201
|
Hao J, Lou P, Han Y, Chen Z, Chen J, Ni J, Yang Y, Jiang Z, Xu M. GrTCP11, a Cotton TCP Transcription Factor, Inhibits Root Hair Elongation by Down-Regulating Jasmonic Acid Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:769675. [PMID: 34880892 PMCID: PMC8646037 DOI: 10.3389/fpls.2021.769675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 05/17/2023]
Abstract
TCP transcription factors play important roles in diverse aspects of plant development as transcriptional activators or repressors. However, the functional mechanisms of TCPs are not well understood, especially in cotton fibers. Here, we identified a total of 37 non-redundant TCP proteins from the diploid cotton (Gossypium raimondii), which showed great diversity in the expression profile. GrTCP11, an ortholog of AtTCP11, was preferentially expressed in cotton anthers and during fiber initiation and secondary cell wall synthesis stages. Overexpression of GrTCP11 in Arabidopsis thaliana reduced root hair length and delayed flowering. It was found that GrTCP11 negatively regulated genes involved in jasmonic acid (JA) biosynthesis and response, such as AtLOX4, AtAOS, AtAOC1, AtAOC3, AtJAZ1, AtJAZ2, AtMYC2, and AtERF1, which resulted in a decrease in JA concentration in the overexpressed transgenic lines. As with the JA-deficient mutant dde2-2, the transgenic line 4-1 was insensitive to 50 μM methyl jasmonate, compared with the wild-type plants. The results suggest that GrTCP11 may be an important transcription factor for cotton fiber development, by negatively regulating JA biosynthesis and response.
Collapse
|
202
|
Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:489-504. [PMID: 33617121 PMCID: PMC7898868 DOI: 10.1111/tpj.15124] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
Plant hormones are essential for regulating the interactions between plants and their complex biotic and abiotic environments. Each hormone initiates a specific molecular pathway and these different hormone pathways are integrated in a complex network of synergistic, antagonistic and additive interactions. This inter-pathway communication is called hormone crosstalk. By influencing the immune network topology, hormone crosstalk is essential for tailoring plant responses to diverse microbes and insects in diverse environmental and internal contexts. Crosstalk provides robustness to the immune system but also drives specificity of induced defense responses against the plethora of biotic interactors. Recent advances in dry-lab and wet-lab techniques have greatly enhanced our understanding of the broad-scale effects of hormone crosstalk on immune network functioning and have revealed underlying principles of crosstalk mechanisms. Molecular studies have demonstrated that hormone crosstalk is modulated at multiple levels of regulation, such as by affecting protein stability, gene transcription and hormone homeostasis. These new insights into hormone crosstalk regulation of plant defense are reviewed here, with a focus on crosstalk acting on the jasmonic acid pathway in Arabidopsis thaliana, highlighting the transcription factors MYC2 and ORA59 as major targets for modulation by other hormones.
Collapse
Affiliation(s)
- Niels Aerts
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Marciel Pereira Mendes
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| |
Collapse
|
203
|
Zhao P, Zhang X, Gong Y, Wang D, Xu D, Wang N, Sun Y, Gao L, Liu SS, Deng XW, Kliebenstein DJ, Zhou X, Fang RX, Ye J. Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly. PLoS Pathog 2021; 17:e1008770. [PMID: 33428670 PMCID: PMC7822537 DOI: 10.1371/journal.ppat.1008770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/22/2021] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral βC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing βC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded βC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.
Collapse
Affiliation(s)
- Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Gong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ning Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lianbo Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Sheng Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
204
|
Ren Z, Liu W, Wang X, Chen M, Zhao J, Zhang F, Feng H, Liu J, Yang D, Ma X, Li W. SEVEN IN ABSENTIA Ubiquitin Ligases Positively Regulate Defense Against Verticillium dahliae in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:760520. [PMID: 34777442 PMCID: PMC8586545 DOI: 10.3389/fpls.2021.760520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/16/2023]
Abstract
Ubiquitination is a post-translational regulatory mechanism that controls a variety of biological processes in plants. The E3 ligases confer specificity by recognizing target proteins for ubiquitination. Here, we identified SEVEN IN ABSENTIA (SINA) ubiquitin ligases, which belong to the RING-type E3 ligase family, in upland cotton (Gossypium hirsutum). Twenty-four GhSINAs were characterized, and the expression levels of GhSINA7, GhSINA8, and GhSINA9 were upregulated at 24 h after inoculation with Verticillium dahliae. In vitro ubiquitination assays indicated that the three GhSINAs possessed E3 ubiquitin ligase activities. Transient expression in Nicotiana benthamiana leaves showed that they localized to the nucleus. And yeast two-hybrid (Y2H) screening revealed that they could interact with each other. The ectopic overexpression of GhSINA7, GhSINA8, and GhSINA9 independently in Arabidopsis thaliana resulted in increased tolerance to V. dahliae, while individual knockdowns of GhSINA7, GhSINA8, and GhSINA9 compromised cotton resistance to the pathogen. Thus, GhSINA7, GhSINA8, and GhSINA9 act as positive regulators of defense responses against V. dahliae in cotton plants.
Collapse
Affiliation(s)
- Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daigang Yang,
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Xiongfeng Ma,
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Wei Li,
| |
Collapse
|
205
|
Signal Integration by Cyclin-Dependent Kinase 8 (CDK8) Module and Other Mediator Subunits in Biotic and Abiotic Stress Responses. Int J Mol Sci 2020; 22:ijms22010354. [PMID: 33396301 PMCID: PMC7795602 DOI: 10.3390/ijms22010354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Environmental stresses have driven plants to develop various mechanisms to acclimate in adverse conditions. Extensive studies have demonstrated that a significant reprogramming occurs in the plant transcriptome in response to biotic and abiotic stresses. The highly conserved and large multi-subunit transcriptional co-activator of eukaryotes, known as the Mediator, has been reported to play a substantial role in the regulation of important genes that help plants respond to environmental perturbances. CDK8 module is a relatively new component of the Mediator complex that has been shown to contribute to plants' defense, development, and stress responses. Previous studies reported that CDK8 module predominantly acts as a transcriptional repressor in eukaryotic cells by reversibly associating with core Mediator. However, growing evidence has demonstrated that depending on the type of biotic and abiotic stress, the CDK8 module may perform a contrasting regulatory role. This review will summarize the current knowledge of CDK8 module as well as other previously documented Mediator subunits in plant cell signaling under stress conditions.
Collapse
|
206
|
Kang CH, Park JH, Lee ES, Paeng SK, Chae HB, Hong JC, Lee SY. Redox-Dependent Structural Modification of Nucleoredoxin Triggers Defense Responses against Alternaria brassicicola in Arabidopsis. Int J Mol Sci 2020; 21:ijms21239196. [PMID: 33276577 PMCID: PMC7730559 DOI: 10.3390/ijms21239196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.
Collapse
|
207
|
Pan J, Hu Y, Wang H, Guo Q, Chen Y, Howe GA, Yu D. Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2020; 32:3846-3865. [PMID: 33023956 PMCID: PMC7721325 DOI: 10.1105/tpc.19.00838] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.
Collapse
Affiliation(s)
- Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yani Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
208
|
Ghareeb H, El-Sayed M, Pound M, Tetyuk O, Hanika K, Herrfurth C, Feussner I, Lipka V. Quantitative Hormone Signaling Output Analyses of Arabidopsis thaliana Interactions With Virulent and Avirulent Hyaloperonospora arabidopsidis Isolates at Single-Cell Resolution. FRONTIERS IN PLANT SCIENCE 2020; 11:603693. [PMID: 33240308 PMCID: PMC7677359 DOI: 10.3389/fpls.2020.603693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The phytohormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are central regulators of biotic and abiotic stress responses in Arabidopsis thaliana. Here, we generated modular fluorescent protein-based reporter lines termed COLORFUL-PR1pro, -VSP2pro, and -PDF1.2apro. These feature hormone-controlled nucleus-targeted transcriptional output sensors and the simultaneous constitutive expression of spectrally separated nuclear reference and plasma membrane-localized reporters. This set-up allowed the study of cell-type specific hormone activities, cellular viability and microbial invasion. Moreover, we developed a software-supported high-throughput confocal microscopy imaging protocol for output quantification to resolve the spatio-temporal dynamics of respective hormonal signaling activities at single-cell resolution. Proof-of-principle analyses in A. thaliana leaves revealed distinguished hormone sensitivities in mesophyll, epidermal pavement and stomatal guard cells, suggesting cell type-specific regulatory protein activities. In plant-microbe interaction studies, we found that virulent and avirulent Hyaloperonospora arabidopsidis (Hpa) isolates exhibit different invasion dynamics and induce spatio-temporally distinct hormonal activity signatures. On the cellular level, these hormone-controlled reporter signatures demarcate the nascent sites of Hpa entry and progression, and highlight initiation, transduction and local containment of immune signals.
Collapse
Affiliation(s)
- Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Michael Pound
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Olena Tetyuk
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Katharina Hanika
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
209
|
Liu M, Zhang Q, Wang C, Meng T, Wang L, Chen C, Ren Z. CsWRKY10 mediates defence responses to Botrytis cinerea infection in Cucumis sativus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110640. [PMID: 33180717 DOI: 10.1016/j.plantsci.2020.110640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Cucumber (Cucumis sativus) is one of the most widely cultivated vegetable crops in the world, and its yield is often reduced due to the infection of Botrytis cinerea (B. cinerea), which causes a serious disease. However, few genes involved in the response to B. cinerea have been identified in cucumber. In this study, we identified that CsWRKY10 plays a key role in the cucumber resistance to B. cinerea because that the overexpression of CsWRKY10 significantly increased the susceptibility to B. cinerea in cucumber. After the pathogen infection, the enzyme activities of catalase, superoxide dismutase and peroxidase in transgenic plants were affected, resulting in the decrease in reactive oxygen species (ROS) contents. In addition, the light microscopic images showed that overexpression of CsWRKY10 promoted the spore germination and mycelia elongation of B. cinerea in cucumber. Importantly, after B. cinerea infection, the contents of jasmonic acid (JA) are decreased, and the expression levels of JA- and salicylic acid- related defence genes significantly changed in transgenic plants. In contrast, overexpression of CsWRKY10 enhanced resistance to Corynespora cassiicola in cucumber. Collectively, this study indicated that CsWRKY10 negatively regulates the resistance of cucumber to B. cinerea by reducing the ROS contents and inhibiting the JA-mediated resistance signalling pathway, but strengthens resistance to Corynespora cassiicola.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Qingxia Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Can Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Tianqi Meng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Lina Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
210
|
Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:396-406. [PMID: 33032258 DOI: 10.1016/j.plaphy.2020.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 05/15/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are highly hydrophilic and thermostable proteins that could be induced by abiotic stresses in plants. Previously, we have isolated a group 3 LEA gene TdLEA3 in wheat. The data show that TdLEA3 was largely disordered under fully hydrated conditions and was able to prevent the inactivation of lactate dehydrogenase (LDH) under stress treatments. In the present work, we further investigate the role of TdLEA3 by analyzing its expression pattern under abiotic stress conditions in two contrasting wheat genotypes and by overexpressing it in Arabidopsis thaliana. Transgenic Arabidopsis plants showed higher tolerance levels to salt and oxidative stress compared to the wild type plants. Meanwhile, there was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in the leaves of transgenic lines under stress conditions. Accordingly, Q-PCR results indicate that the higher levels of expression of different ROS scavenging genes (AtP5CS, AtCAT, AtPOD and AtSOD) and abiotic stress related genes (RAB18 and RD29B) were detected in transgenic lines. In addition, they showed increased resistance to fungal infections caused by Fusarium graminearum, Botrytis cinerea and Aspergillus niger. Finally, Q-PCR results for biotic stress related genes (PR1, PDF1.2, LOX3 and VSP2) showed differential expression in transgenic TdLEA3 lines. All these results strongly reinforce the interest of TdLEA3 in plant adaptation to various stresses.
Collapse
Affiliation(s)
- Sana Koubaa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
211
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
212
|
Niu J, Ma M, Yin X, Liu X, Dong T, Sun W, Yang F. Transcriptional and physiological analyses of reduced density in apple provide insight into the regulation involved in photosynthesis. PLoS One 2020; 15:e0239737. [PMID: 33044972 PMCID: PMC7549834 DOI: 10.1371/journal.pone.0239737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/13/2020] [Indexed: 11/18/2022] Open
Abstract
Different densities have a great influence on the physiological process and growth of orchard plants. Exploring the molecular basis and revealing key candidate genes for different densities management of orchard has great significance for production capacity improvement. In this study, transcriptome sequencing of apple trees was carried out at three different sampling heights to determine gene expression patterns under high density(HD) and low density(LD) and the physiological indices were measured to determine the effect of density change on plants. As a result, physiological indexes showed that the content of Chlorophyll, ACC, RUBP and PEP in the LD was apparently higher than that in control group(high density, HD). While the content of PPO and AO in the LD was noticeably lower than that in the HD. There were 3808 differentially expressed genes (DEGs) were detected between HD and LD, of which 1935, 2390 and 1108 DEGs were found in the three comparisons(middle-upper, lower-outer and lower-inner), respectively. 274 common differentially expressed genes (co-DEGs) were contained in all three comparisons. Functional enrichment and KEGG pathway analysis found these genes were involved in Carbon fixation in photosynthetic organisms, Circadian rhythm, Photosynthesis - antenna proteins, Photosynthesis, chlorophyll metabolism, Porphyrin, sugar metabolism and so on. Among these genes, LHCB family participated in photosynthesis as parts of photosystem II. In addition, SPA1, rbcL, SNRK2, MYC2, BSK, SAUR and PP2C are involved in Circadian rhythm, the expression of genes related to glycometabolism and hormone signaling pathway is also changed. The results revealed that the decrease of plant density changed the photosynthetic efficiency of leaves and the expression of photosynthesis-related genes, which provide a theoretical basis for the actual production regulation of apples.
Collapse
Affiliation(s)
- Junqiang Niu
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Ming Ma
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Xiaoning Yin
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Xinglu Liu
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Tie Dong
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Wentai Sun
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Fuxia Yang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
213
|
Gupta A, Bhardwaj M, Tran LSP. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. Int J Mol Sci 2020; 21:E7482. [PMID: 33050569 PMCID: PMC7589129 DOI: 10.3390/ijms21207482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Sensing of pathogen infection by plants elicits early signals that are transduced to affect defense mechanisms, such as effective blockage of pathogen entry by regulation of stomatal closure, cuticle, or callose deposition, change in water potential, and resource acquisition among many others. Pathogens, on the other hand, interfere with plant physiology and protein functioning to counteract plant defense responses. In plants, hormonal homeostasis and signaling are tightly regulated; thus, the phytohormones are qualified as a major group of signaling molecules controlling the most widely tinkered regulatory networks of defense and counter-defense strategies. Notably, the phytohormone jasmonic acid mediates plant defense responses to a wide array of pathogens. In this review, we present the synopsis on the jasmonic acid metabolism and signaling, and the regulatory roles of this hormone in plant defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae. We also elaborate on how this pathogen releases virulence factors and effectors to gain control over plant jasmonic acid signaling to effectively cause disease. The findings discussed in this review may lead to ideas for the development of crop cultivars with enhanced disease resistance by genetic manipulation.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India;
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
214
|
Schenke D, Cai D. Phytohormone crosstalk in the host-Verticillium interaction. PLANT SIGNALING & BEHAVIOR 2020; 15:1803567. [PMID: 32772774 PMCID: PMC8550523 DOI: 10.1080/15592324.2020.1803567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Functional genomics can be applied to shed light on the Brassica napus - Verticillium interaction. RNAseq data indicated already that abscisic acid (ABA) is apparently involved in the early oilseed rape response to fungal infection with Verticillium longisporum isolate 43 (Vl43). A calreticulin (CRT1a) was identified as novel susceptibility factor for Vl43 infecting both Arabidopsis and oilseed rape. CRT1a is involved in calcium homeostasis and contributes in the endoplasmatic reticulum to the unfolded protein response. The latter function could either affect the correct folding of other susceptibility factors or of negative regulators in ethylene (ET) signaling. Which CRT1a function is affected in the mutants is currently unknown, but both hypotheses can explain that crt1a loss-of-function mutants display increased resistance to V. longisporum and enhanced expression of ethylene signaling related genes. This indicates that besides other phytohormones such as ABA or salicylic acid (SA) also ET plays a critical role in the plant-Verticillium interaction, which might be exploited to improve plant resistance.
Collapse
Affiliation(s)
- Dirk Schenke
- Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
215
|
Zhai Q, Deng L, Li C. Mediator subunit MED25: at the nexus of jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:78-86. [PMID: 32777679 DOI: 10.1016/j.pbi.2020.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
216
|
Yang Y, Wang X, Chen P, Zhou K, Xue W, Abid K, Chen S. Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:559070. [PMID: 33101327 PMCID: PMC7546314 DOI: 10.3389/fpls.2020.559070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 05/28/2023]
Abstract
Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2 -, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytis cinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.
Collapse
Affiliation(s)
- Yuting Yang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Xuewei Wang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Panpan Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Kan Abid
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| |
Collapse
|
217
|
Alallaq S, Ranjan A, Brunoni F, Novák O, Lakehal A, Bellini C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:586140. [PMID: 33014006 PMCID: PMC7509059 DOI: 10.3389/fpls.2020.586140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 05/02/2023]
Abstract
Vegetative propagation relies on the capacity of plants to regenerate de novo adventitious roots (ARs), a quantitative trait controlled by the interaction of endogenous factors, such as hormones and environmental cues among which light plays a central role. However, the physiological and molecular components mediating light cues during AR initiation (ARI) remain largely elusive. Here, we explored the role of red light (RL) on ARI in de-rooted Norway spruce seedlings. We combined investigation of hormone metabolism and gene expression analysis to identify potential signaling pathways. We also performed extensive anatomical characterization to investigate ARI at the cellular level. We showed that in contrast to white light, red light promoted ARI likely by reducing jasmonate (JA) and JA-isoleucine biosynthesis and repressing the accumulation of isopentyl-adenine-type cytokinins. We demonstrated that exogenously applied JA and/or CK inhibit ARI in a dose-dependent manner and found that they possibly act in the same pathway. The negative effect of JA on ARI was confirmed at the histological level. We showed that JA represses the early events of ARI. In conclusion, RL promotes ARI by repressing the accumulation of the wound-induced phytohormones JA and CK.
Collapse
Affiliation(s)
- Sanaria Alallaq
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Biology, College of Science for Women, Baghdad University, Baghdad, Iraq
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agriculture University, Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
218
|
Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Sci Rep 2020; 10:14842. [PMID: 32908168 PMCID: PMC7481182 DOI: 10.1038/s41598-020-71828-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.
Collapse
|
219
|
Schluttenhofer C. Origin and evolution of jasmonate signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110542. [PMID: 32771155 DOI: 10.1016/j.plantsci.2020.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) signaling is a key mediator of plant development and defense which arose during plants transition from an aqueous to terrestrial environment. Elucidating the evolution of JA signaling is important for understanding plant development, defense, and production of specialized metabolites. The lineage of key protein domains characterizing JA signaling factors was traced to identify the origins of CORONITINE INSENSITIVE 1 (COI1), JASMONATE ZIM-DOMAIN (JAZ), NOVEL INTERACTOR OF JAZ, MYC2, TOPLESS, and MEDIATOR SUBUNIT 25. Charophytes do not possess genes encoding key JA signaling components, including COI1, JAZ, MYC2, and the JAZ-interacting bHLH factors, yet their orthologs are present in bryophytes. TIFY family genes were found in charophyta and chlorophya algae. JAZs evolved from ZIM genes of the TIFY family through changes to several key amino acids. Dating placed the origin of JA signaling 515 to 473 million years ago during the middle Cambrian to early Ordovician periods. This time is known for rapid biodiversification and mass extinction events. An increased predation from the diversifying and changing fauna may have driven evolution of JA signaling and plant defense.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Agriculture Research and Development Program, 1400 Brush Row Road, Wilberforce OH, 45384, USA.
| |
Collapse
|
220
|
He J, Bouwmeester HJ, Dicke M, Kappers IF. Genome-Wide Analysis Reveals Transcription Factors Regulated by Spider-Mite Feeding in Cucumber ( Cucumis sativus). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1014. [PMID: 32796676 PMCID: PMC7465836 DOI: 10.3390/plants9081014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
To gain insight into the regulatory networks that underlie the induced defense in cucumber against spider mites, genes encoding transcription factors (TFs) were identified in the cucumber (Cucumissativus) genome and their regulation by two-spotted spider mite (Tetranychusurticae) herbivory was analyzed using RNA-seq. Of the total 1212 annotated TF genes in the cucumber genome, 119 were differentially regulated upon spider-mite herbivory during a period of 3 days. These TF genes belong to different categories but the MYB, bHLH, AP2/ERF and WRKY families had the highest relative numbers of differentially expressed genes. Correlation analysis of the expression of TF genes with defense-associated genes during herbivory and pathogen infestation, and in different organs resulted in the putative identification of regulators of herbivore-induced terpenoid and green-leaf-volatile biosynthesis. Analysis of the cis-acting regulatory elements (CAREs) present in the promoter regions of the genes responsive to spider-mite feeding revealed potential TF regulators. This study describes the TF genes in cucumber that are potentially involved in the regulation of induced defense against herbivory by spider mites.
Collapse
Affiliation(s)
- Jun He
- Citrus Research Institute, Southwest University, Chongqing 400712, China
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE Amsterdam, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
221
|
Yastreb TO, Kolupaev YE, Shkliarevskyi MA, Dyachenko AI, Dmitriev AP. Involvement of Jasmonate Signaling Components in Salt Stress-Induced Stomatal Closure in Arabidopsis thaliana. CYTOL GENET+ 2020. [DOI: 10.3103/s009545272004012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
222
|
Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu YB, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110520. [PMID: 32563459 DOI: 10.1016/j.plantsci.2020.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 05/03/2023]
Abstract
Protein ubiquitination is critical for various biological processes in eukaryotes. A ubiquitin (Ub) chain can be linked through one of the seven lysine (K) residues or the N-terminus methionine of the Ub, and the Ub-conjugating enzymes called E2s play a critical role in determining the linkage specificity of Ub chains. Further, while K48-linked polyubiquitin chain is important for protein degradation, much less is known about the functions of other types of polyubiquitin chains in plants. We showed previously that UBC22 is unique in its ability to catalyze K11-dependent Ub dimer formation in vitro and ubc22 knockout mutants had defects in megasporogenesis. In this study, further analyses of the Arabidopsis ubc22 mutants revealed four subtypes of plants based on the phenotypic changes in vegetative growth. These four subtypes appeared consistently in the plants of three independent ubc22 mutants. Transcriptomic analysis showed that transcript levels of genes related to several pathways were altered differently in different subtypes of mutant plants. In one subtype, the mutant plants had increased expression of genes related to plant defenses and showed enhanced resistance to a necrotrophic plant pathogen. These results suggest multiple functions of UBC22 during plant development and stress response.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Sanxiong Fu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
223
|
He J, Bouwmeester HJ, Dicke M, Kappers IF. Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus). PLANT MOLECULAR BIOLOGY 2020; 103:489-505. [PMID: 32306368 PMCID: PMC7299927 DOI: 10.1007/s11103-020-01005-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Cucumber plants adapt their transcriptome and metabolome as result of spider mite infestation with opposite consequences for direct and indirect defences in two genotypes. Plants respond to arthropod attack with the rearrangement of their transcriptome which lead to subsequent phenotypic changes in the plants' metabolome. Here, we analysed transcriptomic and metabolite responses of two cucumber (Cucumis sativus) genotypes to chelicerate spider mites (Tetranychus urticae) during the first 3 days of infestation. Genes associated with the metabolism of jasmonates, phenylpropanoids, terpenoids and L-phenylalanine were most strongly upregulated. Also, genes involved in the biosynthesis of precursors for indirect defence-related terpenoids were upregulated while those involved in the biosynthesis of direct defence-related cucurbitacin C were downregulated. Consistent with the observed transcriptional changes, terpenoid emission increased and cucurbitacin C content decreased during early spider-mite herbivory. To further study the regulatory network that underlies induced defence to spider mites, differentially expressed genes that encode transcription factors (TFs) were analysed. Correlation analysis of the expression of TF genes with metabolism-associated genes resulted in putative identification of regulators of herbivore-induced terpenoid, green-leaf volatiles and cucurbitacin biosynthesis. Our data provide a global image of the transcriptional changes in cucumber leaves in response to spider-mite herbivory and that of metabolites that are potentially involved in the regulation of induced direct and indirect defences against spider-mite herbivory.
Collapse
Affiliation(s)
- Jun He
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
224
|
OsJAZ13 Negatively Regulates Jasmonate Signaling and Activates Hypersensitive Cell Death Response in Rice. Int J Mol Sci 2020; 21:ijms21124379. [PMID: 32575555 PMCID: PMC7352843 DOI: 10.3390/ijms21124379] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins belong to the subgroup of TIFY family and act as key regulators of jasmonate (JA) responses in plants. To date, only a few JAZ proteins have been characterized in rice. Here, we report the identification and function of rice OsJAZ13 gene. The gene encodes three different splice variants: OsJAZ13a, OsJAZ13b, and OsJAZ13c. The expression of OsJAZ13 was mainly activated in vegetative tissues and transiently responded to JA and ethylene. Subcellular localization analysis indicated OsJAZ13a is a nuclear protein. Yeast two-hybrid assays revealed OsJAZ13a directly interacts with OsMYC2, and also with OsCOI1, in a COR-dependent manner. Furthermore, OsJAZ13a recruited a general co-repressor OsTPL via an adaptor protein OsNINJA. Remarkably, overexpression of OsJAZ13a resulted in the attenuation of root by methyl JA. Furthermore, OsJAZ13a-overexpressing plants developed lesion mimics in the sheath after approximately 30–45 days of growth. Tillers with necrosis died a few days later. Gene-expression analysis suggested the role of OsJAZ13 in modulating the expression of JA/ethylene response-related genes to regulate growth and activate hypersensitive cell death. Taken together, these observations describe a novel regulatory mechanism in rice and provide the basis for elucidating the function of OsJAZ13 in signal transduction and cell death in plants.
Collapse
|
225
|
Pastor-Fernández J, Gamir J, Pastor V, Sanchez-Bel P, Sanmartín N, Cerezo M, Flors V. Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. FRONTIERS IN PLANT SCIENCE 2020; 11:529. [PMID: 32536929 PMCID: PMC7225342 DOI: 10.3389/fpls.2020.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/07/2020] [Indexed: 05/20/2023]
Abstract
Peptides are important regulators that participate in the modulation of almost every physiological event in plants, including defense. Recently, many of these peptides have been described as defense elicitors, termed phytocytokines, that are released upon pest or pathogen attack, triggering an amplification of plant defenses. However, little is known about peptides sensing and inducing resistance activities in heterologous plants. In the present study, exogenous peptides from solanaceous species, Systemins and HypSys, are sensed and induce resistance to the necrotrophic fungus Plectosphaerella cucumerina in the taxonomically distant species Arabidopsis thaliana. Surprisingly, other peptides from closer taxonomic clades have very little or no effect on plant protection. In vitro bioassays showed that the studied peptides do not have direct antifungal activities, suggesting that they protect the plant through the promotion of the plant immune system. Interestingly, tomato Systemin was able to induce resistance at very low concentrations (0.1 and 1 nM) and displays a maximum threshold being ineffective above at higher concentrations. Here, we show evidence of the possible involvement of the JA-signaling pathway in the Systemin-Induced Resistance (Sys-IR) in Arabidopsis. Additionally, Systemin treated plants display enhanced BAK1 and BIK1 gene expression following infection as well as increased production of ROS after PAMP treatment suggesting that Systemin sensitizes Arabidopsis perception to pathogens and PAMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
226
|
Abstract
Plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light, collectively called the shade avoidance syndrome (SAS). Plants also have extensive systems to defend themselves against pathogens and herbivores. Defense and shade avoidance are two fundamental components of plant survival and productivity, and there are often tradeoffs between growth and defense. Recently, MYC2, a major positive regulator of defense, was reported to inhibit elongation during shade avoidance. Here, we further investigate the role of MYC2 and the related MYC3 and MYC4 in shade avoidance, and we examine the relationship between MYC2/3/4 and the PIF family of light-regulated transcription factors. We demonstrate that MYC2/3/4 inhibit both elongation and flowering. Furthermore, using both genetic and transcriptomic analysis we find that MYCs and PIFs generally function independently in growth regulation. However, surprisingly, the pif4/5/7 triple mutant restored the petiole shade avoidance response of myc2 (jin1-2) and myc2/3/4 We theorize that increased petiole elongation in myc2/3/4 could be more due to resource tradeoffs or post-translational modifications rather than interactions with PIF4/5/7 affecting gene regulation.
Collapse
|
227
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
228
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, Tang K. Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:466-476. [PMID: 32304658 DOI: 10.1016/j.tplants.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Plants regulate the synthesis of specialized compounds through the actions of individual transcription factors (TFs) or sets of TFs. One such compound, artemisinin from Artemisia annua, is widely used as a pharmacological product in the first-line treatment of malaria. However, the emergence of resistance to artemisinin in Plasmodium species, as well as its low production rates, have required innovative treatments such as exploiting the synergistic effects of flavonoids with artemisinin. We overview current knowledge about flavonoid and artemisinin transcriptional regulation in A. annua, and review the dual action of TFs and structural genes that can regulate both pathways simultaneously. Understanding the concerted action of these TFs and their associated structural genes can guide the development of strategies to further improve flavonoid and artemisinin production.
Collapse
Affiliation(s)
- Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.
| |
Collapse
|
229
|
DeMers LC, Redekar NR, Kachroo A, Tolin SA, Li S, Saghai Maroof MA. A transcriptional regulatory network of Rsv3-mediated extreme resistance against Soybean mosaic virus. PLoS One 2020; 15:e0231658. [PMID: 32315334 DOI: 10.1371/journal.pgen.0231658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/29/2020] [Indexed: 05/28/2023] Open
Abstract
Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif ("CACGTG"), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acid- and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.
Collapse
Affiliation(s)
- Lindsay C DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Neelam R Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Virginia, United States of America
| | - Sue A Tolin
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - M A Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
230
|
DeMers LC, Redekar NR, Kachroo A, Tolin SA, Li S, Saghai Maroof MA. A transcriptional regulatory network of Rsv3-mediated extreme resistance against Soybean mosaic virus. PLoS One 2020; 15:e0231658. [PMID: 32315334 PMCID: PMC7173922 DOI: 10.1371/journal.pone.0231658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/29/2020] [Indexed: 01/02/2023] Open
Abstract
Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif ("CACGTG"), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acid- and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.
Collapse
Affiliation(s)
- Lindsay C. DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Neelam R. Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Virginia, United States of America
| | - Sue A. Tolin
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
231
|
Timmermann T, González B, Ruz GA. Reconstruction of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using boolean networks. BMC Bioinformatics 2020; 21:142. [PMID: 32293239 PMCID: PMC7157984 DOI: 10.1186/s12859-020-3472-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background An important process for plant survival is the immune system. The induced systemic resistance (ISR) triggered by beneficial microbes is an important cost-effective defense mechanism by which plants are primed to an eventual pathogen attack. Defense mechanisms such as ISR depend on an accurate and context-specific regulation of gene expression. Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRNs). Here, we explore the regulatory mechanism of the ISR defense response triggered by the beneficial bacterium Paraburkholderia phytofirmans PsJN in Arabidopsis thaliana plants infected with Pseudomonas syringae DC3000. To achieve this, a GRN underlying the ISR response was inferred using gene expression time-series data of certain defense-related genes, differential evolution, and threshold Boolean networks. Results One thousand threshold Boolean networks were inferred that met the restriction of the desired dynamics. From these networks, a consensus network was obtained that helped to find plausible interactions between the genes. A representative network was selected from the consensus network and biological restrictions were applied to it. The dynamics of the selected network showed that the largest attractor, a limit cycle of length 3, represents the final stage of the defense response (12, 18, and 24 h). Also, the structural robustness of the GRN was studied through the networks’ attractors. Conclusions A computational intelligence approach was designed to reconstruct a GRN underlying the ISR defense response in plants using gene expression time-series data of A. thaliana colonized by P. phytofirmans PsJN and subsequently infected with P. syringae DC3000. Using differential evolution, 1000 GRNs from time-series data were successfully inferred. Through the study of the network dynamics of the selected GRN, it can be concluded that it is structurally robust since three mutations were necessary to completely disarm the Boolean trajectory that represents the biological data. The proposed method to reconstruct GRNs is general and can be used to infer other biologically relevant networks to formulate new biological hypotheses.
Collapse
Affiliation(s)
- Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A Ruz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile. .,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
| |
Collapse
|
232
|
Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. THE PLANT CELL 2020; 32:1102-1123. [PMID: 32034034 PMCID: PMC7145486 DOI: 10.1105/tpc.19.00641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Yang
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhitong Ren
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
233
|
Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, Lewsey MG, García-Casado G, Fernández-Barbero G, Ecker JR, Solano R. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:138-152. [PMID: 31755159 DOI: 10.1111/tpj.14618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light-associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light-regulated genes, including the master regulator HY5. ChIP-seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade-off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators.
Collapse
Affiliation(s)
- Andrés Ortigosa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Sandra Fonseca
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Patricia Fernández-Calvo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Mark Zander
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Gemma Fernández-Barbero
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| |
Collapse
|
234
|
Tal L, Gil MXA, Guercio AM, Shabek N. Structural Aspects of Plant Hormone Signal Perception and Regulation by Ubiquitin Ligases. PLANT PHYSIOLOGY 2020; 182:1537-1544. [PMID: 31919187 PMCID: PMC7140925 DOI: 10.1104/pp.19.01282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Indexed: 05/07/2023]
Abstract
Hormonal cues regulate many aspects of plant growth and development, facilitating the plant's ability to systemically respond to environmental changes. Elucidating the molecular mechanisms governing these signaling pathways is crucial to understanding how plants function. Structural and functional biology methods have been essential in decoding plant genetic findings and revealing precise molecular actions at the protein level. Past studies of plant hormone signaling have uncovered mechanisms that involve highly coordinated protein turnover to elicit immediate cellular responses. Many phytohormone signaling pathways rely on the ubiquitin (Ub) proteasome system, specifically E3 Ub ligases, for perception and initiation of signaling transduction. In this review, we highlight structural aspects of plant hormone-sensing mechanisms by Ub ligases and discuss our current understanding of the emerging field of strigolactone signaling.
Collapse
Affiliation(s)
- Lior Tal
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - M Ximena Anleu Gil
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Angelica M Guercio
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Nitzan Shabek
- Department of Plant Biology, University of California Davis, Davis, California 95616
| |
Collapse
|
235
|
Li Y, Lin B, Zhu T, Zhang H, Su J. The interactions of PhSPL17 and PhJAZ1 mediate the on- and off-year moso bamboo (Phyllostachys heterocycla) resistance to the Pantana phyllostachysae larval feeding. PEST MANAGEMENT SCIENCE 2020; 76:1588-1595. [PMID: 31713977 DOI: 10.1002/ps.5681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The immunity of moso bamboo (Phyllostachys heterocycle) to insect defoliator outbreaks differs between on-years to off-years; however, the underlying genetic mechanisms remain unknown. In this study, the genetic relationships of functional genes conferring pest resistance were investigated. RESULTS PhJAZ1 (Phyllostachys heterocycla JASMONATE ZIM-domain protein 1) exhibited the highest enrichment and was expressed at higher levels in the leaves of on-year bamboo plants compared with off-year, whereas the expression of PhSPL17 (Phyllostachys heterocycla SQUAMOSA Promoter binding protein-Like 17) showed the reverse pattern. The expression pattern of PhJAZ1 differed in on- and off-year bamboo (i.e., decreasing in the off-year with no obvious change in the on-year) after feeding by Pantana phyllostachysae (lepidopteran caterpillar of moso bamboo). Due to the lack of a genetic transformation system, the model plant Arabidopsis was used for the investigation of the genetic relationships between PhJAZ1 and PhSPL17. Overexpression of the PhJAZ1 protein in Arabidopsis showed a negative impact on the survival ratio and weight of third-instar Helicoverpa armigera (Arabidopsis leaf-feeding lepidopteran caterpillar). Transcriptional suppression of PhJAZ1 by PhSPL17 was observed, which was able to reveal the reverse expression pattern of PhJAZ1 and PhSPL17. CONCLUSION Together, these results suggest that on- and off-years (leaf age) regulate the expression of PhSPL17, which negatively regulates the expression of PhJAZ1 to generate differential response to Jasmonate. This study is the first to detail the genetic connection between leaf age and Jasmonate response in moso bamboo and provides a foundation for further pest control via the genetic breeding of moso bamboo. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bairong Lin
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengfei Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huafeng Zhang
- Xiamen Forest Pest Management Station, Xiamen, Fujian, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
236
|
Han X, Zhang M, Yang M, Hu Y. Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development. THE PLANT CELL 2020; 32:1049-1062. [PMID: 31988260 PMCID: PMC7145492 DOI: 10.1105/tpc.19.00617] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Root hairs arise from trichoblasts and are crucial for plant anchorage, nutrient acquisition, and environmental interactions. The phytohormone jasmonate is known to regulate root hair development in Arabidopsis (Arabidopsis thaliana), but little is known about the molecular mechanism underlying jasmonate modulation in this process. Here, we show that the application of exogenous jasmonate significantly stimulated root hair elongation, but, on the contrary, blocking the perception or signaling of jasmonate resulted in defective root hairs. Jasmonate consistently elevated the expression levels of several crucial genes positively involved in root hair growth. Mechanistic investigation revealed that JASMONATE ZIM-DOMAIN (JAZ) proteins, critical repressors of jasmonate signaling, physically interacted with ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1), two transcription factors that are essential for root hair development. JAZ proteins inhibited the transcriptional function of RHD6 and interfered with the interaction of RHD6 with RSL1. Genetic analysis indicated that jasmonate promoted root hair growth in a RHD6/RSL1-dependent manner. Moreover, overexpression of RHD6 largely rescued the root hair defects of JAZ-accumulating plants. Collectively, our study reveals a key signaling module in which JAZ repressors of the jasmonate pathway directly modulate RHD6 and RSL1 transcription factors to integrate jasmonate signaling and the root hair developmental process.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
237
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2172-2185. [PMID: 31900491 PMCID: PMC7242085 DOI: 10.1093/jxb/erz570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/31/2019] [Indexed: 05/02/2023]
Abstract
Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation. Here, the effect of dual stresses (wounding and low temperature) on volatile compounds in tea (Camellia sinensis) plants and the underlying signalling mechanisms were investigated. Indole, an insect resistance volatile, was maintained at a higher content and for a longer time under dual stresses compared with wounding alone. CsMYC2a, a jasmonate (JA)-responsive transcription factor, was the major regulator of CsTSB2, a gene encoding a tryptophan synthase β-subunit essential for indole synthesis. During the recovery phase after tea wounding, low temperature helped to maintain a higher JA level. Further study showed that CsICE2 interacted directly with CsJAZ2 to relieve inhibition of CsMYC2a, thereby promoting JA biosynthesis and downstream expression of the responsive gene CsTSB2 ultimately enhancing indole biosynthesis. These findings shed light on the role of low temperature in promoting plant damage responses and advance knowledge of the molecular mechanisms by which multiple stresses coordinately regulate plant responses to the biotic and abiotic environment.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Correspondence:
| |
Collapse
|
238
|
Meraj TA, Fu J, Raza MA, Zhu C, Shen Q, Xu D, Wang Q. Transcriptional Factors Regulate Plant Stress Responses through Mediating Secondary Metabolism. Genes (Basel) 2020; 11:genes11040346. [PMID: 32218164 PMCID: PMC7230336 DOI: 10.3390/genes11040346] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.
Collapse
Affiliation(s)
- Tehseen Ahmad Meraj
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Dongbei Xu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
- Correspondence:
| |
Collapse
|
239
|
Ke YZ, Wu YW, Zhou HJ, Chen P, Wang MM, Liu MM, Li PF, Yang J, Li JN, Du H. Genome-wide survey of the bHLH super gene family in Brassica napus. BMC PLANT BIOLOGY 2020; 20:115. [PMID: 32171243 PMCID: PMC7071649 DOI: 10.1186/s12870-020-2315-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. RESULTS We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA3, gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. CONCLUSION The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.
Collapse
Affiliation(s)
- Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ping Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
240
|
Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreño AM, García-Mina JM, Solano R. An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Curr Biol 2020; 30:962-971.e3. [PMID: 32142692 DOI: 10.1016/j.cub.2020.01.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.
Collapse
Affiliation(s)
- Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Sophie Kneeshaw
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Jose M Franco-Zorrilla
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Angel M Zamarreño
- Department of Environmental Biology, University of Navarra, Navarra 31008, Spain
| | - Jose M García-Mina
- Department of Environmental Biology, University of Navarra, Navarra 31008, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain.
| |
Collapse
|
241
|
CUL3 BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc Natl Acad Sci U S A 2020; 117:6205-6215. [PMID: 32123086 DOI: 10.1073/pnas.1912199117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jasmonate (JA)-pathway regulators MYC2, MYC3, and MYC4 are central nodes in plant signaling networks integrating environmental and developmental signals to fine-tune JA defenses and plant growth. Continuous activation of MYC activity is potentially lethal. Hence, MYCs need to be tightly regulated in order to optimize plant fitness. Among the increasing number of mechanisms regulating MYC activity, protein stability is arising as a major player. However, how the levels of MYC proteins are modulated is still poorly understood. Here, we report that MYC2, MYC3, and MYC4 are targets of BPM (BTB/POZ-MATH) proteins, which act as substrate adaptors of CUL3-based E3 ubiquitin ligases. Reduction of function of CUL3BPM in amiR-bpm lines, bpm235 triple mutants, and cul3ab double mutants enhances MYC2 and MYC3 stability and accumulation and potentiates plant responses to JA such as root-growth inhibition and MYC-regulated gene expression. Moreover, MYC3 polyubiquitination levels are reduced in amiR-bpm lines. BPM3 protein is stabilized by JA, suggesting a negative feedback regulatory mechanism to control MYC activity, avoiding harmful runaway responses. Our results uncover a layer for JA-pathway regulation by CUL3BPM-mediated degradation of MYC transcription factors.
Collapse
|
242
|
Zander M, Lewsey MG, Clark NM, Yin L, Bartlett A, Saldierna Guzmán JP, Hann E, Langford AE, Jow B, Wise A, Nery JR, Chen H, Bar-Joseph Z, Walley JW, Solano R, Ecker JR. Integrated multi-omics framework of the plant response to jasmonic acid. NATURE PLANTS 2020; 6:290-302. [PMID: 32170290 PMCID: PMC7094030 DOI: 10.1038/s41477-020-0605-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways.
Collapse
Affiliation(s)
- Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Natalie M Clark
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Lingling Yin
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amber E Langford
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruce Jow
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Wise
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
243
|
Guo Z, Yue X, Cui X, Song L, Cheng Y. AtMOB1 Genes Regulate Jasmonate Accumulation and Plant Development. PLANT PHYSIOLOGY 2020; 182:1481-1493. [PMID: 31862839 PMCID: PMC7054864 DOI: 10.1104/pp.19.01434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The MOB1 proteins are highly conserved in yeasts, animals, and plants. Previously, we showed that the Arabidopsis (Arabidopsis thaliana) MOB1A gene (AtMOB1A/NCP1) plays critical roles in auxin-mediated plant development. Here, we report that AtMOB1A and AtMOB1B redundantly and negatively regulate jasmonate (JA) accumulation and function in Arabidopsis development. The two MOB1 genes exhibited similar expression patterns, and the MOB1 proteins displayed similar subcellular localizations and physically interacted in vivo. Furthermore, the atmob1a atmob1b (mob1a/1b) double mutant displayed severe developmental defects, which were much stronger than those of either single mutant. Interestingly, many JA-related genes were up-regulated in mob1a/1b, suggesting that AtMOB1A and AtMOB1B negatively regulate the JA pathways. mob1a/1b plants accumulated more JA and were hypersensitive to exogenous JA treatments. Disruption of MYC2, a key gene in JA signaling, in the mob1a/1b background partially alleviated the root defects and JA hypersensitivity observed in mob1a/1b. Moreover, the expression levels of the MYC2-repressed genes PLT1 and PLT2 were significantly decreased in the mob1a/1b double mutant. Our results showed that MOB1A/1B genetically interact with SIK1 and antagonistically modulate JA-related gene expression. Taken together, our findings indicate that AtMOB1A and AtMOB1B play important roles in regulating JA accumulation and Arabidopsis development.
Collapse
Affiliation(s)
- Zhiai Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaozhen Yue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
244
|
Zander M, Lewsey MG, Clark NM, Yin L, Bartlett A, Saldierna Guzmán JP, Hann E, Langford AE, Jow B, Wise A, Nery JR, Chen H, Bar-Joseph Z, Walley JW, Solano R, Ecker JR. Integrated multi-omics framework of the plant response to jasmonic acid. NATURE PLANTS 2020; 6:290-302. [PMID: 32170290 DOI: 10.1038/s41477-020-0605-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways.
Collapse
Affiliation(s)
- Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Natalie M Clark
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Lingling Yin
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amber E Langford
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruce Jow
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Wise
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
245
|
Li C, Shi L, Wang Y, Li W, Chen B, Zhu L, Fu Y. Arabidopsis ECAP Is a New Adaptor Protein that Connects JAZ Repressors with the TPR2 Co-repressor to Suppress Jasmonate-Responsive Anthocyanin Accumulation. MOLECULAR PLANT 2020; 13:246-265. [PMID: 31706031 DOI: 10.1016/j.molp.2019.10.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 05/27/2023]
Abstract
Suppression mechanisms mediated by transcriptional repressors commonly exist in diverse phytohormone signaling pathways. In Arabidopsis thaliana, JASMONATE-ZIM DOMAIN (JAZ) proteins are transcriptional repressors that function as negative regulators of diverse JA responses. Novel Interactor of JAZ (NINJA) is an adaptor protein connecting JAZs with the co-repressor, TOPLESS (TPL), to mediate gene repression in JA-dependent root growth inhibition and defense pathways. However, whether NINJA or other adaptor proteins are employed in other JA-responsive biological processes remains to be elucidated. In the present study, we demonstrate that a previously uncharacterized protein, ECAP (EAR motif-Containing Adaptor Protein), directly interacts with JAZ6 and JAZ8 and enhances their transcriptional repression activities. We provide evidence that ECAP is a novel adaptor protein for JAZ6/8 recruitment of the transcriptional co-repressor, TOPLESS-RELATED 2 (TPR2), into a transcriptional repressor complex that represses the WD-repeat/bHLH/MYB complex, an important transcriptional activator in the JA-dependent anthocyanin biosynthesis pathway. Our findings, together with previous reports, reveal that specific adaptor proteins play a critical role in distinct JA responses by pairing different JAZs (which possess overlapping but also specific functions) with the general co-repressors, TPL and TPRs.
Collapse
Affiliation(s)
- Changjiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Binqing Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
246
|
Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:273-288. [PMID: 31741037 DOI: 10.1007/s00299-019-02490-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ZmMYC2 was identified as the key regulator of JA signaling in maize and exhibited diverse functions through binding to many gene promoters as well as enhanced JA signaling in transgenic Arabidopsis. The plant hormone jasmonate (JA) extensively coordinates plant growth, development and defensive responses. MYC2 is the master regulator of JA signaling and has been widely studied in many plant species. However, little is known about this transcription factor in maize. Here, we identified one maize transcription factor with amino acid identity of 47% to the well-studied Arabidopsis AtMYC2, named as ZmMYC2. Gene expression analysis demonstrated inducible expression patterns of ZmMYC2 in response to multiple plant hormone treatments, as well as biotic and abiotic stresses. The yeast two-hybrid assay indicated physical interaction among ZmMYC2 and JA signal repressors ZmJAZ14, ZmJAZ17, AtJAZ1 and AtJAZ9. ZmMYC2 overexpression in Arabidopsis myc2myc3myc4 restored the sensitivity to JA treatment, resulting in shorter root growth and inducible anthocyanin accumulation. Furthermore, overexpression of ZmMYC2 in Arabidopsis elevated resistance to Botrytis cinerea. Further ChIP-Seq analysis revealed diverse regulatory roles of ZmMYC2 in maize, especially in the signaling crosstalk between JA and auxin. Hence, we identified ZmMYC2 and characterized its roles in regulating JA-mediated growth, development and defense responses.
Collapse
Affiliation(s)
- Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Panpan Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
247
|
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, Li C. Mediator Subunit MED25 Couples Alternative Splicing of JAZ Genes with Fine-Tuning of Jasmonate Signaling. THE PLANT CELL 2020; 32:429-448. [PMID: 31852773 PMCID: PMC7008490 DOI: 10.1105/tpc.19.00583] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
JASMONATE ZIM-DOMAIN (JAZ) transcriptional repressors are key regulators of jasmonate (JA) signaling in plants. At the resting stage, the C-terminal Jas motifs of JAZ proteins bind the transcription factor MYC2 to repress JA signaling. Upon hormone elicitation, the Jas motif binds the hormone receptor CORONATINE INSENSITIVE1, which mediates proteasomal degradation of JAZs and thereby allowing the Mediator subunit MED25 to activate MYC2. Subsequently, plants desensitize JA signaling by feedback generation of dominant JAZ splice variants that repress MYC2. Here we report the mechanistic function of Arabidopsis (Arabidopsis thaliana) MED25 in regulating the alternative splicing of JAZ genes through recruiting the splicing factors PRE-mRNA-PROCESSING PROTEIN 39a (PRP39a) and PRP40a. We demonstrate that JA-induced generation of JAZ splice variants depends on MED25 and that MED25 recruits PRP39a and PRP40a to promote the full splicing of JAZ genes. Therefore, MED25 forms a module with PRP39a and PRP40a to prevent excessive desensitization of JA signaling mediated by JAZ splice variants.
Collapse
Affiliation(s)
- Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong Province, Tai'an 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong Province, Tai'an 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
248
|
Wang Z, Zhao FY, Tang MQ, Chen T, Bao LL, Cao J, Li YL, Yang YH, Zhu KM, Liu S, Tan XL. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110362. [PMID: 31928657 DOI: 10.1016/j.plantsci.2019.110362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus), resulting in major economic losses. Resistance response of B. napus against S. sclerotiorum exhibits a typical quantitative disease resistance (QDR) characteristic, but the molecular determinants of this QDR are largely unknown. In this study, we isolated a B. napus mitogen-activated protein kinase gene, BnaMPK6, and found that BnaMPK6 expression is highly responsive to infection by S. sclerotiorum and treatment with salicylic acid (SA) or jasmonic acid (JA). Moreover, overexpression (OE) of BnaMPK6 significantly enhances resistance to S. sclerotiorum, whereas RNAi in BnaMPK6 significantly reduces this resistance. These results showed that BnaMPK6 plays an important role in defense to S. sclerotiorum. Furthermore, expression of defense genes associated with SA-, JA- and ethylene (ET)-mediated signaling was investigated in BnaMPK6-RNAi, WT and BnaMPK6-OE plants after S. sclerotiorum infection, and consequently, it was indicated that the activation of ET signaling by BnaMPK6 may play a role in the defense. Further, four BnaMPK6-encoding homologous loci were mapped in the B. napus genome. Using the allele analysis and expression analysis on the four loci, we demonstrated that the locus BnaA03.MPK6 makes an important contribution to QDR against S. sclerotiorum. Our data indicated that BnaMPK6 is a previously unknown determinant of QDR against S. sclerotiorum in B. napus.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Min-Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Ting Chen
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Ling-Li Bao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Yan-Hua Yang
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China
| | - Shengyi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China.
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, 301#Xuefu Road, Zhenjiang, 212013, PR China.
| |
Collapse
|
249
|
Wu X, Ye J. Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses 2020; 12:v12020148. [PMID: 32012772 PMCID: PMC7077190 DOI: 10.3390/v12020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plant viruses pose serious threats to stable crop yield. The majority of them are transmitted by insects, which cause secondary damage to the plant host from the herbivore-vector's infestation. What is worse, a successful plant virus evolves multiple strategies to manipulate host defenses to promote the population of the insect vector and thereby furthers the disease pandemic. Jasmonate (JA) and its derivatives (JAs) are lipid-based phytohormones with similar structures to animal prostaglandins, conferring plant defenses against various biotic and abiotic challenges, especially pathogens and herbivores. For survival, plant viruses and herbivores have evolved strategies to convergently target JA signaling. Here, we review the roles of JA signaling in the tripartite interactions among plant, virus, and insect vectors, with a focus on the molecular and biochemical mechanisms that drive vector-borne plant viral diseases. This knowledge is essential for the further design and development of effective strategies to protect viral damages, thereby increasing crop yield and food security.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
250
|
Liu X, Zhao C, Yang L, Zhang Y, Wang Y, Fang Z, Lv H. Genome-Wide Identification, Expression Profile of the TIFY Gene Family in Brassica oleracea var. capitata, and Their Divergent Response to Various Pathogen Infections and Phytohormone Treatments. Genes (Basel) 2020; 11:genes11020127. [PMID: 31991606 PMCID: PMC7073855 DOI: 10.3390/genes11020127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
TIFY, a plant-specific gene family with the conserved motif TIF[F/Y]XG, plays important roles in various plant biological processes. Here, a total of 36 TIFY genes were identified in the Brassica oleracea genome and classified into JAZ (22 genes), TIFY (7 genes), ZML (5 genes), and PPD (2 genes) subfamilies based on their conserved motifs, which were distributed unevenly across nine chromosomes with different lengths (339-1077 bp) and exon numbers (1-8). Following phylogenetic analysis with A. thaliana and B. rapa TIFY proteins, ten clades were obtained. The expression of these TIFY genes was organ-specific, with thirteen JAZ genes and two PPD genes showing the highest expression in roots and leaves, respectively. More importantly, the JAZs showed divergent responses to various pathogen infections and different phytohormone treatments. Compared with the susceptible line, most JAZs were activated after Plasmodiophora brassicae infection, while there were both induced and inhibited JAZs after Fusarium oxysporum or Xanthomonas campestris infection in the resistance line, indicating their probably distinct roles in disease resistance or susceptibility. Further, the JAZs were all upregulated after MeJA treatment, but were mostly downregulated after SA/ET treatment. In summary, these results contribute to our understanding of the TIFY gene family, revealing that JAZs may play crucial and divergent roles in phytohormone crosstalk and plant defense.
Collapse
Affiliation(s)
- Xing Liu
- Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling 712100, Shanxi, China;
| | - Cunbao Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
| | - Zhiyuan Fang
- Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling 712100, Shanxi, China;
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
- Correspondence: (Z.F.); (H.L.); Tel.: +86-010-6213-5629 (H.L.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (L.Y.); (Y.Z.); (Y.W.)
- Correspondence: (Z.F.); (H.L.); Tel.: +86-010-6213-5629 (H.L.)
| |
Collapse
|