201
|
Rikiishi K, Sugimoto M, Maekawa M. Transcriptomic analysis of developing seeds in a wheat ( Triticum aestivum L.) mutant RSD32 with reduced seed dormancy. BREEDING SCIENCE 2021; 71:155-166. [PMID: 34377063 PMCID: PMC8329890 DOI: 10.1270/jsbbs.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/11/2020] [Indexed: 06/13/2023]
Abstract
Seed dormancy, a major factor regulating pre-harvest sprouting, can severely hinder wheat cultivation. Reduced Seed Dormancy 32 (RSD32), a wheat (Triticum aestivum L.) mutant with reduced seed dormancy, is derived from the pre-harvest sprouting tolerant cultivar, 'Norin61'. RSD32 is regulated by a single recessive gene and mutant phenotype expressed in a seed-specific manner. Gene expressions in embryos of 'Norin61' and RSD32 were compared using RNA sequencing (RNA-seq) analysis at different developmental stages of 20, 30, and 40 days after pollination (DAP). Numbers of up-regulated genes in RSD32 are equivalent in all developmental stages. However, down-regulated genes in RSD32 are more numerous on DAP20 and DAP30 than on DAP40. In central components affecting the circadian clock, homologues to the morning-expressed genes are expressed at lower levels in RSD32. However, higher expressions of homologues acting as evening-expressed genes are observed in RSD32. Homologues of Ca2+ signaling pathway related genes are specifically expressed on DAP20 in 'Norin61'. Lower expression is shown in RSD32. These results suggest that RSD32 mutation expresses on DAP20 and earlier seed developmental stages and suggest that circadian clock regulation and Ca2+ signaling pathway are involved in the regulation of wheat seed dormancy.
Collapse
Affiliation(s)
- Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
202
|
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, Xu C, Cong W, Liu B, Xu ZY. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:567-584. [PMID: 33423315 DOI: 10.1111/nph.17177] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/25/2020] [Indexed: 05/09/2023]
Abstract
Abscisic acid (ABA) plays a crucial role in the adaptation of young seedlings to environmental stresses. However, the role of epigenetic components and core transcriptional machineries in the effect of ABA on seed germination and seedling growth remain unclear. Here, we show that a histone 3 lysine 4 (H3K4) demethylase, JMJ17, regulates the expression of ABA-responsive genes during seed germination and seedling growth. Using comparative interactomics, WRKY40, a central transcriptional repressor in ABA signaling, was shown to interact with JMJ17. WRKY40 facilitates the recruitment of JMJ17 to the ABI5 chromatin, which removes gene activation marks (H3K4me3) from the ABI5 chromatin, thereby repressing its expression. Additionally, WRKY40 represses the transcriptional activation activity of HY5, which can activate ABI5 expression by directly binding to its promoter. An increase in ABA concentrations decreases the affinity of WRKY40 for the ABI5 promoter. Thus, WRKY40 and JMJ17 are released from the ABI5 chromatin, activating HY5. The accumulated ABI5 protein further shows heteromeric interaction with HY5, and thus synergistically activates its own expression. Our findings reveal a novel transcriptional switch, composed of JMJ17-WRKY40 and HY5-ABI5 modules, which regulates the ABA response during seed germination and seedling development in Arabidopsis.
Collapse
Affiliation(s)
- Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
203
|
Liang B, Sun Y, Wang J, Zheng Y, Zhang W, Xu Y, Li Q, Leng P. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2403-2418. [PMID: 33345282 DOI: 10.1093/jxb/eraa593] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) plays a vital role in coordinating physiological processes during fresh fruit ripening. Binding of ABA to receptors facilitates the interaction and inhibition of type 2C phosphatase (PP2C) co-receptors. However, the exact mechanism of PP2C during fruit ripening is unclear. In this study, we determined the role of the tomato ABA co-receptor type 2C phosphatase SlPP2C3, a negative regulator of ABA signaling and fruit ripening. SlPP2C3 selectively interacted with monomeric ABA receptors and SlSnRK2.8 kinase in both yeast and tobacco epidermal cells. Expression of SlPP2C3 was ABA-inducible, which was negatively correlated with fruit ripening. Tomato plants with suppressed SlPP2C3 expression exhibited enhanced sensitivity to ABA, while plants overexpressing SlPP2C3 were less sensitive to ABA. Importantly, lack of SlPP2C3 expression accelerated the onset of fruit ripening and affected fruit glossiness by altering the outer epidermis structure. There was a significant difference in the expression of cuticle-related genes in the pericarp between wild-type and SlPP2C3-suppressed lines based on RNA sequencing (RNA-seq) analysis. Taken together, our findings demonstrate that SlPP2C3 plays an important role in the regulation of fruit ripening and fruit glossiness in tomato.
Collapse
Affiliation(s)
- Bin Liang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yufei Sun
- College of Horticulture, China Agricultural University, Beijing, PR China
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, PR China
| |
Collapse
|
204
|
Liao P, Lung SC, Chan WL, Hu M, Kong GKW, Bach TJ, Hao Q, Lo C, Chye ML. Overexpression and Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA Synthase Affect Central Metabolic Pathways in Tobacco. PLANT & CELL PHYSIOLOGY 2021; 62:205-218. [PMID: 33340324 DOI: 10.1093/pcp/pcaa154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Little has been established on the relationship between the mevalonate (MVA) pathway and other metabolic pathways except for the sterol and glucosinolate biosynthesis pathways. In the MVA pathway, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to form 3-hydroxy-3-methylglutaryl-coenzyme A. Our previous studies had shown that, while the recombinant Brassica juncea HMGS1 (BjHMGS1) mutant S359A displayed 10-fold higher enzyme activity than wild-type (wt) BjHMGS1, transgenic tobacco overexpressing S359A (OE-S359A) exhibited higher sterol content, growth rate and seed yield than OE-wtBjHMGS1. Herein, untargeted proteomics and targeted metabolomics were employed to understand the phenotypic effects of HMGS overexpression in tobacco by examining which other metabolic pathways were affected. Sequential window acquisition of all theoretical mass spectra quantitative proteomics analysis on OE-wtBjHMGS1 and OE-S359A identified the misregulation of proteins in primary metabolism and cell wall modification, while some proteins related to photosynthesis and the tricarboxylic acid cycle were upregulated in OE-S359A. Metabolomic analysis indicated corresponding changes in carbohydrate, amino acid and fatty acid contents in HMGS-OEs, and F-244, a specific inhibitor of HMGS, was applied successfully on tobacco to confirm these observations. Finally, the crystal structure of acetyl-CoA-liganded S359A revealed that improved activity of S359A likely resulted from a loss in hydrogen bonding between Ser359 and acyl-CoA, which is evident in wtBjHMGS1. This work suggests that regulation of plant growth by HMGS can influence the central metabolic pathways. Furthermore, this study demonstrates that the application of the HMGS-specific inhibitor (F-244) in tobacco represents an effective approach for studying the HMGS/MVA pathway.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Menglong Hu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, Strasbourg 67084, France
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
205
|
Linden KJ, Hsia MM, Chen YT, Callis J. The Arabidopsis thaliana E3 Ubiquitin Ligase BRIZ Functions in Abscisic Acid Response. FRONTIERS IN PLANT SCIENCE 2021; 12:641849. [PMID: 33796126 PMCID: PMC8008127 DOI: 10.3389/fpls.2021.641849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
The ubiquitin system is essential for multiple hormone signaling pathways in plants. Here, we show that the Arabidopsis thaliana E3 ligase BRIZ, a heteromeric ligase that consists minimally of BRIZ1 and BRIZ2 proteins, functions in abscisic acid (ABA) signaling or response. briz1 and briz2 homozygous mutants either fail to germinate or emerge later than wild-type seedlings, with little cotyledon expansion or root elongation and no visible greening. Viability staining indicates that briz1 and briz2 embryos are alive but growth-arrested. Germination of briz mutants is improved by addition of the carotenoid biosynthetic inhibitor fluridone or gibberellic acid (GA3), and briz mutants have improved development in backgrounds deficient in ABA synthesis (gin1-3/aba2) or signaling (abi5-7). Endogenous ABA is not higher in briz2 seeds compared to wild-type seeds, and exogenous ABA does not affect BRIZ mRNAs in imbibed seeds. These results indicate that briz embryos are hypersensitive to ABA and that under normal growth conditions, BRIZ acts to suppress ABA signaling or response. ABA signaling and sugar signaling are linked, and we found that briz1 and briz2 mutants excised from seed coats are hypersensitive to sucrose. Although briz single mutants do not grow to maturity, we were able to generate mature briz2-3 abi5-7 double mutant plants that produced seeds. These seeds are more sensitive to exogenous sugar and are larger than seeds from sibling abi5-7 BRIZ2/briz2-3 plants, suggesting that BRIZ has a parental effect on seed development. From these data, we propose a model in which the BRIZ E3 ligase suppresses ABA responses during seed maturation and germination and early seedling establishment.
Collapse
Affiliation(s)
- Katrina J. Linden
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
- Integrated Genetics and Genomics Graduate Program, University of California, Davis, Davis, CA, United States
| | - Mon Mandy Hsia
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
- Biochemistry and Molecular Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Yi-Tze Chen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Judy Callis
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
- Integrated Genetics and Genomics Graduate Program, University of California, Davis, Davis, CA, United States
- Biochemistry and Molecular Biology Graduate Program, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Program, University of California, Davis, Davis, CA, United States
| |
Collapse
|
206
|
Liu T, Li CX, Zhong J, Shu D, Luo D, Li ZM, Zhou JY, Yang J, Tan H, Ma XR. Exogenous 1',4'- trans-Diol-ABA Induces Stress Tolerance by Affecting the Level of Gene Expression in Tobacco ( Nicotiana tabacum L.). Int J Mol Sci 2021; 22:2555. [PMID: 33806336 PMCID: PMC7961390 DOI: 10.3390/ijms22052555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
1',4'-trans-diol-ABA is a key precursor of the biosynthesis of abscisic acid (ABA) biosynthesis in fungi. We successfully obtained the pure compound from a mutant of Botrytis cinerea and explored its function and possible mechanism on plants by spraying 2 mg/L 1',4'-trans-diol-ABA on tobacco leaves. Our results showed that this compound enhanced the drought tolerance of tobacco seedlings. A comparative transcriptome analysis showed that a large number of genes responded to the compound, exhibiting 1523 genes that were differentially expressed at 12 h, which increased to 1993 at 24 h and 3074 at 48 h, respectively. The enrichment analysis demonstrated that the differentially expressed genes (DEGs) were primarily enriched in pathways related to hormones and resistance. The DEGs of transcription factors were generally up-regulated and included the bHLH, bZIP, ERF, MYB, NAC, WRKY and HSF families. Moreover, the levels of expression of PYL/PYR, PP2C, SnRK2, and ABF at the ABA signaling pathway responded positively to exogenous 1',4'-trans-diol-ABA. Among them, seven ABF transcripts that were detected were significantly up-regulated. In addition, the genes involved in salicylic acid, ethylene and jasmonic acid pathways, reactive oxygen species scavenging system, and other resistance related genes were primarily induced by 1',4'-trans-diol-ABA. These findings indicated that treatment with 1',4'-trans-diol-ABA could improve tolerance to plant abiotic stress and potential biotic resistance by regulating gene expression, similar to the effects of exogenous ABA.
Collapse
Affiliation(s)
- Teng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
- College of Life Sciences, Sichuan University, Chengdu 610041, China
- University of Chinese Academy of sciences, Beijing 100049, China
| | - Cai-Xia Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Juan Zhong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Zhe-Min Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Jin-Yan Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Xin-Rong Ma
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| |
Collapse
|
207
|
Kakan X, Yu Y, Li S, Li X, Huang R, Wang J. Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis. BMC PLANT BIOLOGY 2021; 21:112. [PMID: 33627094 PMCID: PMC7905542 DOI: 10.1186/s12870-021-02882-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays an important role in plant abiotic stress responses, and ABA INSENSITIVE 4 (ABI4) is a pivotal transcription factor in the ABA signaling pathway. In Arabidopsis, ABI4 negatively regulates salt tolerance; however, the mechanism through which ABI4 regulates plant salt tolerance is poorly understood. Our previous study showed that ABI4 directly binds to the promoter of the VITAMIN C DEFECTIVE 2 (VTC2) gene, inhibiting the transcription of VTC2 and ascorbic acid (AsA) biosynthesis. RESULTS In the present study, we found that treatment with exogenous AsA could alleviate salt stress sensitivity of ABI4-overexpressing transgenic plants. The decreased AsA content and increased reactive oxygen species (ROS) levels in ABI4-overexpressing seedlings under salt treatment indicated that AsA-promoted ROS scavenging was related to ABI4-mediated salt tolerance. Gene expression analysis showed that ABI4 was induced at the early stage of salt stress, giving rise to reduced VTC2 expression. Accordingly, the abundance of the VTC2 protein decreased under the same salt stress conditions, and was absent in the ABI4 loss-of-function mutants, suggesting that the transcriptional inhibition of ABI4 on VTC2 resulted in the attenuation of VTC2 function. In addition, other encoding genes in the AsA biosynthesis and recycling pathways showed different responses to salt stress, demonstrating that AsA homeostasis is complicated under salinity stress. CONCLUSIONS This study elucidates the negative modulation of ABI4 in salt stress tolerance through the regulation of AsA biosynthesis and ROS accumulation in plants.
Collapse
Affiliation(s)
- Xiamusiya Kakan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumchi, 830052, China
| | - Yanwen Yu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shenghui Li
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Xiaoying Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- China National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- China National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| |
Collapse
|
208
|
Rathor P, Borza T, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B. A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:1971. [PMID: 33671243 PMCID: PMC7922944 DOI: 10.3390/ijms22041971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Sophia Stone
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK;
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Svetlana Yurgel
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Philippe Potin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| |
Collapse
|
209
|
Shi XP, Ren JJ, Qi HD, Lin Y, Wang YY, Li DF, Kong LJ, Wang XL. Plant-Specific AtS40.4 Acts as a Negative Regulator in Abscisic Acid Signaling During Seed Germination and Seedling Growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:622201. [PMID: 33613604 PMCID: PMC7889505 DOI: 10.3389/fpls.2021.622201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/15/2021] [Indexed: 06/01/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating plant growth, development and stress responses. A multitude of key factors implicated in ABA signaling have been identified; however, the regulation network of these factors needs for further information. AtS40.4, a plant-specific DUF584 domain-containing protein, was identified previously as a senescence regulator in Arabidopsis. In this study, our finding showed that AtS40.4 was negatively involved in ABA signaling during seed germination and early seedling growth. AtS40.4 was highly expressed in seeds and seedlings, and the expression level was promoted by ABA. AtS40.4 was localized both in the nucleus and the cytoplasm. Moreover, the subcellular localization pattern of AtS40.4 was affected by ABA. The knockdown mutants of AtS40.4 exhibited an increased sensitivity to ABA, whereas the overexpression of AtS40.4 decreased the ABA response during seed germination and seedling growth of Arabidopsis. Furthermore, AtS40.4 was involved in ABRE-dependent ABA signaling and influenced the expression levels of ABA INSENTIVE (ABI)1-5 and SnRK2.6. Further genetic evidence demonstrated that AtS40.4 functioned upstream of ABI4. These findings support the notion that AtS40.4 is a novel negative regulator of the ABA response network during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Xiao-Pu Shi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yi Lin
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - De-Feng Li
- Shandong Lufeng Group Co., Ltd., Anqiu, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
210
|
Wytynck P, Lambin J, Chen S, Demirel Asci S, Verbeke I, De Zaeytijd J, Subramanyam K, Van Damme EJ. Effect of RIP Overexpression on Abiotic Stress Tolerance and Development of Rice. Int J Mol Sci 2021; 22:1434. [PMID: 33535383 PMCID: PMC7867109 DOI: 10.3390/ijms22031434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.
Collapse
Affiliation(s)
- Pieter Wytynck
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen Lambin
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Sinem Demirel Asci
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen De Zaeytijd
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Kondeti Subramanyam
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
211
|
Li M, Yang Y, Raza A, Yin S, Wang H, Zhang Y, Dong J, Wang G, Zhong C, Zhang H, Liu J, Jin W. Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria × ananassa Duch.) improves drought tolerance. BMC PLANT BIOLOGY 2021; 21:57. [PMID: 33478380 PMCID: PMC7818561 DOI: 10.1186/s12870-021-02839-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Strawberry (Fragaria × ananassa Duch.) is an important fruit crop worldwide. It was particularly sensitive to drought stress because of their fibrous and shallow root systems. Mutant rty of Arabidopsis thaliana ROOTY (RTY) results in increased endogenous auxin levels, more roots, and shoot growth. It is still unclear whether the rty gene improves stress tolerance in strawberry. RESULTS rty gene was isolated from Arabidopsis thaliana and placed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in the pBI121-rty binary vector carrying the selectable marker of neomycin phosphotransferase II (NPT II). Seven transgenic lines were confirmed by PCR and western blot analysis. Accumulations of IAA and ABA were significantly increased in the transgenic plants. The endogenous IAA contents were 46.5 ng g- 1 and 66.0 ng g- 1in control and transgenic plants respectively. The endogenous ABA contents in the control plant were 236.3 ng g- 1 and in transgenic plants were 543.8 ng g- 1. The production of adventitious roots and trichomes were enhanced in the transgenic plants. Furthermore, transcript levels of the genes including IAA and ABA biosynthetic, and stress-responsive genes, were higher in the transgenic plants than in the control plants under drought conditions. Water use efficiency and a reduced water loss rate were enhanced in the transgenic strawberry plants. Additionally, peroxidase and catalase activities were significantly higher in the transgenic plants than in the control plants. The experiment results revealed a novel function for rty related to ABA and drought responses. CONCLUSIONS The rty gene improved hormone-mediated drought tolerance in transgenic strawberry. The heterologous expression of rty in strawberry improved drought tolerance by promoting auxin and ABA accumulation. These phytohormones together brought about various physiological changes that improved drought tolerance via increased root production, trichome density, and stomatal closure. Our results suggested that a transgenic approach can be used to overcome the inherent trade-off between plant growth and drought tolerance by enhancing water use efficiency and reducing water loss rate under water shortage conditions.
Collapse
Affiliation(s)
- Maofu Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Yuan Yang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, P. R. China
| | - Shanshan Yin
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Hua Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Yuntao Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Jing Dong
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Guixia Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Chuanfei Zhong
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Hong Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Jiashen Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Wanmei Jin
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China.
| |
Collapse
|
212
|
Wang X, Liu H, Siddique KHM, Yan G. Transcriptomic profiling of wheat near-isogenic lines reveals candidate genes on chromosome 3A for pre-harvest sprouting resistance. BMC PLANT BIOLOGY 2021; 21:53. [PMID: 33478384 PMCID: PMC7818928 DOI: 10.1186/s12870-021-02824-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. RESULTS Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. CONCLUSIONS The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.
Collapse
Affiliation(s)
- Xingyi Wang
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
213
|
Babina D, Podobed M, Bondarenko E, Kazakova E, Bitarishvili S, Podlutskii M, Mitsenyk A, Prazyan A, Gorbatova I, Shesterikova E, Volkova P. Seed Gamma Irradiation of Arabidopsis thaliana ABA-Mutant Lines Alters Germination and Does Not Inhibit the Photosynthetic Efficiency of Juvenile Plants. Dose Response 2021; 18:1559325820979249. [PMID: 33456412 PMCID: PMC7783891 DOI: 10.1177/1559325820979249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plant growth response to γ-irradiation includes stimulating or inhibitory effects
depending on plant species, dose applied, stage of ontogeny and other factors.
Previous studies showed that responses to irradiation could depend on ABA
accumulation and signaling. To elucidate the role of ABA in growth and
photosynthetic responses to irradiation, lines Col-8, abi3-8
and aba3 -1 of Arabidopsis thaliana were used.
Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It
was revealed that the dose of 150 Gy affected germination parameters of
aba3 -1 and Col-8 lines, while abi3-8 line
was the most resistant to the studied doses and even showed faster germination
at early hours after γ-irradiation at 50 Gy. These results suggest that
susceptibility to ABA is probably more important for growth response to
γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old
plants mainly was not disturbed by γ-irradiation of seeds, and no indication of
photosystem II photoinhibition was noticed, revealing the robustness of the
photosynthetic system of A. thaliana. Glutathione peroxidase
activity and ABA concentrations in plant tissues were not affected in the
studied dose range. These results contribute to the understanding of germination
and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing
radiation.
Collapse
Affiliation(s)
- Darya Babina
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Marina Podobed
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Mikhail Podlutskii
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Anastasia Mitsenyk
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Alexander Prazyan
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Irina Gorbatova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| |
Collapse
|
214
|
Ma Y, Tian H, Lin R, Wang W, Zhang N, Hussain S, Yang W, Zhang C, Zhou G, Wang T, Wang S. AITRL, an evolutionarily conserved plant specific transcription repressor regulates ABA response in Arabidopsis. Sci Rep 2021; 11:721. [PMID: 33436924 PMCID: PMC7804847 DOI: 10.1038/s41598-020-80695-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Expression of stress response genes can be regulated by abscisic acid (ABA) dependent and ABA independent pathways. Osmotic stresses promote ABA accumulation, therefore inducing the expression of stress response genes via ABA signaling. Whereas cold and heat stresses induce the expression of stress response genes via ABA independent pathway. ABA induced transcription repressors (AITRs) are a family of novel transcription factors that play a role in ABA signaling, and Drought response gene (DRG) has previously been shown to play a role in regulating plant response to drought and freezing stresses. We report here the identification of DRG as a novel transcription factor and a regulator of ABA response in Arabidopsis. We found that the expression of DRG was induced by ABA treatment. Homologs searching identified AITR5 as the most closely related Arabidopsis protein to DRG, and homologs of DRG, including the AITR-like (AITRL) proteins in bryophytes and gymnosperms, are specifically presented in embryophytes. Therefore we renamed DRG as AITRL. Protoplast transfection assays show that AITRL functioned as a transcription repressor. In seed germination and seedling greening assays, the aitrl mutants showed an increased sensitivity to ABA. By using qRT-PCR, we show that ABA responses of some ABA signaling component genes including some PYR1-likes (PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs) and SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2s (SnRK2s) were reduced in the aitrl mutants. Taken together, our results suggest that AITRLs are a family of novel transcription repressors evolutionally conserved in embryophytes, and AITRL regulates ABA response in Arabidopsis by affecting ABA response of some ABA signaling component genes.
Collapse
Affiliation(s)
- Yanxing Ma
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China.,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Chen Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China. .,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
215
|
Hassan MJ, Geng W, Zeng W, Raza MA, Khan I, Iqbal MZ, Peng Y, Zhu Y, Li Z. Diethyl Aminoethyl Hexanoate Priming Ameliorates Seed Germination via Involvement in Hormonal Changes, Osmotic Adjustment, and Dehydrins Accumulation in White Clover Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:709187. [PMID: 34394164 PMCID: PMC8358406 DOI: 10.3389/fpls.2021.709187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
Drought is a serious outcome of climate change reducing the productivity of forage species under arid and semi-arid conditions worldwide. Diethyl aminoethyl hexanoate (DA-6), a novel plant growth regulator, has proven to be involved in the amelioration of critical physiological functions in many agricultural crops under various abiotic stresses, but the role of the DA-6 in improving seed germination has never been investigated under drought stress. The present study was carried out to elucidate the impact of the DA-6 priming on seeds germination of white clover under drought stress. Results showed that seed priming with the DA-6 significantly mitigated the drought-induced reduction in germination percentage, germination vigor, germination index, seed vigor index, root length, shoot length, and fresh weight after 7 days of seed germination. The DA-6 significantly increased the endogenous indole-3-acetic acid, gibberellin, and cytokinin content with marked reduction in abscisic acid content in seedlings under drought stress. In addition, the DA-6 significantly accelerated starch catabolism by enhancing the activities of hydrolases contributing toward enhanced soluble sugars, proline content and ameliorated the antioxidant defense system to enhance the ability of reactive oxygen species scavenging under drought stress. Furthermore, exogenous DA-6 application significantly increased dehydrins accumulation and upregulated transcript levels of genes encoding dehydrins (SK2, Y2SK, or DHNb) during seeds germination under water deficient condition. These findings suggested that the DA-6 mediated seeds germination and drought tolerance associated with changes in endogenous phytohormones resulting in increased starch degradation, osmotic adjustment, antioxidants activity, and dehydrins accumulation during seed germination under water deficient condition.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weihang Zeng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqun Zhu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Yongqun Zhu,
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Zhou Li,
| |
Collapse
|
216
|
Chen MX, Lu CC, Sun PC, Nie YX, Tian Y, Hu QJ, Das D, Hou XX, Gao B, Chen X, Liu SX, Zheng CC, Zhao XY, Dai L, Zhang J, Liu YG. Comprehensive transcriptome and proteome analyses reveal a novel sodium chloride responsive gene network in maize seed tissues during germination. PLANT, CELL & ENVIRONMENT 2021; 44:88-101. [PMID: 32677712 DOI: 10.1111/pce.13849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chong-Chong Lu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Peng-Cheng Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Yong-Xin Nie
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Qi-Juan Hu
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Debatosh Das
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuan-Xuan Hou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Bei Gao
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Shou-Xu Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Cheng-Chao Zheng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xiang-Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianhua Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
217
|
Zhang Z, Gong J, Li X, Ding Y, Wang B, Shi J, Liu M, Yang B. Underlying mechanism on source-sink carbon balance of grazed perennial grass during regrowth: Insights into optimal grazing regimes of restoration of degraded grasslands in a temperate steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111439. [PMID: 33035939 DOI: 10.1016/j.jenvman.2020.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Overgrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situ13CO2 labeling and field regrowth studies of Stipa grandis P.A. Smirn.to examine the effects of different grazing intensities (light, medium, heavy, and grazing exclusion) on photosynthetic C assimilation and partitioning, on reallocation of non-structural carbohydrates during regrowth, and on the underlying regulatory mechanisms. Light grazing increased the sink demand of newly expanded leaves and significantly promoted 13C fixation by increasing the photosynthetic capacity of the leaves and accelerating fructose transfer from the stem. Although C assimilation decreased under medium and heavy grazing, S. grandis exhibited a tolerance strategy that preferentially allocated more starch and 13C to the roots for storage to balance sink competition between newly expanded leaves and the roots. Sucrose phosphate synthase (SPS), sucrose synthase (SS), and other plant hormones regulated source-sink imbalances during regrowth. Abscisic acid promoted accumulation of aboveground biomass by stimulating stem SPS activity, whereas jasmonate increased root starch synthesis, thereby increasing belowground biomass. Overall, S. grandis could optimize source-sink relationships and above- and belowground C allocation to support regrowth after grazing by the regulating activities of SPS, SS and other hormones. These results provide new insights into C budgets under grazing and guidance for sustainable grazing management in semi-arid grasslands.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Yong Ding
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, 120 Ulanqab East Street, Saihan District, Hohhot, Inner Mongolia, 010021, China.
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jiayu Shi
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Min Liu
- Key Laboratory of Tourism and Resources Environment, Taishan University, Tai'an, Shandong province, 271021, China.
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
218
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
219
|
Xie Q, Essemine J, Pang X, Chen H, Jin J, Cai W. Abscisic Acid Regulates the Root Growth Trajectory by Reducing Auxin Transporter PIN2 Protein Levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:632676. [PMID: 33763094 PMCID: PMC7982918 DOI: 10.3389/fpls.2021.632676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
The root is in direct contact with soil. Modulation of root growth in response to alterations in soil conditions is pivotal for plant adaptation. Extensive research has been conducted concerning the adjustment of root elongation and architecture in response to environmental factors. However, little is known about the modulation of the root growth trajectory, as well as its hormonal mechanism. Here we report that abscisic acid (ABA) participated in controlling root growth trajectory. The roots upon ABA treatment or from ABA-accumulation double mutant cyp707a1,3 exhibit agravitropism-like growth pattern (wavy growth trajectory). The agravitropism-like phenotype is mainly ascribed to the compromised shootward transportation of auxin since we detected a reduced fluorescence intensity of auxin reporter DR5:VENUS in the root epidermis upon exogenous ABA application or in the endogenous ABA-accumulation double mutant cyp707a1,3. We then tried to decipher the mechanism by which ABA suppressed shootward auxin transport. The membrane abundance of PIN2, a facilitator of shootward auxin transport, was significantly reduced following ABA treatment and in cyp707a1,3. Finally, we revealed that ABA reduced the membrane PIN2 intensity through suppressing the PIN2 expression rather than accelerating PIN2 degradation. Ultimately, our results suggest a pivotal role for ABA in the root growth trajectory and the hormonal interactions orchestrating this process.
Collapse
Affiliation(s)
- Qijun Xie
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- Qijun Xie,
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaochen Pang
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiming Cai, ;
| |
Collapse
|
220
|
Zhang M, Teixeira da Silva JA, Yu Z, Wang H, Si C, Zhao C, He C, Duan J. Identification of histone deacetylase genes in Dendrobium officinale and their expression profiles under phytohormone and abiotic stress treatments. PeerJ 2020; 8:e10482. [PMID: 33362966 PMCID: PMC7747690 DOI: 10.7717/peerj.10482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
The deacetylation of core histones controlled by the action of histone deacetylases (HDACs) plays an important role in the epigenetic regulation of plant gene transcription. However, no systematic analysis of HDAC genes in Dendrobium officinale, a medicinal orchid, has been performed. In the current study, a total of 14 histone deacetylases in D. officinale were identified and characterized using bioinformatics-based methods. These genes were classified into RPD3/HDA1, SIR2, and HD2 subfamilies. Most DoHDAC genes in the same subfamily shared similar structures, and their encoded proteins contained similar motifs, suggesting that the HDAC family members are highly conserved and might have similar functions. Different cis-acting elements in promoters were related to abiotic stresses and exogenous plant hormones. A transient expression assay in onion epidermal cells by Agrobacterium-mediated transformation indicated that all of the detected histone deacetylases such as DoHDA7, DoHDA9, DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2, were localized in the nucleus. A tissue-specific analysis based on RNA-seq suggested that DoHDAC genes play a role in growth and development in D. officinale. The expression profiles of selected DoHDAC genes under abiotic stresses and plant hormone treatments were analyzed by qRT-PCR. DoHDA3, DoHDA8, DoHDA10 and DoHDT4 were modulated by multiple abiotic stresses and phytohormones, indicating that these genes were involved in abiotic stress response and phytohormone signaling pathways. These results provide valuable information for molecular studies to further elucidate the function of DoHDAC genes.
Collapse
Affiliation(s)
- Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
221
|
Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics 2020; 113:854-866. [PMID: 33321205 DOI: 10.1016/j.ygeno.2020.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Here, 38 wheat PYL genes (TaPYLs) belonging to 13 homoeologous groups were identified using the genome-search method, with 26 and 12 PYL genes identified in Triticum dicoccoides and Aegilops tauschii, respectively. Phylogenetic relationship, conserved domain and molecular evolution analysis revealed that PYL genes showed highly conservative between wheat and theprogenitors. Interaction network and miRNA target prediction found that TaPYLs could interact with the important components of ABA signaling pathway and Tae-miR966b-3p might be a hub regulator mediating wheat ABA signal network. Furthermore, the tissue-specific and stress-responsive TaPYLs were detected through RNA-seq analysis. Expressions of 10 TaPYLs were validated by QPCR analysis and the homoeologous genes showed significantly differential expression, suggesting subfunctionalization of them has occurred. Finally, 3D structures of the TaPYL proteins were predicted by homology modeling. This study lays the foundation for further functional study of PYL genes for development and stress tolerance improvement in wheat and beyond.
Collapse
|
222
|
Li F, Mei F, Zhang Y, Li S, Kang Z, Mao H. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:558. [PMID: 33302868 PMCID: PMC7731569 DOI: 10.1186/s12870-020-02783-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Previous studies have shown that ABFs (abscisic acid-responsive transcription factors) are important ABA-signaling components that participate in abiotic stress response. However, little is known about the function of ABFs in Triticum aestivum. In addition, although various ABFs have been identified in other species, the phylogenetic relationship between ABF transcription factors has not been systemically investigated in land plants. RESULTS In this study, we systemically collected ABFs from land plants and analyzed the phylogenetic relationship of these ABF genes. The ABF genes are present in all the land plants we investigated, including moss, lycophyte, monocots, and eudicots. Furthermore, these ABF genes are phylogenetically divided into seven subgroups, differentiations that are supported by variation in the gene structure, protein properties, and motif patterns. We further demonstrated that the expression of ABF genes varies among different tissues and developmental stages, and are induced by one or more environmental stresses. Furthermore, we found that three wheat ABFs (TaABF1, TaABF2, and TaABF3) were significantly induced by drought stress. Compared with wild-type (WT) plants, transgenic Arabidopsis plants overexpressing TaABF3 displayed enhanced drought tolerance. CONCLUSIONS These results provide important ground work for understanding the phylogenetic relationships between plant ABF genes. Our results also indicate that TaABFs may participate in regulating plant response to abiotic stresses.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
223
|
Qu L, Sun M, Li X, He R, Zhong M, Luo D, Liu X, Zhao X. The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110643. [PMID: 33218620 DOI: 10.1016/j.plantsci.2020.110643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role at various plant developmental stages, including seed germination and seedling development, and regulates stomatal aperture in response to drought. However, the underlying mechanisms are not well understood. Here, we showed that F-BOX OF FLOWERING 2 (FOF2) is induced by ABA and drought stress. Overexpression of FOF2 led to reduced ABA sensitivity during seed germination and early seedling development, whereas the fof2 mutant exhibited increased sensitivity to ABA. Molecular and genetic analyses revealed that FOF2 negatively affected ABA-mediated seed germination and early seedling development partially by repressing the expression of the ABA-signaling genes ABI3 and ABI5. Additionally, we found that FOF2-overexpressing plants exhibited increased ABA contents, enhanced ABA sensitivity during stomatal closure, and decreased water loss, thereby improving tolerance to drought stress, in contrast to the fof2 mutant. Consistent with a higher ABA content and enhanced drought tolerance, the expression of ABA- and drought-induced genes and the ABA-biosynthesis gene NCED3 was upregulated in the FOF2-overexpressing plants but downregulated in fof2 mutant in response to drought stress. Taken together, our findings revealed that FOF2 plays an important negative role in ABA-mediated seed germination and early seedling development, as well as a positive role in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Reqing He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Dan Luo
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
224
|
de Vries J, Ischebeck T. Ties between Stress and Lipid Droplets Pre-date Seeds. TRENDS IN PLANT SCIENCE 2020; 25:1203-1214. [PMID: 32921563 DOI: 10.1016/j.tplants.2020.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Seeds were a key evolutionary innovation. These durable structures provide a concerted solution to two challenges on land: dispersal and stress. Lipid droplets (LDs) that act as nutrient storage reservoirs are one of the main cell-biological reasons for seed endurance. Although LDs are key structures in spermatophytes and are especially abundant in seeds, they are found across plants and algae, and increase during stress. Further, the proteins that underpin their form and function often have deep homologs. We propose an evolutionary scenario in which (i) the generation of LDs arose as a mechanism to mediate general drought and desiccation resilience, and (ii) the required protein framework was co-opted by spermatophytes for a seed-specific program.
Collapse
Affiliation(s)
- Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstrasse 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Till Ischebeck
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| |
Collapse
|
225
|
Zhu Y, Huang P, Guo P, Chong L, Yu G, Sun X, Hu T, Li Y, Hsu CC, Tang K, Zhou Y, Zhao C, Gao W, Tao WA, Mengiste T, Zhu JK. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1573-1590. [PMID: 32619295 DOI: 10.1111/nph.16787] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
CDK8 is a key subunit of Mediator complex, a large multiprotein complex that is a fundamental part of the conserved eukaryotic transcriptional machinery. However, the biological functions of CDK8 in plant abiotic stress responses remain largely unexplored. Here, we demonstrated CDK8 as a critical regulator in the abscisic acid (ABA) signaling and drought response pathways in Arabidopsis. Compared to wild-type, cdk8 mutants showed reduced sensitivity to ABA, impaired stomatal apertures and hypersensitivity to drought stress. Transcriptomic and chromatin immunoprecipitation analysis revealed that CDK8 positively regulates the transcription of several ABA-responsive genes, probably through promoting the recruitment of RNA polymerase II to their promoters. We discovered that both CDK8 and SnRK2.6 interact physically with an ERF/AP2 transcription factor RAP2.6, which can directly bind to the promoters of RD29A and COLD-REGULATED 15A (COR15A) with GCC or DRE elements, thereby promoting their expression. Importantly, we also showed that CDK8 is essential for the ABA-induced expression of RAP2.6 and RAP2.6-mediated upregulation of ABA-responsive genes, indicating that CDK8 could link the SnRK2.6-mediated ABA signaling to RNA polymerase II to promote immediate transcriptional response to ABA and drought signals. Overall, our data provide new insights into the roles of CDK8 in modulating ABA signaling and drought responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Gaobo Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Xiaoli Sun
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Tao Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
226
|
Du C, Li H, Liu C, Fan H. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. J Proteomics 2020; 232:104062. [PMID: 33276192 DOI: 10.1016/j.jprot.2020.104062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The postgerminative development is a complex, genetically programmed process, and also the most dangerous period before the developing seedlings reach the autotrophy state. To obtain a comprehensive understanding of postgerminative development mechanism, the study focuses on an integrative analysis on transcriptome, proteome, and microRNA in cucumber seeds under drought and salt stress. Drought and salt stress caused differential expression of 4197 mRNAs, 36 microRNAs and 768 proteins compared with the control, and 827 mRNAs, 364 proteins, and 12 microRNAs were shared by the two stresses. Numerous common differentially expressed genes and proteins participated the signal transduction of plant hormone, photosynthesis, and argine and proline metabolism. We noted the correlation among nitric oxide, polyamine, proline, and ethylene metabolism, thereby helping to elucidate the role of these substances, which are derived either directly or indirectly from arginine, in the regulation of abiotic stress and provide a basis for building better network-based molecular models in further research. Above findings contribute to new and useful information regarding the common molecular mechanisms during cucumber seedling development under drought and salt stress. SIGNIFICANCE: Water scarcity and high salt are two of the most destructive and wide stress factors which limit the growth and progression of plants by affecting a variety of vital physiological and biochemical processes. Our study focuses on an integrative analysis on transcriptome, proteome, and microRNA for confirming the essential regulators as well as pathways using cucumber postgerminative development under drought and salt stress. Arginine metabolism is a vital response to abiotic stress during cucumber seed germination.
Collapse
Affiliation(s)
- Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chen Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
227
|
Ma D, Endo S, Betsuyaku S, Shimotohno A, Fukuda H. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2020; 104:561-574. [PMID: 32980951 DOI: 10.1007/s11103-020-01059-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 05/05/2023]
Abstract
This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the β-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akie Shimotohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
228
|
Grafi G. Dead but Not Dead End: Multifunctional Role of Dead Organs Enclosing Embryos in Seed Biology. Int J Mol Sci 2020; 21:ijms21218024. [PMID: 33126660 PMCID: PMC7662896 DOI: 10.3390/ijms21218024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Dry fruits consist of two types, dehiscent and indehiscent, whereby the fruit is splitting open or remains closed at maturity, respectively. The seed, the dispersal unit (DU) of dehiscent fruits, is composed of three major parts, the embryo and the food reserve, encapsulated by the maternally-derived organ, the seed coat. Indehiscent fruit constitutes the DU in which the embryo is covered by two protective layers (PLs), the seed coat and the fruit coat. In grasses, the caryopsis, a one-seeded fruit, can be further enclosed by the floral bracts to generate two types of DUs, florets and spikelets. All protective layers enclosing the embryo undergo programmed cell death (PCD) at maturation and are thought to provide mainly a physical shield for embryo protection and a means for dispersal. In this review article, I wish to highlight the elaborate function of these dead organs enclosing the embryo as unique storage structures for beneficial substances and discuss their potential role in seed biology and ecology.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| |
Collapse
|
229
|
Proteomics analysis of Cyclobalanopsis gilva provides new insights of low seed germination. Biochimie 2020; 180:68-78. [PMID: 33250447 DOI: 10.1016/j.biochi.2020.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
Abstract
A valuable plant, Cyclobalanopsis gilva, (C. gilva) has a low germination rate (below 50%) under its natural habitations. In order to examine the reasons for the low germination rate, the seeds of C. gilva (germinated and non-germinated) were evaluated using comparative proteomics analysis. A total of 3078 differentially abundant proteins (DAPs) were identified through a label-free method; most DAPs up-accumulated in germinated seeds were related to carbohydrates metabolism. Furthermore the proteins related to the signals, stress, and protein metabolism showed up-accumulation in germinated and no abundance or down-accumulation in non-germinated seeds. Enzyme activity of HK, PGK, PFK, and PK from glycolysis in SG-Control samples were 1.7-, 1.1-, 1.4-, and 1.3-times higher compared with those in control ones while CS, NAD-MDH, α-KGDH, and ICDH from the TCA cycle in SG-Control samples were 3, 1.1, 1.2, and 1.2 times higher than those in NG-Control ones. The β-amylase activity was 4-fold higher in successfully germinated seeds compared to non-germinated seeds. Interestingly, α-amylase did not show significant changes in protein abundance and enzyme activity among the three samples. The present findings reveal that unsuccessful germination of C. gilva seeds is due to lack of energy.
Collapse
|
230
|
Zhang M, Liu Y, Cai H, Guo M, Chai M, She Z, Ye L, Cheng Y, Wang B, Qin Y. The bZIP Transcription Factor GmbZIP15 Negatively Regulates Salt- and Drought-Stress Responses in Soybean. Int J Mol Sci 2020; 21:E7778. [PMID: 33096644 PMCID: PMC7589023 DOI: 10.3390/ijms21207778] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/03/2022] Open
Abstract
Soybean (Glycine max), as an important oilseed crop, is constantly threatened by abiotic stress, including that caused by salinity and drought. bZIP transcription factors (TFs) are one of the largest TF families and have been shown to be associated with various environmental-stress tolerances among species; however, their function in abiotic-stress response in soybean remains poorly understood. Here, we characterized the roles of soybean transcription factor GmbZIP15 in response to abiotic stresses. The transcript level of GmbZIP15 was suppressed under salt- and drought-stress conditions. Overexpression of GmbZIP15 in soybean resulted in hypersensitivity to abiotic stress compared with wild-type (WT) plants, which was associated with lower transcript levels of stress-responsive genes involved in both abscisic acid (ABA)-dependent and ABA-independent pathways, defective stomatal aperture regulation, and reduced antioxidant enzyme activities. Furthermore, plants expressing a functional repressor form of GmbZIP15 exhibited drought-stress resistance similar to WT. RNA-seq and qRT-PCR analyses revealed that GmbZIP15 positively regulates GmSAHH1 expression and negatively regulates GmWRKY12 and GmABF1 expression in response to abiotic stress. Overall, these data indicate that GmbZIP15 functions as a negative regulator in response to salt and drought stresses.
Collapse
Affiliation(s)
- Man Zhang
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Yanhui Liu
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Hanyang Cai
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Mingliang Guo
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Mengnan Chai
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Li Ye
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Yan Cheng
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Qin
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
231
|
Liu H, Ma X, Liu S, Du B, Cheng N, Wang Y, Zhang Y. The Nicotiana tabacum L. major latex protein-like protein 423 (NtMLP423) positively regulates drought tolerance by ABA-dependent pathway. BMC PLANT BIOLOGY 2020; 20:475. [PMID: 33066728 PMCID: PMC7565365 DOI: 10.1186/s12870-020-02690-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/08/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Drought stress is an environmental factor that limits plant growth and reproduction. Little research has been conducted to investigate the MLP gene in tobacco. Here, NtMLP423 was isolated and identified, and its role in drought stress was studied. RESULTS Overexpression of NtMLP423 improved tolerance to drought stress in tobacco, as determined by physiological analyses of water loss efficiency, reactive oxygen species levels, malondialdehyde content, and levels of osmotic regulatory substances. Overexpression of NtMLP423 in transgenic plants led to greater sensitivity to abscisic acid (ABA)-mediated seed germination and ABA-induced stomatal closure. NtMLP423 also regulated drought tolerance by increasing the levels of ABA under conditions of drought stress. Our study showed that the transcription level of ABA synthetic genes also increased. Overexpression of NtMLP423 reduced membrane damage and ROS accumulation and increased the expression of stress-related genes under drought stress. We also found that NtWRKY71 regulated the transcription of NtMLP423 to improve drought tolerance. CONCLUSIONS Our results indicated that NtMLP423-overexpressing increased drought tolerance in tobacco via the ABA pathway.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Xiaocen Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Shaohua Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Bingyang Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Nini Cheng
- Linyi University, Linyi, 276005, Shandong, P.R. China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China.
| |
Collapse
|
232
|
Zhang R, Wang Y, Li S, Yang L, Liang Z. ABA signaling pathway genes and function during abiotic stress and berry ripening in Vitis vinifera. Gene 2020; 769:145226. [PMID: 33059024 DOI: 10.1016/j.gene.2020.145226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Abscisic acid (ABA) plays important roles in plant development and tolerance to abiotic stresses. Limited information is available regarding ABA signaling pathway genes in grape. In this study, 9 VvPYR/PYLs, 85 VvPP2Cs, 7 VvABIs, 7 VvSnRK2s, and 8 VvABFs were identified in the grape genome. Duplication analysis indicated that whole genome duplication might contribute to the expansion of these gene families. The comprehensive transcriptome analysis in various organs/tissues implied that most of these genes were tissue-specific, and few were environment-specific genes. Exogenous ABA treatment reduced the grape maturation period. VvPP2C59, VvPP2C60, VvPP2C66, and VvABF8 were all involved in tolerance to cold, heat, and drought stresses, revealing their crucial roles in regulating environmental stress responses. This work provides detailed information of ABA signaling pathway genes and new insights regarding their expression patterns during grape development and abiotic stress treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
233
|
Ma Y, Zhang S, Bi C, Mei C, Jiang SC, Wang XF, Lu ZJ, Zhang DP. Arabidopsis exoribonuclease USB1 interacts with the PPR-domain protein SOAR1 to negatively regulate abscisic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5837-5851. [PMID: 32969475 PMCID: PMC7541913 DOI: 10.1093/jxb/eraa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/23/2020] [Indexed: 05/27/2023]
Abstract
Signaling by the phytohormone abscisic acid (ABA) involves pre-mRNA splicing, a key process of post-transcriptional regulation of gene expression. However, the regulatory mechanism of alternative pre-mRNA splicing in ABA signaling remains largely unknown. We previously identified a pentatricopeptide repeat protein SOAR1 (suppressor of the ABAR-overexpressor 1) as a crucial player downstream of ABAR (putative ABA receptor) in ABA signaling. In this study, we identified a SOAR1 interaction partner USB1, which is an exoribonuclease catalyzing U6 production for spliceosome assembly. We reveal that together USB1 and SOAR1 negatively regulate ABA signaling in early seedling development. USB1 and SOAR1 are both required for the splicing of transcripts of numerous genes, including those involved in ABA signaling pathways, suggesting that USB1 and SOAR1 collaborate to regulate ABA signaling by affecting spliceosome assembly. These findings provide important new insights into the mechanistic control of alternative pre-mRNA splicing in the regulation of ABA-mediated plant responses to environmental cues.
Collapse
Affiliation(s)
- Yu Ma
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Shang Zhang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Chao Bi
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Chao Mei
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Shang-Chuan Jiang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Xiao-Fang Wang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Da-Peng Zhang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| |
Collapse
|
234
|
Laspina NV, Batlla D, Benech-Arnold RL. Dormancy cycling is accompanied by changes in ABA sensitivity in Polygonum aviculare seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5924-5934. [PMID: 32706878 DOI: 10.1093/jxb/eraa340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms. Quantification of endogenous ABA both prior to and during incubation, and sensitivity to ABA and GAs, were assessed in seeds with contrasting dormancy. Expression analysis was performed for candidate genes involved in hormone metabolism and signaling. It was found that endogenous ABA content does not explain either dormancy release or dormancy induction; moreover, it does not seem to play a role in dormancy maintenance. However, dormancy modifications were commonly accompanied by changes in ABA sensitivity. Concomitantly, induction into SD, but not PD, was characterized by a increased PaABI-5 and PaPYL transcription, and a rise in GA sensitivity as a possible counterbalance effect. These results suggest that dormancy cycling in this species is related to changes in embryo sensitivity to ABA; however, this sensitivity appears to be controlled by different molecular mechanisms in primary and secondary dormant seeds.
Collapse
Affiliation(s)
- Natalia Verónica Laspina
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Diego Batlla
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cerealicultura, Ciudad de Buenos Aires, Argentina
| | - Roberto Luis Benech-Arnold
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
235
|
Yuan L, Dai H, Zheng S, Huang R, Tong H. Genome-wide identification of the HDAC family proteins and functional characterization of CsHD2C, a HD2-type histone deacetylase gene in tea plant (Camellia sinensis L. O. Kuntze). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:898-913. [PMID: 32916640 DOI: 10.1016/j.plaphy.2020.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The histone deacetylases (HDACs) are involved in growth, development and stress responses in many plants. However, the functions of HDACs in tea plant (Camellia sinensis L. O. Kuntze) and other woody plants remain unclear. Here, 18 CsHDAC genes were identified by genome-wide analysis in tea plant. The phylogenetic analysis demonstrated that the CsHDAC proteins were divided into three subfamilies, namely, the RPD3/HDA1 subfamily (8 members), the SIR2 subfamily (4 members) and the plant specific HD2 subfamily (6 members). The expression patterns showed that most members of CsHDACs family were regulated by different abiotic stress. High correlation was found between the expression of the CsHDACs and the accumulation of theanine, catechin, EGCG and other metabolites in tea plant. Most of the CsHDAC proteins were negative regulators. We further studied a specific gene CsHD2C (NCBI-ID: KY364373) in tea plant, which is the homolog of AtHD2C, encoded a protein of 306 aa. CsHD2C was highly expressed in leaves, young buds and stems. The transcription of CsHD2C was inhibited by ABA, NaCl and low temperature. It was found localized in the nucleus when fused with a YFP reporter gene. Overexpression of CsHD2C can rescue the phenotype related to different abiotic stresses in the mutant of AtHD2C in Arabidopsis. The stress-responsive genes RD29A, RD29B, ABI1 and ABI2 were also investigated to understand the regulating role of CsHD2C under abiotic stresses. We also found that CsHD2C could renew the change of acetylation level for histone H4 and the RNAP-II occupancy accumulation in the promoter of abiotic stress responses gene in the hd2c Arabidopsis mutant. Together, our results suggested that CsHD2C may act as a positive regulator in abiotic stress responses in tea plant.
Collapse
Affiliation(s)
- Lianyu Yuan
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hongwei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Shuting Zheng
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Rui Huang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - HuaRong Tong
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
236
|
Wu M, Liu H, Gao Y, Shi Y, Pan F, Xiang Y. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110605. [PMID: 32900443 DOI: 10.1016/j.plantsci.2020.110605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced 19 (Di19) proteins play crucial roles in regulating stress responses, but the exact mechanisms underlying their involvement in moso bamboo are not fully understood. In this study, PheDi19-8 of moso bamboo (Phyllostachys edulis) was isolated and characterized. PheDi19-8 was a nuclear protein and has a high expression under various abiotic stresses, including drought and salt. As revealed by phenotypic and physiological analyses, ectopic overexpression of PheDi19-8 in Arabidopsis and rice enhanced drought tolerance. Under drought stress, the PheDi19-8-overexpressing lines showed smaller stomatal apertures and higher survival rate in comparison to the wild-type plants, as well as the PheDi19-8-overexpressing lines had higher biomass and souble sugar, but lower relative electrolyte leakage and malondialdehyde. Further investigation revealed that PheDi19-8 interacted with PheCDPK22, and their interaction decreased the DNA-binding activity of PheDi19-8. However, overexpression of PheCDPK22 enhanced Arabidopsis sensitivity to drought stress. Moreover, the expression of marker genes, including LEA, RD22, DREB2A and RD29A, was up-regulated in the PheDi19-8-overexpressing lines but down-regulated in the PheCDPK22-overexpressing. Further yeast one-hybrid and EMSA assays indicated that PheDi19-8 directly binds to the promoter of DREB2A. These results provided new insight into the interaction of PheCDPK22 and PheDi19-8 that functions oppositely to regulate drought stress in plants.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
237
|
Huan L, Jin-Qiang W, Qing L. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153265. [PMID: 32947245 DOI: 10.1016/j.jplph.2020.153265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/07/2023]
Abstract
This study investigated the alleviation effects of spraying phytohormones on the physiological characteristics and yield of sweet potato under drought stress during the early vine development and storage root bulking stage, respectively. The endogenous hormone contents, photosynthetic fluorescence indexes, photosynthetic products transfer allocation (based on 13C labeling method), and yield of sweet potato were studied by spraying water, 6-benzylaminopurine (6-BA), abscisic acid (ABA), and combined with the two exogenous hormones under artificial dry shed and dry pond. Results indicated that the yield was increased by spraying 6-BA or ABA separately in comparison with the control treatment under drought stress, and the alleviation effects of spraying 6-BA at the early stage were better than at the storage root bulking stage, while spraying ABA at the storage root bulking stage was better than at the early stage. The sweet potato yield increased when sprayed with 6-BA, especially at the early vine development stage, and sweet potato yield was further enhanced by the addition of ABA. When sprayed together, exogenous 6-BA and ABA increased plant shoot and storage root biomass, as well as leaf area and yield, at both stages. The combination of exogenous 6-BA and ABA also increased shoot 13C accumulation at the early vine development stage and storage root 13C accumulation at the storage root bulking stage, in comparison with 6-BA or ABA alone under drought stress. Spraying exogenous hormones under drought stress increased the endogenous hormone contents, enhanced carbon metabolism enzyme activities, improved the photosynthetic fluorescence characteristics of leaves, and regulated the source-sink balance, all of which alleviated the yield reduction caused by drought stress. Application of the combination of 6-AB and ABA yielded better results than that of the 6-BA or ABA alone.
Collapse
Affiliation(s)
- Li Huan
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Jin-Qiang
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liu Qing
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
238
|
Zhao H, Nie K, Zhou H, Yan X, Zhan Q, Zheng Y, Song CP. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. THE NEW PHYTOLOGIST 2020; 228:596-608. [PMID: 32473058 DOI: 10.1111/nph.16713] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
As abscisic acid (ABA) receptors, PYR1/PYL/RCAR (PYLs) play important roles in ABA-mediated seed germination, but the regulation of PYLs in this process, especially at the transcriptional level, remains unclear. In this study, we found that expression of 11 of 14 PYLs changes significantly during seed germination and is affected by exogenous ABA. Two PYLs, PYL11 and PYL12, both of which are expressed specifically in mature seeds, positively modulate ABA-mediated seed germination. However, ABI5 was found to modulate the PYL11- and PYL12-mediated ABA response. In the abi5-7 mutant, ABA hypersensitivity caused by PYL11 and PYL12 overexpression was totally or partially blocked. By contrast, ABI5 regulates the expression of PYL11 and PYL12 by directly binding to their promoters. Moreover, the expression of eight other PYLs is also affected during the germination of abi5 mutants. Promoter analysis revealed that an ABI5-binding region is present next to the TATA box or initiator box. Together, our data demonstrate the role of PYL11 and PYL12 in seed germination. In addition, the identification of PYLs as targets of ABI5 reveals a role of ABI5 in the feedback regulation of ABA-mediated seed germination.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Kaili Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qidi Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
239
|
Derakhshani Z, Malherbe F, Panozzo JF, Bhave M. Evaluation of Diverse Barley Cultivars and Landraces for Contents of Four Multifunctional Biomolecules with Nutraceutical Potential. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.2.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Barley is long-identified as a functional food due to its content of micronutrients, β-glucans and vitamins. However, there is scant literature on a number of other nutritionally important biomolecules in the barley grain. This study determined the contents of four biomolecules, each with multiple known human and/or other animal health benefits, in the grains of 27 commercial barley cultivars and 7 landraces of barley from diverse countries of origin. These included the antioxidants, comprised of various vitamin E isomers and polyphenols, the osmoprotectant glycine betaine (GB) that protects cellular cytoplasm from osmotic shock, and the ‘plant stress hormone’ abscisic acid (ABA) which is endogenously expressed in humans and has multiple roles in physiology. All grains exhibited the presence of all biomolecules, suggesting they could potentially make some contribution to the health benefits of barley. The total vitamin E content varied between 19.20 - 54.56 μg/g DW, with α-tocotrienol being the major component (33.9 - 60.7%). The phenolics made up 3.21 - 9.73 mg gallic acid equivalent (GAE)/g DW, exceeding the amounts in the two major cereals, rice and wheat. GB ranged between 0.41-1.40 mg/g DW. The total vitamin E contents and GB typically exceeded those in corn. ABA ranged as 8.50 - 235.46 ng/g dry weight (DW), with the highest inter-variety variability. The data confirm barley to be an excellent source of these nutraceuticals, generally better than other major cereals. Our results thus offer more detailed insights into the potential of barley as a functional food and suggests the need to investigate in depth the health effects of this grain as well as the contribution of genetic and environmental factors.
Collapse
Affiliation(s)
- Zaynab Derakhshani
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Francois Malherbe
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Joseph F Panozzo
- Agriculture Victoria Research, 110 Natimuk Rd, Horsham, Victoria 3400, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
240
|
Zhang C, Li X, Wang Z, Zhang Z, Wu Z. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics 2020; 112:5157-5169. [PMID: 32961281 DOI: 10.1016/j.ygeno.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023]
Abstract
Root system architecture (RSA), the spatio-temporal configuration of roots, plays vital roles in maize (Zea mays L.) development and productivity. We sequenced the maize root transcriptome of four key growth and development stages: the 6th leaf stage, the 12th leaf stage, the tasseling stage and the milk-ripe stage. Differentially expressed genes (DEGs) were detected. 81 DEGs involved in plant hormone signal transduction pathway and 26 transcription factor (TF) genes were screened. These DEGs and TFs were predicted to be potential candidate genes during maize root growth and development. Several of these genes are homologous to well-known genes regulating root architecture or development in Arabidopsis or rice, such as, Zm00001d005892 (AtERF109), Zm00001d027925 (AtERF73/HRE1), Zm00001d047017 (AtMYC2, OsMYC2), Zm00001d039245 (AtWRKY6). Identification of these key genes will provide a further understanding of the molecular mechanisms responsible for maize root growth and development, it will be beneficial to increase maize production and improve stress resistance by altering RSA traits in modern breeding.
Collapse
Affiliation(s)
- Chun Zhang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xianglong Li
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zuoping Wang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhongbao Zhang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhongyi Wu
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
241
|
Sengupta S, Nag Chaudhuri R. ABI3 plays a role in de-novo root regeneration from Arabidopsis thaliana callus cells. PLANT SIGNALING & BEHAVIOR 2020; 15:1794147. [PMID: 32662721 PMCID: PMC8550280 DOI: 10.1080/15592324.2020.1794147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/27/2023]
Abstract
Developmental plasticity and the ability to regenerate organs during the life cycle are a signature feature of plant system. De novo organogenesis is a common mode of plant regeneration and may occur directly from the explant or indirectly via callus formation. It is now evident that callus formation occurs through the root development pathway. In fact, callus cells behave like a group of root primordium cells that are under the control of exogenous auxin. Presence or absence of auxin decides the subsequent fate of these cells. While in presence of external supplementation of auxin they are maintained as root primordia cells, absence of exogenous auxin induces the callus cells into patterning, differentiation and finally root emergence. Here we show that in absence of functional ABI3, a prominent member of the B3 superfamily of transcription factors, root regeneration is compromised in Arabidopsis callus cells. In culture medium free of any exogenous hormone supplementation, while adventitious root emergence and growth was prominently observed in wild type cells, no such features were observed in abi3-6 cells. Expression of auxin-responsive AUX1 and GH3 genes was significantly reduced in abi3-6 cells, indicating that auxin levels or distribution may be altered in absence of ABI3.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Biotechnology, St. Xavier’s College, Kolkata, India
| | | |
Collapse
|
242
|
Singh R, Bhardwaj VK, Sharma J, Purohit R. Identification of novel and selective agonists for ABA receptor PYL3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:387-395. [PMID: 32629182 DOI: 10.1016/j.plaphy.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) although complicated and expensive to produce, plays an important role in signalling responsible for regulation of developmental manifestations such as seed maturation and surviving through stress conditions. Hence, development of cost effective molecules with minimal side effects that mimic the functions of ABA is the need of the hour. In this agreement, we screened a series of 27 in-house synthesized 3-methyleneisoindolin-1-one molecules over three ABA receptors (PYR1, PYL1, and PYL3). The commercial ABA agonist Pyrabactin was taken as a standard ligand in this study. The top three molecules for each receptor were selected and further evaluated to estimate the dynamical contribution and complex stability via Molecular Mechanics-Poisson Boltzmann surface area calculations. Two molecules (Mol26 and Mol25) showed higher binding free energy and stable complex conformation for PYL3 in comparison to Pyrabactin. This study revealed the structural basis of the binding mechanism of 3-methyleneisoindolin-1-one molecules with ABA receptors. Mol26 and Mol25 were identified for the development of specific PYL3 agonists with a vast potential in agriculture to accentuate the ABA like action in plants.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India.
| |
Collapse
|
243
|
Yang L, Liu S, Lin R. The role of light in regulating seed dormancy and germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1310-1326. [PMID: 32729981 DOI: 10.1111/jipb.13001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 05/22/2023]
Abstract
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
244
|
Coleman D, Kawamura A, Ikeuchi M, Favero DS, Lambolez A, Rymen B, Iwase A, Suzuki T, Sugimoto K. The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration. PLANT PHYSIOLOGY 2020; 184:330-344. [PMID: 32611787 PMCID: PMC7479894 DOI: 10.1104/pp.20.00626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/23/2020] [Indexed: 05/20/2023]
Abstract
Plants form calluses and regenerate new organs when incubated on phytohormone-containing media. While accumulating evidence suggests that these regenerative processes are governed by transcriptional networks orchestrating wound response and developmental transitions, it remains unknown if posttranslational regulatory mechanisms are involved in this process. In this study, we demonstrate that SAP AND MIZ1 DOMAIN- CONTAINING LIGASE1 (SIZ1), an E3 ligase-catalyzing attachment of the SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to proteins, regulates wound-induced signal transduction and organ regeneration in Arabidopsis (Arabidopsis thaliana). We show that loss-of-function mutants for SIZ1 exhibit overproduction of shoot meristems under in vitro tissue culture conditions, while this defect is rescued in a complementation line expressing pSIZ1::SIZ1 RNA sequencing analysis revealed that siz1-2 mutants exhibit enhanced transcriptional responses to wound stress, resulting in the hyper-induction of over 400 genes immediately after wounding. Among them, we show that elevated levels of WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and WIND2 contribute to the enhanced shoot regeneration observed in siz1 mutants, as expression of the dominant-negative chimeric protein WIND1-SRDX (SUPERMAN repression domain) in siz1-3 mutants partly rescues this phenotype. Although compromised SIZ1 function does not modify the transcription of genes implicated in auxin-induced callus formation and/or pluripotency acquisition, it does lead to enhanced induction of cytokinin-induced shoot meristem regulators such as WUSCHEL, promoting the formation of WUSCHEL-expressing foci in explants. This study thus suggests that SIZ1 negatively regulates shoot regeneration in part by repressing wound-induced developmental reprogramming.
Collapse
Affiliation(s)
- Duncan Coleman
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, 67084 Strasboug cedex, France
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
245
|
Baek D, Kim WY, Cha JY, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, Lee SY, Pardo JM, Kim MC, Yun DJ. The GIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. PLANT PHYSIOLOGY 2020; 184:443-458. [PMID: 32690755 PMCID: PMC7479899 DOI: 10.1104/pp.20.00779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Min Chul Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
246
|
Hewage KAH, Yang J, Wang D, Hao G, Yang G, Zhu J. Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001265. [PMID: 32999840 PMCID: PMC7509701 DOI: 10.1002/advs.202001265] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events. A thorough knowledge of the sequential steps of ABA signaling will be necessary for the development of chemicals that control plant stress responses. The core components of the ABA signaling pathway have been identified with adequate characterization. The information available concerning ABA biosynthesis, transport, perception, and metabolism has enabled detailed functional studies on how the protective ability of ABA in plants might be modified to increase plant resistance to stress. Some of the significant contributions to chemical manipulation include ABA biosynthesis inhibitors, and ABA receptor agonists and antagonists. Chemical manipulation of key control points in ABA signaling is important for abiotic and biotic stress management in agriculture. However, a comprehensive review of the current knowledge of chemical manipulation of ABA signaling is lacking. Here, a thorough analysis of recent reports on small-molecule modulation of ABA signaling is provided. The challenges and prospects in the chemical manipulation of ABA signaling for the development of ABA-based agrochemicals are also discussed.
Collapse
Affiliation(s)
- Kamalani Achala H. Hewage
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Ge‐Fei Hao
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072P. R. China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biologyand CAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai20032P. R. China
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
247
|
Yang J, Su L, Li D, Luo L, Sun K, Yang M, Gu F, Xia A, Liu Y, Wang H, Chen Z, Guo T. Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genomics 2020; 21:603. [PMID: 32867689 PMCID: PMC7460786 DOI: 10.1186/s12864-020-07024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Seed germination and young seedling growth are important agricultural traits for developing populations of both irrigated and directly seeded rice. Previous studies have focused on the identification of QTLs. However, there are few studies on the metabolome or transcriptome of germination and young seedling growth in rice. Results Here, an indica rice and a japonica rice were used as materials, and the transcripts and metabolites were detected during the germination and young seedling growth periods on a large scale by using RNA sequencing and a widely targeted metabolomics method, respectively. Fourteen shared transcripts and 15 shared metabolites that were continuously differentially expressed in the two materials were identified and may be essential for seed germination and young seedling growth. Enrichment analysis of differentially expressed genes in transcriptome expression profiles at different stages indicated that cell wall metabolism, lipid metabolism, nucleotide degradation, amino acid, etc., were enriched at 0–2 days, and most of the results are consistent with those of previous reports. Specifically, phenylpropanoid biosynthesis and glutathione metabolism were continuously enriched during the seed germination and young seedling growth stages. Next, KO enrichment analysis was conducted by using the differentially expressed genes of the two materials at 2, 3 and 4 days. Fourteen pathways were enriched. Additionally, 44 differentially expressed metabolites at 2, 3 and 4 days were identified. These metabolites may be responsible for the differences in germination and young seedling growth between the two materials. Further attention was focused on the ascorbate–glutathione pathway, and it was found that differences in ROS-scavenging abilities mediated by some APX, GPX and GST genes may be directly involved in mediating differences in the germination and young seedling growth speed of the two materials. Conclusions In summary, these results may enhance the understanding of the overall mechanism of seed germination and young seedling growth, and the outcome of this study is expected to facilitate rice breeding for direct seeding.
Collapse
Affiliation(s)
- Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
248
|
Liu Z, Zheng L, Pu L, Ma X, Wang X, Wu Y, Ming H, Wang Q, Zhang G. ENO2 Affects the Seed Size and Weight by Adjusting Cytokinin Content and Forming ENO2-bZIP75 Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:574316. [PMID: 32983222 PMCID: PMC7479207 DOI: 10.3389/fpls.2020.574316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Arabidopsis thaliana ENO2 (AtENO2) encodes two proteins AtENO2 (enolase) and AtMBP-1 (c-Myc binding protein 1-like). The loss of AtENO2 function causes the constitutive developmental defects which are correlated with reduced enolase activity, but not AtMBP-1 transcript abundance. However, the regulation mechanism of AtENO2 on the seed properties is still not clear. In this study, we found that the mutation of AtENO2 reduced the seed size and weight. The level of glucose in seed was significantly elevated but that of starch was decreased in AtENO2 mutants compared to WT plants. We also found that AtENO2 mutation reduced the content of cytokinin which resulted in smaller cotyledons. The RNA-seq data showed that there were 1892 differentially expressed genes and secondary metabolic pathways were significantly enriched. Instead of AtMBP-1, AtENO2 protein interacted with AtbZIP75 which may mediate the secondary metabolism. Therefore, ENO2 alters the size and weight of seeds which is not only regulated by the content of cytokinin and secondary metabolism, but may be affected by the interaction of ENO2 and bZIP57. These results are helpful to understand the novel function of AtENO2 which provide a foundation for further exploration of the key candidate genes for crop breeding.
Collapse
Affiliation(s)
- Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lamei Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hainan Ming
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qing Wang
- Institute of Radiation Botany, Beijing Radiation Center, Beijing, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
249
|
Lu L, Chen X, Zhu L, Li M, Zhang J, Yang X, Wang P, Lu Y, Cheng T, Shi J, Yi Y, Chen J. NtCIPK9: A Calcineurin B-Like Protein-Interacting Protein Kinase From the Halophyte Nitraria tangutorum, Enhances Arabidopsis Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:1112. [PMID: 32973820 PMCID: PMC7472804 DOI: 10.3389/fpls.2020.01112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play essential roles in plant abiotic stress response. In order to better understand salt tolerance, we cloned and analyzed the NtCIPK9 gene from the halophyte Nitraria tangutorum. Phylogenetic analysis shows that NtCIPK9 belongs to a sister clade with the Arabidopsis AtCIPK9 gene and is thought to localize to the plasma membrane. NtCIPK9 shows the highest expression level in the Nitraria tangutorum root under normal growth conditions, whereas after NaCl treatment, the highest expression was found in the blade. NtCIPK9-overexpressing Arabidopsis plants have a higher seed germination rate, longer root length, and displayed higher salt tolerance than wild type seedlings under salt stress conditions. Furthermore, NtCIPK9 overexpression might enhance the expression of genes related to K+ transportation after NaCl treatment. Thus, we conclude that NtCIPK9 increases transgenic plant salt tolerance and reduces damage associated with salt stress by promoting the expression of genes controlling ion homeostasis. Our results suggest that NtCIPK9 could serve as an ideal candidate gene to genetically engineer salt-tolerant plants.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinying Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mengjuan Li
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, China
| | - Xiuyan Yang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, China Academy of Forestry, Beijing, China
| | - Pengkai Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yin Yi
- State Forestry Administration Key Laboratory of Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, China
- Guizhou Provincial Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, China
| | - Jinhui Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
250
|
AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. Int J Mol Sci 2020; 21:ijms21165727. [PMID: 32785037 PMCID: PMC7460842 DOI: 10.3390/ijms21165727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.
Collapse
|