201
|
Kim ES, Jeon HB, Lim H, Shin JH, Park SJ, Jo YK, Oh W, Yang YS, Cho DH, Kim JY. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF. PLoS One 2015; 10:e0128078. [PMID: 26024475 PMCID: PMC4449211 DOI: 10.1371/journal.pone.0128078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/23/2015] [Indexed: 12/23/2022] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoon Lim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (DHC); (JYK)
| | - Ju-Yeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
- * E-mail: (DHC); (JYK)
| |
Collapse
|
202
|
Shin H, Hong SD, Roh E, Jung SH, Cho WJ, Park SH, Yoon DY, Ko SM, Hwang BY, Hong JT, Heo TY, Han SB, Kim Y. cAMP-dependent activation of protein kinase A as a therapeutic target of skin hyperpigmentation by diphenylmethylene hydrazinecarbothioamide. Br J Pharmacol 2015; 172:3434-45. [PMID: 25766244 DOI: 10.1111/bph.13134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE cAMP as a second messenger stimulates expression of microphthalmia-associated transcription factor (MITF) or the tyrosinase gene in UVB-induced skin pigmentation. Diphenylmethylene hydrazinecarbothioamide (QNT 3-80) inhibits α-melanocyte-stimulating hormone (α-MSH)-induced melanin production in B16 murine melanoma cells but its molecular basis remains to be defined. Here, we investigated the mechanism underlying the amelioration of skin hyperpigmentation by QNT 3-80. EXPERIMENTAL APPROACH We used melanocyte cultures with raised levels of cAMP and UVB-irradiated dorsal skin of guinea pigs for pigmentation assays. Immunoprecipitation, kemptide phosphorylation, fluorescence analysis and docking simulation were applied to elucidate a molecular mechanism of QNT 3-80. KEY RESULTS QNT 3-80 inhibited melanin production in melanocyte cultures with elevated levels of cAMP, including those from human foreskin. This compound also ameliorated hyperpigmentation in vivo in UVB-irradiated dorsal skin of guinea pigs. As a mechanism, QNT 3-80 directly antagonized cAMP binding to the regulatory subunit of PKA, nullified the dissociation and activation of inactive PKA holoenzyme in melanocytes and fitted into the cAMP-binding site on the crystal structure of human PKA under the most energetically favourable simulation. QNT 3-80 consequently inhibited cAMP- or UVB-induced phosphorylation (activation) of cAMP-responsive element-binding protein in vitro and in vivo, thus down-regulating expression of genes for MITF or tyrosinase in the melanogenic process. CONCLUSIONS AND IMPLICATIONS Our data suggested that QNT 3-80 could contribute significantly to the treatment of skin disorders with hyperpigmented patches with the cAMP-binding site of PKA as its molecular target.
Collapse
Affiliation(s)
- Hyoeun Shin
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Seung Deok Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Eunmiri Roh
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Sang-Hun Jung
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Sun Hong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Da Young Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Seon Mi Ko
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Tae-Young Heo
- College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
203
|
Hardman JA, Tobin DJ, Haslam IS, Farjo N, Farjo B, Al-Nuaimi Y, Grimaldi B, Paus R. The peripheral clock regulates human pigmentation. J Invest Dermatol 2015; 135:1053-1064. [PMID: 25310406 DOI: 10.1038/jid.2014.442] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan A Hardman
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | - Iain S Haslam
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | | | - Yusur Al-Nuaimi
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Benedetto Grimaldi
- Department of Drug Discovery and Development, Instituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Ralf Paus
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Muenster, Muenster, Germany.
| |
Collapse
|
204
|
Samuelov L, Sprecher E, Paus R. The role of P-cadherin in skin biology and skin pathology: lessons from the hair follicle. Cell Tissue Res 2015; 360:761-71. [PMID: 25707507 DOI: 10.1007/s00441-015-2114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Adherens junctions (AJs) are one of the major intercellular junctions in various epithelia including the epidermis and the follicular epithelium. AJs connect the cell surface to the actin cytoskeleton and comprise classic transmembrane cadherins, such as P-cadherin, armadillo family proteins, and actin microfilaments. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in two allelic autosomal recessive disorders: hypotrichosis with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly, and macular dystrophy (EEM) syndromes. Both syndromes feature sparse hair heralding progressive macular dystrophy. EEM syndrome is characterized in addition by ectodermal and limb defects. Recent studies have demonstrated that, together with its involvement in cell-cell adhesion, P-cadherin plays a crucial role in regulating cell signaling, malignant transformation, and other major intercellular processes. Here, we review the roles of P-cadherin in skin and hair biology, with emphasize on human hair growth, cycling and pigmentation.
Collapse
Affiliation(s)
- Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 64239, Israel,
| | | | | |
Collapse
|
205
|
Song YS, Balcos MC, Yun HY, Baek KJ, Kwon NS, Kim MK, Kim DS. ERK Activation by Fucoidan Leads to Inhibition of Melanogenesis in Mel-Ab Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:29-34. [PMID: 25605994 PMCID: PMC4297759 DOI: 10.4196/kjpp.2015.19.1.29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022]
Abstract
Fucoidan, a fucose-rich sulfated polysaccharide derived from brown seaweed in the class Phaeophyceae, has been widely studied for its possible health benefits. However, the potential of fucoidan as a possible treatment for hyperpigmentation is not fully understood. This study investigated the effects of fucoidan on melanogenesis and related signaling pathways using Mel-Ab cells. Fucoidan significantly decreased melanin content. While fucoidan treatment decreased tyrosinase activity, it did not do so directly. Western blot analysis indicated that fucoidan downregulated microphthalmia-associated transcription factor and reduced tyrosinase protein expression. Further investigation showed that fucoidan activated the extracellular signal-regulated kinase (ERK) pathway, suggesting a possible mechanism for the inhibition of melanin synthesis. Treatment with PD98059, a specific ERK inhibitor, resulted in the recovery of melanin production. Taken together, these findings suggest that fucoidan inhibits melanogenesis via ERK phosphorylation.
Collapse
Affiliation(s)
- Yu Seok Song
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea. ; Department of Convergence Medicine and Pharmaceutical Biosciences, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Marie Carmel Balcos
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Myo-Kyoung Kim
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
206
|
Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells. Arch Dermatol Res 2014; 307:89-98. [PMID: 25398276 DOI: 10.1007/s00403-014-1523-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023]
Abstract
Melanin, the basic skin pigment present also in the majority of melanomas, has a huge impact on the efficiency of photodynamic, radio- or chemotherapies of melanoma. Moreover, the melanoma cells produce more melanin than normal melanocytes in adjacent skin do. Thus, attention has been paid to natural agents that are safe and effective in suppression of melanogenesis. B16F10 cells were studied by electron paramagnetic resonance (EPR) spectroscopy. The cells were cultured for 24-72 h in RPMI or DMEM with or without curcumin. The results confirmed that curcumin has no significant effect on B16F10 cells viability at concentrations of 1-10 µM. Curcumin at concentration of 10 µM significantly inhibited their proliferation and stimulated differentiation. We have not stimulated melanogenesis hormonally but we found a strong increase in melanogenesis in DMEM, containing more L-Tyr, as compared to RPMI. The EPR studies revealed that the effect of curcumin on melanogenesis in RPMI-incubated cells was not significant, and only in DMEM was curcumin able to inhibit melanogenesis. The effect of curcumin was only quantitative, as it did not switch eumelanogenesis towards pheomelanogenesis under any conditions. Interestingly, we observed elevation of production of hydrogen peroxide in DMEM-incubated cells, in parallel to the facilitation of melanogenesis. Curcumin significantly but transiently intensified the already pronounced generation of H2O2 in DMEM. We conclude that the quantitative effect of curcumin on melanogenesis in melanoma is intricate. It depends on the basic melanogenetic efficiency of the cells, and can be observed only in strongly pigmented cells. Qualitatively, curcumin does not switch melanogenesis towards pheomelanogenesis, either in strongly, or in weakly melanized melanoma cells.
Collapse
|
207
|
Lee CS, Jang WH, Park M, Jung K, Baek HS, Joo YH, Park YH, Lim KM. A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression. Exp Dermatol 2014; 22:762-4. [PMID: 24107097 DOI: 10.1111/exd.12248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 01/26/2023]
Abstract
Melanogenesis is essential for the protection of skin against UV, but excessive production of melanin causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we found that a tyrosinase inhibitor, AP736 (5-adamantan-1-yl-N-(2,4-dihydroxy-benzyl)-2,4-dimethoxy-benzamide) potently suppresses tyrosinase expression, and the mechanism underlying was elucidated. AP736 attenuated the melanin production induced by diverse melanogenic stimuli in murine and human melanocytes. It suppressed the expression of key melanogenic enzymes; tyrosinase, tyrosinase-related protein-1 and tyrosinase-related protein-2. The expression of microphthalmia-associated transcription factor (MiTF), a major promoter of melanogenesis was also decreased. AP736 inhibited the activation of cAMP response element-binding protein (CREB) and phosphokinase A (PKA), and cAMP elevation, reflecting that cAMP-PKA-CREB signalling axis was suppressed, resulting in the downregulation of MiTF and tyrosinase. Along with the previously reported tyrosinase inhibitory activity, the suppression of cAMP-PKA-CREB-mediated MiTF and tyrosinase expression by AP736 may be efficient for the treatment for hyperpigmentation.
Collapse
|
208
|
Shi F, Xu Z, Chen H, Wang X, Cui J, Zhang P, Zhang P, Xie X. A Monoclonal Antibody Against PMEL. Monoclon Antib Immunodiagn Immunother 2014; 33:354-60. [PMID: 25118787 DOI: 10.1089/mab.2013.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Fangyuan Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zhenjie Xu
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| | - Hongdong Chen
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| | - Xin Wang
- Central Laboratory, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of the School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jihong Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Ping Zhang
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| | - Ping Zhang
- Department of Dermatology, The General Hospital of the Air Force, Beijing, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| |
Collapse
|
209
|
Tyrosinase-related protein 1 (TYRP1) gene polymorphism and skin differential expression related to coat color in Mongolian horse. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
210
|
Kim ES, Park SJ, Goh MJ, Na YJ, Jo DS, Jo YK, Shin JH, Choi ES, Lee HK, Kim JY, Jeon HB, Kim JC, Cho DH. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell Melanoma Res 2014; 27:1051-62. [PMID: 25065405 DOI: 10.1111/pcmr.12298] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/22/2014] [Indexed: 01/24/2023]
Abstract
Mitochondrial dynamics control mitochondrial functions as well as their morphology. However, the role of mitochondrial dynamics in melanogenesis is largely unknown. Here, we show that mitochondrial dynamics regulate melanogenesis by modulating the ROS-ERK signaling pathway. Genetic and chemical inhibition of Drp1, a mitochondrial fission protein, increased melanin production and mitochondrial elongation in melanocytes and melanoma cells. In contrast, down-regulation of OPA1, a mitochondria fusion regulator, suppressed melanogensis but induced massive mitochondrial fragmentation in hyperpigmented cells. Consistently, treatment with CCCP, a mitochondrial fission chemical inducer, also efficiently repressed melanogenesis. Furthermore, we found that ROS production and ERK phosphorylation were increased in cells with fragmented mitochondria. And inhibition of ROS or ERK suppressed the antimelanogenic effect of mitochondrial fission in α-MSH-treated cells. In addition, the activation of ROS-ERK pathway by mitochondrial fission induced phosphorylation of serine73 on MITF accelerating its proteasomal degradation. In conclusion, mitochondrial dynamics may regulate melanogenesis by modulating ROS-ERK signaling pathway.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Hong SD, Yoon DY, Lee S, Han SB, Kim Y. Antimelanogenic chemicals with in vivo efficacy against skin pigmentation in guinea pigs. Arch Pharm Res 2014; 37:1241-51. [PMID: 25066073 DOI: 10.1007/s12272-014-0447-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 01/11/2023]
Abstract
Ultraviolet (UV) radiation under sunlight stimulates skin pigmentation through immediately affecting the oxidative modification of existing melanin pigments and the spatial redistribution of pigmented melanosomes followed by the up-regulation of melanogenic genes in delayed kinetics. However, abnormal accumulation and synthesis of melanin biopolymers are responsible for skin disorders with more pigmented patches. Chemical-based regulation of the hyperpigmented disorders has been a long-standing goal for cosmetic and pharmaceutical applications. A large number of the chemicals with antimelanogenic activity have met with limited or no success in the treatment of skin patients, since they may not overcome the challenge of penetrating the skin barrier. Guinea pig skin displays similar kinetic parameters to human skin in the transdermal absorption of numerous chemicals, thus can serve as the surrogate for human skin. Here, we provide a concise review of our current understanding of the chemical-based therapy against skin hyperpigmentation in UV-irradiated guinea pig models, suggest molecular mechanisms of the action and emphasize the translation from preclinical outcomes to skin patients.
Collapse
Affiliation(s)
- Seung Deok Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | |
Collapse
|
212
|
Alaeddini M, Etemad-Moghadam S. Immunohistochemical profile of oral mucosal and head and neck cutaneous melanoma. J Oral Pathol Med 2014; 44:234-8. [DOI: 10.1111/jop.12235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Mojgan Alaeddini
- Dental Research Centre; Tehran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
213
|
Cheung FK, Leung AWN, Liu WK, Che CT. Tyrosinase inhibitory activity of a glucosylated hydroxystilbene in mouse melan-a melanocytes. JOURNAL OF NATURAL PRODUCTS 2014; 77:1270-4. [PMID: 24933607 PMCID: PMC4076036 DOI: 10.1021/np4008798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 05/19/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucopyranoside (1), isolated from Polygonum multiflorum, is a noncompetitive inhibitor of tyrosinase in cell-free kinetics; it reduced the Vmax values in a dose-dependent manner. Compound 1 inhibited PKA-induced melanogenesis, reduced the protein expression of tyrosinase and its transcription factor, the microphthalmia-associated transcription factor, and lowered the complex formation between tyrosinase and tyrosinase-related protein 1 (TRP-1). Immunofluorescence microscopy revealed no association of tyrosinase with the endoplasmic reticulum or lysosomes, implying the absence of a direct effect of 1 on the maturation process of the enzyme. The antimelanogenic activity of 1 is likely mediated through a noncompetitive inhibition on tyrosinase, down-regulation of the expression of melanogenic proteins, and reduction of tyrosinase/TRP-1 complex formation.
Collapse
Affiliation(s)
- Florence
Wing-Ki Cheung
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | | | - Wing Keung Liu
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | - Chun-Tao Che
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
- Department
of Medicinal Chemistry and Pharmacognosy and WHO Collaborating Center
for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Tel: +1 312 996 5234. Fax: +1 312 996 7107. E-mail:
| |
Collapse
|
214
|
Natarajan VT, Ganju P, Ramkumar A, Grover R, Gokhale RS. Multifaceted pathways protect human skin from UV radiation. Nat Chem Biol 2014; 10:542-51. [DOI: 10.1038/nchembio.1548] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
|
215
|
Identification of differentially expressed miRNAs between white and black hair follicles by RNA-sequencing in the goat (Capra hircus). Int J Mol Sci 2014; 15:9531-45. [PMID: 24879525 PMCID: PMC4100108 DOI: 10.3390/ijms15069531] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/30/2023] Open
Abstract
MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats.
Collapse
|
216
|
Anti-Melanogenesis Effect ofGlechoma hederaceaL. Extract on B16 Murine Melanoma Cells. Biosci Biotechnol Biochem 2014; 76:1877-83. [DOI: 10.1271/bbb.120341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
217
|
Kim SH, Hwang SY, Yoon JT. Microarray-based analysis of the differential expression of melanin synthesis genes in dark and light-muzzle Korean cattle. PLoS One 2014; 9:e96453. [PMID: 24811126 PMCID: PMC4014497 DOI: 10.1371/journal.pone.0096453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/09/2014] [Indexed: 01/28/2023] Open
Abstract
The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish pheomelanin. It is also believed that the color of the bovine muzzle is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the dark-muzzle has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the dark vs. light muzzle of native Korean cows. Using microarray clustering and real-time polymerase chain reaction techniques, we observed that the expression of genes involved in the mitogen-activated protein kinase (MAPK) and Wnt signaling pathways is distinctively regulated in the dark and light muzzle tissues. Differential expression of tyrosinase was also noticed, although the difference was not as distinct as those of MAPK and Wnt. We hypothesize that emphasis on the MAPK pathway in the dark-muzzle induces eumelanin synthesis through the activation of cAMP response element-binding protein and tyrosinase, while activation of Wnt signaling counteracts this process and raises the amount of pheomelanin in the light-muzzle. We also found 2 novel genes (GenBank No. NM-001076026 and XM-588439) with increase expression in the black nose, which may provide additional information about the mechanism of nose pigmentation. Regarding the increasing interest in the genetic diversity of cattle stocks, genes we identified for differential expression in the dark vs. light muzzle may serve as novel markers for genetic diversity among cows based on the muzzle color phenotype.
Collapse
Affiliation(s)
- Sang Hwan Kim
- Institute of Genetic Engineering, Hankyong National University, Ansung, Kyeonggido, Korea
| | - Sue Yun Hwang
- Department of Chemical Engineering, Hankyong National University, Ansung, Kyeonggi-do, Korea
| | - Jong Taek Yoon
- Institute of Genetic Engineering, Hankyong National University, Ansung, Kyeonggido, Korea
- Department of Animal Life Science, Hankyong National University, Ansung, Kyeonggido, Korea
- * E-mail:
| |
Collapse
|
218
|
Piazza S, Abitbol M, Gnirs K, Huynh M, Cauzinille L. Prevalence of deafness and association with coat variations in client-owned ferrets. J Am Vet Med Assoc 2014; 244:1047-52. [PMID: 24739114 DOI: 10.2460/javma.244.9.1047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the prevalence of congenital sensorineural deafness (CSD) and its association with phenotypic markers in client-owned ferrets. DESIGN Epidemiological study. ANIMALS 152 healthy European pet ferrets. PROCEDURES Brainstem auditory evoked response tests were recorded in ferrets during general anesthesia. Phenotypic markers such as sex, coat color and pattern, coat length (Angora or not), and premature graying trait were assessed. RESULTS Overall, 44 of the 152 (29%) ferrets were affected by CSD; 10 (7%) were unilaterally deaf, and 34 (22%) were bilaterally deaf. There was no association between CSD and sex or Angora trait, but a strong association between CSD and white patterned coat or premature graying was identified. All panda, American panda, and blaze ferrets were deaf. CONCLUSIONS AND CLINICAL RELEVANCE The ferrets in this study had a high prevalence of CSD that was strictly associated with coat color patterns, specifically white markings and premature graying. This seemed to be an emerging congenital defect in pet ferrets because white-marked coats are a popular new coat color. Breeders should have a greater awareness and understanding of this defect to reduce its prevalence for the overall benefit of the species.
Collapse
Affiliation(s)
- Stéphanie Piazza
- Department of Neurology, Veterinary Hospital Center FREGIS, 43 ave Aristide Briand, 94110 Arcueil, France
| | | | | | | | | |
Collapse
|
219
|
Guo J, Zhang JF, Wang WM, Cheung FWK, Lu YF, Ng CF, Kung HF, Liu WK. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression. RNA Biol 2014; 11:732-41. [PMID: 24824743 DOI: 10.4161/rna.28865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is a pivotal regulator of melanogenic enzymes for melanogenesis, and its expression is modulated by many transcriptional factors at the transcriptional level or post-transcriptional level through microRNAs (miRNAs). Although several miRNAs modulate melanogenic activities, there is no evidence of their direct action on MITF expression. Out of eight miRNAs targeting the 3'-UTR of Mitf predicted by bioinformatic programs, our results show miR-218 to be a novel candidate for direct action on MITF expression. Ectopic miR-218 dramatically reduced MITF expression, suppressed tyrosinase activity, and induced depigmentation in murine immortalized melan-a melanocytes. MiR-218 also suppressed melanogenesis in human pigmented skin organotypic culture (OTC) through the repression of MITF. An inverse correlation between MITF and miR-218 expression was found in human primary skin melanocytes and melanoma cell lines. Taken together, our findings demonstrate a novel mechanism involving miR-218 in the regulation of the MITF pigmentary process and its potential application for skin whitening therapy.
Collapse
Affiliation(s)
- Jia Guo
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Jin-fang Zhang
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China; Shenzhen Research Institute; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Wei-mao Wang
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Florence Wing-ki Cheung
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Ying-fei Lu
- Guangzhou Institute of Advanced Technology; Chinese Academy of Sciences; P.R. China
| | - Chi-fai Ng
- Division of Urology; Department of Surgery; Prince of Wales Hospital; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Hsiang-fu Kung
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Wing-keung Liu
- School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| |
Collapse
|
220
|
Kwon KJ, Bae S, Kim K, An IS, Ahn KJ, An S, Cha HJ. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma. Mol Med Rep 2014; 10:503-7. [PMID: 24756377 DOI: 10.3892/mmr.2014.2159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/07/2014] [Indexed: 11/05/2022] Open
Abstract
Melanogenesis is the process of generating pigmentation via melanin synthesis and delivery. Three key enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1) and TRP2, metabolize melanin from L-tyrosine. Melanin synthesizing enzymes are regulated by microphthalmia-associated transcription factor (MITF). The titrated extract of Centella asiatica (TECA) contains the major components asiatic acid, asiaticoside and madecassic acid. The present study revealed that TECA reduces the melanin content in melanocytes. Moreover, the asiaticoside contained in TECA modulated melanogenesis by inhibiting tyrosinase mRNA expression. The decrease in tyrosinase mRNA levels was mediated through MITF. Uniquely, asiaticoside inhibited MITF by decreasing its DNA binding affinity. In conclusion, the results of the present study indicate that asiaticoside treatment may have beneficial effects in hyperpigmentation diseases or for skin whitening.
Collapse
Affiliation(s)
- Ku Jung Kwon
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Seunghee Bae
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Karam Kim
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - In Sook An
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul 143‑701, Republic of Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Hwa Jun Cha
- Korea Institute for Skin and Clinical Sciences and Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| |
Collapse
|
221
|
Falletta P, Bagnato P, Bono M, Monticone M, Schiaffino MV, Bennett DC, Goding CR, Tacchetti C, Valetti C. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression. Pigment Cell Melanoma Res 2014; 27:565-79. [PMID: 24650003 DOI: 10.1111/pcmr.12239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
Little is known as to how cells ensure that organelle size and number are coordinated to correctly couple organelle biogenesis to the demands of proliferation or differentiation. OA1 is a melanosome-associated G-protein-coupled receptor involved in melanosome biogenesis during melanocyte differentiation. Cells lacking OA1 contain fewer, but larger, mature melanosomes. Here, we show that OA1 loss of function reduces both the basal expression and the α-melanocyte-stimulating hormone/cAMP-dependent induction of the microphthalmia-associated transcription factor (MITF), the master regulator of melanocyte differentiation. In turn, this leads to a significant reduction in expression of PMEL, a major melanosomal structural protein, but does not affect tyrosinase and melanin levels. In line with its pivotal role in sensing melanosome maturation, OA1 expression rescues melanosome biogenesis, activates MITF expression and thereby coordinates melanosome size and number, providing a quality control mechanism for the organelle in which resides. Thus, resident sensor receptors can activate a transcriptional cascade to specifically promote organelle biogenesis.
Collapse
Affiliation(s)
- Paola Falletta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
223
|
Docosahexaenoic acid inhibits melanin synthesis in murine melanoma cells in vitro through increasing tyrosinase degradation. Acta Pharmacol Sin 2014; 35:489-95. [PMID: 24562306 DOI: 10.1038/aps.2013.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
AIM To investigate the effects of docosahexaenoic acid (DHA) on melanin synthesis and related regulatory mechanisms. METHODS B16F10 mouse melanoma cells were exposed to DHA for 3 d, and melanin content and tyrosinase activity were measured. Western blot analysis was used to analyze the protein levels in DHA-mediated signal transduction pathways. RESULTS DHA (1-25 μmol/L) did not affect the viability of B16F10 cells, but decreased α-MSH-induced melanin synthesis in a concentration-dependent manner. DHA concentration-dependently reduced tyrosinase activity in the cells, but did not affect mushroom tyrosinase activity in a cell-free system. Furthermore, DHA treatment significantly reduced tyrosinase level without affecting microphthalmia-associated transcription factor (MITF) in the cells. DHA did not activate ERK and Akt in the cells. Pretreatment with the proteasome inhibitor MG132 (80 nmol/L) abolished DHA-induced tyrosinase reduction. CONCLUSION DHA inhibits melanogenesis in B16F10 cells in vitro through increasing tyrosinase degradation. The results suggest that DHA may be a potential agent for treatment of hyperpigmentary disorders of skin.
Collapse
|
224
|
Ginsenosides Rb1 and Rg1 Stimulate Melanogenesis in Human Epidermal Melanocytes via PKA/CREB/MITF Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:892073. [PMID: 24799945 PMCID: PMC3988736 DOI: 10.1155/2014/892073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
Reduced or defective melanin skin pigmentation may cause many hypopigmentation disorders and increase the risk of damage to the skin triggered by UV irradiation. Ginsenosides Rb1 and Rg1 have many molecular targets including the cAMP-response element-binding protein (CREB), which is involved in melanogenesis. This study aimed to investigate the effects of ginsenosides Rb1 and Rg1 on melanogenesis in human melanocytes and their related mechanisms. The effects of Rb1 and Rg1 on cell viability, tyrosinase activity, cellular melanin content and protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and activation of CREB in melanocytes were assessed. Results showed that Rb1 or Rg1 significantly increased cellular melanin content and tyrosinase activity in a dose-dependent manner. By contrast, the cell viability of melanocytes remained unchanged. After exposure to Rb1 or Rg1, the protein levels of tyrosinase, MITF, and phosphorylated CREB were significantly increased. Furthermore, pretreatment with the selective PKA inhibitor H-89 significantly blocked the Rb1- or Rg1-induced increase of melanin content. These findings indicated that Rb1 and Rg1 increased melanogenesis and tyrosinase activity in human melanocytes, which was associated with activation of PKA/CREB/MITF signaling. The effects and mechanisms of Rb1 or Rg1 on skin pigmentation deserve further study.
Collapse
|
225
|
Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem Toxicol 2014; 68:38-43. [PMID: 24632067 DOI: 10.1016/j.fct.2014.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/31/2022]
Abstract
Previously, betulinic acid was identified as one of the main compounds responsible for the anti-melanogenic effect in Vitis amurensis root. In this study, we investigated the precise mechanism underlying the anti-melanogenic activity of betulinic acid in B16F10 cells. Betulinic acid significantly attenuated 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production by inhibiting tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2 expression through the modulation of their corresponding transcription factors, microphthalamia associated transcription factor (MITF) and cAMP response element binding protein (CREB), in B16F10 cells. In addition, phosphorylation of mitogen-activated protein kinase kinase (MEK)/extracellular regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt, involved in the melanogenic processes, were ameliorated by betulinic acid treatment. Role of MEK/ERK and PI3K/Akt signaling pathway in the melanogenesis was confirmed by using specific inhibitors, PD98059 (for MEK/ERK) and LY294002 (for PI3K/Akt), respectively. As a result, betulinic acid inhibited melanin production by tyrosinase, TRP-1, and TRP-2 inhibition through the regulation of CREB and MITF, which was accompanied with MEK/ERK and PI3K/Akt inactivation in IBMX-stimulated B16F10 cells. Consequently, these results demonstrate a novel molecular function of betulinic acid derived from V. amurensis root in melanogenesis, which in turn enhances our understanding on the application of cosmetic therapy for reducing skin hyperpigmentation.
Collapse
|
226
|
Asai K, Funaba M, Murakami M. Enhancement of RANKL-induced MITF-E expression and osteoclastogenesis by TGF-β. Cell Biochem Funct 2014; 32:401-9. [PMID: 24519885 DOI: 10.1002/cbf.3028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/07/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a transcription factor that is expressed in limited types of cells, including osteoclasts, but the expression and role of MITF during osteoclastogenesis have not been fully elucidated. The expression of the MITF-E isoform but not that of the MITF-A isoform was induced in response to differentiation stimulation towards osteoclasts by receptor activator of NF-κB ligand (RANKL) in both RAW264.7 cells and primary bone marrow cells. The RANKL-induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells was inhibited in RAW264.7 cells expressing siRNA for MITF-E. Transforming growth factor-β (TGF-β) enhanced RANKL-induced MITF-E expression and -TRAP positive multinucleated cell formation. In particular, TGF-β potentiated the formation of larger osteoclasts. The expression levels of NFATc1, TRAP and CtsK, genes related to osteoclast development and activity, were concurrently enhanced by TGF-β in the presence of RANKL. Furthermore, the expression of dendritic cell-specific transmembrane protein (DC-STAMP), Itgav, Itga2, Itga5, Itgb1, Itgb3 and Itgb5, genes related to cell adhesion and fusion, were up-regulated by co-treatment with TGF-β. In particular, the regulatory expression of Itgav and Itgb5 in response to RANKL with or without TGF-β resembled that of MITF-E. Because MITF is involved in cell fusion in some cell systems, these results imply a role for MITF-E as an enhancer of osteoclastogenesis and that RANKL-induced levels of both MITF-E mRNA and of MITF-dependent gene expression are enhanced by treatment with TGF-β.
Collapse
Affiliation(s)
- Kumiko Asai
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | | | | |
Collapse
|
227
|
Abstract
Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITFsiRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies. [BMB Reports 2013; 46(7): 364-369]
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
228
|
Drakakis G, Hendry AE, Hanson K, Brewerton SC, Bodkin MJ, Evans DA, Wheeler GN, Bender A. Comparative mode-of-action analysis following manual and automated phenotype detection in Xenopus laevis. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00313b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the increasing utilization of phenotypic screens in drug discovery also the subsequent mechanism-of-action analysis gains increased attention.
Collapse
Affiliation(s)
- Georgios Drakakis
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Adam E. Hendry
- School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | | | | | | | | | | | - Andreas Bender
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
229
|
Kim ES, Shin JH, Seok SH, Kim JB, Chang H, Park SJ, Jo YK, Choi ES, Park JS, Yeom MH, Lim CS, Cho DH. Autophagy mediates anti-melanogenic activity of 3′-ODI in B16F1 melanoma cells. Biochem Biophys Res Commun 2013; 442:165-70. [DOI: 10.1016/j.bbrc.2013.11.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 11/25/2022]
|
230
|
Wolnicka-Glubisz A, Pecio A, Podkowa D, Plonka PM, Grabacka M. HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS One 2013; 8:e74883. [PMID: 24223113 PMCID: PMC3819350 DOI: 10.1371/journal.pone.0074883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF) have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old) C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR) to quantitate melanin, by transmission electron microscopy (TEM) for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- * E-mail:
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Przemyslaw Mieszko Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Grabacka
- Department of Food Biotechnology, University of Agriculture, Kraków, Poland
| |
Collapse
|
231
|
Kim ES, Jo YK, Park SJ, Chang H, Shin JH, Choi ES, Kim JB, Seok SH, Kim JS, Oh JS, Kim MH, Lee EH, Cho DH. ARP101 inhibits α-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes. FEBS Lett 2013; 587:3955-60. [PMID: 24188823 DOI: 10.1016/j.febslet.2013.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023]
Abstract
Autophagy is a cooperative process between autophagosomes and lysosomes that degrades cellular organelles. Although autophagy regulates the turnover of cellular components, its role in melanogenesis is not clearly established. Previously, we reported that ARP101 induces autophagy in various cancer cells. Here, we show that ARP101 inhibits melanogenesis by regulation of autophagy. ARP101 inhibited α-MSH-stimulated melanin synthesis and suppressed the expression of tyrosinase and TRP1 in immortalized mouse melanocytes. ARP101 also induced autophagy in melanocytes. Knockdown of ATG5 reduced both anti-melanogenic activity and autophagy mediated by ARP101 in α-MSH treated melanocytes. Electron microscopy analysis further revealed that autophagosomes engulf melanin or melanosome in α-MSH and ARP101-treated cells. Collectively, our results suggest that ARP101 inhibits α-MSH-stimulated melanogenesis through the activation of autophagy in melanocytes.
Collapse
Affiliation(s)
- Eun Sung Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeoggi-do 446-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Kim EH, Kim MK, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells. Eur J Pharmacol 2013; 718:299-304. [DOI: 10.1016/j.ejphar.2013.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
|
233
|
Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S, Hong S. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci 2013; 72:274-83. [PMID: 24016750 DOI: 10.1016/j.jdermsci.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/04/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Melanin for skin pigmentation is synthesized from tyrosine via an enzymatic cascade that is controlled by tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase/tyrosinase related protein 2 (Dct/TRP2), which are the targets of microphthalmia-associated transcription factor (MITF). MITF is a master regulator of pigmentation and a target of β-catenin in Wnt/β-catenin signaling during melanocyte differentiation. Stem cells have been used in skin pigmentation studies, but the mechanisms were not determined for the conditioned medium (CM)-mediated effects. OBJECTIVES In this study, the inhibition and mechanisms of melanin synthesis were elucidated in B16 melanoma cells and UV-B irradiated C57/BL-6 mice that were treated with human neural stem cell-conditioned medium (NSC-CM). METHODS B16-F10 melanoma cells (1.5×10(4)cells/well) and the shaved dorsal skin of mice were pretreated with various amount (5, 10, 20, 50, and 100%) of NSC-CM. Melanin contents and TYR activity were measured by a Spectramax spectrophotometer. The expression of TYR, TRP1, Dct/TRP2, MITF, β-catenin and Wnt inhibitors were evaluated by RT-PCR and western blot. The dorsal skin samples were analyzed by immunofluorescence with various antibodies and compared with that control of tissues. RESULTS Marked decreases were evident in melanin content and TYR, TRP1, DCT/TRP2, MITF, and β-catenin expression in B16 cells and C57/BL-6 mice. NSC-CM negatively regulated Wnt/β-catenin signaling by decreasing the expression of β-catenin protein, which resulted from robust expression of Wnt inhibitors Dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (sFRP2). CONCLUSIONS These results demonstrate that NSC-CM suppresses melanin production in vitro and in vivo, suggesting that factors in NSC-CM may play an important role in deregulation of epidermal melanogenesis.
Collapse
Affiliation(s)
- Insik Hwang
- Laboratory of Stem Cell Biology, Department of Biomedical Science, College of Health Science, Korea University, Jeongneung-dong, Sungbuk-gu, Seoul 136-703, Republic of Korea; Department of Health Science, Korea University Graduate School, Jeongneung-dong, Sungbuk-gu, Seoul 136-703, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Downregulation of melanocyte-specific facultative melanogenesis by 4-hydroxy-3-methoxycinnamaldehyde acting as a cAMP antagonist. J Invest Dermatol 2013; 134:551-553. [PMID: 23934066 DOI: 10.1038/jid.2013.341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
235
|
Chao HC, Najjaa H, Villareal MO, Ksouri R, Han J, Neffati M, Isoda H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp Dermatol 2013; 22:131-6. [PMID: 23362872 DOI: 10.1111/exd.12089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/16/2022]
Abstract
Melanin performs a crucial role in protecting the skin against harmful ultraviolet light. However, hyperpigmentation may lead to aesthetic problems and disorders such as solar lentigines (SL), melasma, postinflammatory hyperpigmentation and even melanoma. Arthrophytum scoparium grows in the desert in the North African region, and given this type of environment, A. scoparium exhibits adaptations for storing water and produces useful bioactive factors. In this study, the effect of A. scoparium ethanol extract (ASEE) on melanogenesis regulation in B16 murine melanoma cells was investigated. Cells treated with 0.017% (w/v) ASEE showed a significant inhibition of melanin biosynthesis in a time-dependent manner without cytotoxicity. To clarify the mechanism behind the ASEE-treated melanogenesis regulation, the expressions of tyrosinase enzyme and melanogenesis-related genes were determined. Results showed that the expression of tyrosinase enzyme was significantly decreased and Tyr, Trp-1, Mitf and Mc1R mRNA expressions were significantly down-regulated. LC-ESI-TOF-MS analysis of the extract identified the presence of six phenolic compounds: coumaric acid, cinnamic acid, chrysoeriol, cyanidin, catechol and caffeoylquinic acid. The melanogenesis inhibitory effect of ASEE may therefore be attributed to its catechol and tetrahydroisoquinoline derivative content. We report here that ASEE can inhibit melanogenesis in a time-dependent manner by decreasing the tyrosinase protein and Tyr, Trp-1, Mitf and Mc1R mRNA expressions. This is the first report on the antimelanogenesis effect of A. scoparium and on its potential as a whitening agent.
Collapse
Affiliation(s)
- Hui-Chia Chao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol 2013; 134:461-469. [PMID: 23884313 DOI: 10.1038/jid.2013.310] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/16/2013] [Accepted: 06/24/2013] [Indexed: 02/07/2023]
Abstract
MicroRNA (miR)-203 is known to be downregulated and to act as an anti-oncomir in melanoma cells. At present, we found that exogenous miR-203 increased pigmentation and protein expression levels of the melanoma antigen recognized by T cells (Melan-As/MART1s) and/or tyrosinase (TYR) in the human melanoma cells tested. Inversely, treatment with an inhibitor of miR-203 downregulated the expression level of TYR. The target gene of miR-203 involved in the mechanism was kinesin superfamily protein 5b (kif5b), which was revealed by gene silencing using short interfering RNA and luciferase activity assay. Furthermore, immunocytochemistry showed obvious accumulation of melanosomes around nuclei of human melanoma Mewo cells transfected with miR-203 or siR-kif5b. Importantly, treatment with the miR-203 inhibitor, but not miR-203, exhibited effects on human epidermal melanocytes isolated from lightly pigmented adult skin similar to those on melanoma cells. In addition, the data indicated that exogenous miR-203 also negatively regulated the cAMP response element-binding protein 1 (CREB1)/microphthalmia-associated transcription factor (MITF)/Rab27a pathway, which is one of the main pathways active in melanoma cells. In conclusion, our data indicated that anti-oncogenic miR-203 had a pivotal role in melanoma through reducing melanosome transport and promoting melanogenesis by targeting kif5b and through negative regulation of the CREB1/MITF/Rab27a pathway.
Collapse
|
237
|
Huang YC, Liu KC, Chiou YL, Yang CH, Chen TH, Li TT, Liu LL. Fenofibrate suppresses melanogenesis in B16-F10 melanoma cells via activation of the p38 mitogen-activated protein kinase pathway. Chem Biol Interact 2013; 205:157-64. [PMID: 23872139 DOI: 10.1016/j.cbi.2013.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/17/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022]
Abstract
Fenofibrate and ciglitazone belong to the classes of fibrates and thiazolidinediones, respectively. Their pharmacological actions on peroxisome proliferator-activated receptors (PPARs) present a potential therapy for hyperlipidemia and hyperglycemia. However, the melanogenesis affected by PPAR ligands in melanocytes has not been well investigated. By determining the melanin content of cells treated with PPAR agonists, we showed that fenofibrate significantly reduced melanin synthesis, but its major active metabolite, fenofibric acid, did not. Notably, the suppression of melanogenesis by fenofibrate could not be prevented by the PPARα specific antagonist GW6471. In addition, T0901317, a liver X receptor (LXR) agonist, restored the antimelanogenic activity of fenofibrate. Accordingly, fenofibrate may suppress melanogenesis through a PPARα-independent pathway. Treatment of cells with fenofibrate led to the down-regulated gene expression of melanocortin 1 receptor (MC1R). Fenofibrate also attenuated the dihydroxyphenylalanine (DOPA)-staining activity and expression of tyrosinase as well as the expression of microphthalmia-associated transcription factor (MITF). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was stimulated by fenofibrate. Furthermore, the p38 MAPK inhibitor SB203580 prevented the repressive effects of fenofibrate on the melanin production. Taken together, the results of the present study suggest that fenofibrate inhibits melanin synthesis via the down-regulation of MC1R, the up-regulation of p38 MAPK, and interference with LXR signaling pathways to decrease the expression of tyrosinase in B16-F10 melanoma cells.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
238
|
Kedinger V, Meulle A, Zounib O, Bonnet ME, Gossart JB, Benoit E, Messmer M, Shankaranarayanan P, Behr JP, Erbacher P, Bolcato-Bellemin AL. Sticky siRNAs targeting survivin and cyclin B1 exert an antitumoral effect on melanoma subcutaneous xenografts and lung metastases. BMC Cancer 2013; 13:338. [PMID: 23835136 PMCID: PMC3711931 DOI: 10.1186/1471-2407-13-338] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
Background Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for survival and/or progression of melanomas by means of RNA interference. Survivin and cyclin B1, both involved in cell survival and proliferation and frequently deregulated in human cancers, are good candidate target genes for siRNA mediated therapeutics. Methods We used our newly developed sticky siRNA-based technology delivered with linear polyethyleneimine (PEI) to inhibit the expression of survivin and cyclin B1 both in vitro and in vivo, and addressed the effect of this inhibition on B16-F10 murine melanoma tumor development. Results We confirm that survivin and cyclin B1 downregulation through a RNA interference mechanism induces a blockage of the cell cycle as well as impaired proliferation of B16-F10 cells in vitro. Most importantly, PEI-mediated systemic delivery of sticky siRNAs against survivin and cyclin B1 efficiently blocks growth of established subcutaneaous B16-F10 tumors as well as formation and dissemination of melanoma lung metastases. In addition, we highlight that inhibition of survivin expression increases the effect of doxorubicin on lung B16-F10 metastasis growth inhibition. Conclusion PEI-mediated delivery of sticky siRNAs targeting genes involved in tumor progression such as survivin and cyclin B1, either alone or in combination with chemotherapeutic drugs, represents a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Valerie Kedinger
- Polyplus-transfection SA, Bioparc, BP 90018, Boulevard Sébastien Brant, Illkirch, 67401, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Geranylgeranylacetone inhibits melanin synthesis via ERK activation in Mel-Ab cells. Life Sci 2013; 93:226-32. [PMID: 23792203 DOI: 10.1016/j.lfs.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/18/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
AIMS Geranylgeranylacetone (GGA) has shown cytoprotective activity through induction of a 70-kDa heat shock protein (HSP70). Although HSP70 is reported to regulate melanogenesis, the effects of GGA on melanin synthesis in melanocytes have not been previously studied. Therefore, this study investigated the effects of GGA on melanogenesis and the related signaling pathways. MAIN METHODS Melanin content and tyrosinase activities were measured in Mel-Ab cells. GGA-induced signal transduction pathways were investigated by western blot analysis. KEY FINDINGS Our results showed that GGA significantly decreased melanin content in a concentration-dependent manner. Similarly, GGA reduced tyrosinase activity dose-dependently, but it did not directly inhibit tyrosinase. Western blot analysis indicated that GGA downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase protein expression, whereas it increased the phosphorylation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Furthermore, a specific ERK pathway inhibitor, PD98059, blocked GGA-induced melanin reduction and then prevented downregulation of MITF and tyrosinase by GGA. However, a specific mTOR inhibitor, rapamycin, only slightly restored inhibition of melanin production by GGA, indicating that mTOR signaling is not a key mechanism regulating the inhibition of melanin production. SIGNIFICANCE These findings suggest that activation of ERK by GGA reduces melanin synthesis in Mel-Ab cells through downregulation of MITF and tyrosinase expression.
Collapse
|
240
|
Roh E, Yun CY, Young Yun J, Park D, Doo Kim N, Yeon Hwang B, Jung SH, Park SK, Kim YB, Han SB, Kim Y. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. J Invest Dermatol 2013; 133:1072-1079. [PMID: 23254773 DOI: 10.1038/jid.2012.425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is inducible in response to cAMP and has a pivotal role in the melanocyte-specific expression of tyrosinase for skin pigmentation. Here we suggest that the cAMP-binding site of protein kinase A (PKA) is a target in the inhibition of the melanogenic process in melanocytes, as evidenced from the molecular mechanism of small molecules such as bisabolangelone (BISA) and Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). BISA is a sesquiterpene constituent of Angelica koreana, a plant of the Umbelliferae family, whose roots are used as an alternative medicine. BISA competitively inhibited cAMP binding to the regulatory subunit of PKA and fitted into the cAMP-binding site on the crystal structure of PKA under the most energetically favorable simulation. In α-melanocyte-stimulating hormone (α-MSH)-activated melanocytes, BISA and Rp-cAMPS nullified cAMP-dependent PKA activation, dissociating catalytic subunits from an inactive holoenzyme complex. They resultantly inhibited cellular phosphorylation of the cAMP-responsive element-binding protein (CREB) or another transcription factor SOX9, thus downregulating the expression of MITF or the tyrosinase gene with decreased melanin production. Taken together, this study defined the antimelanogenic mechanism of BISA or Rp-cAMPS with a notable implication of the cAMP-binding site of PKA as a putative target ameliorating melanocyte-specific hyperpigmented disorder.
Collapse
Affiliation(s)
- Eunmiri Roh
- College of Pharmacy & CBITRC, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, Widlund HR. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013; 23:302-15. [PMID: 23477830 PMCID: PMC3635826 DOI: 10.1016/j.ccr.2013.02.003] [Citation(s) in RCA: 671] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Activating mutations in BRAF are the most common genetic alterations in melanoma. Inhibition of BRAF by small molecules leads to cell-cycle arrest and apoptosis. We show here that BRAF inhibition also induces an oxidative phosphorylation gene program, mitochondrial biogenesis, and the increased expression of the mitochondrial master regulator, PGC1α. We further show that a target of BRAF, the melanocyte lineage factor MITF, directly regulates the expression of PGC1α. Melanomas with activation of the BRAF/MAPK pathway have suppressed levels of MITF and PGC1α and decreased oxidative metabolism. Conversely, treatment of BRAF-mutated melanomas with BRAF inhibitors renders them addicted to oxidative phosphorylation. Our data thus identify an adaptive metabolic program that limits the efficacy of BRAF inhibitors.
Collapse
Affiliation(s)
- Rizwan Haq
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114
- Department of Dermatology and Cutaneous Biology Research Center, 55 Fruit Street, Boston, MA 02114
| | - Jonathan Shoag
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02116
| | - Pedro Andreu-Perez
- Department of Dermatology and Cutaneous Biology Research Center, 55 Fruit Street, Boston, MA 02114
| | - Satoru Yokoyama
- Department of Dermatology and Cutaneous Biology Research Center, 55 Fruit Street, Boston, MA 02114
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani Toyama 930-0194, Japan
| | - Hannah Edelman
- Department of Dermatology and Cutaneous Biology Research Center, 55 Fruit Street, Boston, MA 02114
| | - Glenn C. Rowe
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02116
| | - Dennie T. Frederick
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Aeron D. Hurley
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Abhinav Nellore
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032
| | - Jennifer A. Wargo
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Jun S. Song
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - David E. Fisher
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114
- Department of Dermatology and Cutaneous Biology Research Center, 55 Fruit Street, Boston, MA 02114
- corresponding authors who contributed equally to this work. Correspondence: Hans Widlund, ; Zolt Arany, ; or David E. Fisher,
| | - Zolt Arany
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02116
- corresponding authors who contributed equally to this work. Correspondence: Hans Widlund, ; Zolt Arany, ; or David E. Fisher,
| | - Hans R. Widlund
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
- corresponding authors who contributed equally to this work. Correspondence: Hans Widlund, ; Zolt Arany, ; or David E. Fisher,
| |
Collapse
|
242
|
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in variety cellular processes including polymodal cellular sensing, cell adhesion, cell polarity, proliferation, differentiation and apoptosis. One of its subfamilies are TRPM channels. mRNA expression of its founding member, TRPM1 (melastatin), correlates with terminal melanocytic differentiation and loss of its expression has been identified as an important diagnostic and prognostic marker for primary cutaneous melanoma. Because TRPM1 gene codes two transcripts: TRPM1 channel protein in its exons and miR-211 in one of its introns, we propose a dual role for TRPM1 gene where the loss of TRPM1 channel protein is an excellent marker of melanoma aggressiveness, while the expression of miR-211 is linked to the tumor suppressor function of TRPM1. In addition, three other members of this subfamily, TRPM 2, 7 and 8 are implicated in the regulation of melanocytic behaviour. TRPM2 is capable of inducing melanoma apoptosis and necrosis. TRPM7 can be a protector and detoxifier in both melanocytes and melanoma cells. TRPM8 can mediate agonist-induced melanoma cell death. Therefore, we propose that TRPM1, TRPM2, TRPM7 and TRPM8 play crucial roles in melanocyte physiology and melanoma oncology and are excellent diagnostic markers and theraputic targets.
Collapse
Affiliation(s)
- Huazhang Guo
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
243
|
Topobiology of human pigmentation: P-cadherin selectively stimulates hair follicle melanogenesis. J Invest Dermatol 2013; 133:1591-600. [PMID: 23334344 DOI: 10.1038/jid.2013.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
P-cadherin serves as a major topobiological cue in mammalian epithelium. In human hair follicles (HFs), it is prominently expressed in the inner hair matrix that harbors the HF pigmentary unit. However, the role of P-cadherin in normal human pigmentation remains unknown. As patients with mutations in the gene that encodes P-cadherin show hypotrichosis and fair hair, we explored the hypothesis that P-cadherin may control HF pigmentation. When P-cadherin was silenced in melanogenically active organ-cultured human scalp HFs, this significantly reduced HF melanogenesis and tyrosinase activity as well as gene and/or protein expression of gp100, stem cell factor, c-Kit, and microphthalmia-associated transcription factor (MITF), both in situ and in isolated human HF melanocytes. Instead, epidermal pigmentation was unaffected by P-cadherin knockdown in organ-cultured human skin. In hair matrix keratinocytes, P-cadherin silencing reduced plasma membrane β-catenin, whereas glycogen synthase kinase 3 beta (GSK3β) and phospho-β-catenin expression were significantly upregulated. This suggests that P-cadherin-GSK3β/Wnt signaling is required for maintaining the expression of MITF to sustain intrafollicular melanogenesis. Thus, P-cadherin-mediated signaling is a melanocyte subtype-specific topobiological regulator of normal human pigmentation, possibly via GSK3β-mediated canonical Wnt signaling.
Collapse
|
244
|
Ondrušová L, Vachtenheim J, Réda J, Žáková P, Benková K. MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells. PLoS One 2013; 8:e54110. [PMID: 23349796 PMCID: PMC3547967 DOI: 10.1371/journal.pone.0054110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022] Open
Abstract
Metastasized malignant melanoma has a poor prognosis because of its intrinsic resistance to chemotherapy and radiotherapy. The central role in the melanoma transcriptional network has the transcription factor MITF (microphthalmia-associated transcription factor). It has been shown recently that the expression of MITF and some of its target genes require the SWI/SNF chromatin remodeling complex. Here we demonstrate that survival of melanoma cells requires functional SWI/SNF complex not only by supporting expression of MITF and its targets and but also by activating expression of prosurvival proteins not directly regulated by MITF. Microarray analysis revealed that besides the MITF-driven genes, expression of proteins like osteopontin, IGF1, TGFß2 and survivin, the factors known to be generally associated with progression of tumors and the antiapoptotic properties, were reduced in acute BRG1-depleted 501mel cells. Western blots and RT-PCR confirmed the microarray findings. These proteins have been verified to be expressed independently of MITF, because MITF depletion did not impair their expression. Because these genes are not regulated by MITF, the data suggests that loss of BRG1-based SWI/SNF complexes negatively affects survival pathways beyond the MITF cascade. Immunohistochemistry showed high expression of both BRM and BRG1 in primary melanomas. Exogenous CDK2, osteopontin, or IGF1 each alone partly relieved the block of proliferation imposed by BRG1 depletion, implicating that more factors, besides the MITF target genes, are involved in melanoma cell survival. Together these results demonstrate an essential role of SWI/SNF for the expression of MITF-dependent and MITF-independent prosurvival factors in melanoma cells and suggest that SWI/SNF may be a potential and effective target in melanoma therapy.
Collapse
Affiliation(s)
- Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Jiri Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kamila Benková
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| |
Collapse
|
245
|
Dynoodt P, Mestdagh P, Van Peer G, Vandesompele J, Goossens K, Peelman LJ, Geusens B, Speeckaert RM, Lambert JLW, Van Gele MJL. Identification of miR-145 as a key regulator of the pigmentary process. J Invest Dermatol 2013; 133:201-9. [PMID: 22895360 DOI: 10.1038/jid.2012.266] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current treatments for hyperpigmentation are often associated with a lack of efficacy and adverse side effects. We hypothesized that microRNA (miRNA)-based treatments may offer an attractive alternative by specifically targeting key genes in melanogenesis. The aim of this study was to identify miRNAs interfering with the pigmentary process and to assess their functional role. miRNA profiling was performed on mouse melanocytes after three consecutive treatments involving forskolin and solar-simulated UV (ssUV) irradiation. Sixteen miRNAs were identified as differentially expressed in treated melan-a cells versus untreated cells. Remarkably, a 15-fold downregulation of miR-145 was detected. Overexpression or downregulation of miR-145 in melan-a cells revealed reduced or increased expression of Sox9, Mitf, Tyr, Trp1, Myo5a, Rab27a, and Fscn1, respectively. Moreover, a luciferase reporter assay demonstrated direct targeting of Myo5a by miR-145 in mouse and human melanocytes. Immunofluorescence tagging of melanosomes in miR-145-transfected human melanocytes displayed perinuclear accumulation of melanosomes with additional hypopigmentation of harvested cell pellets. In conclusion, this study has established an miRNA signature associated with forskolin and ssUV treatment. The significant down- or upregulation of major pigmentation genes, after modulating miR-145 expression, suggests a key role for miR-145 in regulating melanogenesis.
Collapse
Affiliation(s)
- Peter Dynoodt
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Steunou AL, Ducoux-Petit M, Lazar I, Monsarrat B, Erard M, Muller C, Clottes E, Burlet-Schiltz O, Nieto L. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development. Mol Cell Proteomics 2012; 12:736-48. [PMID: 23275444 DOI: 10.1074/mcp.m112.020727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors that play a key role in cellular adaptation to hypoxia. HIF proteins are composed of an α subunit regulated by oxygen pressure (essentially HIF1α or HIF2α) and a constitutively expressed β subunit. These proteins are often overexpressed in cancer cells, and HIF overexpression frequently correlates with poor prognosis, making HIF proteins promising therapeutic targets. HIF proteins are involved in melanoma initiation and progression; however, the specific function of HIF2 in melanoma has not yet been studied comprehensively. Identifying protein complexes is a valuable way to uncover protein function, and affinity purification coupled with mass spectrometry and label-free quantification is a reliable method for this approach. We therefore applied quantitative interaction proteomics to identify exhaustively the nuclear complexes containing HIF2α in a human melanoma cell line, 501mel. We report, for the first time, a high-throughput analysis of the interactome of an HIF subunit. Seventy proteins were identified that interact with HIF2α, including some well-known HIF partners and some new interactors. The new HIF2α partners microphthalmia-associated transcription factor, SOX10, and AP2α, which are master actors of melanoma development, were confirmed via co-immunoprecipitation experiments. Their ability to bind to HIF1α was also tested: microphthalmia-associated transcription factor and SOX10 were confirmed as HIF1α partners, but the transcription factor AP2α was not. AP2α expression correlates with low invasive capacities. Interestingly, we demonstrated that when HIF2α was overexpressed, only cells expressing large amounts of AP2α exhibited decreased invasive capacities in hypoxia relative to normoxia. The simultaneous presence of both transcription factors therefore reduces cells' invasive properties. Knowledge of the HIF2α interactome is thus a useful resource for investigating the general mechanisms of HIF function and regulation, and here we reveal unexpected, distinct roles for the HIF1 and HIF2 isoforms in melanoma progression.
Collapse
|
247
|
Wolnicka-Glubisz A, Pecio A, Podkowa D, Kolodziejczyk LM, Plonka PM. Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Exp Dermatol 2012; 21:537-40. [PMID: 22716250 DOI: 10.1111/j.1600-0625.2012.01511.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pheomelanin is supposed to be the first type of melanin found in vertebrates, in contrast to the main type - eumelanin. Our study aimed at detecting pheomelanin in the skin of Hymenochirus boettgerii. We employed electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM), supplemented with standard histology and immunochemistry. We identified pheomelanin in the dorsal skin of adult frogs (not only in the dermis, but also in the epidermis) and in the dorsal tadpole. Our work identifies Hymenochirus boettgerii as a model in the basic study on the mechanism, evolution and role of melanogenesis in animals, including human.
Collapse
|
248
|
Speck J, Räuber C, Kükenshöner T, Niemöller C, Mueller KJ, Schleberger P, Dondapati P, Hecky J, Arndt KM, Müller KM. TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation. Protein Eng Des Sel 2012; 26:225-42. [PMID: 23223941 DOI: 10.1093/protein/gzs098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Mou Y, Jiang X, Du Y, Xue L. Intelligent bioengineering in vitiligo treatment: Transdermal protein transduction of melanocyte-lineage-specific genes. Med Hypotheses 2012; 79:786-9. [DOI: 10.1016/j.mehy.2012.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/18/2012] [Accepted: 08/25/2012] [Indexed: 11/16/2022]
|
250
|
Son KH, Heo MY. The evaluation of depigmenting efficacy in the skin for the development of new whitening agents in Korea. Int J Cosmet Sci 2012; 35:9-18. [PMID: 23057843 DOI: 10.1111/ics.12012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/30/2012] [Indexed: 01/09/2023]
Abstract
In this review, the evaluation methods for the screening of depigmenting substrates were investigated. For this purpose, the evaluation method of tyrosinase, a key enzyme of melanin biosynthesis, is most frequently used, but evaluating methods based on the regulation of cellular signal transfer factors or the inhibition of melanosome transfer have also been developed. Evaluation of the depigmenting effect using melanocytes is complex. It has the advantage of being capable of analysing overall effects on melanin biosynthesis at cellular levels. Before the final clinical testing of depigmenting agents, in vitro testing should be conducted to confirm the depigmenting efficacy and safety. Clinical studies for depigmenting agents can be used to investigate the prevention of melanin biosynthesis and to determine whether melanin disappears from skin. Therefore, the most appropriate protocol has to be employed, depending on the mechanism of action of the depigmenting agent.
Collapse
Affiliation(s)
- K H Son
- Cosmetics Evaluation Division, Korea Food and Drug Administration, Osong Health Technology Administration Complex, 187 Osongsaengmyeong 2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, 363-700, Korea
| | | |
Collapse
|