201
|
Kreslavski VD, Strokina VV, Pashkovskiy PP, Balakhnina TI, Voloshin RA, Alwasel S, Kosobryukhov AA, Allakhverdiev SI. Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111976. [DOI: 10.1016/j.jphotobiol.2020.111976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
|
202
|
Villalobos-Escobedo JM, Esparza-Reynoso S, Pelagio-Flores R, López-Ramírez F, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella A. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2178-2192. [PMID: 32578269 DOI: 10.1111/tpj.14891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, C. P. 58240, México
| | - Fabiola López-Ramírez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| |
Collapse
|
203
|
Mechanisms protect airborne green microalgae during long distance dispersal. Sci Rep 2020; 10:13984. [PMID: 32814827 PMCID: PMC7438330 DOI: 10.1038/s41598-020-71004-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/05/2020] [Indexed: 11/08/2022] Open
Abstract
Viable microalgae occur in the air. Whether they can survive the stresses such as UV, desiccation and freezing temperatures at high altitudes during long distance dispersal is rarely studied. If yes, what mechanisms confer the tolerance? Four freshwater airborne green microalgae were isolated from Dongsha Atoll in the South China Sea, classified as Scenedesmus sp. DSA1, Coelastrella sp. DSA2, Coelastrella sp. DSA3 and Desmodesmus sp. DSA6 based on their morphologies and ITS sequences. Their survival rates under UV stress were tightly correlated with their cell wall thickness. All the four airborne green microalgae survived the air-dry stress on benchtop followed by − 20 °C freeze–desiccation stress for 4 weeks, but not the two waterborne green microalgae Desmodesmus sp. F5 and Neodesmus sp. UTEX 2219-4 used as controls. Three of the four airborne microalgae survived the lyophilization treatment, excluding Desmodesmus sp. DSA6 and the two waterborne microalgae. The four airborne microalgae produced carotenoids under prolonged stress conditions, which might help detoxify the reactive oxygen species generated under environmental stresses and shield from the high-light stress in the air. Characterization of these airborne microalgae may help answer how the descendants of green algae survived on the land about 450 MYA.
Collapse
|
204
|
Kushwaha BK, Rai M, Alamri S, Siddiqui MH, Singh VP. Full sunlight acclimation mechanisms in Riccia discolor thalli: Assessment at morphological, anatomical, and biochemical levels. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111983. [PMID: 32781383 DOI: 10.1016/j.jphotobiol.2020.111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Light occupies a central position in regulating development of plants. Either little or excess of light could be harmful for plants. Since bryophytes are shade loving organisms, they must adapt to function in fluctuating light regimes. Therefore, the aim of this study was to investigate acclimatory responses of Riccia discolor thalli grown under full sunlight, and were compared with shade grown thalli (control). Length, width, and fresh mass of thallus were significantly lower (by 27, 41 and 37%, respectively) but endogenous nitric oxide content (by 81%) and nitric oxide synthase like activity (by 58%) were higher in full sunlight grown thalli than shade grown thalli. Number of rhizoids was greater in shade but length and width of rhizoids were higher (by 36 and 25%, respectively) in full sunlight grown thalli. The content of carotenoids was higher (by 34%) in full sunlight grown thalli. In full sunlight grown thalli, chloroplasts exhibited avoidance movement but in shade grown thalli they exhibited accumulation movement. Photosynthetic yields were higher in shade grown thalli. Among energy fluxes, ABS/RC did not vary but DI0/RC was higher (by 12%) in full sunlight grown thalli. Reactive oxygen species and damage were greater in full sunlight grown thalli despite enhanced levels of antioxidants i.e. superoxide dismutase (by 66%) and catalase (by 34%). Overall results suggest that full sunlight acclimation in Riccia discolor thalli occurred at various levels in which endogenous NO plays a positive role.
Collapse
Affiliation(s)
- Bishwajit Kumar Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Meena Rai
- Bryology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
205
|
Rezayian M, Niknam V, Ebrahimzadeh H. Penconazole and calcium ameliorate drought stress in canola by upregulating the antioxidative enzymes. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:825-839. [PMID: 32579878 DOI: 10.1071/fp19341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 05/25/2023]
Abstract
The aim of this research was to gauge the alternations in the lipid peroxidation and antioxidative enzyme activity in two cultivars (cv. RGS003 and cv. Sarigol) of canola under drought stress and drought tolerance amelioration by penconazole (PEN) and calcium (Ca). Plants were treated with different polyethylene glycol (PEG) concentrations (0, 5, 10 and 15%) without or with PEN (15 mg L-1) and Ca (15 mM). The Ca treatment prevented the negative effects of drought on fresh weight (FW) in RGS003 and Sarigol at 5 and 15% PEG respectively. Ca and PEN/Ca treatments caused significant induction in the proline content in Sarigol at 15% PEG; the latter treatment was accompanied by higher glycine betaine (GB), lower malondialdehyde (MDA) and growth recovery. Hydrogen peroxide (HO2) content in Sarigol was proportional to the severity of drought stress and all PEN, Ca and PEN/Ca treatments significantly reduced the H2O2 content. PEN and PEN/Ca caused alleviation of the drought-induced oxidative stress in RGS003. RGS003 cultivar exhibited significantly higher antioxidative enzymes activity at most levels of drought, which could lead to its drought tolerance and lower MDA content. In contrast to that of Sarigol, the activity of catalase and superoxide dismutase (SOD) increased with Ca and PEN/Ca treatments in RGS003 under low stress. The application of PEN and Ca induced significantly P5CS and SOD expression in RGS003 under drought stress after 24 h. Overall, these data demonstrated that PEN and Ca have the ability to enhance the tolerance against the drought stress in canola plants.
Collapse
Affiliation(s)
- Maryam Rezayian
- Department of Plant Biology, and Centre of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran
| | - Vahid Niknam
- Department of Plant Biology, and Centre of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran; and Corresponding author.
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, and Centre of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran
| |
Collapse
|
206
|
Batnini M, Fernández Del-Saz N, Fullana-Pericàs M, Palma F, Haddoudi I, Mrabet M, Ribas-Carbo M, Mhadhbi H. The alternative oxidase pathway is involved in optimizing photosynthesis in Medicago truncatula infected by Fusarium oxysporum and Rhizoctonia solani. PHYSIOLOGIA PLANTARUM 2020; 169:600-611. [PMID: 32108952 DOI: 10.1111/ppl.13080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis-related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt ) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil-borne pathogenic fungi.
Collapse
Affiliation(s)
- Marwa Batnini
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Néstor Fernández Del-Saz
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mateu Fullana-Pericàs
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, 07122, Spain
| | - Francisco Palma
- Department of Plant Physiology, Faculty of sciences, University of Granada, Granada, 18071, Spain
| | - Imen Haddoudi
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
| | - Miquel Ribas-Carbo
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Haythem Mhadhbi
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
| |
Collapse
|
207
|
Kushwaha BK, Ali HM, Siddiqui MH, Singh VP. Nitric oxide-mediated regulation of sub-cellular chromium distribution, ascorbate–glutathione cycle and glutathione biosynthesis in tomato roots under chromium (VI) toxicity. J Biotechnol 2020; 318:68-77. [DOI: 10.1016/j.jbiotec.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
|
208
|
Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R. Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules 2020; 10:E959. [PMID: 32630474 PMCID: PMC7355584 DOI: 10.3390/biom10060959] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants' growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal 731235, India;
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India;
| | - Nisha Nisha
- Department of Integrated Plant Protection, Plant Protection Institute, Faculty of Horticultural Sciences, Szent István University, Páter Károly utca 1, H-2100 Gödöllo, Hungary;
| | - Monika Keisham
- Department of Botany, University of Delhi, New Delhi 110007, India;
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
209
|
Better off alone? New insights in the symbiotic relationship between the flatworm Symsagittifera roscoffensis and the microalgae Tetraselmis convolutae. Symbiosis 2020. [DOI: 10.1007/s13199-020-00691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
210
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
211
|
Oxidative Stress and Antioxidant Responses of Phormidium ambiguum and Microcystis aeruginosa Under Diurnally Varying Light Conditions. Microorganisms 2020; 8:microorganisms8060890. [PMID: 32545576 PMCID: PMC7357134 DOI: 10.3390/microorganisms8060890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Two harmful cyanobacteria species (Phormidium ambiguum and Microcystis aeruginosa) were exposed to diurnal light-intensity variation to investigate their favorable and stressed phases during a single day. The photosynthetically active radiation (PAR) started at 0 µmol·m−2·s−1 (06:00 h), increased by ~25 µmol·m−2·s−1 or ~50 µmol·m−2·s−1 every 30 min, peaking at 300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 (12:00 h), and then decreased to 0 µmol·m−2·s−1 (by 18:00 h). The H2O2 and antioxidant activities were paralleled to light intensity. Higher H2O2 and antioxidant levels (guaiacol peroxidase, catalase (CAT), and superoxidase dismutase) were observed at 600 µmol·m−2·s−1 rather than at 300 µmol·m−2·s−1. Changes in antioxidant levels under each light condition differed between the species. Significant correlations were observed between antioxidant activities and H2O2 contents for both species, except for the CAT activity of P. ambiguum at 300 µmol·m−2·s−1. Under each of the conditions, both species responded proportionately to oxidative stress. Even under maximum light intensities (300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 PAR intensity), neither species was stressed. Studies using extended exposure durations are warranted to better understand the growth performance and long-term physiological responses of both species.
Collapse
|
212
|
Knockdown of a Novel Gene OsTBP2.2 Increases Sensitivity to Drought Stress in Rice. Genes (Basel) 2020; 11:genes11060629. [PMID: 32521717 PMCID: PMC7349065 DOI: 10.3390/genes11060629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Drought stress is a major environmental stress, which adversely affects the biological and molecular processes of plants, thereby impairing their growth and development. In the present study, we found that the expression level of OsTBP2.2 which encodes for a nucleus-localized protein member belonging to transcription factor IID (TFIID) family, was significantly induced by polyethylene glycol (PEG) treatment. Therefore, knockdown mutants of OsTBP2.2 gene were generated to investigate the role of OsTBP2.2 in rice response to drought stress. Under the condition of drought stress, the photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance were significantly reduced in ostbp2.2 lines compared with wild type, Dongjin (WT-DJ). Furthermore, the RNA-seq results showed that several main pathways involved in "MAPK (mitogen-activated protein kinase) signaling pathway", "phenylpropanoid biosynthesis", "defense response" and "ADP (adenosine diphosphate) binding" were altered significantly in ostbp2.2. We also found that OsPIP2;6, OsPAO and OsRCCR1 genes were down-regulated in ostbp2.2 compared with WT-DJ, which may be one of the reasons that inhibit photosynthesis. Our findings suggest that OsTBP2.2 may play a key role in rice growth and the regulation of photosynthesis under drought stress and it may possess high potential usefulness in molecular breeding of drought-tolerant rice.
Collapse
|
213
|
Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dülger E, Bovdilova A, Caffarri S, Hippler M, Jahns P. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148183. [DOI: 10.1016/j.bbabio.2020.148183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
214
|
Sujkowska-Rybkowska M, Muszyńska E, Labudda M. Structural Adaptation and Physiological Mechanisms in the Leaves of Anthyllis vulneraria L. from Metallicolous and Non-Metallicolous Populations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E662. [PMID: 32456189 PMCID: PMC7284905 DOI: 10.3390/plants9050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Calamine wastes highly contaminated with trace metals (TMs) are spontaneously inhabited by a legume plant Anthyllis vulneraria L. This study determined an adaptation strategy of metallicolous (M) A. vulneraria and compared it with that of the non-metallicolous (NM) ecotype. We hypothesized that TMs may lead to (i) leaf apoplast modifications and (ii) changes in the antioxidant machinery efficiency that facilitate plant growth under severe contamination. To verify our hypothesis, we implemented immunolabelling, transmission electron microscopy and biochemical measurements. NM leaves were larger and thicker compared to the M ecotype. Microscopic analysis of M leaves showed a lack of dysfunctions in mesophyll cells exposed to TMs. However, changes in apoplast composition and thickening of the mesophyll and epidermal cell walls in these plants were observed. Thick walls were abundant in xyloglucan, pectins, arabinan, arabinogalactan protein and extensin. The tested ecotypes differed also in their physiological responses. The metallicolous ecotype featured greater accumulation of photosynthetic pigments, enhanced activity of superoxide dismutase and increased content of specific phenol groups in comparison with the NM one. Despite this, radical scavenging activity at the level of 20% was similar in M and NM ecotypes, which may implicate effective reduction of oxidative stress in M plants. In summary, our results confirmed hypotheses and suggest that TMs induced cell wall modifications of leaves, which may play a role in metal stress avoidance in Anthyllis species. However, when TMs reach the protoplast, activation of antioxidant machinery may significantly strengthen the status of plants naturally growing in TM-polluted environment.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
215
|
Ma J, Qiu D, Gao H, Wen H, Wu Y, Pang Y, Wang X, Qin Y. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC PLANT BIOLOGY 2020; 20:226. [PMID: 32429844 PMCID: PMC7238615 DOI: 10.1186/s12870-020-02424-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND α-Tocopherol is one of the most important vitamin E components present in plant. α-Tocopherol is a potent antioxidant, which can deactivate photoproduced reactive oxygen species (ROS) and prevent lipids from oxidation when plants suffer drought stress. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the formation of α-tocopherol in the tocopherol biosynthetic pathway. Our previous studies showed that over-expression of γ-TMT gene can increase the accumulation of α-tocopherol in alfalfa (Medicago sativa). However, whether these transgenic plants confer increased drought tolerance and the underlying mechanism are still unknown. RESULTS In the present study, we further evaluate transgenic alfalfa lines, and found that over-expression of MsTMT led to an increase in α-tocopherol and total tocopherol level in the transgenic lines compared with the control plant. It was revealed that drought tolerance of the transgenic alfalfa was remarkably increased, with alleviated oxidative damage and accumulation of more osmolytic substances. The stomatal development in transgenic plants was significantly inhibited on both sides of leaves, which may be resulted from the repression of MsSPCHLESS (MsSPCH) gene. The reduced stomatal density of transgenic plants contributes to a lower stomatal conductance and higher water use efficiency (WUE). Moreover, both RNA-seq and qRT-PCR analyses indicate that regulatory mechanism of MsTMT in drought involved in both ABA-dependent and ABA-independent pathways. CONCLUSION Our results suggest that MsTMT gene plays a positive role in regulating alfalfa response to PEG-simulated drought stress, which might involve complex mechanisms, including ROS scavenging system, stomatal development and multiple phytohormone signaling pathways. This study will broaden our view on the function of γ-TMT gene and provide new strategy for genetic engineering in alfalfa breeding.
Collapse
Affiliation(s)
- Jiangtao Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Deyun Qiu
- Division of biomedical science and biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601 Australia
| | - Hongwen Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yudi Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuchang Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
216
|
Radulović O, Stanković S, Uzelac B, Tadić V, Trifunović-Momčilov M, Lozo J, Marković M. Phenol Removal Capacity of the Common Duckweed ( Lemna minor L.) and Six Phenol-Resistant Bacterial Strains From Its Rhizosphere: In Vitro Evaluation at High Phenol Concentrations. PLANTS 2020; 9:plants9050599. [PMID: 32397144 PMCID: PMC7285011 DOI: 10.3390/plants9050599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
The main topic of this study is the bioremediation potential of the common duckweed, Lemna minor L., and selected rhizospheric bacterial strains in removing phenol from aqueous environments at extremely high initial phenol concentrations. To that end, fluorescence microscopy, MIC tests, biofilm formation, the phenol removal test (4-AAP method), the Salkowski essay, and studies of multiplication rates of sterile and inoculated duckweed in MS medium with phenol (200, 500, 750, and 1000 mg L−1) were conducted. Out of seven bacterial strains, six were identified as epiphytes or endophytes that efficiently removed phenol. The phenol removal experiment showed that the bacteria/duckweed system was more efficient during the first 24 h compared to the sterile duckweed control group. At the end of this experiment, almost 90% of the initial phenol concentration was removed by both groups, respectively. The bacteria stimulated the duckweed multiplication even at a high bacterial population density (>105 CFU mL−1) over a prolonged period of time (14 days). All bacterial strains were sensitive to all the applied antibiotics and formed biofilms in vitro. The dual bacteria/duckweed system, especially the one containing strain 43-Hafnia paralvei C32-106/3, Accession No. MF526939, had a number of characteristics that are advantageous in bioremediation, such as high phenol removal efficiency, biofilm formation, safety (antibiotic sensitivity), and stimulation of duckweed multiplication.
Collapse
Affiliation(s)
- Olga Radulović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade 11060, Serbia; (B.U.); (M.T-M.); (M.M.)
- Correspondence:
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, Belgrade 11000, Serbia; (S.S.); (J.L.)
| | - Branka Uzelac
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade 11060, Serbia; (B.U.); (M.T-M.); (M.M.)
| | - Vojin Tadić
- Mining and Metallurgy Institute Bor, 35 Zeleni Bulevar, Bor 19210, Serbia;
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade 11060, Serbia; (B.U.); (M.T-M.); (M.M.)
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, Belgrade 11000, Serbia; (S.S.); (J.L.)
| | - Marija Marković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade 11060, Serbia; (B.U.); (M.T-M.); (M.M.)
| |
Collapse
|
217
|
Unal D, García-Caparrós P, Kumar V, Dietz KJ. Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190443. [PMID: 32362264 DOI: 10.1098/rstb.2019.0443] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts compose about one-quarter of the mesophyll cell volume and contain about 60% of the cell protein. Photosynthetic carbon assimilation is the dominating metabolism in illuminated leaves. To optimize the resource expenditure in these costly organelles and to control and adjust chloroplast metabolism, an intensive transfer of information between nucleus-cytoplasm and chloroplasts occurs in both directions as anterograde and retrograde signalling. Recent research identified multiple retrograde pathways that use metabolite transfer and include reaction products of lipids and carotenoids with reactive oxygen species (ROS). Other pathways use metabolites of carbon, sulfur and nitrogen metabolism, low molecular weight antioxidants and hormone precursors to carry information between the cell compartments. This review focuses on redox- and ROS-related retrograde signalling pathways. In analogy to the microbe-associated molecular pattern, we propose the term 'chloroplast-associated molecular pattern' which connects chloroplast performance to extrachloroplast processes such as nuclear gene transcription, posttranscriptional processing, including translation, and RNA and protein fate. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Dilek Unal
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Molecular Biology and Genetic, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Department of Agronomy, University of Almeria, Higher Engineering School, Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, La Cañada de San Urbano 04120, Almeria, Spain
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| |
Collapse
|
218
|
Rustioni L, Fracassetti D, Prinsi B, Geuna F, Ancelotti A, Fauda V, Tirelli A, Espen L, Failla O. Oxidations in white grape (Vitis vinifera L.) skins: Comparison between ripening process and photooxidative sunburn symptoms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:270-278. [PMID: 32183955 DOI: 10.1016/j.plaphy.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 05/08/2023]
Abstract
Oxidations in grape berries are gaining major interest as they affect grape characteristics and quality. Considering berries, Reactive Oxygen Species are involved in the responses to both ripening process and stresses, including photooxidative sunburn. Redox metabolism involves a multitude of chemical and enzymatic reactions. In this study, four white grape cultivars were examined for natural ripening and photooxidative sunburn effects (obtained in artificial conditions) on berry pigmentation, chemical composition and enzymatic activity. The measured parameters included reflectance spectra, pigmentation (including berry browning), content of photosynthetic pigments, organic acid profiles, antioxidant activity, concentrations of antioxidants (total phenolics, ascorbic acid and reduced glutathione), enzymatic activities (guaiacol peroxidases, ascorbate peroxidase and catalase). The effects of the treatment (natural ripening and artificial photooxidative sunburn) on each considered parameter are described in the paper. Photooxidative sunburn strongly affected the contents of antioxidants and chlorophylls, increased the browning index and modulated the enzymatic activities investigated. Samples clearly clustered depending on the oxidation status. Furthermore, the PCA highlighted the similarities and differences in the responses to oxidative stress during ripening and photooxidative sunburn. PCA produced five functions with eigenvalues higher than 1, representing 87.03% of the total variability. In particular, the scores of the function 1 discriminated the samples based on the oxidation status, while the function 2 separated the samples based on the sampling date, representing the physiological responses characteristic of ripening. Our work sheds light on this topic, and will allow a more conscious vineyard management, thus supporting the agricultural adaptation to climate changes.
Collapse
Affiliation(s)
- Laura Rustioni
- Laboratorio di Coltivazioni Arboree, DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), Università del Salento, Lecce, Italy.
| | - Daniela Fracassetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, (Italy
| | - Bhakti Prinsi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Alessandro Ancelotti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Valerio Fauda
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, (Italy
| | - Antonio Tirelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, (Italy
| | - Luca Espen
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
219
|
Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat Commun 2020; 11:2045. [PMID: 32341352 PMCID: PMC7184762 DOI: 10.1038/s41467-020-15731-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Current approaches for nanomaterial delivery in plants are unable to target specific subcellular compartments with high precision, limiting our ability to engineer plant function. We demonstrate a nanoscale platform that targets and delivers nanomaterials with biochemicals to plant photosynthetic organelles (chloroplasts) using a guiding peptide recognition motif. Quantum dot (QD) fluorescence emission in a low background window allows confocal microscopy imaging and quantitative detection by elemental analysis in plant cells and organelles. QD functionalization with β-cyclodextrin molecular baskets enables loading and delivery of diverse chemicals, and nanoparticle coating with a rationally designed and conserved guiding peptide targets their delivery to chloroplasts. Peptide biorecognition provides high delivery efficiency and specificity of QD with chemical cargoes to chloroplasts in plant cells in vivo (74.6 ± 10.8%) and more specific tunable changes of chloroplast redox function than chemicals alone. Targeted delivery of nanomaterials with chemical cargoes guided by biorecognition motifs has a broad range of nanotechnology applications in plant biology and bioengineering, nanoparticle-plant interactions, and nano-enabled agriculture.
Collapse
|
220
|
Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F. MaCDSP32 From Mulberry Enhances Resilience Post-drought by Regulating Antioxidant Activity and the Osmotic Content in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:419. [PMID: 32373141 PMCID: PMC7177052 DOI: 10.3389/fpls.2020.00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a complex phenomenon that depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Our previous study identified a chloroplast drought-induced stress protein (MaCDSP32) in mulberry, a thioredoxin (Trx) that is upregulated under drought conditions and is likely to confer drought tolerance to transgenic plants. Mulberry (Morus spp.) is an ecologically and economically important perennial woody plant that is widely used in forest management to combat desertification. However, its stress tolerance physiology is not well understood. In this study, the functions of MaCDSP32 gene were investigated. The expression of MaCDSP32 exhibited a circadian rhythm and was induced by mild and severe water deficits. Under abiotic stress, MaCDSP32-overexpressing plants exhibited increased stress sensitivity with lower water retention capacity and more severe lipid peroxidation than the wild-type (WT) plants. Furthermore, the activity of superoxide dismutase (SOD), the contents of proline and soluble sugars and the expression of stress-related transcription factors were lower in the MaCDSP32-overexpressing plants than in the WT plants. However, the MaCDSP32-overexpressing lines exhibited stronger recovery capability after rewatering post-drought. Moreover, the SOD enzyme activity, proline content, and soluble sugar content were higher in the transgenic plants after rewatering than in the WT plants. The production of the reactive oxygen species (ROS) H2O2 and O2 - was significantly lower in the transgenic plants than in the WT plants. In addition, under abiotic stress, the MaCDSP32-overexpressing lines exhibited improved seed germination and seedling growth, these effects were regulated by a positive redox reaction involving MaCDSP32 and one of its targets. In summary, this study indicated that MaCDSP32 from mulberry regulates plant drought tolerance and ROS homeostasis mainly by controlling SOD enzyme activity and proline and soluble sugar concentrations and that this control might trigger the stress response during seed germination and plant growth. Overall, MaCDSP32 exerts pleiotropic effects on the stress response and stress recovery in plants.
Collapse
|
221
|
Cheuk A, Ouellet F, Houde M. The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC PLANT BIOLOGY 2020; 20:144. [PMID: 32264833 PMCID: PMC7140352 DOI: 10.1186/s12870-020-02355-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speed up functional gene characterization. RESULTS We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant's life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. CONCLUSIONS This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.
Collapse
Affiliation(s)
- Arnaud Cheuk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Francois Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
222
|
Nouri M, Nasr-Esfahani MH, Tarrahi MJ, Amani R. The Effect of Lycopene Supplementation on Mood Status and Quality of Life in Infertile Men: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:17-22. [PMID: 32112630 PMCID: PMC7139232 DOI: 10.22074/ijfs.2020.5888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Infertility is a major worldwide problem which is caused by several factors such as environmental, physiological, and genetic conditions. Lycopene is considered to be one of the most important antioxidants that can contribute to reducing or preventing the psychological damage that leads to infertility. Thus, the aim of this study was to evaluate the effect of lycopene supplementation on depression, anxiety and stress scales and quality of life in infertile men. MATERIALS AND METHODS In this randomized clinical trial, 44 infertile men with oligozoospermia were randomly divided into the following two groups: the experimental group was supplemented with 25 mg lycopene, once per day for 12 weeks, and the control group received a placebo, for 12 weeks. Anthropometric and dietary data, physical activity, mood status, including depression, anxiety, stress, and quality of life scores were recorded pre- and post-intervention. Depression, anxiety and stress were assessed using a 21-item questionnaire (DASS-21) and quality of life was examined using the WHO 26-qustion questionnaire (WHOQOL). RESULTS The baseline age and body mass index (BMI) were not significantly different between the two groups (age: 31.89 ± 2.51 and 32.15 ± 2.16 years old for intervention and placebo, respectively; P=0.732 and BMI: 27.20 ± 1.68 and 26.53 ± 1.53; for intervention and placebo, respectively; P=0.206). There were no significant differences in depression, anxiety and stress values between the two groups; however, depression score significantly decreased in both groups compared to the baseline levels (P=0.028 and P=0.031). No significant differences were observed in four domains of quality of life, except for psychological domain that was improved in the lycopene group compared to the baseline values (P=0.049). CONCLUSION Short term supplementation of lycopene had no effect on mood status and quality of life, except for psychological status in infertile men (Registration number: IRCT20171105037249N1).
Collapse
Affiliation(s)
- Mehran Nouri
- Students' Research Committee, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic Address:
| |
Collapse
|
223
|
Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, Chen YE, Cao Y. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. CHEMOSPHERE 2020; 243:125166. [PMID: 31756653 DOI: 10.1016/j.chemosphere.2019.125166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Microorganisms and microbial products can be highly efficient in uptaking soluble and particulate forms of heavy metals, particularly from solutions. In this study, the removal efficiency, oxidative damage, antioxidant system, and the possible removal mechanisms were investigated in Rhodobacter (R.) sphaeroides SC01 under mercury (Hg), lead (Pb) and cadmium (Cd) stress. The results showed that SC01 had the highest removal rates (98%) of Pb among three heavy metals. Compared with Hg and Cd stress, Pb stress resulted in a lower levels of reactive oxygen species (ROS) and cell death. In contrast, the activities of four antioxidant enzymes in SC01 under Pb stress was higher than that of Hg and Cd stress. Furthermore, the analysis from fourier transform infrared spectroscopy indicated that complexation of Pb with hydroxyl, amid and phosphate groups was found in SC01 under Pb stress. In addition, X-ray diffraction analysis showed that precipitate of lead phosphate hydroxide was produced on the cell surface in SC01 exposed to Pb stress. Therefore, these results suggested that SC01 had good Pb removal ability by biosorption and precipitation and will be potentially useful for removal of Pb in industrial effluents.
Collapse
Affiliation(s)
- Yan-Qiu Su
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yang-Juan Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Jia Zhang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Guo-Cheng Chen
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Han Qin
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Dai-Rong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
224
|
Yu L, Gao B, Li Y, Tan W, Li M, Zhou L, Peng C, Xiao L, Liu Y. The synthesis of strigolactone is affected by endogenous ascorbic acid in transgenic rice for l-galactono-1, 4-lactone dehydrogenase suppressed or overexpressing. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153139. [PMID: 32114415 DOI: 10.1016/j.jplph.2020.153139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Rice tillering, which determines the panicle number per plant, is an important agronomic trait for grain production. In higher plants, ascorbic acid (Asc) plays a major role in ROS-scavenging activity. l-Galactono-1, 4-lactone dehydrogenase (GalLDH, EC1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Previously, we have reported that homozygous L-GalLDH-suppressed transgenic rice plants (GI) display a reduced tiller number and a lower level of foliar carotenoids (Car) compared with wild type. Strigolactones (SL), which play an important role in the suppression of shoot branching, are synthesized in the roots of rice plant using Car as substrates. In this paper, the relationship between Asc, SL, the accumulation of H2O2, changes in antioxidant capacity, enzyme activities, and gene transcriptions related to the synthesis of SL were analyzed in transgenic rice plants for L-GalLDH suppressed (GI-1 and GI-2) and overexpressing (GO-2). The results showed that the altered level of Asc in the L-GalLDH transgenic rice plants leads to a change in redox homeostasis, resulting in a marked accumulation of H2O2 and decreased antioxidant capacity in GI-1 and GI-2, but lower H2O2 content and increased antioxidant capacity in GO-2. Meanwhile, the altered level of Asc also leads to altered enzyme activities and gene transcript abundances related to SL synthesis in L-GalLDH transgenics. These observations support the conclusion that Asc influences tiller number in the L-GalLDH transgenics by affecting H2O2 accumulation and antioxidant capacity, and altering those enzyme activities and gene transcript abundances related to SL synthesis.
Collapse
Affiliation(s)
- Le Yu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Bin Gao
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Yelin Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Weijian Tan
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Mingkang Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Liping Zhou
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Changlian Peng
- College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
225
|
Soliman M, Elkelish A, Souad T, Alhaithloul H, Farooq M. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:501-511. [PMID: 32205926 PMCID: PMC7078400 DOI: 10.1007/s12298-020-00765-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 01/14/2020] [Indexed: 05/21/2023]
Abstract
This study was conducted to evaluate the influence of brassinosteroid (24-epibrassinolide, EBL) seed priming and optimal nitrogen (N) supply in improving salt tolerance in soybean. The experimental treatments were (a) control (nutrient solution without N and without EBL priming), (b) nutrient solution without N and EBL seed priming, (c) N supplemented nutrient solution without EBL priming and (d) EBL seed priming + N supplemented nutrient solution under optimal (0 mM NaCl) and salt stress (0 mM NaCl) conditions. Salt stress caused significant reduction in growth and biomass accumulation of soybean. However, EBL seed priming and application of N improved the soybean performance under optimal and salt stress conditions. In this regard, treatments receiving both EBL and N were more effective. EBL priming and N, alone and in combination, triggered the accumulation of osmolytes including proline, glycine betaine and sugars resulting in better photo-protection through maintenance of tissue water content. Antioxidant activity and osmolyte accumulation significantly increased due to combined treatment of N and EBL under normal as well as salt stress conditions. In conclusion, salt stress caused reduction in growth and biomass soybean due to oxidative damage and osmotic stresses. However, soybean performance was improved by seed priming with EBL. Supplementation of N further improved the effectiveness of EBL treatment in improving salt tolerance in soybean.
Collapse
Affiliation(s)
- Mona Soliman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Trabelsi Souad
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Haifa Alhaithloul
- Biology Department, Science College, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040 Pakistan
| |
Collapse
|
226
|
Liu F, Zhang Y, Zhang M, Luo Q, Cao X, Cui C, Lin K, Huang K. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 242:125078. [PMID: 31704520 DOI: 10.1016/j.chemosphere.2019.125078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 05/19/2023]
Abstract
The widespread use of tetrabromobisphenol A (TBBPA) in industries has resulted in its frequent detection in environmental matrices, and the mechanisms of its associated hazards need further investigation. In this study, the nematode Caenorhabditis elegans (C. elegans) was exposed to environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, 200 μg/L) to determine its effects. At TBBPA concentrations above 1 μg/L, the number of head thrashes, as the most sensitive physiological indicator, decreased significantly. Using the Illumina HiSeq™ 2000 sequencer, differentially expressed genes (DEGs) were determined, and 52 were down regulated and 105 were up regulated in the 200 μg/L TBBPA treatment group versus the control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database analysis demonstrated that dorso-ventral axis formation is related to neurotoxicity; metabolism of xenobiotics by Cytochrome P450 (CYP450) and glutathione-S-transferase (GST) was found to be the vital metabolic mechanisms and were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). GST was ascribed to the augmentation because mutations in cyp-13A7 were constrained under TBBPA exposure. Additionally, oxidative stress indicators accumulated in a dose-dependent relationship. These results will help understand the molecular basis for TBBPA-induced toxicity in C. elegans and open novel avenues for facilitating the exploration of more efficient strategies against TBBPA toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai, 200051, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
227
|
Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
228
|
Foyer CH, Kyndt T, Hancock RD. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid Redox Signal 2020; 32:463-485. [PMID: 31701753 DOI: 10.1089/ars.2019.7819] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: The concept that vitamin C (l-ascorbic acid) is at the heart of the peroxide processing and redox signaling hub in plants is well established, but our knowledge of the precise mechanisms involved remains patchy at best. Recent Advances: Ascorbate participates in the multifaceted signaling pathways initiated by both reactive oxygen species (ROS) and reactive nitrogen species. Crucially, the apoplastic ascorbate/dehydroascorbate (DHA) ratio that is regulated by ascorbate oxidase (AO) sculpts the apoplastic ROS (apoROS) signal that controls polarized cell growth, biotic and abiotic defences, and cell to cell signaling, as well as exerting control over the light-dependent regulation of photosynthesis. Critical Issues: Here we re-evaluate the roles of ascorbate in photosynthesis and other processes, addressing the question of how much we really know about the regulation of ascorbate homeostasis and its functions in plants, or how AO is regulated to modulate apoROS signals. Future Directions: The role of microRNAs in the regulation of AO activity in relation to stress perception and signaling must be resolved. Similarly, the molecular characterization of ascorbate transporters and mechanistic links between photosynthetic and respiratory electron transport and ascorbate synthesis/homeostasis are a prerequisite to understanding ascorbate homeostasis and function. Similarly, there is little in vivo evidence for ascorbate functions as an enzyme cofactor.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tina Kyndt
- Department Biotechnology, University of Ghent, Ghent, Belgium
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
229
|
Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Oryza Sativa L.) Seedlings and the Relevant Physiological Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041260. [PMID: 32075321 PMCID: PMC7068423 DOI: 10.3390/ijerph17041260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
Abstract
Rice (Oryza sativa L.), a major staple food for billions of people, was assessed for its phytotoxicity of copper oxide nanoparticle (CuO NPs, size < 50 nm). Under hydroponic condition, seven days of exposure to 62.5, 125, and 250 mg/L CuO NPs significantly suppressed the growth rate of rice seedlings compared to both the control and the treatment of supernatant from 250 mg/L CuO NP suspensions. In addition, physiological indexes associated with antioxidants, including membrane damage and antioxidant enzyme activity, were also detected. Treatment with 250 mg/L CuO NPs significantly increased malondialdehyde (MDA) content and electrical conductivity of rice shoots by 83.4% and 67.0%, respectively. The activity of both catalase and superoxide dismutase decreased in rice leaves treated with CuO NPs at the concentration of 250 mg/L, while the activity of the superoxide dismutase significantly increased by 1.66 times in rice roots exposed to 125 mg/L CuO NPs. The chlorophyll, including chlorophyll a and chlorophyll b, and carotenoid content in rice leaves decreased with CuO NP exposure. Finally, to explain potential molecular mechanisms of chlorophyll variations, the expression of four related genes, namely, Magnesium chelatase D subunit, Chlorophyll synthase, Magnesium-protoporphyrin IX methyltransferase, and Chlorophyllide a oxygenase, were quantified by qRT-PCR. Overall, CuO NPs, especially at 250 mg/L concentration, could affect the growth and development of rice seedlings, probably through oxidative damage and disturbance of chlorophyll and carotenoid synthesis.
Collapse
Affiliation(s)
- Zhongzhou Yang
- College of Life Science, Northeast Normal University, Changchun 130024, China;
| | - Yifan Xiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Tongtong Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Yang Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| | - Ying Gao
- College of Life Science, Northeast Normal University, Changchun 130024, China;
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| |
Collapse
|
230
|
Karagiannis E, Tanou G, Scossa F, Samiotaki M, Michailidis M, Manioudaki M, Laurens F, Job D, Fernie AR, Orsel M, Molassiotis A. Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. FRONTIERS IN PLANT SCIENCE 2020; 11:8. [PMID: 32117359 PMCID: PMC7031346 DOI: 10.3389/fpls.2020.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Superficial scald is a major physiological disorder in apple fruit that is induced by cold storage and is mainly expressed as brown necrotic patches on peel tissue. However, a global view of the gene-protein-metabolite interactome underlying scald prevention/sensitivity is currently missing. Herein, we have found for the first time that cold storage in an atmosphere enriched with ozone (O3) induced scald symptoms in 'Granny Smith' apple fruits during subsequent ripening at room temperature. In contrast, treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) reversed this O3-induced scald effect. Amino acids, including branched-chain amino acids, were the most strongly induced metabolites in peel tissue of 1-MCP treated fruits. Proteins involved in oxidative stress and protein trafficking were differentially accumulated prior to and during scald development. Genes involved in photosynthesis, flavonoid biosynthesis and ethylene signaling displayed significant alterations in response to 1-MCP and O3. Analysis of regulatory module networks identified putative transcription factors (TFs) that could be involved in scald. Subsequently, a transcriptional network of the genes-proteins-metabolites and the connected TFs was constructed. This approach enabled identification of several genes coregulated by TFs, notably encoding glutathione S-transferase (GST) protein(s) with distinct signatures following 1-MCP and O3 treatments. Overall, this study is an important contribution to future functional studies and breeding programs for this fruit, aiding to the development of improved apple cultivars to superficial scald.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| | - Federico Scossa
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - François Laurens
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Université Claude Bernard Lyon 1 - Institut National des Sciences Appliquées-Bayer CropScience, Lyon, France
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathilde Orsel
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
231
|
Liu F, Luo Q, Zhang Y, Huang K, Cao X, Cui C, Lin K, Zhang M. Trans-generational effect of neurotoxicity and related stress response in Caenorhabditis elegans exposed to tetrabromobisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134920. [PMID: 31744693 DOI: 10.1016/j.scitotenv.2019.134920] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most common brominated flame retardants, has been associated with immunotoxicity, neurotoxicity, and reproductive toxicity. However, little attention has been focused on understanding the trans-generational effects of TBBPA. The present study used the Caenorhabditis elegans (C. elegans) animal model to evaluate the trans-generational effects of neurotoxicity induced by environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, and 1000 µg/L). Multiple indicators including physiological effects (body length, brood size, head thrashes, body bends, and crawling trajectory), degree of neuronal damage (dopamine, GABAergic, and glutamatergic neurons), oxidative stress-related biochemical indicators (superoxide dismutase [SOD] activity, catalase [CAT] enzyme, malondialdehyde [MDA] production, and reactive oxygen species [ROS] accumulation), and stress-related gene expressions have been evaluated in the exposed parental C. elegans generation (G1) and their progeny (G2) under TBBPA-free conditions. The results showed that TBBPA exposure induced adverse effects on physiological endpoints, among which body bends and head thrashes were the most sensitive ones, detected above 1 µg/L in G1 and 100 µg/L in G2 nematodes, respectively. After contaminant exposure, the three neurons revealed damage related to neurobehavioral endpoints, with no hereditary effects in the progeny. The oxidative stress-related biochemical endpoints demonstrated that when the exposure concentrations were above 1 µg/L in maternal worms, impairment can be detected in both generations, but the progeny recovered at low toxicity concentration (1-100 µg/L). The integrated target gene expression profiles were clearly altered in G1 and G2 worms at concentrations between 1 and 1000 µg/L, and a more significant difference existed in two generations of nematodes at low levels (1-10 µg/L) of TBBPA. Studing trans-generational neurotoxicity and the underlying mechanism can generate a precise evaluation of the environmental risk of TBBPA.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
232
|
Wei H, Movahedi A, Xu C, Sun W, Wang P, Li D, Yin T, Zhuge Q. Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa. Front Microbiol 2020; 11:106. [PMID: 32117134 PMCID: PMC7018670 DOI: 10.3389/fmicb.2020.00106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023] Open
Abstract
PtDef cloned from Populus trichocarpa contained eight cysteine domains specific to defensins. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis showed that PtDef was expressed in all tissues tested, with lower expression in leaves and higher expression in petioles, stems, and roots. Purified fused PtDef inhibited Aspergillus niger, Alternaria Nees, Mucor corymbifer, Marssonina populi, Rhizopus sp., and Neurospora crassa. PtDef also inhibited the growth of Escherichia coli by triggering autolysis. PtDef overexpression in Nanlin895 poplar (Populus × euramericana cv. Nanlin895) enhanced the level of resistance to Septotinia populiperda. qRT-PCR analysis also showed that the expression of 13 genes related to salicylic acid (SA) and jasmonic acid (JA) signal transduction differed between transgenic and wild-type (WT) poplars before and after inoculation, and that PR1-1 (12–72 h), NPR1-2, TGA1, and MYC2-1 expression was higher in transgenic poplars than in WT. During the hypersensitivity response (HR), large amounts of H2O2 were produced by the poplar lines, particularly 12–24 h after inoculation; the rate and magnitude of the H2O2 concentration increase were greater in transgenic lines than in WT. Overall, our findings suggest that PtDef, a defensin-encoding gene of P. trichocarpa, could be used for genetic engineering of woody plants for enhanced disease resistance.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Ali Movahedi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Weibo Sun
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Pu Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
233
|
Asrar H, Hussain T, Qasim M, Nielsen BL, Gul B, Khan MA. Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:113-124. [PMID: 31855817 DOI: 10.1016/j.plaphy.2019.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
This study addressed the interactions between salt stress and the antioxidant responses of a halophytic grass, Desmostachya bipinnata. Plants were grown in a semi-hydroponic system and treated with different NaCl concentrations (0 mM, 100 mM, 400 mM) for a month. ROS degradation enzyme activities were stimulated by addition of NaCl. Synthesis of antioxidant compounds, such as phenols, was enhanced in the presence of NaCl leading to accumulation of these compounds under moderate salinity. However, when the ROS production rate exceeded the capacity of enzyme-controlled degradation, antioxidant compounds were consumed and oxidative damage was indicated by significant levels of hydrogen peroxide at high salinity. The cellular concentration of salicylic acid increased upon salt stress, but since no direct interaction with ROS was detected, a messenger function may be postulated. High salinity treatment caused a significant decrease of plant growth parameters, whereas treatment with moderate salinity resulted in optimal growth. The activity and abundance of superoxide dismutase (SOD) increased with salinity, but the abundance of SOD isoforms was differentially affected, depending on the NaCl concentration applied. Detoxification of hydrogen peroxide (H2O2) was executed by catalase and guaiacol peroxidase at moderate salinity, whereas the enzymes detoxifying H2O2 through the ascorbate/glutathione cycle dominated at high salinity. The redox status of glutathione was impaired at moderate salinity, whereas the levels of both ascorbate and glutathione significantly decreased only at high salinity. Apparently, the maximal activation of enzyme-controlled ROS degradation was insufficient in comparison to the ROS production at high salinity. As a result, ROS-induced damage could not be prevented, if the applied stress exceeded a critical value in D. bipinnata plants.
Collapse
Affiliation(s)
- Hina Asrar
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Tabassum Hussain
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Qasim
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - M Ajmal Khan
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
234
|
Souza IR, Silva LR, Fernandes LSP, Salgado LD, Silva de Assis HC, Firak DS, Bach L, Santos-Filho R, Voigt CL, Barros AC, Peralta-Zamora P, Mattoso N, Franco CRC, Soares Medeiros LC, Marcon BH, Cestari MM, Sant'Anna-Santos BF, Leme DM. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113551. [PMID: 31801672 DOI: 10.1016/j.envpol.2019.113551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5-100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4-5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
Collapse
Affiliation(s)
- Irisdoris R Souza
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lucas R Silva
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Letícia S P Fernandes
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lilian D Salgado
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniele S Firak
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Larissa Bach
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ronaldo Santos-Filho
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Carmen L Voigt
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Ariana C Barros
- Department of Botany, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Ney Mattoso
- Department of Physics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Celia Regina C Franco
- Department of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Marta M Cestari
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniela M Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
235
|
Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134816. [PMID: 31704404 DOI: 10.1016/j.scitotenv.2019.134816] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnology is an emerging field in science and engineering, which presents significant impacts on the economy, society and the environment. The nanomaterials' (NMs) production, use, and disposal is inevitably leading to their release into the environment where there are uncertainties about its fate, behaviour, and toxicity. Recent works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. However, studies about the effects of the NMs on plants are still limited because most investigations are carried out in the initial stage of plant development. The present study aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The AgNPs were characterized by transmission electron microscopy and dynamic light scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion (Ag+) release from Ag particles was determined by dialysis. The results revealed that AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and an increase in the non-photochemical quenching. The data also revealed that AgNPs affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that AgBulk caused only a small or no changes on plants. In summary, the results point out that AgNPs may negatively affect the photosynthesis process when accumulated in the leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release was detected.
Collapse
Affiliation(s)
- William F Falco
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - Marisa D Scherer
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil.
| | - Heberton Wender
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Anderson R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
236
|
Prasad A, Sedlářová M, Balukova A, Rác M, Pospíšil P. Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 10:1660. [PMID: 31998345 PMCID: PMC6962234 DOI: 10.3389/fpls.2019.01660] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023]
Abstract
Mechanical injury or wounding in plants can be attributed to abiotic or/and biotic causes. Subsequent defense responses are either local, i.e. within or in the close vicinity of affected tissue, or systemic, i.e. at distant plant organs. Stress stimuli activate a plethora of early and late reactions, from electric signals induced within seconds upon injury, oxidative burst within minutes, and slightly slower changes in hormone levels or expression of defense-related genes, to later cell wall reinforcement by polysaccharides deposition, or accumulation of proteinase inhibitors and hydrolytic enzymes. In the current study, we focused on the production of reactive oxygen species (ROS) in wounded Arabidopsis leaves. Based on fluorescence imaging, we provide experimental evidence that ROS [superoxide anion radical (O2 •-) and singlet oxygen (1O2)] are produced following wounding. As a consequence, oxidation of biomolecules is induced, predominantly of polyunsaturated fatty acid, which leads to the formation of reactive intermediate products and electronically excited species.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Anastasiia Balukova
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
237
|
Effects of Elevated Temperature and Ozone in Brassica juncea L.: Growth, Physiology, and ROS Accumulation. FORESTS 2020. [DOI: 10.3390/f11010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Global warming and ozone (O3) pose serious threats to crop yield and ecosystem health. Although neither of these factors will act individually in reality, most studies have focused on the responses of plants to air pollution or climate change. Interactive effects of these remain poorly studied. Therefore, this study was conducted to assess the effects of optimal (22/20 °C day/night) and elevated temperature (27/25 °C) and/or ambient (10 ± 10 nL L−1) and elevated O3 concentrations (100 ± 10 nL L−1) on the growth, physiology, and reactive oxygen species (ROS) accumulation of leaf mustard (Brassica juncea L.). The aim was to examine whether elevated temperature increase the O3 damage due to increasing stomatal conductance, and thus, O3 flux into the leaf. Significant reductions in photosynthetic rates occurred under O (elevated O3 with optimal temperatures) and OT (elevated O3 and temperature) conditions compared to C (controls). Stomatal conductance was significantly higher under T than in the C at 7 DAE. Under OT conditions, O3 flux significantly increased compared to that in O conditions at 7 days after exposure (DAE). Significant reductions in total fresh and dry weight were observed under OT conditions compared to those under O. Furthermore, significant reductions in levels of carotenoids and ascorbic acid were observed under OT conditions compared to O. Lipid peroxidation and accumulation of ROS such as hydroxyl radical, hydrogen peroxide, and superoxide radical were higher under O and OT conditions than in C conditions at 7 and 14 DAE. As a result of O3 stress, the results of the present study indicated that the plant injury index significantly increased under OT compared to O conditions. This result suggested that elevated temperature (+5 °C) may enhance O3 damage to B. juncea by increasing stomatal conductance and O3 flux into leaves.
Collapse
|
238
|
Wang M, Ding F, Zhang S. Mutation of SlSBPASE Aggravates Chilling-Induced Oxidative Stress by Impairing Glutathione Biosynthesis and Suppressing Ascorbate-Glutathione Recycling in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:565701. [PMID: 33414794 PMCID: PMC7783158 DOI: 10.3389/fpls.2020.565701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/07/2020] [Indexed: 05/07/2023]
Abstract
Sedoheptulose-1,7-bisphosphatase (SBPase) is a crucial enzyme for photosynthetic carbon assimilation in the Calvin-Benson cycle. Previous studies have shown that overexpression of SBPase is advantageous to chilling tolerance in plants; however, the mechanisms of SBPase acting in the improvement of chilling tolerance remain largely unknown. In the present study, we aimed to uncover the essential role of SBPase in the response of tomato plants to oxidative stress induced by low temperature. To fulfill that, we performed an array of comparative studies between slsbpase mutant plants that we previously generated using CRISPR/Cas9 genome editing system and their wild-type counterparts under chilling stress. It was observed that following a 24 h chilling treatment, slsbpase mutant plants accumulated higher levels of reactive oxygen species (ROS) than wild-type plants and consequently, more severe lipid peroxidation occurred in slsbpase plants. Activity assay of antioxidant enzymes showed that mutation in SlSBPASE significantly decreased activities of peroxidase (POD) and ascorbate peroxidase (APX), but surprisingly did not significantly alter activities of superoxide dismutase (SOD) and catalase (CAT) under the chilling condition. Notably, mutation in SlSBPASE reduced the contents of total ascorbate (AsA) and total glutathione (GSH) and suppressed the recycling of AsA and GSH in chilling-stressed tomato plants. In addition, activities of two GSH biosynthetic enzymes (gamma-glutamylcysteine synthetase and glutathione synthetase) and transcript abundance of their coding genes (GSH1 and GSH2) were markedly reduced in slsbpase mutant plants in comparison with those in wild-type plants under chilling stress. Furthermore, exogenous GSH remarkably mitigated chilling damage in slsbpase plants. Collectively, these results support that mutation in SlSBPASE aggravates chilling-induced oxidative stress by suppressing GSH biosynthesis and AsA-GSH recycling and suggest that SBPase is required for optimal response to chilling stress in tomato plants. The findings also shed light on the idea to mitigate chilling-induced damages by genetically manipulating a photosynthetic enzyme in plants.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng, China
- *Correspondence: Fei Ding,
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, China
- Shuoxin Zhang,
| |
Collapse
|
239
|
Vidal-Meireles A, Tóth D, Kovács L, Neupert J, Tóth SZ. Ascorbate Deficiency Does Not Limit Nonphotochemical Quenching in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2020; 182:597-611. [PMID: 31662419 PMCID: PMC6945847 DOI: 10.1104/pp.19.00916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
Ascorbate (Asc; vitamin C) plays essential roles in development, signaling, hormone biosynthesis, regulation of gene expression, stress resistance, and photoprotection. In vascular plants, violaxanthin de-epoxidase requires Asc as a reductant; thereby, Asc is required for the energy-dependent component of nonphotochemical quenching (NPQ). To assess the role of Asc in NPQ in green algae, which are known to contain low amounts of Asc, we searched for an insertional Chlamydomonas reinhardtii mutant affected in theVTC2 gene encoding GDP-l-Gal phosphorylase, which catalyzes the first committed step in the biosynthesis of Asc. The Crvtc2-1 knockout mutant was viable and, depending on the growth conditions, contained 10% to 20% Asc relative to its wild type. When C. reinhardtii was grown photomixotrophically at moderate light, the zeaxanthin-dependent component of NPQ emerged upon strong red illumination both in the Crvtc2-1 mutant and in its wild type. Deepoxidation was unaffected by Asc deficiency, demonstrating that the Chlorophycean violaxanthin de-epoxidase found in C. reinhardtii does not require Asc as a reductant. The rapidly induced, energy-dependent NPQ component characteristic of photoautotrophic C. reinhardtii cultures grown at high light was not limited by Asc deficiency either. On the other hand, a reactive oxygen species-induced photoinhibitory NPQ component was greatly enhanced upon Asc deficiency, both under photomixotrophic and photoautotrophic conditions. These results demonstrate that Asc has distinct roles in NPQ formation in C. reinhardtii as compared to vascular plants.
Collapse
Affiliation(s)
| | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
240
|
Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. FRONTIERS IN PLANT SCIENCE 2020; 11:552969. [PMID: 33488637 PMCID: PMC7815643 DOI: 10.3389/fpls.2020.552969] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.
Collapse
Affiliation(s)
- Jelena Dumanović
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
- *Correspondence: Kamil Kuča, ;
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
- Vesna Jaćević,
| |
Collapse
|
241
|
Adamakis IDS, Sperdouli I, Eleftheriou EP, Moustakas M. Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A. FRONTIERS IN PLANT SCIENCE 2020; 11:1196. [PMID: 32849741 PMCID: PMC7419983 DOI: 10.3389/fpls.2020.01196] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 05/11/2023]
Abstract
Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics, has now become a wide spread organic pollutant. It percolates from a variety of sources, and plants are among the first organisms to encounter, absorb, and metabolize it, while its toxic effects are not yet fully known. Therefore, we experimentally studied the effects of aqueous BPA solutions (50 and 100 mg L-1, for 6, 12, and 24 h) on photosystem II (PSII) functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves of the model plant Arabidopsis thaliana. Chlorophyll fluorescence imaging analysis revealed a spatiotemporal heterogeneity in the quantum yields of light energy partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function was negatively influenced only at the spot-affected BPA zone in a dose- and time-dependent manner, while at the whole leaf only the maximum photochemical efficiency (Fv/Fm) was negatively affected. However, under high light all PSII photosynthetic parameters measured were negatively affected by BPA application, in a time-dependent manner. The affected leaf areas by the spot-like mode of BPA action showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen peroxide (H2O2). When H2O2 was scavenged via N-acetylcysteine under BPA exposure, PSII functionality was suspended, while H2O2 scavenging under non-stress had more detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic death-like spots under BPA exposure could be due to ROS accumulation, but also H2O2 generation seems to play a role in the leaf response against BPA-related stress conditions.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis S. Adamakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| |
Collapse
|
242
|
Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C, Huang S. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:310-323. [PMID: 31536657 DOI: 10.1111/tpj.14542] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed-plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed-specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss-of-function atper1 mutants, atper1-1 and atper1-2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild-type seeds. The suppressed primary seed dormancy of atper1-1 was completely reduced by deletion of CYP707A genes. Furthermore, loss-of-function of AtPER1 cannot enhance the seed germination ratio of aba2-1 or ga1-t, suggesting that AtPER1-enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild-type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.
Collapse
Affiliation(s)
- Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| |
Collapse
|
243
|
Genome-Wide Identification and Expression Analysis of the Ascorbate Oxidase Gene Family in Gossypium hirsutum Reveals the Critical Role of GhAO1A in Delaying Dark-Induced Leaf Senescence. Int J Mol Sci 2019; 20:ijms20246167. [PMID: 31817730 PMCID: PMC6940856 DOI: 10.3390/ijms20246167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Ascorbate oxidase (AO) plays important roles in plant growth and development. Previously, we reported a cotton AO gene that acts as a positive factor in cell growth. Investigations on Gossypium hirsutum AO (GhAO) family genes and their multiple functions are limited. The present study identified eight GhAO family genes and performed bioinformatic analyses. Expression analyses of the tissue specificity and developmental feature of GhAOs displayed their diverse expression patterns. Interestingly, GhAO1A demonstrated the most rapid significant increase in expression after 1 h of light recovery from the dark. Additionally, the transgenic ao1-1/GhAO1AArabidopsis lines overexpressing GhAO1A in the Arabidopsisao1-1 late-flowering mutant displayed a recovery to the normal phenotype of wild-type plants. Moreover, compared to the ao1-1 mutant, the ao1-1/GhAO1A transgenic Arabidopsis presented delayed leaf senescence that was induced by the dark, indicating increased sensitivity to hydrogen peroxide (H2O2) under normal conditions that might be caused by a reduction in ascorbic acid (AsA) and ascorbic acid/dehydroascorbate (AsA/DHA) ratio. The results suggested that GhAOs are functionally diverse in plant development and play a critical role in light responsiveness. Our study serves as a foundation for understanding the AO gene family in cotton and elucidating the regulatory mechanism of GhAO1A in delaying dark-induced leaf senescence.
Collapse
|
244
|
Huang H, Rizwan M, Li M, Song F, Zhou S, He X, Ding R, Dai Z, Yuan Y, Cao M, Xiong S, Tu S. Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113146. [PMID: 31522001 DOI: 10.1016/j.envpol.2019.113146] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 05/29/2023]
Abstract
In wheat production areas of China, soil lead (Pb) pollution is generally accompanied by cadmium (Cd) pollution and it is of considerable significance in repairing the Cd and Pb co-contaminated soils for safe agronomic production. Organosilicon fertilizer (OSiF) is a new type of silicon (Si) fertilizer that can effectively alleviate heavy metal toxicity in plants, but the mechanisms on its heavy metal detoxification are poorly understood. A soil pot experiment was conducted to evaluate and compare the effects of two OSiFs (OSiFA and OSiFB) and an inorganic silicon fertilizer (InOSiF) on wheat heavy metal uptake and biochemical parameters in a Cd and Pb co-contaminated soil. The results demonstrated that OSiFA, OSiFB and InOSiF could alleviate the Cd and Pb toxicity of wheat, as indicated by increasing wheat grain yield by 65%, 45% and 22%, respectively. The Si fertilizers enhanced leaf gas exchange attributes and chlorophyll content, whereas diminished the oxidative damage, as indicated by a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, and lower activity of superoxide dismutase (SOD) and catalase (CAT) activity, as compared with control. Adding OSiFA, OSiFB and InOSiF increased Si uptake in roots and shoots, thus reducing Cd and Pb accumulation in the wheat shoot, bran and flour, especially, flour Cd contents by 17%, 10% and 31% respectively, flour Pb contents by 74%, 53% and 48% respectively. Also, Si fertilizers application decreased the health risk index (HRI) of both Cd and Pb. The grey correlation degrees of OSiFA, OSiFB and InOSiF are 0.72, 0.77 and 0.61, respectively, indicating that the effects of OSiFs on detoxifying Cd and Pb could be better than that of InOSiF in wheat. Thus, the use of OSiFs might be a feasible approach to reduce Cd and Pb entry into the human body through crops.
Collapse
Affiliation(s)
- Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Muhammad Rizwan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Mei Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Furu Song
- Hebei Silicon Valley Academy of Agricultural Sciences, Handan, 057151, China
| | - Sijiang Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Xuan He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Rui Ding
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China.
| |
Collapse
|
245
|
Ermakov A, Bobrovskikh A, Zubairova U, Konstantinov D, Doroshkov A. Stress-induced changes in the expression of antioxidant system genes for rice ( Oryza sativa L.) and bread wheat ( Triticum aestivum L.). PeerJ 2019; 7:e7791. [PMID: 31803533 PMCID: PMC6886489 DOI: 10.7717/peerj.7791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Plant cell metabolism inevitably forms reactive oxygen species (ROS), which can damage cells or lead to their death. The antioxidant system (AOS) evolved to eliminate a high concentration of ROS. For plants, this system consists of the seven classes of antioxidant enzymes and antioxidant compounds. Each enzymatic class contains a various number of genes which may vary from species to species. In such a multi-copy genetic system, the integration of evolutionary characteristics and expression data makes it possible to effectively predict promising breeding targets for the design of highly-yielding cultivars. In the plant cells, ROS production can increase as a result of abiotic stresses. Accordingly, AOS responds to stress by altering the expression of the genes of its components. Expression profiles of AOS enzymes, including their changes under stress, remains incomplete. A comprehensive study of the system behavior in response to stress for different species gives the key to identify the general mechanisms of AOS regulation. In this article, we studied stress-induced changes in the expression of AOS genes in photosynthetic tissues for rice and bread wheat. METHODS A meta-analysis of genome-wide transcriptome data on stress-induced changes in expression profiles of antioxidant genes using microarray and next generation sequencing (NGS) experiments from the GEO NCBI database for rice and bread wheat was carried out. Experimental study of expression changes in short (6 h) and prolonged (24 h) cold stress responses for selected AOS genes of bread wheat cultivars Saratovskaya29 and Yanetzkis Probat was conducted using qPCR. RESULTS The large-scale meta-transcriptome and complementary experimental analysis revealed a summary of fold changes in the AOS gene expression in response to cold and water deficiency for rice and bread wheat.
Collapse
Affiliation(s)
- Anton Ermakov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Ulyana Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Dmitrii Konstantinov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
246
|
Broad RC, Bonneau JP, Beasley JT, Roden S, Philips JG, Baumann U, Hellens RP, Johnson AAT. Genome-wide identification and characterization of the GDP-L-galactose phosphorylase gene family in bread wheat. BMC PLANT BIOLOGY 2019; 19:515. [PMID: 31771507 PMCID: PMC6878703 DOI: 10.1186/s12870-019-2123-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/07/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Ascorbate is a powerful antioxidant in plants and an essential micronutrient for humans. The GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting enzyme of the L-galactose pathway-the dominant ascorbate biosynthetic pathway in plants-and is a promising gene candidate for increasing ascorbate in crops. In addition to transcriptional regulation, GGP production is regulated at the translational level through an upstream open reading frame (uORF) in the long 5'-untranslated region (5'UTR). The GGP genes have yet to be identified in bread wheat (Triticum aestivum L.), one of the most important food grain sources for humans. RESULTS Bread wheat chromosomal groups 4 and 5 were found to each contain three homoeologous TaGGP genes on the A, B, and D subgenomes (TaGGP2-A/B/D and TaGGP1-A/B/D, respectively) and a highly conserved uORF was present in the long 5'UTR of all six genes. Phylogenetic analyses demonstrated that the TaGGP genes separate into two distinct groups and identified a duplication event of the GGP gene in the ancestor of the Brachypodium/Triticeae lineage. A microsynteny analysis revealed that the TaGGP1 and TaGGP2 subchromosomal regions have no shared synteny suggesting that TaGGP2 may have been duplicated via a transposable element. The two groups of TaGGP genes have distinct expression patterns with the TaGGP1 homoeologs broadly expressed across different tissues and developmental stages and the TaGGP2 homoeologs highly expressed in anthers. Transient transformation of the TaGGP coding sequences in Nicotiana benthamiana leaf tissue increased ascorbate concentrations more than five-fold, confirming their functional role in ascorbate biosynthesis in planta. CONCLUSIONS We have identified six TaGGP genes in the bread wheat genome, each with a highly conserved uORF. Phylogenetic and microsynteny analyses highlight that a transposable element may have been responsible for the duplication and specialized expression of GGP2 in anthers in the Brachypodium/Triticeae lineage. Transient transformation of the TaGGP coding sequences in N. benthamiana demonstrated their activity in planta. The six TaGGP genes and uORFs identified in this study provide a valuable genetic resource for increasing ascorbate concentrations in bread wheat.
Collapse
Affiliation(s)
- Ronan C Broad
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sally Roden
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Ute Baumann
- School of Agriculture, The University of Adelaide, Adelaide, South Australia, 5064, Australia
| | - Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
247
|
Intensity of lipid peroxidation processes and state of tree plantations under heavy metal pollution. UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj76.05.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
248
|
Pérez-Llorca M, Casadesús A, Munné-Bosch S, Müller M. Contrasting patterns of hormonal and photoprotective isoprenoids in response to stress in Cistus albidus during a Mediterranean winter. PLANTA 2019; 250:1409-1422. [PMID: 31286198 DOI: 10.1007/s00425-019-03234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal accumulation of hormonal and photoprotective isoprenoids, particularly α-tocopherol, carotenoids and abscisic acid, indicate their important role in protecting Cistus albidus plants from environmental stress during a Mediterranean winter. The high diurnal amounts of α-tocopherol and xanthophylls 3 h before maximum light intensity suggest a photoprotective response against the prevailing diurnal changes. The timing to modulate acclimatory/defense responses under changing environmental conditions is one of the most critical points for plant fitness and stress tolerance. Here, we report seasonal and diurnal changes in the contents of isoprenoids originated from the methylerythritol phosphate pathway, including chlorophylls, carotenoids, tocochromanols, and phytohormones (abscisic acid, cytokinins, and gibberellins) in C. albidus during a Mediterranean winter. Plants were subjected not only to typically low winter temperatures but also to drought, as shown by a mean plant water status of 54% during the experimental period. The maximum PSII efficiency, however, remained consistently high (Fv/Fm > 0.8), proving that C. albidus had efficient mechanisms to tolerate combined stress conditions during winter. While seasonal α-tocopherol contents remained high (200-300 µg/g DW) during the experimental period, carotenoid contents increased during winter attaining maximum levels in February (minimum air temperature ≤ 5 °C for 13 days). Following the initial transient increases of bioactive trans-zeatin (about fivefold) during winter, the increased abscisic acid contents proved its important role during abiotic stress tolerance. Diurnal amounts of α-tocopherol and xanthophylls, particularly lutein, zeaxanthin and neoxanthin including the de-epoxidation state, reached maximum levels as early as 2 h after dawn, when solar intensity was 68% lower than the maximum solar radiation at noon. It is concluded that (1) given their proven antioxidant properties, both α-tocopherol and carotenoids seem to play a crucial role protecting the photosynthetic apparatus under severe stress conditions; (2) high seasonal amounts of abscisic acid indicate its important role in abiotic stress tolerance within plant hormones, although under specific environmental conditions, accumulation of bioactive cytokinins appears to be involved to enhance stress tolerance; (3) the concerted diurnal adjustment of α-tocopherol and xanthophylls as early as 3 h before maximum light intensity suggests that plants anticipated the predictable diurnal changes in the environment to protect the photosynthetic apparatus.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
249
|
Rasool SG, Gulzar S, Hameed A, Edwards GE, Khan MA, Gul B. Maintenance of photosynthesis and the antioxidant defence systems have key roles for survival of Halopeplis perfoliata (Amaranthaceae) in a saline environment. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1167-1175. [PMID: 31332917 DOI: 10.1111/plb.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Coastal salt marsh plants employ various combinations of morphological and physiological adaptations to survive under saline conditions. Little information is available on salinity tolerance mechanisms of Halopeplis perfoliata, a C3 stem succulent halophyte. We investigated the growth, photosynthesis and antioxidant defence mechanisms of H. perfoliata under saline conditions (0, 150, 300 and 600 mM NaCl) in an open greenhouse. Optimal shoot succulence, projected shoot area and relative growth rate were obtained in the low (150 mm NaCl) salinity treatment, while growth was inhibited at the highest salinity (600 mm NaCl). The CO2 compensation point and carbon isotope composition of biomass confirmed C3 photosynthesis. Increases in salinity did not affect the photosynthetic pigment content or maximum quantum efficiency of PSII of H. perfoliata. Assimilation of CO2 (A) also remained unaffected by salinity. A modest effect on some gas exchange and photochemistry parameters was observed at 600 mm NaCl. With increasing salinity, there was a continual increase in respiration, suggesting utilisation of energy to cope with saline conditions. Under 300 and 600 mm NaCl, there was an increase in H2 O2 and MDA with a concomitant rise in AsA, GR content and CAT activity. Hence, H. perfoliata appears to be an obligate halophyte that can grow up to seawater salinities by modulating photosynthetic gas exchange, photochemistry and the antioxidant defence systems.
Collapse
Affiliation(s)
- S G Rasool
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - S Gulzar
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - A Hameed
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - G E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - M A Khan
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - B Gul
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| |
Collapse
|
250
|
Du B, Kruse J, Winkler JB, Alfarray S, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Climate and development modulate the metabolome and antioxidative system of date palm leaves. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5959-5969. [PMID: 31375818 PMCID: PMC6812712 DOI: 10.1093/jxb/erz361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Date palms are remarkably tolerant to environmental stresses, but the mechanisms involved remain poorly characterized. Leaf metabolome profiling was therefore performed on mature (ML) and young (YL) leaves of 2-year-old date palm seedlings that had been grown in climate chambers that simulate summer and winter conditions in eastern Saudi Arabia. Cultivation under high temperature (summer climate) resulted in higher YL H2O2 leaf levels despite increases in dehydroascorbate reductase (DHAR) activities. The levels of raffinose and galactinol, tricarboxylic acid cycle intermediates, and total amino acids were higher under these conditions, particularly in YL. The accumulation of unsaturated fatty acids, 9,12-octadecadienoic acid and 9,12,15-octadecatrienoic acid, was lower in ML. In contrast, the amounts of saturated tetradecanoic acid and heptadecanoic acid were increased in YL under summer climate conditions. The accumulation of phenolic compounds was favored under summer conditions, while flavonoids accumulated under lower temperature (winter climate) conditions. YL displayed stronger hydration, lower H2O2 levels, and more negative δ 13C values, indicating effective reactive oxygen species scavenging. These findings, which demonstrate the substantial metabolic adjustments that facilitate tolerance to the high temperatures in YL and ML, suggest that YL may be more responsive to climate change.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | | | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|