201
|
Ferraro K, Jin AL, Nguyen TD, Reinecke DM, Ozga JA, Ro DK. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds. BMC PLANT BIOLOGY 2014; 14:238. [PMID: 25928382 PMCID: PMC4175280 DOI: 10.1186/s12870-014-0238-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/02/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. RESULTS PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. CONCLUSION Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in development to be used as substrates for polymerization into PAs. Biochemically competent recombinant PsANR and PsLAR activities were consistent with the pea seed coat PA profile composed of both cis- and trans-flavan-3-ols. Since the expression of PsLAR in Arabidopsis did not alter the PA subunit profile (which is only comprised of cis-flavan-3-ols), it necessitates further investigation of in planta metabolic flux through PsLAR.
Collapse
Affiliation(s)
- Kiva Ferraro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Alena L Jin
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Trinh-Don Nguyen
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| |
Collapse
|
202
|
Liu C, Jun JH, Dixon RA. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula. PLANT PHYSIOLOGY 2014; 165:1424-1439. [PMID: 24948832 PMCID: PMC4119029 DOI: 10.1104/pp.114.241877] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the major MYB protein regulating proanthocyanidin (PA) biosynthesis is TT2, named for the transparent testa phenotype of tt2 mutant seeds that lack PAs in their coats. In contrast, the MYB5 transcription factor mainly regulates seed mucilage biosynthesis and trichome branching, with only a minor role in PA biosynthesis. We here characterize MYB5 and MYB14 (a TT2 homolog) in the model legume Medicago truncatula. Overexpression of MtMYB5 or MtMYB14 strongly induces PA accumulation in M. truncatula hairy roots, and both myb5 and myb14 mutants of M. truncatula exhibit darker seed coat color than wild-type plants, with myb5 also showing deficiency in mucilage biosynthesis. myb5 mutant seeds have a much stronger seed color phenotype than myb14. The myb5 and myb14 mutants accumulate, respectively, about 30% and 50% of the PA content of wild-type plants, and PA levels are reduced further in myb5 myb14 double mutants. Transcriptome analyses of overexpressing hairy roots and knockout mutants of MtMYB5 and MtMYB14 indicate that MtMYB5 regulates a broader set of genes than MtMYB14. Moreover, we demonstrate that MtMYB5 and MtMYB14 physically interact and synergistically activate the promoters of anthocyanidin reductase and leucoanthocyanidin reductase, the key structural genes leading to PA biosynthesis, in the presence of MtTT8 and MtWD40-1. Our results provide new insights into the complex regulation of PA and mucilage biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Chenggang Liu
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Ji Hyung Jun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| |
Collapse
|
203
|
Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. PLANT CELL REPORTS 2014; 33:1147-59. [PMID: 24700246 DOI: 10.1007/s00299-014-1604-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 05/18/2023]
Abstract
VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important quality components of many fruits. PAs biosynthesis is part of the flavonoid pathway that also produces anthocyanins and flavonols. In grape fruits, PAs are present in seeds and skin tissues. PAs are synthesized in the cytoplasm and accumulated into the vacuole and apoplast; however, little is known about the mechanisms involved in the transport of these compounds to such cellular compartments. A gene encoding a Multidrug And Toxic compound Extrusion (MATE) family protein suggested to transport anthocyanins-named VvMATE1-was used to identify a second gene of the MATE family, VvMATE2. Analysis of their deduced amino acid sequences and the phylogenetic relationship with other MATE-like proteins indicated that VvMATE1 and VvMATE2 encode putative PA transporters. Subcellular localization assays in Arabidopsis protoplasts transformed with VvMATE-GFP fusion constructs along with organelle-specific markers revealed that VvMATE1 is localized in the tonoplast whereas VvMATE2 is localized in the Golgi complex. Major expression of both genes occurs during the early stages of seed development concomitant with the accumulation of PAs. Both genes are poorly expressed in the skin of berries while VvMATE2 is also expressed in leaves. The presence of putative cis-acting elements in the promoters of VvMATE1 and VvMATE2 may explain the differential transcriptional regulation of these genes in grapevine. Altogether, these results suggest that these MATE proteins could mediate the transport and accumulation of PAs in grapevine through different routes and cellular compartments.
Collapse
Affiliation(s)
- Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
204
|
|
205
|
Remy E, Duque P. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 2014; 5:201. [PMID: 24910617 PMCID: PMC4038776 DOI: 10.3389/fphys.2014.00201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
206
|
Autophagy-related direct membrane import from ER/cytoplasm into the vacuole or apoplast: a hidden gateway also for secondary metabolites and phytohormones? Int J Mol Sci 2014; 15:7462-74. [PMID: 24786101 PMCID: PMC4057683 DOI: 10.3390/ijms15057462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER) to vacuole (and also, apoplast) transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA) acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast), exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA) and salicylic acid (SA)) degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters) will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.
Collapse
|
207
|
Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep 2014; 4:3964. [PMID: 24492654 PMCID: PMC3912489 DOI: 10.1038/srep03964] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 12/30/2022] Open
Abstract
Multidrug and Toxic compound Extrusion proteins (MATE) are a group of secondary active transporters with ubiquitous occurrences in all domains of life. This is a newly characterized transporter family with limited functional knowledge in plants. In this study, we functionally characterised two members of rice MATE gene family, OsMATE1 and OsMATE2 through expression in heterologous system, Arabidopsis. Expression of OsMATEs in Arabidopsis altered growth and morphology of transgenic plants. Genome-wide expression analysis revealed modulation of genes involved in plant growth, development and biotic stress in transgenic lines. Transgenic plants displayed sensitivity for biotic and abiotic stresses. Elevated pathogen susceptibility of transgenic lines was correlated with reduced expressions of defence related genes. Promoter and cellular localization studies suggest that both MATEs express in developing and reproductive organs and are plasma-membrane localised. Our results reveal that OsMATE1 and OsMATE2 regulate plant growth and development as well as negatively affect disease resistance.
Collapse
Affiliation(s)
- Manish Tiwari
- National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow-226 001, INDIA
| | - Deepika Sharma
- National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow-226 001, INDIA
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow-226007, INDIA
| | - Rudra Deo Tripathi
- National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow-226 001, INDIA
| | - Prabodh Kumar Trivedi
- National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow-226 001, INDIA
| |
Collapse
|
208
|
ATP-Binding Cassette and Multidrug and Toxic Compound Extrusion Transporters in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:303-46. [DOI: 10.1016/b978-0-12-800255-1.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
209
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
210
|
Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. FRONTIERS IN PLANT SCIENCE 2014; 5:351. [PMID: 25101104 PMCID: PMC4102250 DOI: 10.3389/fpls.2014.00351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 05/19/2023]
Abstract
Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University in OlomoucOlomouc, Czech Republic
- *Correspondence: Petr Smýkal, Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Šlechtitelů 11, 783 71 Olomouc, Czech Republic e-mail:
| | | | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State UniversityNashville, TN, USA
| | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czech Republic
| | | |
Collapse
|
211
|
Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. PLANT PHYSIOLOGY 2014; 164:365-83. [PMID: 24276949 PMCID: PMC3875815 DOI: 10.1104/pp.113.231977] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening.
Collapse
|
212
|
Casañal A, Zander U, Muñoz C, Dupeux F, Luque I, Botella MA, Schwab W, Valpuesta V, Marquez JA. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates. J Biol Chem 2013; 288:35322-32. [PMID: 24133217 PMCID: PMC3853281 DOI: 10.1074/jbc.m113.501528] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates.
Collapse
Affiliation(s)
- Ana Casañal
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Ulrich Zander
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Cristina Muñoz
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Florine Dupeux
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Irene Luque
- the Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain, and
| | - Miguel Angel Botella
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Victoriano Valpuesta
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - José A. Marquez
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| |
Collapse
|
213
|
Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC PLANT BIOLOGY 2013; 13:202. [PMID: 24308601 PMCID: PMC4233638 DOI: 10.1186/1471-2229-13-202] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. RESULTS To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. CONCLUSION Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.
Collapse
Affiliation(s)
- Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Cellular & Molecular Pharmacology, Mission Bay Campus, Genentech Hall, University of California, San Francisco, N582/Box 2280, 600 16th Street, San Francisco, CA 94158, USA
| | - Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela Maximova
- Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802, USA
| | - Mark J Payne
- Hershey Center for Health and Nutrition, The Hershey Company, 1025 Reese Ave, Hershey, PA 17033, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802, USA
| |
Collapse
|
214
|
Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1446-58. [PMID: 24028845 PMCID: PMC3813663 DOI: 10.1104/pp.113.222547] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar β-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.
Collapse
|
215
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
216
|
Brillouet JM, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil JL, Conéjéro G. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. ANNALS OF BOTANY 2013; 112:1003-14. [PMID: 24026439 PMCID: PMC3783233 DOI: 10.1093/aob/mct168] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. METHODS Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. KEY RESULTS AND CONCLUSIONS The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.
Collapse
Affiliation(s)
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Budapest, Hungary
| | | | | | - Jean-Luc Verdeil
- UMR AGAP INRA/CIRAD/SupAgro, Montpellier, France
- Plate-forme d'Histocytologie et d'Imagerie Cellulaire Végétale (PHIV)
| | - Geneviève Conéjéro
- Plate-forme d'Histocytologie et d'Imagerie Cellulaire Végétale (PHIV)
- UMR BPMP INRA/CNRS/SupAgro/UM II, Montpellier, France
- For correspondence. E-mail
| |
Collapse
|
217
|
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Int J Mol Sci 2013; 14:14950-73. [PMID: 23867610 PMCID: PMC3742282 DOI: 10.3390/ijms140714950] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described.
Collapse
Affiliation(s)
- Elisa Petrussa
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Enrico Braidot
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Marco Zancani
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Carlo Peresson
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Alberto Bertolini
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Sonia Patui
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Angelo Vianello
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| |
Collapse
|
218
|
Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. PLANTA 2013; 238:139-54. [PMID: 23592226 DOI: 10.1007/s00425-013-1879-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/13/2023]
Abstract
In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.
Collapse
Affiliation(s)
- Yongzhen Pang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Veljanovski V, Constabel CP. Molecular cloning and biochemical characterization of two UDP-glycosyltransferases from poplar. PHYTOCHEMISTRY 2013; 91:148-57. [PMID: 23375153 DOI: 10.1016/j.phytochem.2012.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 05/26/2023]
Abstract
Two pathogen-induced uridine diphosphate glycosyltransferases (UGTs) identified previously via co-expression with induced proanthocyanidin (PA) synthesis in poplar were cloned and characterized. Phylogenetic analysis grouped both genes with other known flavonoid UGTs that act on flavonols and anthocyanins. Recombinant enzymes were produced in order to test if they could glycoslate flavonoids. PtUGT78L1 accepted the flavonols quercetin and kaempferol as well as cyanidin, and used UDP-galactose as a sugar donor. PtUGT78M1 did not accept any of the flavonoids tested as a substrate, but did transfer glucose from UDP-glucose to the universal substrate 2,4,6-trichlorophenol. However, neither enzyme acted on the flavan-3-ols catechin or epicatechin, intermediates in the PA biosynthetic pathway.
Collapse
Affiliation(s)
- Vasko Veljanovski
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
220
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
221
|
Ceunen S, Geuns JMC. Steviol glycosides: chemical diversity, metabolism, and function. JOURNAL OF NATURAL PRODUCTS 2013; 76:1201-28. [PMID: 23713723 DOI: 10.1021/np400203b] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Steviol glycosides are a group of highly sweet diterpene glycosides discovered in only a few plant species, most notably the Paraguayan shrub Stevia rebaudiana. During the past few decades, the nutritional and pharmacological benefits of these secondary metabolites have become increasingly apparent. While these properties are now widely recognized, many aspects related to their in vivo biochemistry and metabolism and their relationship to the overall plant physiology of S. rebaudiana are not yet understood. Furthermore, the large size of the steviol glycoside pool commonly found within S. rebaudiana leaves implies a significant metabolic investment and poses questions regarding the benefits S. rebaudiana might gain from their accumulation. The current review intends to thoroughly discuss the available knowledge on these issues.
Collapse
Affiliation(s)
- Stijn Ceunen
- Laboratory of Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, BP 2436, B-3001 Heverlee, Belgium
| | | |
Collapse
|
222
|
Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, Eisenach C, Zarrouk O, Vialet S, Marlin T, Chaves MM, Martinoia E, Nagy R. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-Glucosides. THE PLANT CELL 2013; 25:1840-54. [PMID: 23723325 PMCID: PMC3694709 DOI: 10.1105/tpc.112.102152] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 04/23/2013] [Accepted: 05/12/2013] [Indexed: 05/18/2023]
Abstract
Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate.
Collapse
Affiliation(s)
- Rita Maria Francisco
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
- Instituto de Tecnologia Química e Biológica, 2780-157 Oeiras, Portugal
| | - Ana Regalado
- Instituto de Tecnologia Química e Biológica, 2780-157 Oeiras, Portugal
| | - Agnès Ageorges
- Unité Mixte de Recherche 1083-SPO Sciences for Enology, Institut National de la Recherche Agronomique, Sci Oenol UMR1083, 34060 Montpellier, France
| | - Bo J. Burla
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Barbara Bassin
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Cornelia Eisenach
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Olfa Zarrouk
- Instituto de Tecnologia Química e Biológica, 2780-157 Oeiras, Portugal
| | - Sandrine Vialet
- Unité Mixte de Recherche 1083-SPO Sciences for Enology, Institut National de la Recherche Agronomique, Sci Oenol UMR1083, 34060 Montpellier, France
| | - Thérèse Marlin
- Unité Mixte de Recherche 1083-SPO Sciences for Enology, Institut National de la Recherche Agronomique, Sci Oenol UMR1083, 34060 Montpellier, France
| | | | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
- Address correspondence to
| |
Collapse
|
223
|
Sun G, Yang Y, Xie F, Wen JF, Wu J, Wilson IW, Tang Q, Liu H, Qiu D. Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. PLoS One 2013; 8:e62865. [PMID: 23646152 PMCID: PMC3639896 DOI: 10.1371/journal.pone.0062865] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/28/2013] [Indexed: 01/21/2023] Open
Abstract
Background Plant cell culture represents an alternative source for producing high-value secondary metabolites including paclitaxel (Taxol®), which is mainly produced in Taxus and has been widely used in cancer chemotherapy. The phytohormone methyl jasmonate (MeJA) can significantly increase the production of paclitaxel, which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. In cell culture, MeJA also elicits the accumulation of paclitaxel; however, the mechanism is still largely unknown. Methodology/Principal Findings To obtain insight into the global regulation mechanism of MeJA in the steady state of paclitaxel production (7 days after MeJA addition), especially on paclitaxel biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated Taxus × media cells and obtained ∼ 32.5 M high quality reads, from which 40,348 unique sequences were obtained by de novo assembly. Expression level analysis indicated that a large number of genes were associated with transcriptional regulation, DNA and histone modification, and MeJA signaling network. All the 29 known genes involved in the biosynthesis of terpenoid backbone and paclitaxel were found with 18 genes showing increased transcript abundance following elicitation of MeJA. The significantly up-regulated changes of 9 genes in paclitaxel biosynthesis were validated by qRT-PCR assays. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in paclitaxel biosynthesis were identified. We also found some genes putatively involved in the transport and degradation of paclitaxel. Potential target prediction of miRNAs indicated that miRNAs may play an important role in the gene expression regulation following the elicitation of MeJA. Conclusions/Significance Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of Taxus cells and is helpful to understand how MeJA elicits other plant species besides Taxus.
Collapse
Affiliation(s)
- Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Jian-Fan Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Iain W. Wilson
- CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Qi Tang
- Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi, China
| | - Hongwei Liu
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| |
Collapse
|
224
|
Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X, Gao L, Xia T. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 2013; 8:e62315. [PMID: 23646127 PMCID: PMC3639974 DOI: 10.1371/journal.pone.0062315] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/20/2013] [Indexed: 12/03/2022] Open
Abstract
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs.
Collapse
Affiliation(s)
- Xiaolan Jiang
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Weiwei Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Lei Zhao
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Fei Meng
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Huarong Tan
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Yang
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Chaoling Wei
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaochun Wan
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
- * E-mail: (TX); (LG)
| | - Tao Xia
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education in China, Anhui Agricultural University, Hefei, Anhui, China
- * E-mail: (TX); (LG)
| |
Collapse
|
225
|
Verdier J, Torres-Jerez I, Wang M, Andriankaja A, Allen SN, He J, Tang Y, Murray JD, Udvardi MK. Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:351-62. [PMID: 23452239 DOI: 10.1111/tpj.12119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 05/21/2023]
Abstract
Lotus japonicus is a model species for legume genomics. To accelerate legume functional genomics, we developed a Lotus japonicus Gene Expression Atlas (LjGEA), which provides a global view of gene expression in all organ systems of this species, including roots, nodules, stems, petioles, leaves, flowers, pods and seeds. Time-series data covering multiple stages of developing pod and seed are included in the LjGEA. In addition, previously published L. japonicus Affymetrix data are included in the database, making it a 'one-stop shop' for transcriptome analysis of this species. The LjGEA web server (http://ljgea.noble.org/) enables flexible, multi-faceted analyses of the transcriptome. Transcript data may be accessed using the Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, and GO and KEGG annotation terms. Genes may be discovered through co-expression or differential expression analysis. Users may select a subset of experiments and visualize and compare expression profiles of multiple genes simultaneously. Data may be downloaded in a tabular form compatible with common analytical and visualization software. To illustrate the power of LjGEA, we explored the transcriptome of developing seeds. Genes represented by 36 474 probe sets were expressed at some stage during seed development, and almost half of these genes displayed differential expression during development. Among the latter were 624 transcription factor genes, some of which are orthologs of transcription factor genes that are known to regulate seed development in other species, while most are novel and represent attractive targets for reverse genetics approaches to determine their roles in this important organ.
Collapse
Affiliation(s)
- Jerome Verdier
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Pang Y, Abeysinghe ISB, He J, He X, Huhman D, Mewan KM, Sumner LW, Yun J, Dixon RA. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. PLANT PHYSIOLOGY 2013; 161:1103-16. [PMID: 23288883 PMCID: PMC3585583 DOI: 10.1104/pp.112.212050] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/29/2012] [Indexed: 05/18/2023]
Abstract
Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (-)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (-)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols.
Collapse
Affiliation(s)
| | - I. Sarath B. Abeysinghe
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Ji He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Xianzhi He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - David Huhman
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - K. Mudith Mewan
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Lloyd W. Sumner
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Jianfei Yun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | | |
Collapse
|
227
|
Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 2013; 39:283-97. [PMID: 23397456 DOI: 10.1007/s10886-013-0248-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.
Collapse
|
228
|
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 2013; 31:240-6. [DOI: 10.1038/nbt.2491] [Citation(s) in RCA: 832] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
|
229
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|
230
|
Shitan N, Sugiyama A, Yazaki K. Functional analysis of jasmonic acid-responsive secondary metabolite transporters. Methods Mol Biol 2013; 1011:241-250. [PMID: 23616001 DOI: 10.1007/978-1-62703-414-2_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Jasmonic acid (JA) is a plant hormone that mediates a wide variety of plant developmental processes and defense responses. One of the major roles of JA is the versatile enhancement of the production of secondary metabolites that function as second messengers in plant defense responses. Recently, several genes have been identified as coding for JA-responsive transporters involved in the membrane transport of various secondary metabolites. Although in the literature such transport activities have been explored by a number of methods, only a few studies systematically provide a detailed technical basis of the transport assay. Here, we describe the established method to functionally analyze secondary metabolite transporters by means of a yeast cellular transport system. Moreover, the advantages and disadvantages of the method are summarized and the relevant technical points are noted.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | | | | |
Collapse
|
231
|
Peng QZ, Zhu Y, Liu Z, Du C, Li KG, Xie DY. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants. PLANTA 2012; 236:901-918. [PMID: 22678031 DOI: 10.1007/s00425-012-1670-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.
Collapse
Affiliation(s)
- Qing-Zhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City, 416000, Hunan Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
232
|
Dixon RA, Liu C, Jun JH. Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 2012; 24:329-35. [PMID: 22901316 DOI: 10.1016/j.copbio.2012.07.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022]
Abstract
Monomeric anthocyanins and polymeric proanthocyanidins (condensed tannins) contribute to important plant traits such as flower and fruit pigmentation, fruit astringency, disease resistance and forage quality. Recent advances in our understanding of the transcriptional control mechanisms that regulate anthocyanin and condensed tannin formation in plants suggest new approaches for the engineering of quality traits associated with these molecules. In particular, MYB family transcription factors are emerging as central players in the coordinated activation of sets of genes specific for the anthocyanin and tannin pathways. Mutations in these genes underlie potentially valuable crop traits, and ectopic over- or under-expression of MYB transcription factors provides routes for engineering of these complex pathways.
Collapse
Affiliation(s)
- Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | | | | |
Collapse
|
233
|
Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. PLANT PHYSIOLOGY 2012; 159:1204-20. [PMID: 22566493 PMCID: PMC3387705 DOI: 10.1104/pp.112.195420] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/06/2012] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems.
Collapse
Affiliation(s)
| | - Vern Collette
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Hong Xue
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Chris Jones
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | |
Collapse
|
234
|
Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K. Tissue-specific transcriptome analysis in nodules of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:869-76. [PMID: 22432875 DOI: 10.1094/mpmi-01-12-0011-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legume plants can establish symbiotic nitrogen fixation (SNF) with rhizobia mostly in root nodules, where rhizobia-infected cells are accompanied by uninfected cells in a mosaic pattern. Inside the mature nodules of the legume, carbon and nitrogen nutrients between host plant cells and their resident bacteria are actively exchanged. To elucidate the metabolite dynamics relevant for SNF in nodules, three tissues from a nodule of a model legume, Lotus japonicus, were isolated using laser microdissesction, and transcriptome analysis was done by an oligoarray of 60-mer length representing 21,495 genes. In our tissue-specific profiling, many genes were identified as being expressed in nodules in a spatial-specific manner. Among them, genes coding for metabolic enzymes were classified according to their function, and detailed data analysis showed that a secondary metabolic pathway was highly activated in the nodule cortex. In particular, a number of metabolic genes for a phenylpropanoid pathway were found as highly expressed genes accompanied by those encoding putative transporters of secondary metabolites. These data suggest the involvement of a novel physiological function of phenylpropanoids in SNF. Moreover, five representative genes were selected, and detailed tissue-specific expression was characterized by promoter-β-glucuronidase experiments. Our results provide a new data source for investigation of both nodule differentiation and tissue-specific physiological functions in nodules.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3429-44. [PMID: 22213816 DOI: 10.1093/jxb/err430] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.
Collapse
Affiliation(s)
- Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Canberra, ACT 0200, Australia
| | | |
Collapse
|
236
|
Sun Y, Li H, Huang JR. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. MOLECULAR PLANT 2012; 5:387-400. [PMID: 22201047 DOI: 10.1093/mp/ssr110] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anthocyanins are synthesized in the cytosolic surface of the endoplasmic reticulum (ER) but dominantly accumulate in the vacuole. Little is known about how anthocyanins are transported from the ER to the vacuole. Here, we provide evidence supporting that Transparent Testa 19 (TT19), a glutathione S-transferase (GST), functions as a carrier to transport cyanidin and/or anthocyanins to the tonoplast. We identified a novel tt19 mutant (tt19-7), which barely accumulates anthocyanins but produces a 36% higher level of flavonol than the wild-type (WT), from ethyl methanesulfonate mutagenized seeds. Expressing TT19-fused green fluorescence protein (GFP) in tt19-7 rescues the mutant phenotype in defective anthocyanin biosynthesis, indicating that TT19-GFP is functional. We further showed that TT19-GFP is localized not only in the cytoplasm and nuclei, but also on the tonoplast. The membrane localization of TT19-GFP was further ascertained by immunoblot analysis. In vitro assay showed that the purified recombinant TT19 increases water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G). Compared with C3G, Cya can dramatically quench the intrinsic tryptophan fluorescence of TT19 to much lower levels, indicating a higher affinity of TT19 to Cya than to C3G. Isothermal titration calorimetry analysis also confirmed physical interaction between TT19 and C3G. Taken together, our data reveal molecular mechanism underlying TT19-mediated anthocyanin transportation.
Collapse
Affiliation(s)
- Yi Sun
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | | | | |
Collapse
|
237
|
A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochem J 2012; 442:551-61. [DOI: 10.1042/bj20111311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron is an essential micronutrient that acts as a cofactor in a wide variety of pivotal metabolic processes, such as the electron transport chain of respiration, photosynthesis and redox reactions, in plants. However, its overload exceeding the cellular capacity of iron binding and storage is potentially toxic to plant cells by causing oxidative stress and cell death. Consequently, plants have developed versatile mechanisms to maintain iron homoeostasis. Organismal iron content is tightly regulated at the steps of uptake, translocation and compartmentalization. Whereas iron uptake is fairly well understood at the cellular and organismal levels, intracellular and intercellular transport is only poorly understood. In the present study, we show that a MATE (multidrug and toxic compound extrusion) transporter, designated BCD1 (BUSH-AND-CHLOROTIC-DWARF 1), contributes to iron homoeostasis during stress responses and senescence in Arabidopsis. The BCD1 gene is induced by excessive iron, but repressed by iron deficiency. It is also induced by cellular and tissue damage occurring under osmotic stress. The activation-tagged mutant bcd1-1D exhibits leaf chlorosis, a typical symptom of iron deficiency. The chlorotic lesion of the mutant was partially recovered by iron feeding. Whereas the bcd1-1D mutant accumulated a lower amount of iron, the iron level was elevated in the knockout mutant bcd1-1. The BCD1 protein is localized to the Golgi complex. We propose that the BCD1 transporter plays a role in sustaining iron homoeostasis by reallocating excess iron released from stress-induced cellular damage.
Collapse
|
238
|
Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, Terrier N. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1201-14. [PMID: 22090445 PMCID: PMC3276084 DOI: 10.1093/jxb/err340] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 05/20/2023]
Abstract
Grape proanthocyanidins (PAs) play a major role in the organoleptic properties of wine. They are accumulated mainly in grape skin and seeds during the early stages of berry development. Despite the recent progress in the identification of genes involved in PA biosynthesis, the mechanisms involved in subunit condensation, galloylation, or fine regulation of the spatio-temporal composition of grape berries in PAs are still not elucidated. Two Myb transcription factors, VvMybPA1 and VvMybPA2, controlling the PA pathway have recently been identified and ectopically over-expressed in an homologous system. In addition to already known PA genes, three genes coding for glucosyltransferases were significantly differentially expressed between hairy roots over-expressing VvMybPA1 or VvMybPA2 and control lines. The involvement of these genes in PA biosynthesis metabolism is unclear. The three glucosyltransferases display high sequence similarities with other plant glucosyltransferases able to catalyse the formation of glucose esters, which are important intermediate actors for the synthesis of different phenolic compounds. Studies of the in vitro properties of these three enzymes (K(m), V(max), substrate specificity, pH sensitivity) were performed through production of recombinant proteins in E. coli and demonstrated that they are able to catalyse the formation of 1-O-acyl-Glc esters of phenolic acids but are not active on flavonoids and stilbenes. The transcripts are expressed in the early stages of grape berry development, mainly in the berry skins and seeds. The results presented here suggest that these enzymes could be involved in vivo in PA galloylation or in the synthesis of hydroxycinnamic esters.
Collapse
Affiliation(s)
| | | | | | | | | | - N. Terrier
- UMR1083 SPO, bât 28, INRA, 2, place P. Viala, F-34060 Montpellier, France
| |
Collapse
|
239
|
MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 2012; 109:1766-71. [PMID: 22307644 DOI: 10.1073/pnas.1120916109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accumulation of PAs occurred when MtPAR was expressed ectopically in transformed hairy roots of Medicago. Transcriptome analysis of par mutants and MtPAR-expressing hairy roots, coupled with yeast one-hybrid analysis, revealed that MtPAR positively regulates genes encoding enzymes of the flavonoid-PA pathway via a probable activation of WD40-1. Expression of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in shoots, highlighting the potential of this gene for biotechnological strategies to increase PAs in forage legumes for reduction of pasture bloat in ruminant animals.
Collapse
|
240
|
Martinoia E, Meyer S, De Angeli A, Nagy R. Vacuolar transporters in their physiological context. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:183-213. [PMID: 22404463 DOI: 10.1146/annurev-arplant-042811-105608] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vacuoles in vegetative tissues allow the plant surface to expand by accumulating energetically cheap inorganic osmolytes, and thereby optimize the plant for absorption of sunlight and production of energy by photosynthesis. Some specialized cells, such as guard cells and pulvini motor cells, exhibit rapid volume changes. These changes require the rapid release and uptake of ions and water by the vacuole and are a prerequisite for plant survival. Furthermore, seed vacuoles are important storage units for the nutrients required for early plant development. All of these fundamental processes rely on numerous vacuolar transporters. During the past 15 years, the transporters implicated in most aspects of vacuolar function have been identified and characterized. Vacuolar transporters appear to be integrated into a regulatory network that controls plant metabolism. However, little is known about the mode of action of these fundamental processes, and deciphering the underlying mechanisms remains a challenge for the future.
Collapse
Affiliation(s)
- Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
241
|
Pastore C, Zenoni S, Tornielli GB, Allegro G, Dal Santo S, Valentini G, Intrieri C, Pezzotti M, Filippetti I. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics 2011; 12:631. [PMID: 22192855 PMCID: PMC3283566 DOI: 10.1186/1471-2164-12-631] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/23/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. RESULTS We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. CONCLUSION Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.
Collapse
Affiliation(s)
- Chiara Pastore
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin, 46, 40126, Bologna, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | - Gianluca Allegro
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin, 46, 40126, Bologna, Italy
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Gabriele Valentini
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin, 46, 40126, Bologna, Italy
| | - Cesare Intrieri
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin, 46, 40126, Bologna, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Ilaria Filippetti
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin, 46, 40126, Bologna, Italy
| |
Collapse
|
242
|
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC Transporters. THE ARABIDOPSIS BOOK 2011; 9:e0153. [PMID: 22303277 PMCID: PMC3268509 DOI: 10.1199/tab.0153] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival.
Collapse
Affiliation(s)
- Joohyun Kang
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Jiyoung Park
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hyunju Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Bo Burla
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Tobias Kretzschmar
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Enrico Martinoia
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
243
|
Sun X, Gilroy EM, Chini A, Nurmberg PL, Hein I, Lacomme C, Birch PRJ, Hussain A, Yun BW, Loake GJ. ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. THE NEW PHYTOLOGIST 2011; 192:471-82. [PMID: 21762165 DOI: 10.1111/j.1469-8137.2011.03820.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) proteins comprise the most recently identified family of multidrug transporters. In plants, the numbers of MATE proteins has undergone a remarkable expansion, underscoring the importance of these transporters within this kingdom. Here, we describe the identification and characterization of Activated Disease Susceptibility 1 (ADS1) which encodes a putative MATE transport protein. An activation tagging screen uncovered the ads1-Dominant (ads1-D) mutant, which was subsequently characterized by molecular, genetic and biochemical approaches. The ads1-D mutant was compromised in both basal and nonhost resistance against microbial pathogens. Further, plant defence responses conferred by RPS4 were also disabled in ads1-D plants. By contrast, depletion of ADS1 transcripts by RNA-interference (RNAi) promoted basal disease resistance. Unexpectedly, ads1-D plants were found to constitutively accumulate reactive oxygen intermediates (ROIs). However, analysis of ads1-D Arabidopsis thaliana respiratory burst oxidase (atrboh) double and triple mutants indicated that an increase in ROIs did not impact ads1-D-mediated disease susceptibility. Our findings imply that ADS1 negatively regulates the accumulation of the plant immune activator salicylic acid (SA) and cognate Pathogenesis-Related 1 (PR1) gene expression. Collectively, these data highlight an important role for MATE proteins in the establishment of plant disease resistance.
Collapse
Affiliation(s)
- Xinli Sun
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 2011; 13:455-63. [DOI: 10.1016/j.ymben.2011.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/22/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
|
245
|
Appelhagen I, Lu GH, Huep G, Schmelzer E, Weisshaar B, Sagasser M. TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:406-19. [PMID: 21477081 DOI: 10.1111/j.1365-313x.2011.04603.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wild type seed coats of Arabidopsis thaliana are brown due to the accumulation of proanthocyanidin pigments (PAs). The pigmentation requires activation of phenylpropanoid biosynthesis genes and mutations in some of these genes cause a yellow appearance of seeds, termed transparent testa (tt) phenotype. The TT1 gene encodes a WIP-type zinc finger protein and is expressed in the seed coat endothelium where most of the PAs accumulate in wild type plants. In this study we show that TT1 is not only required for correct expression of PA-specific genes in the seed coat, but also affects CHS, encoding the first enzyme of flavonoid biosynthesis. Many steps of this pathway are controlled by complexes of MYB and BHLH proteins with the WD40 factor TTG1. We demonstrate that TT1 can interact with the R2R3 MYB protein TT2 and that ectopic expression of TT2 can partially restore the lack in PA production in tt1. Reduced seed coat pigmentation was obtained using a TT1 variant lacking nuclear localisation signals. Based on our results we propose that the TT2/TT8/TTG1 regulon may also comprise early genes like CHS and discuss steps to further unravel the regulatory network controlling flavonoid accumulation in endothelium cells during A. thaliana seed development.
Collapse
Affiliation(s)
- Ingo Appelhagen
- Department of Biology, Chair of Genome Research, Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
246
|
Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. THE PLANT CELL 2011; 23:2725-37. [PMID: 21742986 PMCID: PMC3226209 DOI: 10.1105/tpc.111.088088] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present data supporting a general role for FERRIC REDICTASE DEFECTIVE3 (FRD3), an efflux transporter of the efficient iron chelator citrate, in maintaining iron homeostasis throughout plant development. In addition to its well-known expression in root, we show that FRD3 is strongly expressed in Arabidopsis thaliana seed and flower. Consistently, frd3 loss-of-function mutants are defective in early germination and are almost completely sterile, both defects being rescued by iron and/or citrate supply. The frd3 fertility defect is caused by pollen abortion and is associated with the male gametophytic expression of FRD3. Iron imaging shows the presence of important deposits of iron on the surface of aborted pollen grains. This points to a role for FRD3 and citrate in proper iron nutrition of embryo and pollen. Based on the findings that iron acquisition in embryo, leaf, and pollen depends on FRD3, we propose that FRD3 mediated-citrate release in the apoplastic space represents an important process by which efficient iron nutrition is achieved between adjacent tissues lacking symplastic connections. These results reveal a physiological role for citrate in the apoplastic transport of iron throughout development, and provide a general model for multicellular organisms in the cell-to-cell transport of iron involving extracellular circulation.
Collapse
|
247
|
Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 2011; 12:199. [PMID: 21504589 DOI: 10.1186/1471-2164-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/19/2011] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. RESULTS Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. CONCLUSIONS Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research Unit, St, Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 2011; 12:199. [PMID: 21504589 PMCID: PMC3112146 DOI: 10.1186/1471-2164-12-199] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
Background Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research Unit, St, Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. THE PLANT CELL 2011; 23:1536-55. [PMID: 21467581 PMCID: PMC3101557 DOI: 10.1105/tpc.110.080804] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The majority of flavonoids, such as anthocyanins, proanthocyanidins, and isoflavones, are stored in the central vacuole, but the molecular basis of flavonoid transport is still poorly understood. Here, we report the functional characterization of a multidrug and toxin extrusion transporter (MATE2), from Medicago truncatula. MATE 2 is expressed primarily in leaves and flowers. Despite its high similarity to the epicatechin 3'-O-glucoside transporter MATE1, MATE2 cannot efficiently transport proanthocyanidin precursors. In contrast, MATE2 shows higher transport capacity for anthocyanins and lower efficiency for other flavonoid glycosides. Three malonyltransferases that are coexpressed with MATE2 were identified. The malonylated flavonoid glucosides generated by these malonyltransferases are more efficiently taken up into MATE2-containing membrane vesicles than are the parent glycosides. Malonylation increases both the affinity and transport efficiency of flavonoid glucosides for uptake by MATE2. Genetic loss of MATE2 function leads to the disappearance of leaf anthocyanin pigmentation and pale flower color as a result of drastic decreases in the levels of various flavonoids. However, some flavonoid glycoside malonates accumulate to higher levels in MATE2 knockouts than in wild-type controls. Deletion of MATE2 increases seed proanthocyanidin biosynthesis, presumably via redirection of metabolic flux from anthocyanin storage.
Collapse
|
250
|
Bindon KA, Kennedy JA. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2696-2707. [PMID: 21351801 DOI: 10.1021/jf1047207] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proanthocyanidins were isolated from the skins of Cabernet Sauvignon grapes at different stages of grape development in order to study the effect of proanthocyanidin modification on the interaction with grape cell wall material. After veraison, the degree of proanthocyanidin polymerization increased, and thereafter was variable between 24 and 33 subunits as ripening progressed. Affinity of skin cell wall material for proanthocyanidin decreased with proanthocyanidin ripeness following veraison. A significant negative relationship (R2=0.93) was found for average proanthocyanidin molecular mass and the proportion of high molecular mass proanthocyanidin adsorbed by skin cell wall material. This indicated that as proanthocyanidin polymerization increased, the affinity of a component of high molecular mass proanthocyanidins for skin cell wall material declined. This phenomenon was only associated with skin proanthocyanidins from colored grapes, as high molecular mass proanthocyanidins of equivalent subunit composition from colorless mutant Cabernet Sauvignon grapes had a higher affinity for skin cell wall material.
Collapse
Affiliation(s)
- Keren A Bindon
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA, 5064, Australia.
| | | |
Collapse
|