201
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
202
|
Yoro E, Suzaki T, Toyokura K, Miyazawa H, Fukaki H, Kawaguchi M. A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of Rhizobial Infection in Lotus japonicus. PLANT PHYSIOLOGY 2014; 165:747-758. [PMID: 24722550 PMCID: PMC4043699 DOI: 10.1104/pp.113.233379] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/08/2014] [Indexed: 05/20/2023]
Abstract
Legume-rhizobium symbiosis occurs in specialized root organs called nodules. To establish the symbiosis, two major genetically controlled events, rhizobial infection and organogenesis, must occur. For a successful symbiosis, it is essential that the two phenomena proceed simultaneously in different root tissues. Although several symbiotic genes have been identified during genetic screenings of nonsymbiotic mutants, most of the mutants harbor defects in both infection and organogenesis pathways, leading to experimental difficulty in investigating the molecular genetic relationships between the pathways. In this study, we isolated a novel nonnodulation mutant, daphne, in Lotus japonicus that shows complete loss of nodulation but a dramatically increased numbers of infection threads. Characterization of the locus responsible for these phenotypes revealed a chromosomal translocation upstream of NODULE INCEPTION (NIN) in daphne. Genetic analysis using a known nin mutant revealed that daphne is a novel nin mutant allele. Although the daphne mutant showed reduced induction of NIN after rhizobial infection, the spatial expression pattern of NIN in epidermal cells was broader than that in the wild type. Overexpression of NIN strongly suppressed hyperinfection in daphne, and daphne phenotypes were partially rescued by cortical expression of NIN. These observations suggested that the daphne mutation enhanced the role of NIN in the infection pathway due to a specific loss of the role of NIN in nodule organogenesis. Based on these results, we provide evidence that the bifunctional transcription factor NIN negatively regulates infection but positively regulates nodule organogenesis during the course of the symbiosis.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| | - Koichi Toyokura
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| | - Hikota Miyazawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| | - Hidehiro Fukaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan (E.Y., T.S., M.K.);Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan (K.T., H.F.); andResearch Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan (H.M.)
| |
Collapse
|
203
|
Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, Sari U, Esparza-Franco MA, Sakamoto W, Rozwadowski K, Higashiyama T, Twell D. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis. THE PLANT CELL 2014; 26:2098-2113. [PMID: 24876252 PMCID: PMC4079371 DOI: 10.1105/tpc.114.124743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Nicholas Rutley
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Sateesh Kagale
- Agriculture and Agri-Food Canada, Saskatoon SK S7N OX2, Canada
| | - Yuki Hamamura
- JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mihai Gherghinoiu
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Sanjeev Kumar
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Ugur Sari
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | - Tetsuya Higashiyama
- JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
204
|
Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, Namba S. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:541-54. [PMID: 24597566 PMCID: PMC4282529 DOI: 10.1111/tpj.12495] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant-pathogenic bacteria that transform plant floral organs into leaf-like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma-secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma-infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two-hybrid and in planta transient co-expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin-proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody-inducing gene family of 'phyllogens'.
Collapse
Affiliation(s)
- Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Ryo Iwai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Misako Himeno
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Naoko Fujita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Kazuya Ishikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Misato Fukuoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Nami Minato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo1–1–1 Yayoi, Bunkyo–ku, Tokyo, 113–8657, Japan
- * For correspondence (e-mail )
| |
Collapse
|
205
|
Shih CF, Hsu WH, Peng YJ, Yang CH. The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:621-39. [PMID: 24323506 PMCID: PMC3904717 DOI: 10.1093/jxb/ert412] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ANTHER INDEHISCENCE FACTOR (AIF), a NAC-like gene, was identified in Arabidopsis. In AIF:GUS flowers, β-glucuronidase (GUS) activity was detected in the anther, the upper parts of the filaments, and in the pollen of stage 7-9 young flower buds; GUS activity was reduced in mature flowers. Yellow fluorescent protein (YFP)+AIF-C fusion proteins, which lacked a transmembrane domain, accumulated in the nuclei of the Arabidopsis cells, whereas the YFP+AIF fusion proteins accumulated in the membrane and were absent in the nuclei. Further detection of a cleaved AIF protein in flowers revealed that AIF needs to be processed and released from the endoplasmic reticulum in order to function. The ectopic expression of AIF-C caused a male-sterile phenotype with indehiscent anthers throughout flower development in Arabidopsis. The presence of a repressor domain in AIF and the similar phenotype of indehiscent anthers in AIF-C+SRDX plants suggest that AIF acts as a repressor. The defect in anther dehiscence was due to the down-regulation of genes that participate in jasmonic acid (JA) biosynthesis, such as DAD1/AOS/AOC3/OPR3/OPCL1. The external application of JA rescued the anther indehiscence in AIF-C and AIF-C+SRDX flowers. In AIF-C+VP16 plants, which are transgenic dominant-negative mutants in which AIF is converted to a potent activator via fusion to a VP16-AD motif, the anther dehiscence was promoted, and the expression of DAD1/AOS/AOC3/OPR3/OPCL1 was up-regulated. Furthermore, the suppression of AIF through an antisense strategy resulted in a mutant phenotype similar to that observed in the AIF-C+VP16 flowers. The present data suggest a role for AIF in controlling anther dehiscence by suppressing the expression of JA biosynthesis genes in Arabidopsis.
Collapse
Affiliation(s)
- Ching-Fang Shih
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yan-Jhu Peng
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
206
|
Dreni L, Kater MM. MADS reloaded: evolution of the AGAMOUS subfamily genes. THE NEW PHYTOLOGIST 2014; 201:717-732. [PMID: 24164649 DOI: 10.1111/nph.12555] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 05/03/2023]
Abstract
AGAMOUS subfamily proteins are encoded by MADS-box family genes. They have been shown to play key roles in the determination of reproductive floral organs such as stamens, carpels and ovules. However, they also play key roles in ensuring a fixed number of floral organs by controlling floral meristem determinacy. Recently, an enormous amount of sequence data for nonmodel species have become available together with functional data on AGAMOUS subfamily members in many species. Here, we give a detailed overview of the most important information about this interesting gene subfamily and provide new insights into its evolution.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
207
|
Zhang F, Wang Y, Li G, Tang Y, Kramer EM, Tadege M. STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. THE PLANT CELL 2014; 26:650-64. [PMID: 24585835 PMCID: PMC3967031 DOI: 10.1105/tpc.113.121947] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 05/22/2023]
Abstract
The Medicago truncatula WUSCHEL-related homeobox (WOX) gene, STENOFOLIA (STF), plays a key role in leaf blade outgrowth by promoting cell proliferation at the adaxial-abaxial junction. STF functions primarily as a transcriptional repressor, but the underlying molecular mechanism is unknown. Here, we report the identification of a protein interaction partner and a direct target, shedding light on the mechanism of STF function. Two highly conserved motifs in the C-terminal domain of STF, the WUSCHEL (WUS) box and the STF box, cooperatively recruit TOPLESS (Mt-TPL) family corepressors, and this recruitment is required for STF function, as deletion of these two domains (STFdel) impaired blade outgrowth whereas fusing Mt-TPL to STFdel restored function. The homeodomain motif is required for direct repression of ASYMMETRIC LEAVES2 (Mt-AS2), silencing of which partially rescues the stf mutant phenotype. STF and LAMINALESS1 (LAM1) are functional orthologs. A single amino acid (Asn to Ile) substitution in the homeodomain abolished the repression of Mt-AS2 and STF's ability to complement the lam1 mutant of Nicotiana sylvestris. Our data together support a model in which STF recruits corepressors to transcriptionally repress its targets during leaf blade morphogenesis. We propose that recruitment of TPL/TPL-related proteins may be a common mechanism in the repressive function of modern/WUS clade WOX genes.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Yewei Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Guifen Li
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| |
Collapse
|
208
|
Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. ScientificWorldJournal 2014; 2014:534140. [PMID: 24511289 PMCID: PMC3913392 DOI: 10.1155/2014/534140] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) is a large group of transcription factors specifically found in plants. WOX members contain the conserved homeodomain essential for plant development by regulating cell division and differentiation. However, the evolutionary relationship of WOX members in plant kingdom remains to be elucidated. In this study, we searched 350 WOX members from 50 species in plant kingdom. Linkage analysis of WOX protein sequences demonstrated that amino acid residues 141-145 and 153-160 located in the homeodomain are possibly associated with the function of WOXs during the evolution. These 350 members were grouped into 3 clades: the first clade represents the conservative WOXs from the lower plant algae to higher plants; the second clade has the members from vascular plant species; the third clade has the members only from spermatophyte species. Furthermore, among the members of Arabidopsis thaliana and Oryza sativa, we observed ubiquitous expression of genes in the first clade and the diversified expression pattern of WOX genes in distinct organs in the second clade and the third clade. This work provides insight into the origin and evolutionary process of WOXs, facilitating their functional investigations in the future.
Collapse
|
209
|
Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C, Lewis MW, Kumari S, Hiraga S, Yang F, Unger-Wallace E, Olson A, Hake S, Vollbrecht E, Grotewold E, Ware D, Jackson D. Regulatory modules controlling maize inflorescence architecture. Genome Res 2013; 24:431-43. [PMID: 24307553 PMCID: PMC3941108 DOI: 10.1101/gr.166397.113] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.
Collapse
Affiliation(s)
- Andrea L Eveland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Le Hénanff G, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4877-93. [PMID: 24043850 DOI: 10.1093/jxb/ert277] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors of the NAC family are known to be involved in various developmental processes and in response to environmental stresses. Whereas NAC genes have been widely studied in response to abiotic stresses, little is known about their role in response to biotic stresses, especially in crops. Here, the first characterization of a Vitis vinifera L. NAC member, named VvNAC1, and involved in organ development and defence towards pathogens is reported. Expression profile analysis of VvNAC1 showed that its expression is closely associated with later stages of leaf, flower, and berry development, suggesting a role in plant senescence. Moreover, VvNAC1 expression is stimulated in Botrytis cinerea- or microbe-associated molecular pattern (MAMP)-infected berries or leaves. Furthermore, cold, wounding, and defence-related hormones such as salicylic acid, methyl jasmonate, ethylene, and abscisic acid are all able to induce VvNAC1 expression in grapevine leaves. VvNAC1-overexpressing Arabidopsis plants exhibit enhanced tolerance to osmotic, salt, and cold stresses and to B. cinerea and Hyaloperonospora arabidopsidis pathogens. These plants present a modified pattern of defence gene markers (AtPR-1, AtPDF1.2, and AtVSP1) after stress application, suggesting that VvNAC1 is an important regulatory component of the plant signalling defence cascade. Collectively, these results provide evidence that VvNAC1 could represent a node of convergence regulating grapevine development and stress responses, including defence against necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Gaëlle Le Hénanff
- Université de Reims Champagne-Ardenne, URVVC-EA 4707, Laboratoire Stress, Défenses et Reproduction des Plantes, BP 1039, F-51687 Reims cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 2013; 9:654. [PMID: 23549482 PMCID: PMC3658276 DOI: 10.1038/msb.2013.8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/18/2013] [Indexed: 01/16/2023] Open
Abstract
In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.
Collapse
|
212
|
Muthreich N, Majer C, Beatty M, Paschold A, Schützenmeister A, Fu Y, Malik WA, Schnable PS, Piepho HP, Sakai H, Hochholdinger F. Comparative transcriptome profiling of maize coleoptilar nodes during shoot-borne root initiation. PLANT PHYSIOLOGY 2013; 163:419-30. [PMID: 23843603 PMCID: PMC3762660 DOI: 10.1104/pp.113.221481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/09/2013] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) develops an extensive shoot-borne root system to secure water and nutrient uptake and to provide anchorage in the soil. In this study, early coleoptilar node (first shoot node) development was subjected to a detailed morphological and histological analysis. Subsequently, microarray profiling via hybridization of oligonucleotide microarrays representing transcripts of 31,355 unique maize genes at three early stages of coleoptilar node development was performed. These pairwise comparisons of wild-type versus mutant rootless concerning crown and seminal roots (rtcs) coleoptilar nodes that do not initiate shoot-borne roots revealed 828 unique transcripts that displayed RTCS-dependent expression. A stage-specific functional analysis revealed overrepresentation of "cell wall," "stress," and "development"-related transcripts among the differentially expressed genes. Differential expression of a subset of 15 of 828 genes identified by these microarray experiments was independently confirmed by quantitative real-time-polymerase chain reaction. In silico promoter analyses revealed that 100 differentially expressed genes contained at least one LATERAL ORGAN BOUNDARIES domain (LBD) motif within 1 kb upstream of the ATG start codon. Electrophoretic mobility shift assay experiments demonstrated RTCS binding for four of these promoter sequences, supporting the notion that differentially accumulated genes containing LBD motifs are likely direct downstream targets of RTCS.
Collapse
|
213
|
Hedman H, Zhu T, von Arnold S, Sohlberg JJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer picea abies reveals extensive conservation as well as dynamic patterns. BMC PLANT BIOLOGY 2013; 13:89. [PMID: 23758772 PMCID: PMC3701499 DOI: 10.1186/1471-2229-13-89] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 06/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family have important functions during all stages of plant development and have been implicated in the development of morphological novelties during evolution. Most studies have examined the function of these genes in angiosperms and very little is known from other plant species. RESULTS In this study we examine the presence and expression of WOX genes in the conifer Picea abies. We have cloned 11 WOX genes from both mRNA and genomic DNA and examined their phylogenetic relationship to WOX genes from other species as well as their expression during somatic embryogenesis and in adult tissues. CONCLUSIONS Our study shows that all major radiations within the WOX gene family took place before the angiosperm-gymnosperm split and that there has been a recent expansion within the intermediate clade in the Pinaceae family. Furthermore, we show that the genes from the intermediate clade are preferentially expressed during embryo development in Picea abies. Our data also indicates that there are clear orthologs of both WUS and WOX5 present in the P. abies genome.
Collapse
Affiliation(s)
- Harald Hedman
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Tianqing Zhu
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Sara von Arnold
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Joel J Sohlberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| |
Collapse
|
214
|
Lin H, Niu L, Tadege M. STENOFOLIA acts as a repressor in regulating leaf blade outgrowth. PLANT SIGNALING & BEHAVIOR 2013; 8:e24464. [PMID: 23603965 PMCID: PMC3909033 DOI: 10.4161/psb.24464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/27/2013] [Indexed: 05/24/2023]
Abstract
We recently reported that the Medicago WOX gene, STENOFOLIA (STF), acts as a transcriptional repressor in regulating leaf blade outgrowth. By using the Nicotiana sylvestris bladeless lam1 mutant as a genetic tool, we showed that the WUS-box, which is conserved among WUS clade WOX genes, is partly responsible for the repressive activity of STF. All members of the modern/WUS clade genes (WUS, WOX1-WOX7) in Arabidopsis that contain intact WUS-box can substitute for STF/LAM1 function while the intermediate and ancient clade members including WOX9,WOX11 and WOX13 cannot, due to lack of the intact WUS-box. Taken together, our results reveal a conserved repression mechanism playing a central role in cell proliferation conferred to the evolutionarily dynamic WOX gene family with acquisition of a repressor domain.
Collapse
|
215
|
The Leaf Adaxial-Abaxial Boundary and Lamina Growth. PLANTS 2013; 2:174-202. [PMID: 27137371 PMCID: PMC4844365 DOI: 10.3390/plants2020174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell populations, and the boundary is considered to be important for lamina growth. At the boundary between the adaxial and abaxial epidermis, corresponding to the margin, margin-specific structures are developed and structurally separate the adaxial and abaxial epidermis from each other. The adaxial and abaxial cells are determined by the adaxial and abaxial regulatory genes (including transcription factors and small RNAs), respectively. Among many lamina-growth regulators identified by recent genetic analyses, it has been revealed that the phytohormone, auxin, and the WOX family transcription factors act at the adaxial-abaxial boundary downstream of the adaxial-abaxial pattern. Furthermore, mutant analyses of the WOX genes shed light on the role of the adaxial-abaxial boundary in preventing the mixing of the adaxial and abaxial features during lamina growth. In this review, we highlight the recent studies on the dual role of the adaxial-abaxial boundary.
Collapse
|
216
|
Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013. [PMID: 23181633 DOI: 10.1111/tpj.12085] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Adventitious shoot organogenesis contributes to the fitness of diverse plant species, and control of this process is a vital step in plant transformation and in vitro propagation. New shoot meristems (SMs) can be induced by the conversion of lateral root primorida/meristems (LRP/LRMs) or callus expressing markers for this identity. To study this important and fascinating process we developed a high-throughput methodology for the synchronous initiation of LRP by auxin, and subsequent cytokinin-induced conversion of these LRP to SMs. Cytokinin treatment induces the expression of the shoot meristematic gene WUSCHEL (WUS) in converting LRP (cLRP) within 24-30 h, and WUS is required for LRP → SM conversion. Subsequently, a transcriptional reporter for CLAVATA3 (CLV3) appeared 32-48 h after transfer to cytokinin, marking presumptive shoot stem cells at the apex of cLRP. Thus the spatial expression of these two components (WUS and CLV3) of a regulatory network maintaining SM stem cells already resembles that seen in a vegetative shoot apical meristem (SAM), suggesting the very rapid initiation and establishment of the new SMs. Our high-throughput methodology enabled us to successfully apply a systems approach to the study of plant regeneration. Herein we characterize transcriptional reporter expression and global gene expression changes during LRP → SM conversion, elaborate the role of WUS and WUS-responsive genes in the conversion process, identify and test putative functional targets, perform a comparative analysis of domain-specific expression in cLRP and SM tissue, and develop a bioinformatic tool for examining gene expression in diverse regeneration systems.
Collapse
Affiliation(s)
- Steven P Chatfield
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
| | | | | | | | | | | | | |
Collapse
|
217
|
Shkolnik-Inbar D, Adler G, Bar-Zvi D. ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:993-1005. [PMID: 23240817 DOI: 10.1111/tpj.12091] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 05/07/2023]
Abstract
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4-overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild-type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4-overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4-binding element (ABE), have also been identified in other ABI4-repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.
Collapse
Affiliation(s)
- Doron Shkolnik-Inbar
- Department of Life Sciences and Doris, Bertie Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | |
Collapse
|
218
|
Seo JS, Koo YJ, Jung C, Yeu SY, Song JT, Kim JK, Choi Y, Lee JS, Do Choi Y. Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression. PLoS One 2013; 8:e55482. [PMID: 23393583 PMCID: PMC3564755 DOI: 10.1371/journal.pone.0055482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/24/2012] [Indexed: 12/21/2022] Open
Abstract
Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by promoter deletion analysis and Yeast 1-Hybrid (Y1H) assays; the JARE is distinct from other JA-responsive cis-elements previously reported. We also used Y1H screening to identify a trans-acting factor, AtBBD1, which binds to the JARE and interacts with AtJAZ1 and AtJAZ4. Knockout and overexpression analyses showed that AtBBD1 and its close homologue AtBBD2 are functionally redundant and act as negative regulators of AtJMT expression. However, AtBBD1 positively regulated the JA-responsive expression of JR2. Chromatin immunoprecipitation from knockout and overexpression plants revealed that repression of AtJMT is associated with reduced histone acetylation in the promoter region containing the JARE. These results show that AtBBD1 interacts with JAZ proteins, binds to the JARE and represses AtJMT expression.
Collapse
Affiliation(s)
- Jun Sung Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Yeon Jong Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Choonkyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Song Yion Yeu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
219
|
Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3-GENES GENOMES GENETICS 2013; 3:231-49. [PMID: 23390600 PMCID: PMC3564984 DOI: 10.1534/g3.112.004465] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses.
Collapse
|
220
|
Lin H, Niu L, McHale NA, Ohme-Takagi M, Mysore KS, Tadege M. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc Natl Acad Sci U S A 2013; 110:366-71. [PMID: 23248305 PMCID: PMC3538250 DOI: 10.1073/pnas.1215376110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The WUSCHEL related homeobox (WOX) genes play key roles in stem cell maintenance, embryonic patterning, and lateral organ development. WOX genes have been categorized into three clades--ancient, intermediate, and modern/WUS--based on phylogenetic analysis, but a functional basis for this classification has not been established. Using the classical bladeless lam1 mutant of Nicotiana sylvestris as a genetic tool, we examined the function of the Medicago truncatula WOX gene, STENOFOLIA (STF), in controlling leaf blade outgrowth. STF and LAM1 are functional orthologs. We found that the introduction of mutations into the WUS-box of STF (STFm1) reduces its ability to complement the lam1 mutant. Fusion of an exogenous repressor domain to STFm1 restores complementation, whereas fusion of an exogenous activator domain to STFm1 enhances the narrow leaf phenotype. These results indicate that transcriptional repressor activity mediated by the WUS-box of STF acts to promote blade outgrowth. With the exception of WOX7, the WUS-box is conserved in the modern clade WOX genes, but is not found in members of the intermediate or ancient clades. Consistent with this, all members of the modern clade except WOX7 can complement the lam1 mutant when expressed using the STF promoter, but members of the intermediate and ancient clades cannot. Furthermore, we found that fusion of either the WUS-box or an exogenous repressor domain to WOX7 or to members of intermediate and ancient WOX clades results in a gain-of-function ability to complement lam1 blade outgrowth. These results suggest that modern clade WOX genes have evolved for repressor activity through acquisition of the WUS-box.
Collapse
Affiliation(s)
- Hao Lin
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| | - Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| | - Neil A. McHale
- Department of Biochemistry and Genetics, Connecticut Agricultural Experiment Station, New Haven, CT 06504
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan; and
| | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| |
Collapse
|
221
|
Salemme M, Sica M, Gaudio L, Aceto S. The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes. Mol Biol Rep 2013; 40:3523-35. [PMID: 23277396 DOI: 10.1007/s11033-012-2426-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
According to the ABCDE model of flower development, the C- and D- class MADS box genes are involved in the formation of male and female reproductive organs (fused to form the column in orchids) and in ovule maturation (triggered by fertilization in orchids). In the present study, we report the isolation of the Orchis italica genes OitaAG and OitaSTK, homologs of the C-class AGAMOUS and the D-class SEEDSTICK genes of Arabidopsis, respectively. Analysis of their expression profiles reveals high levels of mRNA in columns and ovaries, particularly after pollination. However, weak expression is also detectable in the inner tepals (OitaAG) and the lip and root (OitaSTK). This expression profile is only partially overlapping with those reported in other orchid species and may be the consequence of a different evolutionary history of these functional gene classes in orchids. The genomic characterization of the OitaAG and OitaSTK genes shows that a high number of traces of mobile elements are present in introns and could have contributed to the size expansion of some of them (e.g., intron 2 and 3 of OitaAG and intron 3, 4 and 5 of OitaSTK). Nucleotide sequences of intron 1 of the OitaSTK gene and other STK-like genes do not share regulatory motifs, whereas sequence comparison of intron 2 of the OitaAG gene with that of intron 2 of other AG-like genes reveals, for the first time in an orchid species, the presence of conserved cis-regulatory boxes and binding sites for transcription factors that positively (e.g., LEAFY and WUSCHEL) or negatively (e.g., BELLRINGER) regulate the expression of the AG homologs in dicots and monocots.
Collapse
Affiliation(s)
- Marinella Salemme
- Department of Biological Sciences, University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | |
Collapse
|
222
|
Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. THE PLANT CELL 2012; 24:4483-97. [PMID: 23161888 PMCID: PMC3531847 DOI: 10.1105/tpc.112.105023] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 05/18/2023]
Abstract
In plants, basic helix-loop-helix (bHLH) transcription factors play important roles in the control of cell elongation. Two bHLH proteins, PACLOBTRAZOL RESISTANCE1 (PRE1) and Arabidopsis ILI1 binding bHLH1 (IBH1), antagonistically regulate cell elongation in response to brassinosteroid and gibberellin signaling, but the detailed molecular mechanisms by which these factors regulate cell elongation remain unclear. Here, we identify the bHLH transcriptional activators for cell elongation (ACEs) and demonstrate that PRE1, IBH1, and the ACEs constitute a triantagonistic bHLH system that competitively regulates cell elongation. In this system, the ACE bHLH transcription factors directly activate the expression of enzyme genes for cell elongation by interacting with their promoter regions. IBH1 negatively regulates cell elongation by interacting with the ACEs and thus interfering with their DNA binding. PRE1 interacts with IBH1 and counteracts the ability of IBH1 to affect ACEs. Therefore, PRE1 restores the transcriptional activity of ACEs, resulting in induction of cell elongation. The balance of triantagonistic bHLH proteins, ACEs, IBH1, and PRE1, might be important for determination of the size of plant cells. The expression of IBH1 and PRE1 is regulated by brassinosteroid, gibberellins, and developmental phase dependent factors, indicating that two phytohormones and phase-dependent signals are integrated by this triantagonistic bHLH system.
Collapse
Affiliation(s)
- Miho Ikeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
- Japanese Society for the Promotion of Science Chiyoda-ku, Tokyo 102-8472, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama 338-8770, Japan
- Address correspondence to
| |
Collapse
|
223
|
Li J, Sima W, Ouyang B, Wang T, Ziaf K, Luo Z, Liu L, Li H, Chen M, Huang Y, Feng Y, Hao Y, Ye Z. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6407-20. [PMID: 23077200 PMCID: PMC3504492 DOI: 10.1093/jxb/ers295] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved and adapted to different environments. Dwarfism is an adaptive trait of plants that helps them avoid high-energy costs under unfavourable conditions. The role of gibberellin (GA) in plant development has been well established. Several plant dehydration-responsive element-binding proteins (DREBs) have been identified and reported to be induced under abiotic and biotic stress conditions. A tomato DREB gene named SlDREB, which is a transcription factor and was cloned from cultivated tomato M82, was found to play a negative role in tomato plant architecture and enhances drought tolerance. Tissue expression profiles indicated that SlDREB was expressed mainly in the stem and leaf and could be induced by abscisic acid (ABA) but suppressed by GA and ethylene. SlDREB altered plant morphology by restricting leaf expansion and internode elongation when overexpressed, and the resulting dwarfism of tomato plants could be recovered by application of exogenous gibberellic acid (GA(3)). Transcriptional analysis of transgenic plants revealed that overexpression of SlDREB caused the dwarf phenotype by downregulating key genes involved in GA biosynthesis such as ent-copalyl diphosphate synthase (SlCPS) and GA 20-oxidases (SlGA20ox1, -2, and -4), thereby decreasing endogenous GA levels in transgenic plants. A yeast activity assay demonstrated that SlDREB specifically bound to dehydration-responsive element/C-repeat (DRE/CRT) elements of the SlCPS promoter region. Taken together, these data demonstrated that SlDREB can downregulate the expression of key genes required for GA biosynthesis and that it acts as a positive regulator in drought stress responses by restricting leaf expansion and internode elongation.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Sima
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Khurram Ziaf
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhidan Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lifeng Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingluan Chen
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yunqing Huang
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yuqi Feng
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yanhong Hao
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
224
|
Bonaccorso O, Lee JE, Puah L, Scutt CP, Golz JF. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC PLANT BIOLOGY 2012; 12:176. [PMID: 23025792 PMCID: PMC3520853 DOI: 10.1186/1471-2229-12-176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/25/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The YABBY (YAB) family of transcription factors participate in a diverse range of processes that include leaf and floral patterning, organ growth, and the control of shoot apical meristem organisation and activity. How these disparate functions are regulated is not clear, but based on interactions with the LEUNIG-class of co-repressors, it has been proposed that YABs act as transcriptional repressors. In the light of recent work showing that DNA-binding proteins associated with the yeast co-repressor TUP1 can also function as activators, we have examined the transcriptional activity of the YABs. RESULTS Of the four Arabidopsis YABs tested in yeast, only FILAMENTOUS FLOWER (FIL) activated reporter gene expression. Similar analysis with Antirrhinum YABs identified the FIL ortholog GRAMINIFOLIA as an activator. Plant-based transactivation assays not only confirmed the potential of FIL to activate transcription, but also extended this property to the FIL paralog YABBY3 (YAB3). Subsequent transcriptomic analysis of lines expressing a steroid-inducible FIL protein revealed groups of genes that responded either positively or negatively to YAB induction. Included in the positively regulated group of genes were the polarity regulators KANADI1 (KAN1), AUXIN RESPONSE FACTOR 4 (ARF4) and ASYMMETRIC LEAVES1 (AS1). We also show that modifying FIL to function as an obligate repressor causes strong yab loss-of-function phenotypes. CONCLUSIONS Collectively these data show that FIL functions as a transcriptional activator in plants and that this activity is involved in leaf patterning. Interestingly, our study also supports the idea that FIL can act as a repressor, as transcriptomic analysis identified negatively regulated FIL-response genes. To reconcile these observations, we propose that YABs are bifunctional transcription factors that participate in both positive and negative regulation. These findings fit a model of leaf development in which adaxial/abaxial patterning is maintained by a regulatory network consisting of positive feedback loops.
Collapse
Affiliation(s)
- Oliver Bonaccorso
- Department of Genetics, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia
| | - Joanne E Lee
- Department of Genetics, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia
| | - Libby Puah
- Department of Genetics, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia
| | - Charles P Scutt
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667- CNRS/INRA/Université de Lyon, École Normale Supérieure de Lyon, 46, allée d'Italie 69364, Lyon Cedex, 07, France
| | - John F Golz
- Department of Genetics, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia
| |
Collapse
|
225
|
Brenner WG, Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC PLANT BIOLOGY 2012; 12:112. [PMID: 22824128 PMCID: PMC3519560 DOI: 10.1186/1471-2229-12-112] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 06/13/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND The plant hormone cytokinin regulates growth and development of roots and shoots in opposite ways. In shoots it is a positive growth regulator whereas it inhibits growth in roots. It may be assumed that organ-specific regulation of gene expression is involved in these differential activities, but little is known about it. To get more insight into the transcriptional events triggered by cytokinin in roots and shoots, we studied genome-wide gene expression in cytokinin-treated and cytokinin-deficient roots and shoots. RESULTS It was found by principal component analysis of the transcriptomic data that the immediate-early response to a cytokinin stimulus differs from the later response, and that the transcriptome of cytokinin-deficient plants is different from both the early and the late cytokinin induction response. A higher cytokinin status in the roots activated the expression of numerous genes normally expressed predominantly in the shoot, while a lower cytokinin status in the shoot reduced the expression of genes normally more active in the shoot to a more root-like level. This shift predominantly affected nuclear genes encoding plastid proteins. An organ-specific regulation was assigned to a number of genes previously known to react to a cytokinin signal, including root-specificity for the cytokinin hydroxylase gene CYP735A2 and shoot specificity for the cell cycle regulator gene CDKA;1. Numerous cytokinin-regulated genes were newly discovered or confirmed, including the meristem regulator genes SHEPHERD and CLAVATA1, auxin-related genes (IAA7, IAA13, AXR1, PIN2, PID), several genes involved in brassinosteroid (CYP710A1, CYP710A2, DIM/DWF) and flavonol (MYB12, CHS, FLS1) synthesis, various transporter genes (e.g. HKT1), numerous members of the AP2/ERF transcription factor gene family, genes involved in light signalling (PhyA, COP1, SPA1), and more than 80 ribosomal genes. However, contrasting with the fundamental difference of the growth response of roots and shoots to the hormone, the vast majority of the cytokinin-regulated transcriptome showed similar response patterns in roots and shoots. CONCLUSIONS The shift of the root and shoot transcriptomes towards the respective other organ depending on the cytokinin status indicated that the hormone determines part of the organ-specific transcriptome pattern independent of morphological organ identity. Numerous novel cytokinin-regulated genes were discovered which had escaped earlier discovery, most probably due to unspecific sampling. These offer novel insights into the diverse activities of cytokinin, including crosstalk with other hormones and different environmental cues, identify the AP2/ERF class of transcriptions factors as particularly cytokinin sensitive, and also suggest translational control of cytokinin-induced changes.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| |
Collapse
|
226
|
Yadav RK, Reddy GV. WUSCHEL protein movement and stem cell homeostasis. PLANT SIGNALING & BEHAVIOR 2012; 7:592-4. [PMID: 22516820 PMCID: PMC3419026 DOI: 10.4161/psb.19793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stem cell maintenance is essential for growth and development of plants and animals. Similar to animal studies, transcription factors play a critical role in plant stem cell maintenance, however the regulatory logic is not well understood. Shoot apical meristems (SAMs) harbor a pool of pluoripotent stem cells and they provide cells for the development of all above-ground organs. Molecular genetic studies spanning more than a decade have revealed cell-cell communication logic underlying stem cell homeostasis. WUSCHEL (WUS), a homeodomain transcription factor expressed in cells of the organizing center specifies stem cells in overlying cells of the central zone (CZ) and also activates a negative regulator-CLAVATA3 (CLV3). CLV3, a small secreted peptide, binds to CLAVATA1 (CLV1) and also possibly to CLV1-related receptors to activate signaling which restricts WUS transcription. Though the CLV-WUS feedback network explains the cell-cell communication logic of stem cell maintenance, how WUS communicates with adjacent cells had remained elusive. In October 15 2011 issue of Genes and Development, we report that WUS protein synthesized in cells of organizing center migrates into adjacent cells via cell-cell movement and activates CLV3 transcription by directly binding to promoter elements.
Collapse
Affiliation(s)
- Ram Kishor Yadav
- Faculty of Life Sciences and Biotechnology; South Asian University; New Delhi, India
- Correspondence to: Ram Kishor Yadav and G. Venugopala Reddy; and
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences; Center for Plant Cell Biology (CEPCEB); Institute of Integrative Genome Biology (IIGB); University of California; Riverside, CA USA
- Correspondence to: Ram Kishor Yadav and G. Venugopala Reddy; and
| |
Collapse
|
227
|
Law SR, Narsai R, Taylor NL, Delannoy E, Carrie C, Giraud E, Millar AH, Small I, Whelan J. Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. PLANT PHYSIOLOGY 2012; 158:1610-27. [PMID: 22345507 PMCID: PMC3320173 DOI: 10.1104/pp.111.192351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/13/2012] [Indexed: 05/18/2023]
Abstract
Mitochondria play a crucial role in germination and early seedling growth in Arabidopsis (Arabidopsis thaliana). Morphological observations of mitochondria revealed that mitochondrial numbers, typical size, and oval morphology were evident after 12 h of imbibition in continuous light (following 48 h of stratification). The transition from a dormant to an active metabolic state was punctuated by an early molecular switch, characterized by a transient burst in the expression of genes encoding mitochondrial proteins. Factors involved in mitochondrial transcription and RNA processing were overrepresented among these early-expressed genes. This was closely followed by an increase in the transcript abundance of genes encoding proteins involved in mitochondrial DNA replication and translation. This burst in the expression of factors implicated in mitochondrial RNA and DNA metabolism was accompanied by an increase in transcripts encoding components required for nucleotide biosynthesis in the cytosol and increases in transcript abundance of specific members of the mitochondrial carrier protein family that have previously been associated with nucleotide transport into mitochondria. Only after these genes peaked in expression and largely declined were typical mitochondrial numbers and morphology observed. Subsequently, there was an increase in transcript abundance for various bioenergetic and metabolic functions of mitochondria. The coordination of nucleus- and organelle-encoded gene expression was also examined by quantitative reverse transcription-polymerase chain reaction, specifically for components of the mitochondrial electron transport chain and the chloroplastic photosynthetic machinery. Analysis of protein abundance using western-blot analysis and mass spectrometry revealed that for many proteins, patterns of protein and transcript abundance changes displayed significant positive correlations. A model for mitochondrial biogenesis during germination is proposed, in which an early increase in the abundance of transcripts encoding biogenesis functions (RNA metabolism and import components) precedes a later cascade of gene expression encoding the bioenergetic and metabolic functions of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology (S.R.L., R.N., N.L.T., E.D., C.C., E.G., A.H.M., I.S., J.W.), Centre for Computational Systems Biology (R.N., I.S.), and Centre for Comparative Analysis of Biomolecular Networks (N.L.T., A.H.M.), University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
228
|
Causier B, Lloyd J, Stevens L, Davies B. TOPLESS co-repressor interactions and their evolutionary conservation in plants. PLANT SIGNALING & BEHAVIOR 2012; 7:325-8. [PMID: 22476455 PMCID: PMC3443911 DOI: 10.4161/psb.19283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Large-scale protein-protein interaction studies recently demonstrated that the Arabidopsis TPL/TPR family of transcriptional co-repressors is involved in a broad range of developmental processes. TPL/TPRs predominantly interact with transcription factors that contain repression domain (RD) sequences. Interestingly, RDs reported in the literature are quite diverse in sequence, yet TPL/TPRs interact with proteins containing all of the known motifs. These data lead us to conclude that the TPL/TPRs act as general repressors of gene transcription in plants. To investigate this further, we examined interactions between TPL/TPR proteins encoded by the moss Physcomitrella patens genome and components of the auxin signaling pathway. As in Arabidopsis, moss TPL proteins interact with AUX/IAA and ARF proteins, suggesting that they act in both forms of ARF-mediated transcriptional repression. These data suggest that the involvement of TPL in auxin signaling has been conserved across evolution, since mosses and angiosperms diverged approximately 450 million years ago.
Collapse
|
229
|
Chow BY, Helfer A, Nusinow DA, Kay SA. ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. PLANT SIGNALING & BEHAVIOR 2012; 7:170-3. [PMID: 22307044 PMCID: PMC3405715 DOI: 10.4161/psb.18766] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biological timekeeping is essential for proper growth and development. Organisms such as the model plant Arabidopsis use the circadian clock to coordinate biological processes with the environment so that changes in conditions are anticipated and processes favorably phased. Despite the identification of numerous clock genes, knowledge of their molecular connectivity and influence on output programs remains limited. We recently showed LUX encodes a sequence-specific DNA-binding protein that directly regulates expression of the morning clock gene PRR9. We also showed that LUX interacts with the evening-phased proteins ELF3 and ELF4 to form a complex called the Evening Complex (EC). The EC binds the PIF4 and PIF5 promoters to control hypocotyl growth as a clock output. Here we provide evidence that LUX also recruits ELF3 to the PRR9 promoter. As with the PIF4 and PIF5 promoters, both LUX and its close homolog NOX are required for recruitment. Hence the entire EC likely functions together as part of the core clock oscillator to optimize plant fitness.
Collapse
|
230
|
Perales M, Reddy GV. Stem cell maintenance in shoot apical meristems. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:10-6. [PMID: 22079787 DOI: 10.1016/j.pbi.2011.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/06/2011] [Accepted: 10/19/2011] [Indexed: 05/18/2023]
Abstract
Stem cell homeostasis in shoot apical meristems of higher plants is regulated through a dynamic balance between spatial regulation of gene expression, cell growth patterns and patterns of differentiation. Cell-cell communication mediated by both the local factors and long-range signals have been implicated in stem cell homeostasis. Here we have reviewed recent developments on spatio-temporal regulation of cell-cell communication processes with an emphasis on how ubiquitously utilized signals such as plant hormones function with local factors in mediating stem cell homeostasis. We also provide a brief overview of how the activity of ubiquitously utilized epigenetic regulators are modulated locally to orchestrate gene expression.
Collapse
Affiliation(s)
- Mariano Perales
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | | |
Collapse
|
231
|
Causier B, Ashworth M, Guo W, Davies B. The TOPLESS interactome: a framework for gene repression in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:423-38. [PMID: 22065421 PMCID: PMC3252085 DOI: 10.1104/pp.111.186999] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/04/2011] [Indexed: 05/17/2023]
Abstract
Transcription factors activate or repress target gene expression or switch between activation and repression. In animals and yeast, Groucho/Tup1 corepressor proteins are recruited by diverse transcription factors to induce context-specific transcriptional repression. Two groups of Groucho/Tup1-like corepressors have been described in plants. LEUNIG and LEUNIG_HOMOLOG constitute one group and TOPLESS (TPL) and the four TPL-related (TPR) corepressors form the other. To discover the processes in which TPL and the TPR corepressors operate, high-throughput yeast two-hybrid approaches were used to identify interacting proteins. We found that TPL/TPR corepressors predominantly interact directly with specific transcription factors, many of which were previously implicated in transcriptional repression. The interacting transcription factors reveal that the TPL/TPR family has been coopted multiple times to modulate gene expression in diverse processes, including hormone signaling, stress responses, and the control of flowering time, for which we also show biological validation. The interaction data suggest novel mechanisms for the involvement of TPL/TPR corepressors in auxin and jasmonic acid signaling. A number of short repression domain (RD) sequences have previously been identified in Arabidopsis (Arabidopsis thaliana) transcription factors. All known RD sequences were enriched among the TPL/TPR interactors, and novel TPL-RD interactions were identified. We show that the presence of RD sequences is essential for TPL/TPR recruitment. These data provide a framework for TPL/TPR-dependent transcriptional repression. They allow for predictions about new repressive transcription factors, corepressor interactions, and repression mechanisms and identify a wide range of plant processes that utilize TPL/TPR-mediated gene repression.
Collapse
|
232
|
Nardmann J, Werr W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. PLANT MOLECULAR BIOLOGY 2012; 78:123-34. [PMID: 22076631 DOI: 10.1007/s11103-011-9851-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/31/2011] [Indexed: 05/18/2023]
Abstract
The growth of land plants depends on stem cell-containing meristems which show major differences in their architecture from basal to higher plant species. In Arabidopsis, the stem cell niches in the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5, respectively. Both genes are members of a non-ancestral clade of the WUS-related homeobox (WOX) gene family, which is absent in extant bryophytes and lycophytes. Our analyses of five fern species suggest that a single WUS orthologue was present in the last common ancestor (LCA) of leptosporangiate ferns and seed plants. In the extant fern Ceratopteris richardii, the WUS pro-orthologue marks the pluripotent cell fate of immediate descendants of the root apical initial, so-called merophytes, which undergo a series of stereotypic cell divisions and give rise to all cell types of the root except the root cap. The invention of a WUS-like function within the WOX gene family in an ancestor of leptosporangiate ferns and seed plants and its amplification and sub-functionalisation to different stem cell niches might relate to the success of seed plants, especially angiosperms.
Collapse
Affiliation(s)
- Judith Nardmann
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Cologne, Germany
| | | |
Collapse
|
233
|
Lee JE, Golz JF. Diverse roles of Groucho/Tup1 co-repressors in plant growth and development. PLANT SIGNALING & BEHAVIOR 2012; 7:86-92. [PMID: 22301974 PMCID: PMC3357377 DOI: 10.4161/psb.7.1.18377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Transcriptional regulation involves coordinated and often complex interactions between activators and repressors that together dictate the temporal and spatial activity of target genes. While the study of developmental regulation has often focused on positively acting transcription factors, it is becoming increasingly clear that transcriptional repression is a key regulatory mechanism underpinning many developmental processes in both plants and animals. In this review, we focus on the plant Groucho (Gro)/Tup1-like co-repressors and discuss their roles in establishing the apical-basal axis of the developing embryo, maintaining the stem cell population in the shoot apex and determining floral organ identity. As well as being developmental regulators, recent studies have shown that these co-repressors play a central role in regulating auxin and jasmonate signalling pathways and are also linked to the regulation of pectin structure in the seed coat. These latest findings point to the Gro/Tup1-like co-repressors playing a much broad role in plant growth and development than previously thought; an observation that underlines the central importance of transcriptional repression in plant gene regulation.
Collapse
|
234
|
Zhao Y, Zhou Y, Xiong N, Lin Z. Identification of an intronic cis-acting element in the human dopamine transporter gene. Mol Biol Rep 2011; 39:5393-9. [PMID: 22160470 DOI: 10.1007/s11033-011-1339-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
The human dopamine transporter gene (hDAT) encodes the dopamine transporter in dopamine (DA) neurons to regulate DA transmission. hDAT expression varies significantly from neuron to neuron, and from individual to individual so that dysregulation of hDAT is related to many neuropsychiatric disorders. It is critical to identify hDAT-specific cis-acting elements that regulate the hDAT expression. Previous studies showed that hDAT Intron 1 displayed inhibitory activity for reporter gene expression. Here we report that the hDAT Intron 1 contains a 121-bp fragment that down-regulated both SV40 and hDAT promoter activities by 80% in vitro. Subfragments of 121-bp still down-regulated the SV40 promoter but not the hDAT promoter, as supported by nuclear protein-binding activities. Collectively, 121-bp is a silencer in vitro that might coordinate with transcriptional activities both inside and outside 121-bp in regulation of hDAT.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478, USA
| | | | | | | |
Collapse
|
235
|
Seo PJ, Park CM. Signaling linkage between environmental stress resistance and leaf senescence in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1564-6. [PMID: 21921691 PMCID: PMC3256385 DOI: 10.4161/psb.6.10.17003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants possess versatile strategies that permit efficient use of limited nutrient resources during senescing process. This metabolic adjustment is critical for prevention of diverse cellular damage and thus for reproductive success and offspring production, particularly under environmental stress conditions. However, it is largely unknown how age-dependent resistance to cellular damages is established and how it is influenced by environmental stress signals during senescing process. We found that the VNI2 (VND-INTERACTING 2) transcription factor, which belongs to the NAC (NAM/ATAF1, 2/CUC2) transcription factor family, plays a role in the age-dependent induction of stress resistance. The VNI2 transcription factor is transcriptionally induced during senescing process and regulates COR/RD genes by binding directly to their promoters. The COR/RD proteins play a role in the protection from diverse cellular damages during senescing process. Notably, the transcriptional activation activity of VNI2 is further elevated under high salinity. These results indicate that plants increase environmental stress resistance by inducing the VNI2 gene to assure their reproductive success, supporting signaling crosstalk between stress resistance response and senescing process.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, Korea
| | | |
Collapse
|
236
|
Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:168-85. [PMID: 21689171 DOI: 10.1111/j.1365-313x.2011.04677.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ectopic expression of a MADS box gene FOREVER YOUNG FLOWER (FYF) caused a significant delay of senescence and a deficiency of abscission in flowers of transgenic Arabidopsis. The defect in floral abscission was found to be due to a deficiency in the timing of cell separation of the abscission zone cells. Down-regulation of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) may contribute to the delay of the floral abscission in 35S:FYF flowers. FYF was found to be highly expressed in young flowers prior to pollination and was significantly decreased after pollination, a pattern that correlated with its function. Ethylene insensitivity in senescence/abscission and the down-regulation of ETHYLENE RESPONSE DNA-BINDING FACTOR 1 (EDF1) and EDF2, downstream genes in the ethylene response, in 35S:FYF Arabidopsis suggested a role for FYF in regulating senescence/abscission by suppressing the ethylene response. This role was further supported by the fact that 35S:FYF enhanced the delay of flower senescence/abscission in ethylene response 1 (etr1), ethylene-insensitive 2 (ein2) and constitutive triple response 1 (ctr1) mutants, which have defects in upstream genes of the ethylene signaling pathway. The presence of a repressor domain in the C-terminus of FYF and the enhancement of the delay of senescence/abscission in FYF+SRDX (containing a suppression motif) transgenic plants suggested that FYF acts as a repressor. Indeed, in FYF-DR+VP16 transgenic dominant-negative mutant plants, in which FYF was converted to a potent activator by fusion to a VP16-AD motif, the senescence/abscission of the flower organs was significantly promoted, and the expression of BOP2, IDA and EDF1/2 was up-regulated. Our data suggest a role for FYF in controlling floral senescence/abscission by repressing ethylene responses and regulating the expression of BOP2 and IDA in Arabidopsis.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
237
|
Besnard F, Vernoux T, Hamant O. Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cell Mol Life Sci 2011; 68:2885-906. [PMID: 21655916 PMCID: PMC11115100 DOI: 10.1007/s00018-011-0732-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 11/27/2022]
Abstract
In multicellular organisms, the coordination of cell behaviors largely relies on biochemical and biophysical signals. Understanding how such signals control development is often challenging, because their distribution relies on the activity of individual cells and, in a feedback loop, on tissue behavior and geometry. This review focuses on one of the best-studied structures in biology, the shoot apical meristem (SAM). This tissue is responsible for the production of all the aerial parts of a plant. In the SAM, a population of stem cells continuously produces new cells that are incorporated in lateral organs, such as leaves, branches, and flowers. Organogenesis from stem cells involves a tight regulation of cell identity and patterning as well as large-scale morphogenetic events. The gene regulatory network controlling these processes is highly coordinated in space by various signals, such as plant hormones, peptides, intracellular mobile factors, and mechanical stresses. Many crosstalks and feedback loops interconnecting these pathways have emerged in the past 10 years. The plant hormone auxin and mechanical forces have received more attention recently and their role is more particularly detailed here. An integrated view of these signaling networks is also presented in order to help understanding how robust shape and patterning can emerge from these networks.
Collapse
Affiliation(s)
- Fabrice Besnard
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
238
|
Phan HA, Iacuone S, Li SF, Parish RW. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. THE PLANT CELL 2011; 23:2209-24. [PMID: 21673079 PMCID: PMC3160043 DOI: 10.1105/tpc.110.082651] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/18/2011] [Accepted: 05/29/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana MYB80 (formerly MYB103) is expressed in the tapetum and microspores between anther developmental stages 6 and 10. MYB80 encodes a MYB transcription factor that is essential for tapetal and pollen development. Using microarray analysis of anther mRNA, we identified 404 genes differentially expressed in the myb80 mutant. Employing the glucocorticoid receptor system, the expression of 79 genes was changed when MYB80 function was restored in the myb80 mutant following induction by dexamethasone. Thirty-two genes were analyzed using chromatin immunoprecipitation, and three were identified as direct targets of MYB80. The genes encode a glyoxal oxidase (GLOX1), a pectin methylesterase (VANGUARD1), and an A1 aspartic protease (UNDEAD). All three genes are expressed in the tapetum and microspores. Electrophoretic mobility shift assays confirmed that MYB80 binds to all three target promoters, with the preferential binding site containing the CCAACC motif. TUNEL assays showed that when UNDEAD expression was silenced using small interfering RNA, premature tapetal and pollen programmed cell death occurred, resembling the myb80 mutant phenotype. UNDEAD possesses a mitochondrial targeting signal and may hydrolyze an apoptosis-inducing protein(s) in mitochondria. The timing of tapetal programmed cell death is critical for pollen development, and the MYB80/UNDEAD system may regulate that timing.
Collapse
|
239
|
Yang SD, Seo PJ, Yoon HK, Park CM. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. THE PLANT CELL 2011; 23:2155-68. [PMID: 21673078 PMCID: PMC3160032 DOI: 10.1105/tpc.111.084913] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/27/2011] [Accepted: 06/05/2011] [Indexed: 05/18/2023]
Abstract
Leaf aging is a highly regulated developmental process, which is also influenced profoundly by diverse environmental conditions. Accumulating evidence in recent years supports that plant responsiveness to abiotic stress is intimately related with leaf longevity. However, molecular mechanisms underlying the signaling crosstalks and regulatory schemes are yet unknown. In this work, we demonstrate that an abscisic acid (ABA)-responsive NAC transcription factor VND-INTERACTING2 (VNI2) integrates ABA-mediated abiotic stress signals into leaf aging by regulating a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes. The VNI2 gene was induced by high salinity in an ABA-dependent manner. In addition, spatial and temporal expression patterns of the VNI2 gene are correlated with leaf aging and senescence. Accordingly, leaf aging was delayed in transgenic plants overexpressing the VNI2 gene but significantly accelerated in a VNI2-deficient mutant. The VNI2 transcription factor regulates the COR and RD genes by binding directly to their promoters. Notably, transgenic plants overexpressing the COR or RD genes exhibited prolonged leaf longevity. These observations indicate that the VNI2 transcription factor serves as a molecular link that integrates plant responses to environmental stresses into modulation of leaf longevity.
Collapse
Affiliation(s)
- So-Dam Yang
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hye-Kyung Yoon
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
- Address correspondence to
| |
Collapse
|
240
|
Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:493-506. [PMID: 21658178 DOI: 10.1111/j.1744-7909.2011.01054.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS-like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant wox1-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The wox1-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The wox1-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of wox1-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of wox1-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in wox1-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.
Collapse
Affiliation(s)
- Yanxia Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
241
|
Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang Y, Sumner L, Ratet P, McHale NA, Madueño F, Mysore KS. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2011; 23:2125-42. [PMID: 21719692 PMCID: PMC3160033 DOI: 10.1105/tpc.111.085340] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/06/2011] [Accepted: 06/14/2011] [Indexed: 05/18/2023]
Abstract
Dicot leaf primordia initiate at the flanks of the shoot apical meristem and extend laterally by cell division and cell expansion to form the flat lamina, but the molecular mechanism of lamina outgrowth remains unclear. Here, we report the identification of STENOFOLIA (STF), a WUSCHEL-like homeobox transcriptional regulator, in Medicago truncatula, which is required for blade outgrowth and leaf vascular patterning. STF belongs to the MAEWEST clade and its inactivation by the transposable element of Nicotiana tabacum cell type1 (Tnt1) retrotransposon insertion leads to abortion of blade expansion in the mediolateral axis and disruption of vein patterning. We also show that the classical lam1 mutant of Nicotiana sylvestris, which is blocked in lamina formation and stem elongation, is caused by deletion of the STF ortholog. STF is expressed at the adaxial-abaxial boundary layer of leaf primordia and governs organization and outgrowth of lamina, conferring morphogenetic competence. STF does not affect formation of lateral leaflets but is critical to their ability to generate a leaf blade. Our data suggest that STF functions by modulating phytohormone homeostasis and crosstalk directly linked to sugar metabolism, highlighting the importance of coordinating metabolic and developmental signals for leaf elaboration.
Collapse
Affiliation(s)
- Million Tadege
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1920-35. [PMID: 21282403 PMCID: PMC3091096 DOI: 10.1104/pp.110.171843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain (V.R., A.A., A.C., J.G.-A., M.J.H., B.B., P.V.); Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands (P.B.F.O.); Departamento de Fisiología Vegetal, Universidad de Santiago, Campus Sur, 15782 Santiago de Compostela, Spain (I.Z.)
| |
Collapse
|
243
|
Wong CE, Khor SY, Bhalla PL, Singh MB. Novel spatial expression of soybean WUSCHEL in the incipient floral primordia. PLANTA 2011; 233:553-60. [PMID: 21116646 DOI: 10.1007/s00425-010-1320-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/12/2010] [Indexed: 05/23/2023]
Abstract
The homeobox transcription factor WUSCHEL (WUS) is known to play a critical role in the maintenance of the stem cell population in shoot and floral meristems of Arabidopsis thaliana. The corresponding gene is yet to be characterized in soybean, a vital legume crop. In this study, we isolated the soybean ortholog of WUS (GmWUS) and explored its possible conserved function by in situ hybridization analysis and ectopic expression in Arabidopsis. GmWUS is expressed in the centre of soybean vegetative shoot apical meristem and floral meristem. Intriguingly, GmWUS is also found to be expressed in the incipient floral primordia before the formation of distinct floral meristem. This novel spatial expression pattern implicates GmWUS playing a role in the floral initiation process; it also raises the question of the molecular mechanism underlying the activation of GmWUS in these cells that have adopted the floral fate. Meanwhile, ectopic expression of GmWUS in Arabidopsis results in adventitious shoot and floral meristems' formation, and the disruption in floral organ patterning. These phenotypic alterations are largely consistent with the ectopic expression of Arabidopsis WUS, indicating similar function of GmWUS with its Arabidopsis counterpart. Nevertheless, our in situ hybridization analysis has revealed its spatial expression in the incipient floral primordia indicating an additional role of GmWUS in the floral initiation process.
Collapse
Affiliation(s)
- Chui E Wong
- Plant Molecular Biology and Biotechnology Group, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | | | |
Collapse
|
244
|
Hachez C, Ohashi-Ito K, Dong J, Bergmann DC. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. PLANT PHYSIOLOGY 2011; 155:1458-72. [PMID: 21245191 PMCID: PMC3046599 DOI: 10.1104/pp.110.167718] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nearly all extant land plants possess stomata, the epidermal structures that mediate gas exchange between the plant and the environment. The developmental pathways, cell division patterns, and molecules employed in the generation of these structures are simple examples of processes used in many developmental contexts. One specific module is a set of "master regulator" basic helix-loop-helix transcription factors that regulate individual consecutive steps in stomatal development. Here, we profile transcriptional changes in response to inducible expression of Arabidopsis (Arabidopsis thaliana) FAMA, a basic helix-loop-helix protein whose actions during the final stage in stomatal development regulate both cell division and cell fate. Genes identified by microarray and candidate approaches were then further analyzed to test specific hypothesis about the activity of FAMA, the shape of its regulatory network, and to create a new set of stomata-specific or stomata-enriched reporters.
Collapse
|
245
|
Sablowski R. Plant stem cell niches: from signalling to execution. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:4-9. [PMID: 20739214 DOI: 10.1016/j.pbi.2010.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/02/2010] [Indexed: 05/18/2023]
Abstract
The shoot and root meristems contain small populations of stem cells that constantly renew themselves while providing precursor cells to build all other plant tissues and organs. Cell renewal, growth and differentiation in the meristems are co-ordinated by networks of transcription factors and intercellular signals. The past two years have revealed how auxin and cytokinin signals are integrated with each other and with regulatory genes in the shoot and root meristems. Small RNAs have also emerged as novel intercellular signals. Downstream of meristem regulatory genes, links have been made to cell division control and chromatin function. Protection of genome integrity, partly through programmed cell death after DNA damage, has recently been revealed as a specialised function in plant stem cells.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
246
|
Ambavaram MM, Krishnan A, Trijatmiko KR, Pereira A. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. PLANT PHYSIOLOGY 2011; 155:916-31. [PMID: 21205614 PMCID: PMC3032476 DOI: 10.1104/pp.110.168641] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 12/22/2010] [Indexed: 05/18/2023]
Abstract
Cellulose from plant biomass is the largest renewable energy resource of carbon fixed from the atmosphere, which can be converted into fermentable sugars for production into ethanol. However, the cellulose present as lignocellulosic biomass is embedded in a hemicellulose and lignin matrix from which it needs to be extracted for efficient processing. Here, we show that expression of an Arabidopsis (Arabidopsis thaliana) transcription factor, SHINE (SHN), in rice (Oryza sativa), a model for the grasses, causes a 34% increase in cellulose and a 45% reduction in lignin content. The rice AtSHN lines also exhibit an altered lignin composition correlated with improved digestibility, with no compromise in plant strength and performance. Using a detailed systems-level analysis of global gene expression in rice, we reveal the SHN regulatory network coordinating down-regulation of lignin biosynthesis and up-regulation of cellulose and other cell wall biosynthesis pathway genes. The results thus support the development of nonfood crops and crop wastes with increased cellulose and low lignin with good agronomic performance that could improve the economic viability of lignocellulosic crop utilization for biofuels.
Collapse
|
247
|
Mangeon A, Bell EM, Lin WC, Jablonska B, Springer PS. Misregulation of the LOB domain gene DDA1 suggests possible functions in auxin signalling and photomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:221-33. [PMID: 20797997 PMCID: PMC2993911 DOI: 10.1093/jxb/erq259] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family encodes plant-specific transcription factors. In this report, the LBD gene DOWN IN DARK AND AUXIN1 (DDA1), which is closely related to LATERAL ORGAN BOUNDARIES (LOB) and ASYMMETRIC LEAVES2 (AS2), was characterized. DDA1 is expressed primarily in vascular tissues and its transcript levels were reduced by exposure to exogenous indole-3-acetic acid (IAA or auxin) and in response to dark exposure. Analysis of a T-DNA insertion line, dda1-1, in which the insertion resulted in misregulation of DDA1 transcripts in the presence of IAA and in the dark revealed possible functions in auxin response and photomorphogenesis. dda1-1 plants exhibited reduced sensitivity to auxin, produced fewer lateral roots, and displayed aberrant hypocotyl elongation in the dark. Phenotypes resulting from fusion of a transcriptional repression domain to DDA1 suggest that DDA1 may act as both a transcriptional activator and a transcriptional repressor depending on the context. These results indicate that DDA1 may function in both the auxin signalling and photomorphogenesis pathways.
Collapse
|
248
|
Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1089-1101. [PMID: 21127025 DOI: 10.1093/jxb/erq349] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Different cultivars of Vitis vinifera vary in their potential to form embryogenic tissues. The WUSCHEL (WUS)-related homeobox (WOX) genes have been shown to play an important role in coordinating the gene transcription involved in the early phases of embryogenesis. The expression dynamics of 12 VvWOX genes present in the V. vinifera genome in embryogenic and other tissues of 'Chardonnay' were analysed. In order to understand the influence of WOX genes on the somatic embryogenic process, their expression profiles were compared in two cultivars of V. vinifera ('Chardonnay' and 'Cabernet Sauvignon') that show different aptitudes for embryogenesis. The expression of all VvWOX genes was influenced by culture conditions. VvWOX2 and VvWOX9 were the principal WOX genes expressed during the somatic embryogenesis process, and the low aptitude for embryogenesis of 'Cabernet Sauvignon' was generally correlated with the low expression levels of these VvWOX genes. VvWOX3 and VvWOX11 were strongly activated in correspondence to torpedo and cotyledonary stages of somatic embryos, with low expression in the earlier developmental stages (pre-embryogenic masses and globular embryos) and during embryo germination. VvWOX genes appeared to be key regulators of somatic embryogenesis in grapevine, and the regulation of these genes during early phases of somatic embryogenesis differed between the two cultivars of the same species.
Collapse
Affiliation(s)
- Giorgio Gambino
- Plant Virology Institute, National Research Council, UOS Grugliasco, Via L. da Vinci 44, I-10095 Grugliasco, TO, Italy.
| | | | | | | | | | | |
Collapse
|
249
|
Matte Risopatron JP, Sun Y, Jones BJ. The vascular cambium: molecular control of cellular structure. PROTOPLASMA 2010; 247:145-161. [PMID: 20978810 DOI: 10.1007/s00709-010-0211-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 05/30/2023]
Abstract
Indeterminate growth and the production of new organs in plants require a constant supply of new cells. The majority of these cells are produced in mitotic regions called meristems. For primary or tip growth of the roots and shoots, the meristems are located in the apices. These apical meristems have been shown to function as developmentally regulated and environmentally responsive stem cell niches. The principle requirements to maintain a functioning meristem in a dynamic system are a balance of cell division and differentiation and the regulation of the planes of cell division and expansion. Woody plants also have secondary indeterminate mitotic regions towards the exterior of roots, stems and branches that produce the cells for continued growth in girth. The chief secondary meristem is the vascular cambium (VC). As its name implies, cells produced in the VC contribute to the growth in girth via the production of secondary vascular elements. Although we know a considerable amount about the cellular and molecular basis of the apical meristems, our knowledge of the cellular basis and molecular functioning of the VC has been rudimentary. This is now changing as a growing body of research shows that the primary and secondary meristems share some common fundamental regulatory mechanisms. In this review, we outline recent research that is leading to a better understanding of the molecular forces that shape the cellular structure and function of the VC.
Collapse
|
250
|
Zhang X, Zong J, Liu J, Yin J, Zhang D. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:1016-26. [PMID: 20977659 DOI: 10.1111/j.1744-7909.2010.00982.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
WUSCHEL-related homeobox (WOX) genes form a large gene family specifically expressed in plants. They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate. Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants. In the present study, we identified 11 and 21 WOXs from sorghum (Sorghum bicolor) and maize (Zea mays), respectively. The 72 WOX genes from rice (Oryza sativa), sorghum, maize, Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains. Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain. We observed the variation of duplication events among the nine sub-groups between monocots and eudicots, for instance, more gene duplication events of WOXs within subgroup A for monocots, while, less for dicots in this subgroup. Furthermore, we observed the conserved intron/exon structural patterns of WOX genes in rice, sorghum and Arabidopsis. In addition, WUS (Wuschel)-box and EAR (the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants. Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants. This work provides insights into the evolution of the WOX gene family and is useful for future research.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|