin distribution and signaling in distinguishing two daughter cells and an emerging role for epigenetic modifications through chromatin remodelers and DNA methylation in plant cell differentiation. The importance of asymmetric cell division in determining final plant form provides the impetus for its study in the areas of both basic and applied science.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
204
|
Zavaliev R, Dong X, Epel BL. Glycosylphosphatidylinositol (GPI) Modification Serves as a Primary Plasmodesmal Sorting Signal. PLANT PHYSIOLOGY 2016; 172:1061-1073. [PMID: 27559035 PMCID: PMC5047108 DOI: 10.1104/pp.16.01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated β-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal. However, the subcellular targeting mechanism of these proteins is unknown, particularly in the context of other GPI-APs not associated with Pd Here, we conducted a comparative analysis of the subcellular targeting of the two Pd-resident and two unrelated non-Pd GPI-APs in Arabidopsis (Arabidopsis thaliana). We show that GPI modification is necessary and sufficient for delivering both BG_pap and PDCB1 to Pd Moreover, the GPI modification signal from both Pd- and non-Pd GPI-APs is able to target a reporter protein to Pd, likely to plasma membrane microdomains enriched at Pd As such, the GPI modification serves as a primary Pd sorting signal in plant cells. Interestingly, the ectodomain, a region that carries the functional domain in GPI-APs, in Pd-resident proteins further enhances Pd accumulation. However, in non-Pd GPI-APs, the ectodomain overrides the Pd targeting function of the GPI signal and determines a specific GPI-dependent non-Pd localization of these proteins at the plasma membrane and cell wall. Domain-swap analysis showed that the non-Pd localization is also dominant over the Pd-enhancing function mediated by a Pd ectodomain. In conclusion, our results indicate that segregation between Pd- and non-Pd GPI-APs occurs prior to Pd targeting, providing, to our knowledge, the first evidence of the mechanism of GPI-AP sorting in plants.
Collapse
Affiliation(s)
- Raul Zavaliev
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| | - Xinnian Dong
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| | - Bernard L Epel
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| |
Collapse
|
205
|
Structural and immunological feature of rhamnogalacturonan I-rich polysaccharide from Korean persimmon vinegar. Int J Biol Macromol 2016; 89:319-27. [DOI: 10.1016/j.ijbiomac.2016.04.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
|
206
|
Pogorelko GV, Reem NT, Young ZT, Chambers L, Zabotina OA. Post-Synthetic Defucosylation of AGP by Aspergillus nidulans α-1,2-Fucosidase Expressed in Arabidopsis Apoplast Induces Compensatory Upregulation of α-1,2-Fucosyltransferases. PLoS One 2016; 11:e0159757. [PMID: 27448235 PMCID: PMC4957772 DOI: 10.1371/journal.pone.0159757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.
Collapse
Affiliation(s)
- Gennady V. Pogorelko
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 3212 MMB, Ames, IA, United States of America
- Department of Plant Pathology and Microbiology, Iowa State University, 219 Bessey Hall, Ames, IA, United States of America
| | - Nathan T. Reem
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 3212 MMB, Ames, IA, United States of America
| | - Zachary T. Young
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 3212 MMB, Ames, IA, United States of America
| | - Lauran Chambers
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 3212 MMB, Ames, IA, United States of America
| | - Olga A. Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 3212 MMB, Ames, IA, United States of America
| |
Collapse
|
207
|
Protein Dynamics in the Plant Extracellular Space. Proteomes 2016; 4:proteomes4030022. [PMID: 28248232 PMCID: PMC5217353 DOI: 10.3390/proteomes4030022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in "cell wall organization and biogenesis", "response to stimulus" and "protein metabolism". It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.
Collapse
|
208
|
Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides. Carbohydr Polym 2016; 152:149-155. [PMID: 27516259 DOI: 10.1016/j.carbpol.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022]
Abstract
Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration.
Collapse
|
209
|
Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf. Int J Biol Macromol 2016; 87:308-16. [DOI: 10.1016/j.ijbiomac.2016.02.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
|
210
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
211
|
Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proc Natl Acad Sci U S A 2016; 113:E3193-202. [PMID: 27217558 DOI: 10.1073/pnas.1600406113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.
Collapse
|
212
|
Pacheco-Villalobos D, Díaz-Moreno SM, van der Schuren A, Tamaki T, Kang YH, Gujas B, Novak O, Jaspert N, Li Z, Wolf S, Oecking C, Ljung K, Bulone V, Hardtke CS. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium. THE PLANT CELL 2016; 28:1009-24. [PMID: 27169463 PMCID: PMC4904674 DOI: 10.1105/tpc.15.01057] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/02/2016] [Indexed: 05/02/2023]
Abstract
The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.
Collapse
Affiliation(s)
| | - Sara M Díaz-Moreno
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Alja van der Schuren
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Takayuki Tamaki
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Yeon Hee Kang
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bojan Gujas
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ondrej Novak
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Nina Jaspert
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany
| | - Zhenni Li
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claudia Oecking
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
213
|
Dion C, Chappuis E, Ripoll C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr Metab (Lond) 2016; 13:28. [PMID: 27073407 PMCID: PMC4828828 DOI: 10.1186/s12986-016-0086-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
The common cold is a viral infection with important economic burdens in Western countries. The research and development of nutritional solutions to reduce the incidence and severity of colds today is a major focus of interest, and larch arabinogalactan seems to be a promising supportive agent. Arabinogalactan has been consumed by humans for thousands of years and is found in a variety of common vegetables as well as in medicinal herbs. The major commercial sources of this long, densely branched, high-molecular-weight polysaccharide are North American larch trees. The aim of this article is to review the immunomodulatory effects of larch arabinogalactan derived from Larix laricina and Larix occidentalis (North American Larix species) and more specifically its role in the resistance to common cold infections. In cell and animal models, larch arabinogalactan is capable of enhancing natural killer cells and macrophages as well as the secretion of pro-inflammatory cytokines. In humans a clinical study demonstrated that larch arabinogalactan increased the body’s potential to defend against common cold infection. Larch arabinogalactan decreased the incidence of cold episodes by 23 %. Improvements of serum antigen-specific IgG and IgE response to Streptococcus pneumoniae and tetanus vaccination suggesting a B cell dependent mechanism have been reported in vaccination studies with larch arabinogalactan, while the absence of response following influenza vaccination suggests the involvement of a T cell dependent mechanism. These observations suggest a role for larch arabinogalactan in the improvement of cold infections, although the mode of action remains to be further explored. Different hypotheses can be envisaged as larch arabinogalactan can possibly act indirectly through microbiota-dependent mechanisms and/or have a direct effect on the immune system via the gut-associated lymphoid tissue (GALT).
Collapse
Affiliation(s)
- Carine Dion
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| | - Eric Chappuis
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| | - Christophe Ripoll
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| |
Collapse
|
214
|
Kim SJ, Brandizzi F. The plant secretory pathway for the trafficking of cell wall polysaccharides and glycoproteins. Glycobiology 2016; 26:940-949. [PMID: 27072815 DOI: 10.1093/glycob/cww044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/03/2016] [Indexed: 01/22/2023] Open
Abstract
Plant endomembranes are required for the biosynthesis and secretion of complex cell wall matrix polysaccharides, glycoproteins and proteoglycans. To define the biochemical roadmap that guides the synthesis and deposition of these cell wall components it is first necessary to outline the localization of the biosynthetic and modifying enzymes involved, as well as the distribution of the intermediate and final constituents of the cell wall. Thus far, a comprehensive understanding of cell wall matrix components has been hampered by the multiplicity of trafficking routes in the secretory pathway, and the diverse biosynthetic roles of the endomembrane organelles, which may exhibit tissue and development specific features. However, the recent identification of protein complexes producing matrix polysaccharides, and those supporting the synthesis and distribution of a grass-specific hemicellulose are advancing our understanding of the functional contribution of the plant secretory pathway in cell wall biosynthesis. In this review, we provide an overview of the plant membrane trafficking routes and report on recent exciting accomplishments in the understanding of the mechanisms underlying secretion with focus on cell wall synthesis in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
215
|
Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garénaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T. The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Curr Biol 2016; 26:1091-7. [PMID: 27068416 DOI: 10.1016/j.cub.2016.02.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 01/26/2023]
Abstract
Precise directional control of pollen-tube growth by pistil tissue is critical for successful fertilization of flowering plants [1-3]. Ovular attractant peptides, which are secreted from two synergid cells on the side of the egg cell, have been identified [4-6]. Emerging evidence suggests that the ovular directional cue is not sufficient for successful guidance but that competency control by the pistil is critical for the response of pollen tubes to the attraction signal [1, 3, 7]. However, the female molecule for this competency induction has not been reported. Here we report that ovular methyl-glucuronosyl arabinogalactan (AMOR) induces competency of the pollen tube to respond to ovular attractant LURE peptides in Torenia fournieri. We developed a method for assaying the response capability of a pollen tube by micromanipulating an ovule. Using this method, we showed that pollen tubes growing through a cut style acquired a response capability in the medium by receiving a sufficient amount of a factor derived from mature ovules of Torenia. This factor, named AMOR, was identified as an arabinogalactan polysaccharide, the terminal 4-O-methyl-glucuronosyl residue of which was necessary for its activity. Moreover, a chemically synthesized disaccharide, the β isomer of methyl-glucuronosyl galactose (4-Me-GlcA-β-(1→6)-Gal), showed AMOR activity. No specific sugar-chain structure of plant extracellular matrix has been identified as a bioactive molecule involved in intercellular communication. We suggest that the AMOR sugar chain in the ovary renders the pollen tube competent to the chemotropic response prior to final guidance by LURE peptides.
Collapse
Affiliation(s)
- Akane G Mizukami
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Rie Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiao Jiao
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kento Ootani
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satohiro Okuda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Maruyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Estelle Garénaux
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoichi Tsumuraya
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Junichiro Yamaguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Narie Sasaki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
216
|
Knox P. Delving in the deep for the origin of plant cell surface proteoglycans. THE NEW PHYTOLOGIST 2016; 209:1341-3. [PMID: 26840249 DOI: 10.1111/nph.13862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
217
|
Hervé C, Siméon A, Jam M, Cassin A, Johnson KL, Salmeán AA, Willats WGT, Doblin MS, Bacic A, Kloareg B. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. THE NEW PHYTOLOGIST 2016; 209:1428-41. [PMID: 26667994 DOI: 10.1111/nph.13786] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.
Collapse
Affiliation(s)
- Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Amandine Siméon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Murielle Jam
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Andrew Cassin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Armando A Salmeán
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| |
Collapse
|
218
|
Makarova EN, Shakhmatov EG, Udoratina EV, Kutchin AV. Structural and chemical charactertistics of pectins, arabinogalactans, and arabinogalactan proteins from conifers. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1011-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
219
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
220
|
Pitzschke A, Xue H, Persak H, Datta S, Seifert GJ. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis. Int J Mol Sci 2016; 17:E85. [PMID: 26771603 PMCID: PMC4730328 DOI: 10.3390/ijms17010085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunner Strasse 34, Salzburg A-5020, Austria.
| | - Hui Xue
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Sneha Datta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Georg J Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
221
|
Basu D, Tian L, Debrosse T, Poirier E, Emch K, Herock H, Travers A, Showalter AM. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. PLoS One 2016; 11:e0145092. [PMID: 26731606 PMCID: PMC4701510 DOI: 10.1371/journal.pone.0145092] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022] Open
Abstract
Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.
Collapse
Affiliation(s)
- Debarati Basu
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Lu Tian
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Tayler Debrosse
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Emily Poirier
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Kirk Emch
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Hayley Herock
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Andrew Travers
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701–2979, United States of America
| |
Collapse
|
222
|
Shakhmatov EG, Atukmaev KV, Makarova EN. Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden. Carbohydr Polym 2016; 136:1358-69. [DOI: 10.1016/j.carbpol.2015.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023]
|
223
|
|
224
|
Zang L, Zheng T, Chu Y, Ding C, Zhang W, Huang Q, Su X. Genome-Wide Analysis of the Fasciclin-Like Arabinogalactan Protein Gene Family Reveals Differential Expression Patterns, Localization, and Salt Stress Response in Populus. FRONTIERS IN PLANT SCIENCE 2015; 6:1140. [PMID: 26779187 PMCID: PMC4688393 DOI: 10.3389/fpls.2015.01140] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 05/07/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) involved in plant growth, development and response to abiotic stress. Although many studies have been performed to identify molecular functions of individual family members, little information is available on genome-wide identification and characterization of FLAs in the genus Populus. Based on genome-wide analysis, we have identified 35 Populus FLAs which were distributed on 16 chromosomes and phylogenetically clustered into four major groups. Gene structure and motif composition were relatively conserved in each group. All the members contained N-terminal signal peptide, 23 of which included predicted glycosylphosphatidylinositol (GPI) modification sites and were anchored to plasma membranes. Subcellular localization analysis showed that PtrFLA2/20/26 were localized in cell membrane and cytoplasm of protoplasts from Populus stem-differentiating xylem. The Ka/Ks ratios showed that purifying selection has played a leading role in the long-term evolutionary period which greatly maintained the function of this family. The expression profiles showed that 32 PtrFLAs were differentially expressed in four tissues at four seasons based on publicly available microarray data. 18 FLAs were further verified with qRT-PCR in different tissues, which indicated that PtrFLA1/2/3/7/11/12/20/21/22/24/26/30 were significantly expressed in male and female flowers, suggesting close correlations with the reproductive development. In addition, PtrFLA1/9/10/11/17/21/23/24/26/28 were highly expressed in the stems and differentiating xylem, which may be involved in stem development. To determine salt response of FLAs, qRT-PCR was performed to analyze the expression of 18 genes under salinity stress across two time points. Results demonstrated that all the 18 FLAs were expressed in root tissues; especially, PtrFLA2/12/20/21/24/30 were significantly induced at different time points. In summary, this study may lay the foundation for further investigating the biological functions of FLA genes in Populus trichocarpa.
Collapse
Affiliation(s)
- Lina Zang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry AdministrationBeijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry AdministrationBeijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry AdministrationBeijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry AdministrationBeijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry AdministrationBeijing, China
| |
Collapse
|
225
|
Basu D, Tian L, Wang W, Bobbs S, Herock H, Travers A, Showalter AM. A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:295. [PMID: 26690932 PMCID: PMC4687291 DOI: 10.1186/s12870-015-0670-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/26/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are ubiquitous components of cell walls throughout the plant kingdom and are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of arabinogalactan polysaccharides (AG) to Hyp residues. AGPs are implicated to function in various aspects of plant growth and development, but the functional contributions of AGP glycans remain to be elucidated. Hyp glycosylation is initiated by the action of a set of Hyp-O-galactosyltransferase (Hyp-O-GALT) enzymes that remain to be fully characterized. RESULTS Three members of the GT31 family (GALT3-At3g06440, GALT4-At1g27120, and GALT6-At5g62620) were identified as Hyp-O-GALT genes by heterologous expression in tobacco leaf epidermal cells and examined along with two previously characterized Hyp-O-GALT genes, GALT2 and GALT5. Transcript profiling by real-time PCR of these five Hyp-O-GALTs revealed overlapping but distinct expression patterns. Transiently expressed GALT3, GALT4 and GALT6 fluorescent protein fusions were localized within Golgi vesicles. Biochemical analysis of knock-out mutants for the five Hyp-O-GALT genes revealed significant reductions in both AGP-specific Hyp-O-GALT activity and β-Gal-Yariv precipitable AGPs. Further phenotypic analysis of these mutants demonstrated reduced root hair growth, reduced seed coat mucilage, reduced seed set, and accelerated leaf senescence. The mutants also displayed several conditional phenotypes, including impaired root growth, and defective anisotropic growth of root tips under salt stress, as well as less sensitivity to the growth inhibitory effects of β-Gal-Yariv reagent in roots and pollen tubes. CONCLUSIONS This study provides evidence that all five Hyp-O-GALT genes encode enzymes that catalyze the initial steps of AGP galactosylation and that AGP glycans play essential roles in both vegetative and reproductive plant growth.
Collapse
Affiliation(s)
- Debarati Basu
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Lu Tian
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Wuda Wang
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Shauni Bobbs
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Hayley Herock
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Andrew Travers
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Allan M Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| |
Collapse
|
226
|
Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:876-91. [PMID: 26310290 PMCID: PMC4794635 DOI: 10.1111/jipb.12425] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/23/2015] [Indexed: 05/19/2023]
Abstract
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops. Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops, such as barley and wheat; this will enable increased understanding and manipulation of these pathways for agricultural improvement.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
227
|
Lopez-Torrez L, Nigen M, Williams P, Doco T, Sanchez C. Acacia senegal vs. Acacia seyal gums – Part 1: Composition and structure of hyperbranched plant exudates. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
228
|
L-Fucose-containing arabinogalactan-protein in radish leaves. Carbohydr Res 2015; 415:1-11. [PMID: 26267887 PMCID: PMC4610949 DOI: 10.1016/j.carres.2015.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/13/2015] [Accepted: 07/10/2015] [Indexed: 11/24/2022]
Abstract
The carbohydrate moieties of arabinogalactan-proteins (AGPs) have β-(1 → 3)-galactan backbones to which side chains of (1 → 6)-linked β-Gal residues are attached through O-6. Some of these side chains are further substituted with other sugars. We investigated the structure of L-Fuc-containing oligosaccharides released from the carbohydrate moieties of a radish leaf AGP by digestion with α-L-arabinofuranosidase, followed by exo-β-(1 → 3)-galactanase. We detected a series of neutral β-(1 → 6)-galactooligosaccharides branching variously at O-3 of the Gal residues, together with corresponding acidic derivatives terminating in 4-O-methyl-GlcA (4-Me-GlcA) or GlcA at the non-reducing terminals. In neutral oligosaccharides with degree of polymerization (dp) mainly higher than 10, L-Fuc groups were attached through L-Ara residues as the sequence, α-L-Fucp-(1 → 2)-α-L-Araf-(1 →. This sequence was verified by isolation of the pentasaccharide α-L-Fuc-(1 → 2)-α-L-Araf-(1 → 3)-β-Gal-(1 → 6)-β-Gal-(1 → 6)-Gal upon digestion of the higher oligosaccharides with endo-β-(1 → 6)-galactanase. By contrast, in lower polymerized (predominantly dp 4) acidic oligosaccharides, L-Fuc groups were attached directly at the non-reducing terminals through α-(1 → 2)-linkages, resulting in the release of the tetrasaccharides, α-L-Fucp-(1 → 2)-β-GlcA-(1 → 6)-β-Gal-(1 → 6)-Gal and α-L-Fucp-(1 → 2)-β-4-Me-GlcA-(1 → 6)-β-Gal-(1 → 6)-Gal. In long acidic oligosaccharides with dp mainly higher than 13, L-Fuc groups localized on branches were attached to the uronic acids directly and/or L-Ara residues as in the neutral oligosaccharides.
Collapse
|
229
|
Choudhary P, Saha P, Ray T, Tang Y, Yang D, Cannon MC. EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:553. [PMID: 26257758 PMCID: PMC4510346 DOI: 10.3389/fpls.2015.00553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/06/2015] [Indexed: 05/23/2023]
Abstract
EXTENSINS (EXTs) are a 65-member subfamily of hydroxyproline-rich glycoproteins (HRGPs) of which 20 putatively form crosslinking networks in the cell wall. These 20 classical EXTs are involved at the start of new wall assembly as evidenced by a requirement for EXT3 during cytokinesis, and the ability of some EXTs to polymerize in vitro into dendritic patterns. EXT3 was previously shown to form pulcherosine (three Tyrosines) cross-links. Little direct data exists on the other 19 classical EXTs. Here, we describe the phenotypes of ext18 mutants and rescued progeny as well as associated expression profiles of all 20 classical EXT genes. We found that EXT18 is required for full male fertility, as well as for normal vegetative growth. EXT18 has potential to form crosslinking networks via di-iso-di-tyrosine (four Tyrosines) covalent bonds, and not via pulcherosine due to deficit of lone Tyrosines. This together with ext18 defective pollen grains and pollen tubes, and reduced plant size, suggests that EXT18-type EXTs are important contributors to wall integrity, in pollen and other rapidly extending walls. The data also show that a knockout of EXT18 had a pleiotropic affect on the expression of several EXTs, as did the reintroduction of the native EXT18 gene, thus supporting the thesis that transcription of groups of EXTs are co-regulated and work in different combinations to make distinctive inputs into wall assembly of different cell types. These insights contribute to basic knowledge of cell wall self-assembly in different cell types, and potentially enable biotechnological advances in biomass increase and plant fertility control.
Collapse
Affiliation(s)
- Pratibha Choudhary
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Prasenjit Saha
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Tui Ray
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - David Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Maura C. Cannon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| |
Collapse
|
230
|
Abstract
All cells of an adult plant are ultimately derived from divisions that occur in small groups of cells distributed throughout the plant, termed meristems. A new study shows that carbohydrate post-translational modification of a peptide signal influences meristem and, as a consequence, fruit size in tomato.
Collapse
Affiliation(s)
- Andrew Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
231
|
Yan Y, Takáč T, Li X, Chen H, Wang Y, Xu E, Xie L, Su Z, Šamaj J, Xu C. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress. FRONTIERS IN PLANT SCIENCE 2015; 6:353. [PMID: 26074928 PMCID: PMC4444754 DOI: 10.3389/fpls.2015.00353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/04/2015] [Indexed: 05/25/2023]
Abstract
Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.
Collapse
Affiliation(s)
- Yonglian Yan
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Tomáš Takáč
- Department of Cell Biology, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Xiaoquan Li
- Department of Healthy Seeds, Institute of Biotechnology, Guangxi Academy of Agricultural SciencesNanning, China
| | - Houbin Chen
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yingying Wang
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Enfeng Xu
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Ling Xie
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Zhaohua Su
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jozef Šamaj
- Department of Cell Biology, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Chunxiang Xu
- Department of Pomology, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
232
|
Basu D, Wang W, Ma S, DeBrosse T, Poirier E, Emch K, Soukup E, Tian L, Showalter AM. Two Hydroxyproline Galactosyltransferases, GALT5 and GALT2, Function in Arabinogalactan-Protein Glycosylation, Growth and Development in Arabidopsis. PLoS One 2015; 10:e0125624. [PMID: 25974423 PMCID: PMC4431829 DOI: 10.1371/journal.pone.0125624] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
Hydroxyproline-O-galactosyltransferase (GALT) initiates O-glycosylation of arabinogalactan-proteins (AGPs). We previously characterized GALT2 (At4g21060), and now report on functional characterization of GALT5 (At1g74800). GALT5 was identified using heterologous expression in Pichia and an in vitro GALT assay. Product characterization showed GALT5 specifically adds galactose to hydroxyproline in AGP protein backbones. Functions of GALT2 and GALT5 were elucidated by phenotypic analysis of single and double mutant plants. Allelic galt5 and galt2 mutants, and particularly galt2 galt5 double mutants, demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared to wild type. Mutant plants showed pleiotropic growth and development phenotypes (defects in root hair growth, root elongation, pollen tube growth, flowering time, leaf development, silique length, and inflorescence growth), which were most severe in the double mutants. Conditional mutant phenotypes were also observed, including salt-hypersensitive root growth and root tip swelling as well as reduced inhibition of pollen tube growth and root growth in response to β-Yariv reagent. These mutants also phenocopy mutants for an AGP, SOS5, and two cell wall receptor-like kinases, FEI1 and FEI2, which exist in a genetic signaling pathway. In summary, GALT5 and GALT2 function as redundant GALTs that control AGP O-glycosylation, which is essential for normal growth and development.
Collapse
Affiliation(s)
- Debarati Basu
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Wuda Wang
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Siyi Ma
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Taylor DeBrosse
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Emily Poirier
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Kirk Emch
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Eric Soukup
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Lu Tian
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
- * E-mail:
| |
Collapse
|
233
|
|
234
|
Dobón A, Canet JV, García-Andrade J, Angulo C, Neumetzler L, Persson S, Vera P. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog 2015; 11:e1004800. [PMID: 25830627 PMCID: PMC4382300 DOI: 10.1371/journal.ppat.1004800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Carlos Angulo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria, Australia
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| |
Collapse
|
235
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
236
|
Liu Z, Persson S, Sánchez-Rodríguez C. At the border: the plasma membrane-cell wall continuum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1553-63. [PMID: 25697794 DOI: 10.1093/jxb/erv019] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Clara Sánchez-Rodríguez
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
237
|
Yu L, Yu C, Zhu M, Cao Y, Yang H, Zhang X, Ma Y, Zhou G. Structural analysis of galactoarabinan from duckweed. Carbohydr Polym 2015; 117:807-812. [DOI: 10.1016/j.carbpol.2014.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
|
238
|
Wang H, Jiang C, Wang C, Yang Y, Yang L, Gao X, Zhang H. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1291-302. [PMID: 25428999 PMCID: PMC4339592 DOI: 10.1093/jxb/eru479] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Chunmei Jiang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Lei Yang
- College of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, PR China
| | - Xiaoyan Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Hongxia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| |
Collapse
|
239
|
Ogawa-Ohnishi M, Matsubayashi Y. Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:736-46. [PMID: 25600942 DOI: 10.1111/tpj.12764] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 05/18/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant-specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O-galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O-galactosyltransferases, such that their disruption produces phenocopies of AGP-deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O-galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss-of-function analysis indicated that approximately 90% of the endogenous Hyp O-galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS-PAGE than when expressed in wild-type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss-of-function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp-linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell-to-cell communication during plant growth and development.
Collapse
Affiliation(s)
- Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | | |
Collapse
|
240
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015; 3:10. [PMID: 25750913 PMCID: PMC4335395 DOI: 10.3389/fcell.2015.00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H. Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Tara J. Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Darren M. Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - William G. T. Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of AntwerpAntwerp, Belgium
| | - T. Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
241
|
Voiniciuc C, Yang B, Schmidt MHW, Günl M, Usadel B. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 2015; 16:3452-73. [PMID: 25658798 PMCID: PMC4346907 DOI: 10.3390/ijms16023452] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Bo Yang
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Markus Günl
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
242
|
Jia QS, Zhu J, Xu XF, Lou Y, Zhang ZL, Zhang ZP, Yang ZN. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for Nexine formation. MOLECULAR PLANT 2015; 8:251-60. [PMID: 25616387 DOI: 10.1016/j.molp.2014.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 05/08/2023]
Abstract
Nexine is a conserved layer of the pollen wall. We previously reported that the nexine layer is absent in the knockout mutant of Arabidopsis TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) gene. In this study, we investigated the molecular regulatory functions of TEK in pollen development and identified the genes encoding Arabinogalactan proteins (AGPs) as direct targets of TEK, which are essential for nexine formation. Phenotypic similarity between tek and the TEK-SRDX transgenic lines suggest that TEK plays a role in transcriptional activation in anther development. Microarray analysis identified a total of 661 genes downregulated in tek, including four genes encoding AGPs, AGP6, AGP11, AGP23, and AGP40. Electrophoretic mobility shift assays showed that TEK could directly bind the nuclear matrix attachment region (MAR) and the promoter of AGP6. Chromatin immunoprecipitation followed by PCR analysis demonstrated that TEK is enriched in the promoters of the four AGP genes. Expression of AGP6 driven by the TEK promoter in tek partially rescued both nexine formation and plant fertility. These results indicate that TEK directly regulates AGP expression in the anther to control nexine layer formation. We also proposed that glycoproteins might be essential components of the nexine layer in the pollen wall.
Collapse
Affiliation(s)
- Qi-Shi Jia
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Feng Xu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yue Lou
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhan-Lin Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi-Ping Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
243
|
Kanehara K, Cho Y, Lin YC, Chen CE, Yu CY, Nakamura Y. Arabidopsis DOK1 encodes a functional dolichol kinase involved in reproduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:292-303. [PMID: 25406445 DOI: 10.1111/tpj.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 05/08/2023]
Abstract
Dolichol phosphate (Dol-P) serves as a carrier of complex polysaccharides during protein glycosylation. Dol-P is synthesized by the phosphorylation of dolichol or the monodephosphorylation of dolichol pyrophosphate (Dol-PP); however, the enzymes that catalyze these reactions remain unidentified in Arabidopsis thaliana. We performed a genome-wide search for cytidylyltransferase motif-containing proteins in Arabidopsis, and found that At3g45040 encodes a protein homologous with Sec59p, a dolichol kinase (DOK) in Saccharomyces cerevisiae. At3g45040, designated AtDOK1, complemented defects in the growth and N-linked glycosylation of the S. cerevisiae sec59 mutant, suggesting that AtDOK1 encodes a functional DOK. To characterize the physiological roles of AtDOK1 in planta, we isolated two independent lines of T-DNA-tagged AtDOK1 mutants, dok1-1 and dok1-2. The heterozygous plants showed developmental defects in male and female gametophytes, including an aberrant pollen structure, low pollen viability, and short siliques. Additionally, the mutations had incomplete penetrance. These results suggest that AtDOK1 is a functional DOK required for reproductive processes in Arabidopsis.
Collapse
Affiliation(s)
- Kazue Kanehara
- Academia Sinica, Institute of Plant and Microbial Biology, No. 128 Sec. 2 Academia Rd., Nankang Taipei, 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, No. 128 Sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung, 402, Taiwan; Department of Applied Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan
| | | | | | | | | | | |
Collapse
|
244
|
|
245
|
Striberny B, Krause K. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale. PLANT SIGNALING & BEHAVIOR 2015; 10:e1086858. [PMID: 26367804 PMCID: PMC4883938 DOI: 10.1080/15592324.2015.1086858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.
Collapse
Affiliation(s)
- Bernd Striberny
- Department of Arctic and Marine Biology; Faculty of Biosciences, Fisheries and Economics; UiT The Arctic University of Norway; Tromsø, Norway
- Current Address: ArcticZymes AS; Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology; Faculty of Biosciences, Fisheries and Economics; UiT The Arctic University of Norway; Tromsø, Norway
- Correspondence to: Kirsten Krause;
| |
Collapse
|
246
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015. [PMID: 25750913 DOI: 10.3389/fcell.2015.00010/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | - William G T Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp Antwerp, Belgium
| | - T Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|
247
|
Kavi Kishor PB, Hima Kumari P, Sunita MSL, Sreenivasulu N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. FRONTIERS IN PLANT SCIENCE 2015; 6:544. [PMID: 26257754 PMCID: PMC4507145 DOI: 10.3389/fpls.2015.00544] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.
Collapse
Affiliation(s)
- Polavarapu B. Kavi Kishor
- Department of Genetics, Osmania University, HyderabadIndia
- *Correspondence: Polavarapu B. Kavi Kishor, Department of Genetics, Osmania University, Hyderabad 500007, India,
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research, GaterslebenGermany
- Grain Quality and Nutrition Center, International Rice Research Institute, Metro ManilaPhilippines
| |
Collapse
|
248
|
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:70-83. [PMID: 25242526 DOI: 10.1002/etc.2756] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 09/13/2014] [Indexed: 05/20/2023]
Abstract
The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Research Council, Western Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
249
|
McKenna JF, Tolmie AF, Runions J. Across the great divide: the plant cell surface continuum. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:132-140. [PMID: 25460078 DOI: 10.1016/j.pbi.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
The plant cell wall, plasma membrane and cytoskeleton exist as a cell surface continuum. This interconnection of organelles forms the interface between the plant cell and the external environment and is important for detecting the presence of a diverse range of stimuli. A plethora of plasma membrane microdomains with putative roles in membrane localized enzymatic or signalling processes have been described. While regulation of cell wall composition is defined by proteins within the plasma membrane, the cell wall has been shown to have an anchoring role on plasma membrane proteins which affects their lateral mobility. This interplay between plasma membrane and cell wall components is necessary for plasma membrane microdomain function. Actin and microtubule cytoskeletons are also involved in maintenance and function of the cell surface continuum. Investigation of the interactions between organellar components of this mechanism are important if we are to understand how cells respond to external signals.
Collapse
Affiliation(s)
- Joseph F McKenna
- Plant Cell Biology, Oxford Brookes University, Department of Biological & Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - A Frances Tolmie
- Plant Cell Biology, Oxford Brookes University, Department of Biological & Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - John Runions
- Plant Cell Biology, Oxford Brookes University, Department of Biological & Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK.
| |
Collapse
|
250
|
Ma T, Ma H, Zhao H, Qi H, Zhao J. Identification, characterization, and transcription analysis of xylogen-like arabinogalactan proteins in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2014; 14:299. [PMID: 25407280 PMCID: PMC4239379 DOI: 10.1186/s12870-014-0299-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/24/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Xylogen, a chimeric arabinogalactan protein containing a non-specific lipid transfer protein domain, can promote xylem cell differentiation. No comprehensive study has been carried out on the XYLP gene family in rice. As a first step in research on this gene family and as a useful strategy in general, a genome-wide analysis of the OsXYLP gene family is thus needed. RESULTS In this study, we identified 21 XYLP genes from the rice genome and comprehensively analyzed their protein structures, phylogenetic relationships, chromosomal locations, and gene duplication status. Our results indicate that gene duplication has played major roles in the expansion of the OsXYLP gene family. We used expressed sequence tag, microarray, massively parallel signature sequencing, and quantitative real-time PCR data to analyze OsXYLP gene expression during various developmental stages and under abiotic stress conditions. We found that many OsXYLP genes are abundantly expressed in vascular tissues and seeds, with some genes regulated under hormonal or abiotic stresses. In addition, we identified knockout mutants of OsXYLP7 and OsXYLP16 and discovered that the mutant xylp7 has a defect in stem height. CONCLUSIONS We analyzed expression profiles of 21 XYLP genes and characterized the structures and evolutionary relationships of their proteins. Our results demonstrate that the rice XYLP gene family may play roles in plant vascular system development and hormone signaling. Among the 21 detected OsXYLPs, 19 are newly identified genes encoding arabinogalactan proteins. Our results provide comprehensive insights that will assist future research on the biological functions of the rice XYLP gene family.
Collapse
Affiliation(s)
- Tengfei Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Haoli Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Heming Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Huandong Qi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|