201
|
Duffy PB, Field CB, Diffenbaugh NS, Doney SC, Dutton Z, Goodman S, Heinzerling L, Hsiang S, Lobell DB, Mickley LJ, Myers S, Natali SM, Parmesan C, Tierney S, Williams AP. Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science 2018; 363:science.aat5982. [DOI: 10.1126/science.aat5982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
Abstract
We assess scientific evidence that has emerged since the U.S. Environmental Protection Agency’s 2009 Endangerment Finding for six well-mixed greenhouse gases and find that this new evidence lends increased support to the conclusion that these gases pose a danger to public health and welfare. Newly available evidence about a wide range of observed and projected impacts strengthens the association between the risk of some of these impacts and anthropogenic climate change, indicates that some impacts or combinations of impacts have the potential to be more severe than previously understood, and identifies substantial risk of additional impacts through processes and pathways not considered in the Endangerment Finding.
Collapse
|
202
|
Allocation Mechanisms of Non-Structural Carbohydrates of Robinia pseudoacacia L. Seedlings in Response to Drought and Waterlogging. FORESTS 2018. [DOI: 10.3390/f9120754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Climate change is likely to lead to an increased frequency of droughts and floods, both of which are implicated in large-scale carbon allocation and tree mortality worldwide. Non-structural carbohydrates (NSCs) play an important role in tree survival under stress, but how NSC allocation changes in response to drought or waterlogging is still unclear. We measured soluble sugars (SS) and starch in leaves, twigs, stems and roots of Robinia pseudoacacia L. seedlings that had been subjected to a gradient in soil water availability from extreme drought to waterlogged conditions for a period of 30 days. Starch concentrations decreased and SS concentrations increased in tissues of R. pseudoacacia seedlings, such that the ratio of SS to starch showed a progressive increase under both drought and waterlogging stress. The strength of the response is asymmetric, with the largest increase occurring under extreme drought. While the increase in SS concentration in response to extreme drought is the largest in roots, the increase in the ratio of SS to starch is the largest in leaves. Individual components of SS showed different responses to drought and waterlogging across tissues: glucose concentrations increased significantly with drought in all tissues but showed little response to waterlogging in twigs and stems; sucrose and fructose concentrations showed marked increases in leaves and roots in response to drought but a greater response to drought and waterlogging in stems and twigs. These changes are broadly compatible with the roles of individual SS under conditions of water stress. While it is important to consider the role of NSC in buffering trees against mortality under stress, modelling this behaviour is unlikely to be successful unless it accounts for different responses within organs and the type of stress involved.
Collapse
|
203
|
Predicting impacts of climate variability on habitats of Hippophae salicifolia (D. Don) (Seabuckthorn) in Central Himalayas: Future challenges. ECOL INFORM 2018. [DOI: 10.1016/j.ecoinf.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
204
|
Sommerfeld A, Senf C, Buma B, D'Amato AW, Després T, Díaz-Hormazábal I, Fraver S, Frelich LE, Gutiérrez ÁG, Hart SJ, Harvey BJ, He HS, Hlásny T, Holz A, Kitzberger T, Kulakowski D, Lindenmayer D, Mori AS, Müller J, Paritsis J, Perry GLW, Stephens SL, Svoboda M, Turner MG, Veblen TT, Seidl R. Patterns and drivers of recent disturbances across the temperate forest biome. Nat Commun 2018; 9:4355. [PMID: 30341309 PMCID: PMC6195561 DOI: 10.1038/s41467-018-06788-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.
Collapse
Affiliation(s)
- Andreas Sommerfeld
- University of Natural Resources and Life Sciences (BOKU) Vienna, Institute of Silviculture, Peter Jordan Straße 82, 1190, Wien, Austria.
| | - Cornelius Senf
- University of Natural Resources and Life Sciences (BOKU) Vienna, Institute of Silviculture, Peter Jordan Straße 82, 1190, Wien, Austria
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Brian Buma
- Dept. of Integrative Biology, University of Colorado, 1151 Arapahoe, Denver, CO, 80204, USA
| | - Anthony W D'Amato
- University of Vermont, Rubenstein School of Environment and Natural Resources, Aiken Center Room 204E, Burlington, VT, 05495, USA
| | - Tiphaine Després
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 boulevard de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Ignacio Díaz-Hormazábal
- Facultad de Ciencias Agronómicas, Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Shawn Fraver
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, Maine, 04469, USA
| | - Lee E Frelich
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N., St.Paul, MN, 55108, USA
| | - Álvaro G Gutiérrez
- Facultad de Ciencias Agronómicas, Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Sarah J Hart
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Hong S He
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Andrés Holz
- Department of Geography, Portland State University, Portland, OR, 97201, USA
| | - Thomas Kitzberger
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Rio Negro, Argentina
| | - Dominik Kulakowski
- Clark University, Graduate School of Geography, Worcester, MA, 01602, USA
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Juan Paritsis
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Rio Negro, Argentina
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Scott L Stephens
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Monica G Turner
- Department of Integrative Biology, Birge Hall, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO, 80309, USA
| | - Rupert Seidl
- University of Natural Resources and Life Sciences (BOKU) Vienna, Institute of Silviculture, Peter Jordan Straße 82, 1190, Wien, Austria
| |
Collapse
|
205
|
Klockow PA, Vogel JG, Edgar CB, Moore GW. Lagged mortality among tree species four years after an exceptional drought in east Texas. Ecosphere 2018. [DOI: 10.1002/ecs2.2455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Paul A. Klockow
- Department of Ecosystem Science and Management; Texas A&M University; 495 Horticulture Road College Station Texas 77843 USA
| | - Jason G. Vogel
- School of Forest Resources and Conservation; University of Florida; 1745 McCarty Drive Gainesville Florida 32611 USA
| | - Christopher B. Edgar
- Department of Forest Resources; University of Minnesota; 1530 Cleveland Avenue North St. Paul Minnesota 55108 USA
| | - Georgianne W. Moore
- Department of Ecosystem Science and Management; Texas A&M University; 495 Horticulture Road College Station Texas 77843 USA
| |
Collapse
|
206
|
Clements CS, Hay ME. Overlooked coral predators suppress foundation species as reefs degrade. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1673-1682. [PMID: 30048025 PMCID: PMC6167153 DOI: 10.1002/eap.1765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 05/03/2023]
Abstract
Loss of larger consumers from stressed ecosystems can lead to trophic release of mid-level consumers that then impact foundation species, suppressing ecosystem function and resilience. For example, in coral reef ecosystems, outbreaks of coral predators like crown-of-thorns sea stars have been associated with fishing pressure and can dramatically impact the composition and persistence of corals. However, the ecological impacts, and consequences for management, of smaller, less obvious corallivores remain inadequately understood. We investigated whether reef state (coral vs. seaweed domination) influenced densities and size frequencies of the corallivorous gastropod Coralliophila violacea on its common host, the coral Porites cylindrica, within three pairs of small Marine Protected Areas (MPAs) and adjacent fished areas in Fiji. C. violacea densities were 5-35 times greater, and their size frequencies more broadly distributed, within seaweed-dominated fished areas than in adjacent MPAs dominated by corals. Tethering snails (4-9 mm in shell height) in place on their coral hosts indicated that suppression of snails in MPAs was due to predation, apparently by fishes. When tethered on the benthos (where they rarely occur), rather than on their host, mortality of larger snails (15.0-25.0 mm in shell height) was high in all areas, primarily due to hermit crabs killing them and occupying their shells. Because C. violacea is a sessile gastropod that feeds affixed to the base of corals and produces minimal visible damage, it has been considered a "prudent feeder" that minimally impacts its host coral. We assessed this over a 24-d feeding period in the field. Feeding by individual C. violacea reduced P. cylindrica growth by ~18-43% depending on snail size. Our findings highlight the considerable, but underappreciated, negative impacts of this common corallivore on degraded reefs. As reefs degrade and corals are lost, remaining corals (often species of Porites) may gain the full attention of elevated densities of coral consumers. This will further damage the remaining foundation species, suppressing the resilience of corals and enhancing the resilience of degraded, seaweed-dominated reefs.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| | - Mark E Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| |
Collapse
|
207
|
Liu N, Wang J, Guo Q, Wu S, Rao X, Cai X, Lin Z. Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:134-143. [PMID: 29800880 DOI: 10.1016/j.ecoenv.2018.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Globally, nitrogen deposition increment has caused forest structural changes due to imbalanced plant nitrogen metabolism and subsequent carbon assimilation. Here, a 2 consecutive-year experiment was conducted to reveal the effects of canopy addition of nitrogen (CAN) on nitrogen absorption, assimilation, and allocation in leaves of three subtropical forest woody species (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that CAN altered leaf nitrogen absorption, assimilation and partitioning of different plants in different ways in subtropical forest. It shows that CAN increased maximum photosynthetic rate (Amax), photosynthetic nitrogen use efficiency (PNUE), and metabolic protein content of the two understory species A. quinquegona and B. cochinchinensis. By contrary, for the overstory species, C. henryi, Amax, PNUE, and metabolic protein content were significantly reduced in response to CAN. We found that changes in leaf nitrogen metabolism were mainly due to the differences in enzyme (e.g. Ribulose-1,5-bisphosphate carboxylase, nitrate reductase, nitrite reductase and glutamine synthetase) activities under CAN treatment. Our results indicated that C. henryi may be more susceptible to CAN treatment, and both A. quinquegona and B. cochinchinensis could better adapt to CAN treatment but in different ways. Our findings may partially explain the ongoing degradation of subtropical forest into a community dominated by small trees and shrubs in recent decades. It is possible that persistent high levels of atmospheric nitrogen deposition will lead to the steady replacement of dominant woody species in this subtropical forest.
Collapse
Affiliation(s)
- Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jiaxin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qinfeng Guo
- USDA FS, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC 27709, USA
| | - Shuhua Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingquan Rao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xi'an Cai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhifang Lin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
208
|
Mathys A, Coops N, Simard S, Waring R, Aitken S. Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
209
|
Curtis PS, Gough CM. Forest aging, disturbance and the carbon cycle. THE NEW PHYTOLOGIST 2018; 219:1188-1193. [PMID: 29767850 DOI: 10.1111/nph.15227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1188 I. Introduction 1188 II. Forest aging and carbon storage 1189 III. Successional trends of NEP in northern deciduous forests 1190 IV. Mechanisms sustaining NEP in aging deciduous forests 1191 Acknowledgements 1192 References 1192 SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems.
Collapse
Affiliation(s)
- Peter S Curtis
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Christopher M Gough
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
210
|
Feng X, Ackerly DD, Dawson TE, Manzoni S, Skelton RP, Vico G, Thompson SE. The ecohydrological context of drought and classification of plant responses. Ecol Lett 2018; 21:1723-1736. [DOI: 10.1111/ele.13139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Xue Feng
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis MN USA
| | - David D. Ackerly
- Department of Integrative Biology University of California Berkeley CA USA
| | - Todd E. Dawson
- Department of Integrative Biology University of California Berkeley CA USA
- Department of Environmental Sciences, Policy, and Management University of California Berkeley CA USA
| | - Stefano Manzoni
- Department of Physical Geography Stockholm University Stockholm Sweden
- Bolin Centre for Climate Research Stockholm Sweden
| | - Rob P. Skelton
- Department of Integrative Biology University of California Berkeley CA USA
| | - Giulia Vico
- Department of Crop Production Ecology Swedish University of Agricultural Sciences (SLU) Uppsala Sweden
| | - Sally E. Thompson
- Department of Civil and Environmental Engineering University of California Berkeley CA USA
| |
Collapse
|
211
|
Development of a New TRIPLEX-Insect Model for Simulating the Effect of Spruce Budworm on Forest Carbon Dynamics. FORESTS 2018. [DOI: 10.3390/f9090513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.
Collapse
|
212
|
Haynes KJ, Tardif JC, Parry D. Drought and surface‐level solar radiation predict the severity of outbreaks of a widespread defoliating insect. Ecosphere 2018. [DOI: 10.1002/ecs2.2387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kyle J. Haynes
- The Blandy Experimental Farm University of Virginia 400 Blandy Farm Lane Boyce Virginia 22620 USA
| | - Jacques C. Tardif
- Centre for Forest Interdisciplinary Research University of Winnipeg 515 Portage Avenue Winnipeg Manitoba R3B 2E9 Canada
| | - Dylan Parry
- College of Environmental Science and Forestry State University of New York 1 Forestry Drive, Syracuse New York 13210 USA
| |
Collapse
|
213
|
Leite MCA, Chen-Charpentier B, Agusto FB. Maximizing tree harvesting benefit from forests under insect infestation disturbances. PLoS One 2018; 13:e0200575. [PMID: 30071047 PMCID: PMC6071987 DOI: 10.1371/journal.pone.0200575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/01/2018] [Indexed: 11/18/2022] Open
Abstract
Mathematical modeling has been recognized as an important tool to advance the understanding of the synergetic effect of coupled disturbances (stressors) on the forest population dynamics. Nonetheless, most of the modeling done on disturbances focus on individual disturbance agents and the modeling research on disturbances interactions uses predominantly descriptive statistical processes. This state of art points to the need for continuing modeling efforts not only for addressing the link among multiple disturbances but also for incorporating disturbance processes. In this paper, we present an age-structured forest-beetle mechanistic model with tree harvesting. We investigate three scenarios involving the beetles equilibrium states (no beetles, beetles in endemic and epidemic states). Optimal control theory was applied to study three different benefit functions involving healthy and dead trees. The numerical simulations show that maintaining the beetle infestation at endemic level instead of eliminating all the beetles is sufficient to ensure the forest has trees with all ages. Furthermore, the numerical simulations shows that the harvesting benefit decreases as the number of beetles increases in all cases except when the benefit functional includes a cost (ecological and harvest implementation) and the value of wood is equal across all trees (healthy harvested trees, trees killed by beetles, and trees that die naturally).
Collapse
Affiliation(s)
- Maria C. A. Leite
- Mathematics and Statistics, University of South Florida St. Petersburg, St. Petersburg, Florida, United States of America
- * E-mail:
| | | | - Folashade B. Agusto
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
214
|
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F, Fisher R, Fontes CG, Galbraith D, Goodsman D, Grossiord C, Hartmann H, Holm J, Johnson DJ, Kassim AR, Keller M, Koven C, Kueppers L, Kumagai T, Malhi Y, McMahon SM, Mencuccini M, Meir P, Moorcroft P, Muller-Landau HC, Phillips OL, Powell T, Sierra CA, Sperry J, Warren J, Xu C, Xu X. Drivers and mechanisms of tree mortality in moist tropical forests. THE NEW PHYTOLOGIST 2018; 219:851-869. [PMID: 29451313 DOI: 10.1111/nph.15027] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
Collapse
Affiliation(s)
- Nate McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Craig D Allen
- US Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Kristina Anderson-Teixeira
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Paulo Brando
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA, 02450, USA
- Instituto de Pesquisa Ambiental de Amazonia, Lago Norte, Brasilia, Brazil
| | - Roel Brienen
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jeff Chambers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brad Christoffersen
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Stuart Davies
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Chris Doughty
- SICCS, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Alvaro Duque
- Departmento de Ciencias Forestales, Universidad Nacional de Columbia, Medellín, Columbia
| | | | - Rosie Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Clarissa G Fontes
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - David Galbraith
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Devin Goodsman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - Jennifer Holm
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Abd Rahman Kassim
- Geoinformation Programme, Forestry and Environment Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Michael Keller
- International Institute of Tropical Forestry, USDA Jardin Botanico Sur, 1201 Calle Ceiba, San Juan, 00926, Puerto Rico
- Embrapa Agricultural Informatics, Parque Estacao Biologica, Brasilia DF, 70770, Brazil
- Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Charlie Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lara Kueppers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, CA, 94720, USA
| | - Tomo'omi Kumagai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 2JD, UK
| | - Sean M McMahon
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Maurizio Mencuccini
- ICREA, CREAF, University of Barcelona, Gran Via de les Corts Catalenes, 585 08007, Barcelona, Spain
| | - Patrick Meir
- Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | | | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, República de Panamá
| | - Oliver L Phillips
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas Powell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Carlos A Sierra
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - John Sperry
- University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeff Warren
- Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Chonggang Xu
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Xiangtao Xu
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
215
|
McDowell NG. Deriving pattern from complexity in the processes underlying tropical forest drought impacts. THE NEW PHYTOLOGIST 2018; 219:841-844. [PMID: 29998534 DOI: 10.1111/nph.15341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
216
|
Simulating Climate Change Impacts on Hybrid-Poplar and Black Locust Short Rotation Coppices. FORESTS 2018. [DOI: 10.3390/f9070419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Brandenburg, north-eastern Germany, climate change is associated with increasing annual temperatures and decreasing summer precipitation. Appraising short rotation coppices (SRCs), given their long-time planning horizon demands for systematic assessments of woody biomass production under a considerable spectrum of climate change prospects. This paper investigates the prospective growth sensitivity of poplar and black locust SRCs, established in Brandenburg to a variety of weather conditions and long-term climate change, from 2015 to 2054, by a combined experimental and simulation study. The analysis employed (i) a biophysical, process-based model to simulate the daily tree growth and (ii) 100 realisations of the statistical regional climate model STAR 2K. In the last growing period, the simulations showed that the assumed climate change could lead to a decrease in the woody biomass of about 5 Mg ha−1 (18%) for poplar and a decrease of about 1.7 Mg ha−1 (11%) for black locust trees with respect to the median observed in the reference period. The findings corroborate the potential tree growth vulnerability to prospective climatic changes, particularly to changes in water availability and underline the importance of coping management strategies in SRCs for forthcoming risk assessments and adaptation scenarios.
Collapse
|
217
|
Gessler A, Cailleret M, Joseph J, Schönbeck L, Schaub M, Lehmann M, Treydte K, Rigling A, Timofeeva G, Saurer M. Drought induced tree mortality - a tree-ring isotope based conceptual model to assess mechanisms and predispositions. THE NEW PHYTOLOGIST 2018; 219:485-490. [PMID: 29626352 DOI: 10.1111/nph.15154] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Arthur Gessler
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Maxime Cailleret
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Jobin Joseph
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Marco Lehmann
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Kerstin Treydte
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Galina Timofeeva
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zuercherstr. 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
218
|
Cumulative Drought Stress Leads to a Loss of Growth Resilience and Explains Higher Mortality in Planted than in Naturally Regenerated Pinus pinaster Stands. FORESTS 2018. [DOI: 10.3390/f9060358] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
219
|
Bell DM, Cohen WB, Reilly M, Yang Z. Visual interpretation and time series modeling of Landsat imagery highlight drought's role in forest canopy declines. Ecosphere 2018. [DOI: 10.1002/ecs2.2195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- David M. Bell
- United States Department of Agriculture, Forest Service; Pacific Northwest Research Station; Corvallis Oregon 97331 USA
| | - Warren B. Cohen
- United States Department of Agriculture, Forest Service; Pacific Northwest Research Station; Corvallis Oregon 97331 USA
| | - Matthew Reilly
- Department of Forest Ecosystems and Society; College of Forestry; Oregon State University; Corvallis Oregon 97331 USA
- Department of Biological Sciences; College of Natural Resources and Sciences; Humboldt State University; Arcata California 95521 USA
| | - Zhiqiang Yang
- Department of Forest Ecosystems and Society; College of Forestry; Oregon State University; Corvallis Oregon 97331 USA
| |
Collapse
|
220
|
Rogers BM, Solvik K, Hogg EH, Ju J, Masek JG, Michaelian M, Berner LT, Goetz SJ. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. GLOBAL CHANGE BIOLOGY 2018; 24:2284-2304. [PMID: 29481709 DOI: 10.1111/gcb.14107] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/12/2018] [Indexed: 05/19/2023]
Abstract
Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems.
Collapse
Affiliation(s)
| | | | - Edward H Hogg
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada
| | - Junchang Ju
- Biospheric Science Laboratory (Code 618), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jeffrey G Masek
- Biospheric Science Laboratory (Code 618), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Michael Michaelian
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada
| | - Logan T Berner
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Scott J Goetz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
221
|
Davis KT, Higuera PE, Sala A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimberley T. Davis
- Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana
| | - Philip E. Higuera
- Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana
| | - Anna Sala
- Division of Biological Sciences University of Montana Missoula Montana
| |
Collapse
|
222
|
Bechtold U, Ferguson JN, Mullineaux PM. To defend or to grow: lessons from Arabidopsis C24. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2809-2821. [PMID: 29562306 DOI: 10.1093/jxb/ery106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The emergence of Arabidopsis as a model species and the availability of genetic and genomic resources have resulted in the identification and detailed characterization of abiotic stress signalling pathways. However, this has led only to limited success in engineering abiotic stress tolerance in crops. This is because there needs to be a deeper understanding of how to combine resistances to a range of stresses with growth and productivity. The natural variation and genomic resources of Arabidopsis thaliana (Arabidopsis) are a great asset to understand the mechanisms of multiple stress tolerances. One natural variant in Arabidopsis is the accession C24, and here we provide an overview of the increasing research interest in this accession. C24 is highlighted as a source of tolerance for multiple abiotic and biotic stresses, and a key accession to understand the basis of basal immunity to infection, high water use efficiency, and water productivity. Multiple biochemical, physiological, and phenological mechanisms have been attributed to these traits in C24, and none of them constrains productivity. Based on the uniqueness of C24, we postulate that the use of variation derived from natural selection in undomesticated species provides opportunities to better understand how complex environmental stress tolerances and resource use efficiency are co-ordinated.
Collapse
Affiliation(s)
- Ulrike Bechtold
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Philip M Mullineaux
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| |
Collapse
|
223
|
Kollas C, Gutsch M, Hommel R, Lasch-Born P, Suckow F. Mistletoe-induced growth reductions at the forest stand scale. TREE PHYSIOLOGY 2018; 38:735-744. [PMID: 29190390 DOI: 10.1093/treephys/tpx150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The hemiparasite European mistletoe (Viscum album L.) adversely affects growth and reproduction of the host Scots pine (Pinus sylvestris L.) and in consequence may lead to tree death. Here, we aimed to estimate mistletoe-induced losses in timber yield applying the process-based forest growth model 4C. The parasite was implemented into the eco-physiological forest growth model 4C using (literature-derived) established impacts of the parasite on the tree's water and carbon cycle. The amended model was validated simulating a sample forest stand in the Berlin area (Germany) comprising trees with and without mistletoe infection. At the same forest stand, tree core measurements were taken to evaluate simulated and observed growth. A subsample of trees were harvested to quantify biomass compartments of the tree canopy and to derive a growth function of the mistletoe population. The process-based simulations of the forest stand revealed 27% reduction in basal area increment (BAI) during the last 9 years of heavy infection, which was confirmed by the measurements (29% mean growth reduction). The long-term simulations of the forest stand before and during the parasite infection showed that the amended forest growth model 4C depicts well the BAI growth pattern during >100 years and also quantifies well the mistletoe-induced growth reductions in Scots pine stands.
Collapse
Affiliation(s)
- Chris Kollas
- Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam, Germany
| | - Martin Gutsch
- Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam, Germany
| | - Robert Hommel
- Eberswalde University of Sustainable Development, Schicklerstraße 5, 16225 Eberswalde, Germany
| | - Petra Lasch-Born
- Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam, Germany
| | - Felicitas Suckow
- Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam, Germany
| |
Collapse
|
224
|
Lloret F, Kitzberger T. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. GLOBAL CHANGE BIOLOGY 2018; 24:1952-1964. [PMID: 29316042 DOI: 10.1111/gcb.14039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic-core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972-2000) and during an extreme event (2001-2007), when the compound effect of hot drought and bark beetle infestation caused widespread die-off and mortality. Pinus edulis climatic suitability diminished dramatically during the die-off period, with remarkable variation between years. P. edulis die-off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range-wide mortality. Lagged effects of climatic suitability loss in previous years and co-occurrence of Juniperus monosperma also explained P. edulis die-off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change.
Collapse
Affiliation(s)
- Francisco Lloret
- CREAF Cerdanyola del Vallès, Bellaterra, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA-CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
225
|
Carlos L. Ballaré. THE NEW PHYTOLOGIST 2018; 218:898-900. [PMID: 29658635 DOI: 10.1111/nph.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
226
|
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, Cobb R, Gessler A, Grams TEE, Jansen S, Kautz M, Lloret F, O'Brien M. Research frontiers for improving our understanding of drought-induced tree and forest mortality. THE NEW PHYTOLOGIST 2018; 218:15-28. [PMID: 29488280 DOI: 10.1111/nph.15048] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| | - Catarina F Moura
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
- Faculty of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, 2829-516, Caparica, Portugal
- Centre for Functional Ecology, Department of Life Sciences, Universilty of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | | | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Yann Salmon
- School of Geosciences, University of Edinburgh, Crew Building, The Kings Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, 00014, Helsinki, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, 00014, Helsinki, Finland
| | - Craig D Allen
- US Geological Survey, Fort Collins Science Centre, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, 3121, Vic., Australia
| | - David D Breshears
- School of Natural Resources and the Environment and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hendrik Davi
- INRA, URFM Ecologie des Forest Méditerranéennes, Domaine Saint Paul, Site Agroparc, 84914, Avignon Cedex 9, France
| | - David Galbraith
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Katinka X Ruthrof
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA, 6005, Australia
| | - Jan Wunder
- Insubric Ecosystems Research Group, Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, a Ramèl 18, CH-6593, Cadenazzo, Switzerland
- Tree-Ring Laboratory, School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Henry D Adams
- Department of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jasper Bloemen
- Institute of Ecology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
- Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Maxime Cailleret
- Forest Ecology, Department of Environmental Sciences, ETH Zürich. ETH-Zentrum, CHN G77, Universitätstrasse 16, CH-8092, Zürich, Switzerland
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Richard Cobb
- Department of Natural Resources and Environmental Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Thorsten E E Grams
- Ecophysiology of Plants, Technical University of Munich, Von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Markus Kautz
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Francisco Lloret
- CREAF - Centre for Ecological Research and Applied Forestry, Cerdanyola del Vallès, Barcelona, Spain
- Unitat d'Ecologia, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona, Edifici C, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Michael O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, E-04120 La Cañada, Almería, Spain
| |
Collapse
|
227
|
Hülsmann L, Bugmann H, Cailleret M, Brang P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:522-540. [PMID: 29266516 DOI: 10.1002/eap.1668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating forest succession and species range dynamics under current and future conditions based on mathematical representations of the three key processes regeneration, growth, and mortality. However, mortality formulations in DVMs are typically coarse and often lack an empirical basis, which increases the uncertainty of projections of future forest dynamics and hinders their use for developing adaptation strategies to climate change. Thus, sound tree mortality models are highly needed. We developed parsimonious, species-specific mortality models for 18 European tree species using >90,000 records from inventories in Swiss and German strict forest reserves along a considerable environmental gradient. We comprehensively evaluated model performance and incorporated the new mortality functions in the dynamic forest model ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few species required additional covariates in their final model to consider aspects of stand structure or climate. The relationships between mortality and its predictors reflect the indirect influences of resource availability and tree vitality, which are further shaped by species-specific attributes such as maximum longevity and shade tolerance. Considering that the behavior of the models was biologically meaningful, and that their performance was reasonably high and not impacted by changes in the sampling design, we suggest that the mortality algorithms developed here are suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality functions resulted in simulations of stand basal area and species composition that were generally close to historical observations. However, ForClim performance was poorer than when using the original, coarse mortality formulation. The difficulties of simulating stand structure and species composition, which were most evident for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between simulated growth and mortality as well as from extrapolation to very small and very large trees. Growth and mortality processes and their species-specific differences should thus be revisited jointly, with a particular focus on small and very large trees in relation to their shade tolerance.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Maxime Cailleret
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Forest Dynamics, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Peter Brang
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
228
|
Buma B. Transitional climate mortality: slower warming may result in increased climate‐induced mortality in some systems. Ecosphere 2018. [DOI: 10.1002/ecs2.2170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Brian Buma
- Department of Natural Sciences University of Alaska Southeast Juneau Alaska 99801 USA
| |
Collapse
|
229
|
Nolan RH, Sinclair J, Eldridge DJ, Ramp D. Biophysical risks to carbon sequestration and storage in Australian drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 208:102-111. [PMID: 29248786 DOI: 10.1016/j.jenvman.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market.
Collapse
Affiliation(s)
- Rachael H Nolan
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Jennifer Sinclair
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; GreenCollar, The Rocks, Sydney, NSW 2000, Australia
| | - David J Eldridge
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
230
|
Agne MC, Beedlow PA, Shaw DC, Woodruff DR, Lee EH, Cline SP, Comeleo RL. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A. FOREST ECOLOGY AND MANAGEMENT 2018; 409:317-332. [PMID: 29290644 PMCID: PMC5746199 DOI: 10.1016/j.foreco.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology. Although the physiological constraints of light, temperature, and moisture largely control tree growth, episodic and chronic disturbances interacting with biological factors have substantial impacts on the structure and functioning of forest ecosystems in this region. Understanding insect and disease interactions is critical to predicting forest response to climate change and the consequences for ecosystem services, such as timber, clean water, fish and wildlife. We focused on future predictions for warmer wetter winters, hotter drier summers, and elevated atmospheric CO2 to hypothesize the response of Douglas-fir forests to the major insects and diseases influencing this forest type: Douglas-fir beetle, Swiss needle cast, black stain root disease, and laminated root rot. We hypothesize that 1) Douglas-fir beetle and black stain root disease could become more prevalent with increasing, fire, temperature stress, and moisture stress, 2) future impacts of Swiss needle cast are difficult to predict due to uncertainties in May-July leaf wetness, but warmer winters could contribute to intensification at higher elevations, and 3) laminated root rot will be influenced primarily by forest management, rather than climatic change. Furthermore, these biotic disturbance agents interact in complex ways that are poorly understood. Consequently, to inform management decisions, insect and disease influences on disturbance regimes must be characterized specifically by forest type and region in order to accurately capture these interactions in light of future climate-mediated changes.
Collapse
Affiliation(s)
- Michelle C. Agne
- Department of Forest Engineering, Resources, and Management, Oregon State University, 280 Peavy Hall, Corvallis, Oregon, 97331, USA
| | - Peter A. Beedlow
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon, 97333, USA
| | - David C. Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, 280 Peavy Hall, Corvallis, Oregon, 97331, USA
| | - David R. Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, Oregon, 97333, USA
| | - E. Henry Lee
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon, 97333, USA
| | - Steven P. Cline
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon, 97333, USA
| | - Randy L. Comeleo
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon, 97333, USA
| |
Collapse
|
231
|
Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. GLOBAL CHANGE BIOLOGY 2018; 24:655-667. [PMID: 28762590 DOI: 10.1111/gcb.13855] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/24/2017] [Indexed: 05/25/2023]
Abstract
Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has been done to partition and estimate their relative contributions to growth declines. In this study, we combined tree-ring width and basal area increment series from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada and attempted to investigate the effect of drought and insect outbreaks on growth decline, and simultaneously partition and quantify their relative contributions. Results indicated that the influence of drought on forest decline was stronger than insect outbreaks, although both had significant effects. Furthermore, the influence of drought and insect outbreaks showed spatiotemporal variability. In addition, our data suggest that insect outbreaks could be triggered by warmer early spring temperature instead of drought, implicating that potentially increased insect outbreaks are expected with continued warming springs, which may further exacerbate growth decline and death in North America aspen mixed forests.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Andria Dawson
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kenneth J Stadt
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Philip G Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Caroline Whitehouse
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| |
Collapse
|
232
|
Cailleret M, Dakos V, Jansen S, Robert EMR, Aakala T, Amoroso MM, Antos JA, Bigler C, Bugmann H, Caccianaga M, Camarero JJ, Cherubini P, Coyea MR, Čufar K, Das AJ, Davi H, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Hereş AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Levanic T, Linares JC, Lombardi F, Mäkinen H, Mészáros I, Metsaranta JM, Oberhuber W, Papadopoulos A, Petritan AM, Rohner B, Sangüesa-Barreda G, Smith JM, Stan AB, Stojanovic DB, Suarez ML, Svoboda M, Trotsiuk V, Villalba R, Westwood AR, Wyckoff PH, Martínez-Vilalta J. Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:1964. [PMID: 30713543 PMCID: PMC6346433 DOI: 10.3389/fpls.2018.01964] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/18/2018] [Indexed: 05/22/2023]
Abstract
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
Collapse
Affiliation(s)
- Maxime Cailleret
- Department of Environmental Systems Science, Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research – WSL, Birmensdorf, Switzerland
- *Correspondence: Maxime Cailleret,
| | - Vasilis Dakos
- CNRS, IRD, EPHE, ISEM, Université de Montpellier, Montpellier, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Elisabeth M. R. Robert
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren, Belgium
| | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Mariano M. Amoroso
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Patagonia Norte, Río Negro, Argentina
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Sede Andina, Universidad Nacional de Río Negro, Río Negro, Argentina
| | - Joe A. Antos
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Harald Bugmann
- Department of Environmental Systems Science, Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Marco Caccianaga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Paolo Cherubini
- Swiss Federal Institute for Forest, Snow and Landscape Research – WSL, Birmensdorf, Switzerland
| | - Marie R. Coyea
- Centre for Forest Research, Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, Canada
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Adrian J. Das
- United States Geological Survey, Western Ecological Research Center, Sequoia and Kings Canyon Field Station, Three Rivers, CA, United States
| | - Hendrik Davi
- Ecologie des Forêts Méditerranéennes (URFM), Institut National de la Recherche Agronomique, Avignon, France
| | - Guillermo Gea-Izquierdo
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sten Gillner
- Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
| | - Laurel J. Haavik
- USDA Forest Service, Forest Health Protection, Saint Paul, MN, United States
- Department of Entomology, University of Arkansas, Fayetteville, AR, United States
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Brasov, Brașov, Romania
- BC3 – Basque Centre for Climate Change, Leioa, Spain
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, United States
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Jeffrey M. Kane
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, United States
| | - Viachelsav I. Kharuk
- Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Thomas Kitzberger
- Department of Ecology, Universidad Nacional del Comahue, Río Negro, Argentina
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Negro, Argentina
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Levanic
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Juan-Carlos Linares
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
| | - Fabio Lombardi
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Harri Mäkinen
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Juha M. Metsaranta
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Papadopoulos
- Department of Forestry and Natural Environment Management, Technological Educational Institute of Stereas Elladas, Karpenisi, Greece
| | - Any Mary Petritan
- Swiss Federal Institute for Forest, Snow and Landscape Research – WSL, Birmensdorf, Switzerland
- National Institute for Research and Development in Forestry “Marin Dracea”, Voluntari, Romania
| | - Brigitte Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research – WSL, Birmensdorf, Switzerland
| | | | - Jeremy M. Smith
- Department of Geography, University of Colorado, Boulder, CO, United States
| | - Amanda B. Stan
- Department of Geography, Planning and Recreation, Northern Arizona University, Flagstaff, AZ, United States
| | - Dejan B. Stojanovic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Maria-Laura Suarez
- Grupo Ecología Forestal, CONICET – INTA, EEA Bariloche, Bariloche, Argentina
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research – WSL, Birmensdorf, Switzerland
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Ricardo Villalba
- Laboratorio de Dendrocronología e Historia Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT CONICET Mendoza, Mendoza, Argentina
| | - Alana R. Westwood
- Boreal Avian Modelling Project, Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Peter H. Wyckoff
- Department of Biology, University of Minnesota, Morris, Morris, MN, United States
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
- Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
233
|
Cobb RC, Ruthrof KX, Breshears DD, Lloret F, Aakala T, Adams HD, Anderegg WRL, Ewers BE, Galiano L, Grünzweig JM, Hartmann H, Huang CY, Klein T, Kunert N, Kitzberger T, Landhäusser SM, Levick S, Preisler Y, Suarez ML, Trotsiuk V, Zeppel MJB. Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models. Ecosphere 2017. [DOI: 10.1002/ecs2.2034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Richard C. Cobb
- Natural Resources Management & Environmental Sciences Department; California State Polytechnic University; San Luis Obispo California 93407 USA
| | - Katinka X. Ruthrof
- School of Veterinary and Life Sciences; Murdoch University; 90 South Street Perth Western Australia 6150 Australia
- Botanic Gardens and Parks Authority; Perth Western Australia 6005 Australia
| | - David D. Breshears
- School of Natural Resources and the Environment, and Department of Ecology and Evolutionary Biology; University of Arizona; 1064 East Lowell Street Tucson Arizona 85721 USA
| | - Francisco Lloret
- Center of Ecological Research and Forestry Applications (CREAF); Universitat Autònoma of Barcelona; Edifici C, Campus UAB, 08193 Bellaterra 26 Barcelona Spain
| | - Tuomas Aakala
- Department of Forest Sciences; University of Helsinki; Latokartanonkaari 7 Helsinki FI-00014 Finland
| | - Henry D. Adams
- Department of Plant Biology, Ecology, and Evolution; Oklahoma State University; 301 Physical Sciences Stillwater Oklahoma 74074 USA
| | | | - Brent E. Ewers
- Department of Botany and Program in Ecology and Wyoming EPSCoR; University of Wyoming; Laramie Wyoming 82071 USA
| | | | - José M. Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; P.O. Box 12 Rehovot Israel
| | - Henrik Hartmann
- Department of Biogeochemical Processes; Max-Planck Institute for Biogeochemistry; Hans Knöll Strasse 10 Jena 07745 Germany
| | - Cho-ying Huang
- Department of Geography; National Taiwan University; 1 Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Tamir Klein
- Weizmann Institute of Science; Rehovot 76100 Israel
| | - Norbert Kunert
- University of Freiburg; Tennenbacherstrasse 4 Freiburg 79106 Germany
| | - Thomas Kitzberger
- Departamento de Ecología; INIBIOMA-CONICET; Universidad Nacional del Comahue; Quintral 1250 Bariloche 8400 Argentina
| | - Simon M. Landhäusser
- Department of Renewable Resources; University of Alberta; Edmonton Alberta T6G 2E3 Canada
| | - Shaun Levick
- Department of Biogeochemical Processes; Max-Planck Institute for Biogeochemistry; Hans Knöll Strasse 10 Jena 07745 Germany
- Research Institute for the Environment and Livelihoods; Charles Darwin University; Darwin Northern Territory 0909 Australia
| | - Yakir Preisler
- Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; P.O. Box 12 Rehovot Israel
- Department of Earth and Planetary Science; Weizmann Institute of Science; Herzl St 234 Rehovot 7610001 Israel
| | - Maria L. Suarez
- INIBIOMA-Universidad Nacionaldel Comahue; Quintral 1250 Bariloche 8400 Argentina
| | - Volodymyr Trotsiuk
- Faculty of Forestry and Wood Sciences; Czech University of Life Sciences Prague; Kamycka 129 Prague 16521 Czech Republic
| | - Melanie J. B. Zeppel
- Faculty of Pharmacy; University of Sydney; Camperdown New South Wales 2006 Australia
| |
Collapse
|
234
|
Paz-Kagan T, Brodrick PG, Vaughn NR, Das AJ, Stephenson NL, Nydick KR, Asner GP. What mediates tree mortality during drought in the southern Sierra Nevada? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2443-2457. [PMID: 28871610 DOI: 10.1002/eap.1620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Severe drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park. Our aims were (1) to quantify site-specific conditions that mediate tree mortality along an elevation gradient in the southern Sierra Nevada Mountains, (2) to assess where mortality events have a greater probability of occurring, and (3) to estimate which tree species have a greater likelihood of mortality along the elevation gradient. A series of statistical models were generated to classify species composition and identify tree mortality, and the influences of different environmental factors were spatially quantified and analyzed to assess where mortality events have a greater likelihood of occurring. A higher probability of mortality was observed in the lower portion of the elevation gradient, on southwest- and west-facing slopes, in areas with shallow soils, on shallower slopes, and at greater distances from water. All of these factors are related to site water balance throughout the landscape. Our results also suggest that mortality is species-specific along the elevation gradient, mainly affecting Pinus ponderosa and Pinus lambertiana at lower elevations. Selective mortality within the forest may drive long-term shifts in community composition along the elevation gradient.
Collapse
Affiliation(s)
- Tarin Paz-Kagan
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Philip G Brodrick
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Nicholas R Vaughn
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, 93271, USA
| | - Nathan L Stephenson
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, 93271, USA
| | - Koren R Nydick
- Sequoia and Kings Canyon National Parks, Three Rivers, California, 93271, USA
| | - Gregory P Asner
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
| |
Collapse
|
235
|
Zhu Z, Piao S, Lian X, Myneni RB, Peng S, Yang H. Attribution of seasonal leaf area index trends in the northern latitudes with "optimally" integrated ecosystem models. GLOBAL CHANGE BIOLOGY 2017; 23:4798-4813. [PMID: 28417528 DOI: 10.1111/gcb.13723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Significant increases in remotely sensed vegetation indices in the northern latitudes since the 1980s have been detected and attributed at annual and growing season scales. However, we presently lack a systematic understanding of how vegetation responds to asymmetric seasonal environmental changes. In this study, we first investigated trends in the seasonal mean leaf area index (LAI) at northern latitudes (north of 30°N) between 1982 and 2009 using three remotely sensed long-term LAI data sets. The most significant LAI increases occurred in summer (0.009 m2 m-2 year-1 , p < .01), followed by autumn (0.005 m2 m-2 year-1 , p < .01) and spring (0.003 m2 m-2 year-1 , p < .01). We then quantified the contribution of elevating atmospheric CO2 concentration (eCO2 ), climate change, nitrogen deposition, and land cover change to seasonal LAI increases based on factorial simulations from 10 state-of-the-art ecosystem models. Unlike previous studies that used multimodel ensemble mean (MME), we used the Bayesian model averaging (BMA) to optimize the integration of model ensemble. The optimally integrated ensemble LAI changes are significantly closer to the observed seasonal LAI changes than the traditional MME results. The BMA factorial simulations suggest that eCO2 provides the greatest contribution to increasing LAI trends in all seasons (0.003-0.007 m2 m-2 year-1 ), and is the main factor driving asymmetric seasonal LAI trends. Climate change controls the spatial pattern of seasonal LAI trends and dominates the increase in seasonal LAI in the northern high latitudes. The effects of nitrogen deposition and land use change are relatively small in all seasons (around 0.0002 m2 m-2 year-1 and 0.0001-0.001 m2 m-2 year-1 , respectively). Our analysis of the seasonal LAI responses to the interactions between seasonal changes in environmental factors offers a new perspective on the response of global vegetation to environmental changes.
Collapse
Affiliation(s)
- Zaichun Zhu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, CAS Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Xu Lian
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hui Yang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
236
|
Ferrenberg S, Langenhan JM, Loskot SA, Rozal LM, Mitton JB. Resin monoterpene defenses decline within three widespread species of pine (Pinus) along a 1530-m elevational gradient. Ecosphere 2017. [DOI: 10.1002/ecs2.1975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Scott Ferrenberg
- Department of Biology; New Mexico State University; Las Cruces New Mexico 88003 USA
| | | | - Steven A. Loskot
- Department of Chemistry; Seattle University; Seattle Washington 98122 USA
| | - Leonardo M. Rozal
- Department of Chemistry; Seattle University; Seattle Washington 98122 USA
| | - Jeffry B. Mitton
- Department of Ecology and Evolutionary Biology; University of Colorado; Boulder Colorado 80309 USA
| |
Collapse
|
237
|
Skelton RP, Brodribb TJ, McAdam SAM, Mitchell PJ. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. THE NEW PHYTOLOGIST 2017; 215:1399-1412. [PMID: 28620915 DOI: 10.1111/nph.14652] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/08/2017] [Indexed: 05/26/2023]
Abstract
Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions.
Collapse
Affiliation(s)
- Robert P Skelton
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | | |
Collapse
|
238
|
Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. GLOBAL CHANGE BIOLOGY 2017; 23:3742-3757. [PMID: 28135022 DOI: 10.1111/gcb.13636] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 05/25/2023]
Abstract
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Collapse
Affiliation(s)
- Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Paloma Ruiz-Benito
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- Forest Ecology and Restoration Group, Department of Life Sciences, Science Building, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Sarah Greenwood
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
| | - Craig D Allen
- U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, 8400, Río Negro, Argentina
| | - Rod Fensham
- Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Road, Toowong, Qld, 4066, Australia
- School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Jordi Martínez-Vilalta
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Francisco Lloret
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| |
Collapse
|
239
|
Galiano L, Timofeeva G, Saurer M, Siegwolf R, Martínez-Vilalta J, Hommel R, Gessler A. The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. PLANT, CELL & ENVIRONMENT 2017; 40:1711-1724. [PMID: 28432768 DOI: 10.1111/pce.12972] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Carbon reserves are important for maintaining tree function during and after stress. Increasing tree mortality driven by drought globally has renewed the interest in how plants regulate allocation of recently fixed C to reserve formation. Three-year-old seedlings of two species (Tilia platyphyllos and Pinus sylvestris) were exposed to two intensities of experimental drought during ~10 weeks, and 13 C pulse labelling was subsequently applied with rewetting. Tracking the 13 C label across different organs and C compounds (soluble sugars, starch, myo-inositol, lipids and cellulose), together with the monitoring of gas exchange and C mass balances over time, allowed for the identification of variations in C allocation priorities and tree C balances that are associated with drought effects and subsequent drought release. The results demonstrate that soluble sugars accumulated in P. sylvestris under drought conditions independently of growth trends; thus, non-structural carbohydrates (NSC) formation cannot be simply considered a passive overflow process in this species. Once drought ceased, C allocation to storage was still prioritized at the expense of growth, which suggested the presence of 'drought memory effects', possibly to ensure future growth and survival. On the contrary, NSC and growth dynamics in T. platyphyllos were consistent with a passive (overflow) view of NSC formation.
Collapse
Affiliation(s)
- Lucía Galiano
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Institute of Hydrology, University of Freiburg, Freiburg, D-79098, Germany
| | - Galina Timofeeva
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, CH-8092, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
| | - Rolf Siegwolf
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, E-08193, Spain
- Autonomous University of Barcelona UAB, Cerdanyola del Vallès, E-08193, Spain
| | - Robert Hommel
- Eberswalde University of Sustainable Development, Schicklerstraße 5, 16225, Eberswalde, Germany
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
240
|
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin JM, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 2017; 1:1285-1291. [DOI: 10.1038/s41559-017-0248-x] [Citation(s) in RCA: 546] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
241
|
Meinzer FC, Smith DD, Woodruff DR, Marias DE, McCulloh KA, Howard AR, Magedman AL. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. PLANT, CELL & ENVIRONMENT 2017; 40:1618-1628. [PMID: 28426140 DOI: 10.1111/pce.12970] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed.
Collapse
Affiliation(s)
- Frederick C Meinzer
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - David R Woodruff
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Danielle E Marias
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Katherine A McCulloh
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ava R Howard
- Department of Biology, Western Oregon University, Monmouth, OR, 97361, USA
| | - Alicia L Magedman
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
242
|
de la Mata R, Hood S, Sala A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc Natl Acad Sci U S A 2017; 114:7391-7396. [PMID: 28652352 PMCID: PMC5514711 DOI: 10.1073/pnas.1700032114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2H1
| | - Sharon Hood
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
- Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, US Department of Agriculture Forest Service, Missoula, MT 59808
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
243
|
Hisano M, Searle EB, Chen HYH. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev Camb Philos Soc 2017; 93:439-456. [DOI: 10.1111/brv.12351] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Masumi Hisano
- Faculty of Natural Resources Management; Lakehead University; Thunder Bay P7B 5E1 Canada
| | - Eric B. Searle
- Faculty of Natural Resources Management; Lakehead University; Thunder Bay P7B 5E1 Canada
| | - Han Y. H. Chen
- Faculty of Natural Resources Management; Lakehead University; Thunder Bay P7B 5E1 Canada
| |
Collapse
|
244
|
del-Val E, Sáenz-Romero C. INSECTOS DESCORTEZADORES (COLEOPTERA: CURCULIONIDAE) Y CAMBIO CLIMÁTICO: PROBLEMÁTICA ACTUAL Y PERSPECTIVAS EN LOS BOSQUES TEMPLADOS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
245
|
Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA. FORESTS 2017. [DOI: 10.3390/f8060195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
246
|
Matyssek R, Kozovits AR, Wieser G, King J, Rennenberg H. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes? TREE PHYSIOLOGY 2017; 37:706-732. [PMID: 28338970 DOI: 10.1093/treephys/tpx009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC-AP. Integrated research on C and nutrient cycling, O3-vegetation interactions and water relations must target mechanisms' ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development.
Collapse
Affiliation(s)
- R Matyssek
- Technische Universität München, TUM School of Life Sciences Weihenstephan, Chair of Ecophysiology of Plants, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - A R Kozovits
- Universidade Federal de Ouro Preto, Department of Biodiversity, Evolution and Environment, Campus Morro do Cruzeiro, Bauxita, 35.400-000 Ouro Preto, MG, Brazil
| | - G Wieser
- Department of Alpine Timberline Ecophysiology, Federal Office and Research Centre for Forests, Innsbruck, Austria
| | - J King
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, D79110 Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
247
|
Itter MS, Finley AO, D'Amato AW, Foster JR, Bradford JB. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1082-1095. [PMID: 28182303 DOI: 10.1002/eap.1518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Collapse
Affiliation(s)
- Malcolm S Itter
- Department of Forestry, Michigan State University, Natural Resources Building, 480 Wilson Road, East Lansing, Michigan, 48824, USA
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, Giltner Hall, 293 Farm Lane Road, East Lansing, Michigan, 48824, USA
| | - Andrew O Finley
- Department of Forestry, Michigan State University, Natural Resources Building, 480 Wilson Road, East Lansing, Michigan, 48824, USA
- Department of Geography, Michigan State University, Geography Building, 673 Auditorium Road, East Lansing, Michigan, 48824, USA
| | - Anthony W D'Amato
- Rubenstein School of Environment and Natural Resources, University of Vermont, Aiken Center, 81 Carrigan Drive, Burlington, Vermont, 05405, USA
| | - Jane R Foster
- Department of Forest Resources, University of Minnesota, Green Hall, 1530 Cleveland Avenue North, St. Paul, Minnesota, 55108, USA
| | - John B Bradford
- U.S. Geological Survey, Southwest Biological Science Center, P.O. Box 5614 Building 56, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
248
|
Drought Influence over Radial Growth of Mexican Conifers Inhabiting Mesic and Xeric Sites. FORESTS 2017. [DOI: 10.3390/f8050175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
249
|
Wong CM, Daniels LD. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. GLOBAL CHANGE BIOLOGY 2017; 23:1926-1941. [PMID: 27901296 DOI: 10.1111/gcb.13554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Novel forest decline is increasing due to global environmental change, yet the causal factors and their interactions remain poorly understood. Using tree ring analyses, we show how climate and multiple biotic factors caused the decline of whitebark pine (Pinus albicaulis) in 16 stands in the southern Canadian Rockies. In our study area, 72% of whitebark pines were dead and 18% had partially dead crowns. Tree mortality peaked in the 1970s; however, the annual basal area increment of disturbed trees began to decline significantly in the late 1940s. Growth decline persisted up to 30 years before trees died from mountain pine beetle (Dendroctonus ponderosae), Ips spp. bark beetles or non-native blister rust pathogen (Cronartium ribicola). Climate-growth relations varied over time and differed among the healthy and disturbed subpopulations of whitebark pine. Prior to the 1940s, cool temperatures limited the growth of all subpopulations. Growth of live, healthy trees became limited by drought during the cool phase (1947 -1976) of the Pacific Decadal Oscillation (PDO) and then reverted to positive correlations with temperature during the subsequent warm PDO phase. In the 1940s, the climate-growth relations of the disturbed subpopulations diverged from the live, healthy trees with trees ultimately killed by mountain pine beetle diverging the most. We propose that multiple factors interacted over several decades to cause unprecedented rates of whitebark pine mortality. Climatic variation during the cool PDO phase caused drought stress that may have predisposed trees to blister rust. Subsequent decline in snowpack and warming temperatures likely incited further climatic stress and with blister rust reduced tree resistance to bark beetles. Ultimately, bark beetles and blister rust contributed to tree death. Our findings suggest the complexity of whitebark pine decline and the importance of considering multiway drought-disease-insect interactions over various timescales when interpreting forest decline.
Collapse
Affiliation(s)
- Carmen M Wong
- Department of Geography, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Lori D Daniels
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
250
|
Bussotti F, Pollastrini M. Observing Climate Change Impacts on European Forests: What Works and What Does Not in Ongoing Long-Term Monitoring Networks. FRONTIERS IN PLANT SCIENCE 2017; 8:629. [PMID: 28487718 PMCID: PMC5404609 DOI: 10.3389/fpls.2017.00629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
|