201
|
Yang Y, Yuan L, Xiong H, Guo K, Zhang M, Yan T, Wang W, Zhou S, Sun H, Zhang S, Duan Y, Hu Y. Inhibition of vascular calcification by Compound Danshen Dripping Pill through multiple mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155618. [PMID: 38678949 DOI: 10.1016/j.phymed.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/β-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-β-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/β-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.
Collapse
Affiliation(s)
- Yanfang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Liying Yuan
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui Xiong
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Kaimin Guo
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Mengying Zhang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Shuiping Zhou
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - He Sun
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China.
| |
Collapse
|
202
|
Ye Z, Huang W, Li J, Tang Y, Shao K, Xiong Y. Association between atherogenic index of plasma and depressive symptoms in US adults: Results from the National Health and Nutrition Examination Survey 2005 to 2018. J Affect Disord 2024; 356:239-247. [PMID: 38608770 DOI: 10.1016/j.jad.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE This study, utilizing data from the U.S. National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018, investigates the association between the atherogenic index of plasma (AIP), a lipid biomarker, and symptoms of depression in American adults. METHODS In this cross-sectional study of 12,534 adults aged 20 years and older, depressive symptoms were measured utilizing the Patient Health Questionnaire-9 (PHQ-9) scale. Weighted logistic regression models were employed to scrutinize the independent relationship between AIP levels and the likelihood of developing such symptoms. Moreover, a series of subgroup analyses were conducted to delve deeper into these relationships. RESULTS Following adjustment for confounders, logistic regression by grouping AIP into quartiles revealed a significant association between AIP and an augmented likelihood of self-reported depression. Participants in the fourth quartile (Q4) exhibited a higher odds ratio (OR = 1.34, 95 % CI: 1.02-1.75, p < 0.05) compared to those in the first quartile (Q1). Notably, subgroup analysis unveiled significant interactions involving the smoking and diabetes subgroups, indicating that smoking status and diabetes may modify the relationship between AIP and depression incidence. CONCLUSION This study reveals a positive correlation between AIP and the self-reported likelihood of depression among US adults, thereby underscoring AIP's potential clinical utility as a biomarker for depressive disorders. Our findings emphasize the necessity to consider and optimize cardiovascular health factors within depression management strategies and offer fresh insights into the development of risk stratification and intervention methods for psychiatric conditions.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wenjie Huang
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianing Li
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yuxin Tang
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Keyi Shao
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ying Xiong
- Department of General Practice, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
203
|
Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, Chen J, Yin Q, Li X, Chen X, Shao Y, Ji Y, Chen H. ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B 2024; 14:3027-3048. [PMID: 39027248 PMCID: PMC11252488 DOI: 10.1016/j.apsb.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 07/20/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a key driver of atherosclerosis. Aerobic glycolysis is increased in the endothelium of atheroprone areas, accompanied by elevated lactate levels. Histone lactylation, mediated by lactate, can regulate gene expression and participate in disease regulation. However, whether histone lactylation is involved in atherosclerosis remains unknown. Here, we report that lipid peroxidation could lead to EndMT-induced atherosclerosis by increasing lactate-dependent histone H3 lysine 18 lactylation (H3K18la) in vitro and in vivo, as well as in atherosclerotic patients' arteries. Mechanistically, the histone chaperone ASF1A was first identified as a cofactor of P300, which precisely regulated the enrichment of H3K18la at the promoter of SNAI1, thereby activating SNAI1 transcription and promoting EndMT. We found that deletion of ASF1A inhibited EndMT and improved endothelial dysfunction. Functional analysis based on Apoe KO Asf1a ECKO mice in the atherosclerosis model confirmed the involvement of H3K18la in atherosclerosis and found that endothelium-specific ASF1A deficiency inhibited EndMT and alleviated atherosclerosis development. Inhibition of glycolysis by pharmacologic inhibition and advanced PROTAC attenuated H3K18la, SNAI1 transcription, and EndMT-induced atherosclerosis. This study illustrates precise crosstalk between metabolism and epigenetics via H3K18la by the P300/ASF1A molecular complex during EndMT-induced atherogenesis, which provides emerging therapies for atherosclerosis.
Collapse
Affiliation(s)
- Mengdie Dong
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fuhao Liu
- Department of Clinical Medicine, Nanjing Medical University TIANYUAN Honors School, Nanjing Medical University, Nanjing 211166, China
| | - Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jiajing Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hongshan Chen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated with Nanjing Medical University, Huai'an 223399, China
| |
Collapse
|
204
|
Peng C, Li J, Chen Y, Zhang HR, Li TX, Jiang YH, Yang XY, Zhao Y. PCSK9 aggravated carotid artery stenosis in ApoE -/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF-κB pathway. Biochem Pharmacol 2024; 225:116314. [PMID: 38797271 DOI: 10.1016/j.bcp.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.
Collapse
Affiliation(s)
- Chao Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Heng-Rui Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Tian-Xing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Hang Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
205
|
Dong M, Chen M, Zhang Y, He X, Min J, Tan Y, Wei H, Li X, Chen X, Zheng L, Yin Q, Li X, Chen H, Jiang H. Oscillatory shear stress promotes endothelial senescence and atherosclerosis via STING activation. Biochem Biophys Res Commun 2024; 715:149979. [PMID: 38678779 DOI: 10.1016/j.bbrc.2024.149979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.
Collapse
Affiliation(s)
- Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyuan Wei
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyu Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
206
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
207
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin SS, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics. Circ Res 2024; 135:110-134. [PMID: 38808504 PMCID: PMC11189745 DOI: 10.1161/circresaha.123.323939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Center for Vascular Biology Research and the Division of Nephrology (C.F.), Harvard Medical School, Boston, MA
| | - Swati S. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| |
Collapse
|
208
|
Mendes L, Queiroz M, Sena CM. Melatonin and Vascular Function. Antioxidants (Basel) 2024; 13:747. [PMID: 38929187 PMCID: PMC11200504 DOI: 10.3390/antiox13060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.
Collapse
Affiliation(s)
| | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
209
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
210
|
Miyoshi M, Shimosato T, Takaya T. Myogenic Anti-Nucleolin Aptamer iSN04 Inhibits Proliferation and Promotes Differentiation of Vascular Smooth Muscle Cells. Biomolecules 2024; 14:709. [PMID: 38927112 PMCID: PMC11201766 DOI: 10.3390/biom14060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.
Collapse
MESH Headings
- Nucleolin
- Animals
- RNA-Binding Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Aptamers, Nucleotide/pharmacology
- Cell Proliferation/drug effects
- Phosphoproteins/metabolism
- Cell Differentiation/drug effects
- Humans
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Mice
- Cells, Cultured
- Oligodeoxyribonucleotides/pharmacology
- Male
- Rats, Sprague-Dawley
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
211
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
212
|
Cao R, Sun R, Ye Y, Tian P, Huang B, Ye H, Dai L, Lan Z, Liu J, Li L. Low shear stress-induced blockage of autophagic flux impairs endothelial barrier and facilitates atherosclerosis in mice. Exp Cell Res 2024; 439:114071. [PMID: 38729336 DOI: 10.1016/j.yexcr.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, β-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.
Collapse
Affiliation(s)
- Ruhao Cao
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Ruxian Sun
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Pingge Tian
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Bin Huang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Haowen Ye
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| |
Collapse
|
213
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
214
|
Ma Y, Lai J, Wan Q, Chen Z, Sun L, Zhang Q, Guan C, Li Q, Wu J. Identification of common mechanisms and biomarkers for dermatomyositis and atherosclerosis based on bioinformatics analysis. Skin Res Technol 2024; 30:e13808. [PMID: 38899746 PMCID: PMC11187814 DOI: 10.1111/srt.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Dermatomyositis (DM) manifests as an autoimmune and inflammatory condition, clinically characterized by subacute progressive proximal muscle weakness, rashes or both along with extramuscular manifestations. Literature indicates that DM shares common risk factors with atherosclerosis (AS), and they often co-occur, yet the etiology and pathogenesis remain to be fully elucidated. This investigation aims to utilize bioinformatics methods to clarify the crucial genes and pathways that influence the pathophysiology of both DM and AS. METHOD Microarray datasets for DM (GSE128470, GSE1551, GSE143323) and AS (GSE100927, GSE28829, GSE43292) were retrieved from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was used to reveal their co-expressed modules. Differentially expression genes (DEGs) were identified using the "limma" package in R software, and the functions of common DEGs were determined by functional enrichment analysis. A protein-protein interaction (PPI) network was established using the STRING database, with central genes evaluated by the cytoHubba plugin, and validated through external datasets. Immune infiltration analysis of the hub genes was conducted using the CIBERSORT method, along with Gene Set Enrichment Analysis (GSEA). Finally, the NetworkAnalyst platform was employed to examine the transcription factors (TFs) responsible for regulating pivotal crosstalk genes. RESULTS Utilizing WGCNA analysis, a total of 271 overlapping genes were pinpointed. Subsequent DEG analysis revealed 34 genes that are commonly found in both DM and AS, including 31 upregulated genes and 3 downregulated genes. The Degree Centrality algorithm was applied separately to the WGCNA and DEG collections to select the 15 genes with the highest connectivity, and crossing the two gene sets yielded 3 hub genes (PTPRC, TYROBP, CXCR4). Validation with external datasets showed their diagnostic value for DM and AS. Analysis of immune infiltration indicates that lymphocytes and macrophages are significantly associated with the pathogenesis of DM and AS. Moreover, GSEA analysis suggested that the shared genes are enriched in various receptor interactions and multiple cytokines and receptor signaling pathways. We coupled the 3 hub genes with their respective predicted genes, identifying a potential key TF, CBFB, which interacts with all 3 hub genes. CONCLUSION This research utilized comprehensive bioinformatics techniques to explore the shared pathogenesis of DM and AS. The three key genes, including PTPRC, TYROBP, and CXCR4, are related to the pathogenesis of DM and AS. The central genes and their correlations with immune cells may serve as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yirong Ma
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Junyu Lai
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qiang Wan
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Zhengtao Chen
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Liqiang Sun
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qinhe Zhang
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Chengyan Guan
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qiming Li
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Jianguang Wu
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| |
Collapse
|
215
|
Li W, Bai P, Li W. UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates atherosclerosis in mice via regulating the SMAD7/YAP1 axis. Mol Immunol 2024; 170:119-130. [PMID: 38657333 DOI: 10.1016/j.molimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.
Collapse
Affiliation(s)
- Wenbo Li
- The Third Departments of Cardiovascular, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Pengxing Bai
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Wei Li
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
216
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
217
|
Liang C, Song Z, Yao X, Xiao Q, Fu H, Tang L. Exercise interventions for the effect of endothelial function in hypertensive patients: A systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2024; 26:599-614. [PMID: 38708922 PMCID: PMC11180684 DOI: 10.1111/jch.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Endothelial dysfunction is crucial factor to the hypertension occurrence, and controversy remains regarding the effect of exercise on improving endothelial function in hypertensive patients. The authors used meta-analysis to evaluate the intervention effect of exercise on endothelial function in hypertensive patients and to investigate exercise protocols that may have a greater intervention effect. A total of 37 studies and a total of 2801 participants were included. The results were as follows: endogenous nitric oxide (NO)[SMD = .89, 95% CI (.48, 1.30), p < .0001], endothelin-1 (ET-1): [SMD = -.94, 95% CI (-1.15, -.73), p <. 0001], flow-mediated dilation (FMD) [SMD = -.57, 95% CI (.36, .79), p < .000001]. In subgroup analysis, high-intensity aerobic exercise, with a single exercise duration of 35-50 min, 3-4 times/week for a total of 10-12 weeks, had the largest amount of intervention effect on NO, and moderate-intensity resistance exercise, with a single exercise duration of ≥60 min, 6 times/week for a total of 15-18 weeks, had the largest amount of intervention effect on ET-1. In conclusion, exercise can improve NO levels, FDM levels, and reduce ET-1 secretion of hypertension patients, thereby improve their endothelial function. The ideal intervention effect of improving NO level was more likely to be obtained by taking the exercise prescription of high-intensity aerobic exercise with a single exercise duration of 35-50 min, 3-4 times/week for 10-12 weeks; the ideal intervention effect of improving ET-1 was more likely to be obtained by taking the exercise prescription of oderate -intensity resistance exercise with a single exercise duration of ≥60 min, 6 times/week for 15-18 weeks.
Collapse
Affiliation(s)
- Chao Liang
- Department of Martial ArtsWuhan Sports UniversityWuhanHubei ProvinceChina
| | - Zhenpeng Song
- Department of Martial ArtsWuhan Sports UniversityWuhanHubei ProvinceChina
| | - XiaoZhi Yao
- Department of Exercise TrainingWuhan Sports UniversityWuhanHubei ProvinceChina
| | - Qian Xiao
- Department of Martial ArtsWuhan Sports UniversityWuhanHubei ProvinceChina
| | - Hehui Fu
- Department of Martial ArtsWuhan Sports UniversityWuhanHubei ProvinceChina
| | - Lixu Tang
- Department of Martial ArtsWuhan Sports UniversityWuhanHubei ProvinceChina
| |
Collapse
|
218
|
Lin S, Zhu P, Jiang L, Hu Y, Huang L, He Y, Zhang H. Neutrophil extracellular traps induced by IL-1β promote endothelial dysfunction and aggravate limb ischemia. Hypertens Res 2024; 47:1654-1667. [PMID: 38605142 DOI: 10.1038/s41440-024-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Vascular inflammation and endothelial dysfunction contribute to vascular diseases. While neutrophil extracellular traps (NETs) participate in some vascular pathologies, their roles in lower limb ischemia remain poorly defined. This study investigated the functional significance of NETs in vascular inflammation and remodeling associated with limb ischemia. Single-cell RNA sequencing (scRNA-seq) and flow cytometry revealed neutrophil activation and upregulated NETs formation in human limb ischemia, with immunofluorescence confirming IL-1β-induced release of NETs for vascular inflammation. Endothelial cell activation was examined via scRNA-seq and western blotting, indicating enhanced proliferation, expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-1β, IL-6) and decreased expression of VE-cadherin, that could be mediated by NETs to exacerbate endothelial inflammation. Mechanistically, NETs altered endothelial cell function via increased pSTAT1/STAT1 signaling. Vascular inflammation and subsequent ischemia were alleviated in vivo by NETosis or IL-1β inhibition in ischemic mice. IL-1β-NETs induce endothelial activation and inflammation in limb ischemia by stimulating STAT1 signaling. Targeting NETs may thus represent a novel therapeutic strategy for inflammatory vascular diseases associated with limb ischemia. Graphical abstract of NETs regulation of the development of vascular inflammation in lower limb ischemia via pSTAT1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujian Hu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lirui Huang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
219
|
Hou Y, Fan Y, Cheng Y, Peng X, Shan C, Yang Y. Comparative Analysis of the Anti-Inflammatory Effects of Liraglutide and Dulaglutide. Int Heart J 2024; 65:548-556. [PMID: 38749748 DOI: 10.1536/ihj.23-576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inflammation plays a pathophysiological role in atherosclerosis and its clinical consequences. In addition to glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are of wide concern for cardioprotective effects. The structure, half-life, homology, and clinical efficacy of GLP-1RAs exhibit remarkable disparity. Several studies have compared the disparities in anti-inflammatory effects between daily and weekly GLP-1RAs. This study aimed to compare the similarities and differences between liraglutide and dulaglutide in terms of inhibiting atherosclerotic inflammation and improving co-cultured endothelial cell function. The expression of inflammation markers was examined by immunofluorescence, Western blotting, and real-time PCR. The tube-forming ability of endothelial cells was tested on Matrigel. The results verify that 10/50/100 nmol/L liraglutide and 100 nmol/L dulaglutide markedly suppressed the expression of inflammatory factors in LPS-induced atherosclerosis after 24 and 72 hours, respectively. Moreover, they promoted the polarization of M1 macrophages toward the M2 phenotype and improved the function of co-cultured endothelial cells. Both liraglutide and dulaglutide ameliorate atherosclerosis development. The difference between the two resided in the extended intervention duration required to observe the effect of dulaglutide, and liraglutide demonstrated a superior dose-dependent manner. We provide a potential strategy to understand the dynamics of drug action and possible timing administration.
Collapse
Affiliation(s)
- Yi Hou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yini Fan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yuan Cheng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Xiaoyue Peng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| |
Collapse
|
220
|
Ma L, Gao Y, Yang G, Zhao L, Zhao Z, Zhao Y, Zhang Y, Li S, Li S. Notoginsenoside R1 Ameliorate High-Fat-Diet and Vitamin D3-Induced Atherosclerosis via Alleviating Inflammatory Response, Inhibiting Endothelial Dysfunction, and Regulating Gut Microbiota. Drug Des Devel Ther 2024; 18:1821-1832. [PMID: 38845851 PMCID: PMC11155380 DOI: 10.2147/dddt.s451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Aim Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1β levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1β inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.
Collapse
Affiliation(s)
- Liying Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yuhang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shenhui Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| |
Collapse
|
221
|
Duan H, Tao N, Lv L, Yan KX, You YG, Mao Z, Wang CY, Li X, Jin JY, Wu CT, Wang H. Hepatocyte growth factor enhances the ability of dental pulp stem cells to ameliorate atherosclerosis in apolipoprotein E-knockout mice. World J Stem Cells 2024; 16:575-590. [PMID: 38817328 PMCID: PMC11135256 DOI: 10.4252/wjsc.v16.i5.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), a chronic inflammatory disease of blood vessels, is a major contributor to cardiovascular disease. Dental pulp stem cells (DPSCs) are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflammation-related diseases. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases. AIM To modify DPSCs with HGF (DPSC-HGF) and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout (ApoE-/-) mouse model and an in vitro cellular model. METHODS ApoE-/- mice were fed with a high-fat diet (HFD) for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs (DPSC-Null) through tail vein at weeks 4, 7, and 11, respectively, and the therapeutic efficacy and mechanisms were analyzed by histopathology, flow cytometry, lipid and glucose measurements, real-time reverse transcription polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay at the different time points of the experiment. An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells (HAOECs), and indirect co-cultured with supernatant of DPSC-Null (DPSC-Null-CM) or DPSC-HGF-CM, and the effect and mechanisms were analyzed by flow cytometry, RT-PCR and western blot. Nuclear factor-κB (NF-κB) activators and inhibitors were also used to validate the related signaling pathways. RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors, and the percentage of macrophages in the aorta, and DPSC-HGF treatment had more pronounced effects. DPSCs treatment had no effect on serum lipoprotein levels. The FACS results showed that DPSCs treatment reduced the percentages of monocytes, neutrophils, and M1 macrophages in the peripheral blood and spleen. DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-α stimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway. CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/- mice on a HFD, and could be of greater value in stem cell-based treatments for AS.
Collapse
Affiliation(s)
- Han Duan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Ning Tao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kai-Xin Yan
- Department of Cardiology, The Sixth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100037, China
| | - Yong-Gang You
- Department of Orthopaedics, The Fourth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang-Yao Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Yan Jin
- Third Cadet Regiment, School of Basic Medical Science, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
222
|
Qiao X, Cao S, Chen S, Guo Y, Chen N, Zheng Y, Jin B. Salvianolic acid A alleviates H 2O 2-induced endothelial oxidative injury via miR-204-5p. Sci Rep 2024; 14:11931. [PMID: 38789509 PMCID: PMC11126572 DOI: 10.1038/s41598-024-62556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.
Collapse
Affiliation(s)
- Xilin Qiao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuyu Cao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuaiyu Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Guo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nipi Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Zheng
- The 903rd Hospital of the People's Liberation Army, Hangzhou, Zhejiang, China.
| | - Bo Jin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
223
|
Hsu BG, Wang YC, Wu DA, Chen MC. Serum 25-Hydroxyvitamin D Level Is Positively Associated with Vascular Reactivity Index in Patients with Type 2 Diabetes Mellitus. Nutrients 2024; 16:1575. [PMID: 38892508 PMCID: PMC11173778 DOI: 10.3390/nu16111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating 25-hydroxyvitamin D (25(OH)D) significantly influences endothelial function. This study assessed the correlation between serum 25(OH)D and endothelial function using the vascular reactivity index (VRI) in patients with type 2 diabetes mellitus (T2DM). Fasting blood samples from 102 T2DM participants and VRI were assessed. Patients were divided into three categories based on VRI: low (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0). Among these patients, 30 (29.4%) had poor, 39 (38.2%) had intermediate, and 33 (32.4%) exhibited good vascular reactivity. Higher serum fasting glucose (p = 0.019), glycated hemoglobin (p = 0.009), and urinary albumin-to-creatinine ratio (p = 0.006) were associated, while lower prevalence of hypertension (p = 0.029), lower systolic blood pressure (p = 0.027), lower diastolic blood pressure (p < 0.001), and lower circulation 25(OH)D levels (p < 0.001) were associated with poor vascular reactivity. Significant independent associations between diastolic blood pressure (p = 0.002) and serum 25(OH)D level (p < 0.001) and VRI were seen in T2DM patients according to multivariable forward stepwise linear regression analysis. Serum 25(OH)D positively correlated with VRI values, and lower levels of serum 25(OH)D were linked to endothelial dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (B.-G.H.)
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Yi-Cheng Wang
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Du-An Wu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (B.-G.H.)
- Division of Metabolism and Endocrinology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Ming-Chun Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (B.-G.H.)
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| |
Collapse
|
224
|
李 雨, 王 瑗, 袁 泉. [Latest Findings on the Role of α-Ketoglutarate in Metabolic Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:783-792. [PMID: 38948289 PMCID: PMC11211801 DOI: 10.12182/20240560302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 07/02/2024]
Abstract
Alpha-ketoglutarate (α-KG), an endogenous intermediate of the tricarboxylic acid cycle, is involved in a variety of cellular metabolic pathways. It serves as an energy donor, a precursor of amino acid biosynthesis, and an epigenetic regulator. α-KG plays physiological functions in immune regulation, oxidative stress, and anti-aging as well. In recent years, it has been reported that the level of α-KG in the body is closely associated with metabolic syndrome, including obesity, hyperglycemia, and other pathological factors. Exogenous supplementation of α-KG improves obesity, blood glucose levels, and cardiovascular disease risks associated with metabolic syndrome. Furthermore, α-KG regulates the common pathological mechanisms of metabolic syndrome, suggesting the potential application prospect of α-KG in metabolic syndrome. In order to provide a theoretical basis for further exploration of the application of α-KG in metabolic syndrome, we focused on α-KG and metabolic syndrome in this article and summarized the latest research progress in the role of α-KG in improving the pathological condition and disease progression of metabolic syndrome. For the next step, researchers may focus on the co-pathogenesis of metabolic syndrome and investigate whether α-KG can be used to achieve the therapeutic goal of "homotherapy for heteropathy" in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- 雨含 李
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 瑗 王
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 泉 袁
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
225
|
Marrone G, Cornali K, Di Lauro M, Ceravolo MJ, Di Marco L, Manca di Villahermosa S, Mitterhofer AP, Noce A. Innovative Treatments to Counteract Endothelial Dysfunction in Chronic Kidney Disease Patients. Biomedicines 2024; 12:1085. [PMID: 38791047 PMCID: PMC11117580 DOI: 10.3390/biomedicines12051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In chronic kidney disease (CKD) patients, several risk factors contribute to the development of endothelial dysfunction (ED), which can be described as an alteration in the cell structure or in the function of the endothelium. Among the well-known CKD-related risk factors capable of altering the production of endothelium-derived relaxing factors, we include asymmetric dimethylarginine increase, reduced dimethylarginine dimethylamine hydrolase enzyme activity, low-grade chronic systemic inflammation, hyperhomocysteinemia, oxidative stress, insulin resistance, alteration of calcium phosphorus metabolism, and early aging. In this review, we also examined the most important techniques useful for studying ED in humans, which are divided into indirect and direct methods. The direct study of coronary endothelial function is considered the gold standard technique to evaluate if ED is present. In addition to the discussion of the main pharmacological treatments useful to counteract ED in CKD patients (namely sodium-glucose cotransporter 2 inhibitors and mineralocorticoid receptor antagonist), we elucidate innovative non-pharmacological treatments that are successful in accompanying the pharmacological ones. Among them, the most important are the consumption of extra virgin olive oil with high intake of minor polar compounds, adherence to a plant-dominant, low-protein diet (LPD), an adaptive physical activity program and, finally, ketoanalogue administration in combination with the LPD or the very low-protein diet.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Maria Josè Ceravolo
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Di Marco
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Simone Manca di Villahermosa
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Anna Paola Mitterhofer
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
226
|
Hu M, Ladowski JM, Xu H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024; 13:825. [PMID: 38786047 PMCID: PMC11120581 DOI: 10.3390/cells13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells (ECs) has been increasingly recognized, and numerous studies have linked the dysregulation of autophagy to the development of endothelial dysfunction and vascular disease. Here, we provide an overview of the molecular mechanisms underlying autophagy in ECs and our current understanding of the roles of autophagy in vascular biology and review the implications of dysregulated autophagy for vascular disease. Finally, we summarize the current state of the research on compounds to modulate autophagy in ECs and identify challenges for their translation into clinical use.
Collapse
Affiliation(s)
| | - Joseph M. Ladowski
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| | - He Xu
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
227
|
Zhu L, Wu Z, Liu Y, Ming Y, Xie P, Jiang M, Qi Y. Acod1/itaconate activates Nrf2 in pulmonary microvascular endothelial cells to protect against the obesity-induced pulmonary microvascular endotheliopathy. Respir Res 2024; 25:205. [PMID: 38730297 PMCID: PMC11088094 DOI: 10.1186/s12931-024-02827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.
Collapse
Affiliation(s)
- Li Zhu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhuhua Wu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yingli Liu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yue Ming
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Pei Xie
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Miao Jiang
- Department of Pulmonary and Critical Care Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yong Qi
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
228
|
Hsieh DY, Lai YR, Huang CC, Chen YN, Wu SY, Chiu WC, Cheng BC, Lin TY, Chiang HC, Lu CH. Baroreflex Sensitivity as a Surrogate Biomarker for Concurrently Assessing the Severity of Arterial Stiffness and Cardiovascular Autonomic Neuropathy in Individuals with Type 2 Diabetes. J Pers Med 2024; 14:491. [PMID: 38793073 PMCID: PMC11122369 DOI: 10.3390/jpm14050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate whether baroreflex sensitivity (BRS) could serve as a reliable metric for assessing cardiovascular autonomic neuropathy (CAN) and concurrently act as a surrogate biomarker for evaluating the severity of arterial stiffness and CAN in individuals diagnosed with type 2 diabetes mellitus (T2DM). Participants underwent brachial-ankle pulse wave velocity (baPWV) as well as autonomic function evaluations encompassing the Sudoscan-based modified composite autonomic scoring scale (CASS), baroreflex sensitivity, and heart rate variability in time domains and frequency domains. Linear regression analysis was performed to evaluate the influence of independent variables on baPWV and modified CASS. Participants with higher baPWV values were older, with longer diabetes duration, lower body weight, body mass index, waist circumference, elevated systolic and diastolic blood pressure, and mean arterial blood pressure. They also exhibited a higher prevalence of retinopathy as the underlying disease and reduced estimated glomerular filtration rate. Multiple linear regression analysis revealed that age and BRS were significantly associated with baPWV while diabetes duration, UACR, and BRS were significantly associated with modified CASS. Our study confirms the significant association of BRS with baPWV and modified CASS in T2DM, highlighting its pivotal role in linking microvascular and macrovascular complications. This supports BRS as a surrogate marker for assessing both the severity of arterial stiffness and cardiovascular autonomic neuropathy in T2DM, enabling the early identification of complications.
Collapse
Affiliation(s)
- Dong-Yi Hsieh
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (D.-Y.H.); (Y.-R.L.); (H.-C.C.)
| | - Yun-Ru Lai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (D.-Y.H.); (Y.-R.L.); (H.-C.C.)
- Department of Hyperbaric Oxygen Therapy Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Chih-Cheng Huang
- Department of Neurology, Chi-Mei Medical Center, Tainan City 73657, Taiwan;
| | - Yung-Nien Chen
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (Y.-N.C.); (W.-C.C.); (B.-C.C.)
| | - Szu-Ying Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan;
| | - Wen-Chan Chiu
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (Y.-N.C.); (W.-C.C.); (B.-C.C.)
| | - Ben-Chung Cheng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (Y.-N.C.); (W.-C.C.); (B.-C.C.)
| | - Ting-Yin Lin
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan;
| | - Hui-Ching Chiang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (D.-Y.H.); (Y.-R.L.); (H.-C.C.)
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan; (D.-Y.H.); (Y.-R.L.); (H.-C.C.)
- Department of Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
- Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen 361126, China
| |
Collapse
|
229
|
Ji HL, Zhang YF, Zhang NY, Wang KM, Meng N, Zhang J, Jiang CS. Design, synthesis, and evaluation of formylpiperazine analogs of Ferrostatin-1 as novel improved ferroptosis inhibitors. Bioorg Med Chem 2024; 105:117716. [PMID: 38608329 DOI: 10.1016/j.bmc.2024.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
230
|
Cai Y, Zhou Y, Yang Q, Xu J, Da Q, Ma Q, Zhao D, Lu T, Kim HW, Fulton D, Jiang X, Weintraub NL, Dong K, Xu S, Hong M, Liu Z, Huo Y. Blockade of endothelial adenosine receptor 2 A suppresses atherosclerosis in vivo through inhibiting CREB-ALK5-mediated endothelial to mesenchymal transition. Pharmacol Res 2024; 203:107156. [PMID: 38522762 DOI: 10.1016/j.phrs.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFβ-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.
Collapse
Affiliation(s)
- Yongfeng Cai
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yaqi Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qingen Da
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qian Ma
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tammy Lu
- Emory University, Atlanta, GA 30322, USA
| | - Ha Won Kim
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kunzhe Dong
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Suowen Xu
- Department of Endocrinology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
231
|
Kazemi N, Bordbar A, Bavarsad SS, Ghasemi P, Bakhshi M, Rezaeeyan H. Molecular Insights into the Relationship Between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice. Mol Biotechnol 2024; 66:932-947. [PMID: 38184492 DOI: 10.1007/s12033-023-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.
Collapse
Affiliation(s)
- Niloufar Kazemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Armin Bordbar
- Department of Cardiology, Musavi Hospital, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | | | - Parisa Ghasemi
- Research Committee, Medical School, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran.
| |
Collapse
|
232
|
Gao J, Rouzi MRY, Zhang H, Cai X, Xu B, Lu J, Lei T. Association of serum CTRP4 levels with vascular endothelial function in patients with type 2 diabetes mellitus: CTRP4 ameliorating inflammation, proliferation and migration in human umbilical vein endothelial cells. Acta Diabetol 2024; 61:565-575. [PMID: 38286878 PMCID: PMC11055794 DOI: 10.1007/s00592-023-02228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVE We investigated the correlation between serum C1q/TNF-related protein 4 (CTRP4) level and flow-mediated dilation (FMD) in patients with type 2 diabetes mellitus (T2DM), and evaluated the biological effects of CTRP4 on human umbilical vein endothelial cells (HUVECs). METHODS A group of 165 patients diagnosed with T2DM were included in this study. Endothelial function was measured with the examination of brachial artery FMD. ELISA kit was used to measure the levels of CTRP4 in serum. HUVECs were stimulated with recombinant CTRP4 protein to assess its biological functions. RESULTS The levels of CTRP4 showed a significant variation among three groups based on FMD tertiles (p = 0.001). What's more, FMD had a significant difference among three CTRP4 tertile groups (p < 0.05) and was negatively related to serum CTRP4 levels (r = -0.270, p < 0.001). In T2DM patients, logistic regression analysis demonstrated that CTRP4 was the primary influence factor of low FMD (p < 0.01). In receiver operating characteristic curve analysis, the area under the curve of CTRP4 for predicting low FMD was 0.66 (95%CI 0.58-0.75). When stimulated HUVECs with recombinant CTRP4 protein, we found that CTRP4 could concentration-dependently ameliorate proliferation and migration of HUVECs in wounding healing and transwell assay. This protein could also decrease the expression of IL-6 and TNF-α and promote the release of NO in HUVEC supernatants, with suppression of NF-κB and STAT3 phosphorylation. CONCLUSIONS Serum CTRP4 concentrations were negatively associated with FMD. CTRP4 alleviated proliferation, migration and inflammation in HUVECs through the suppression of NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Mai Re YanMu Rouzi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huihui Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinghua Cai
- Shanghai Putuo Center School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bilin Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| |
Collapse
|
233
|
Di T, He L, Shi Q, Chen L, Zhu L, Zhao S, Zhang C. Emodin Blocks mPTP Opening and Improves LPS-Induced HMEC-1 Cell Injury by Upregulation of ATP5A1. Chem Biodivers 2024; 21:e202301916. [PMID: 38511277 DOI: 10.1002/cbdv.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.
Collapse
Affiliation(s)
- Tietao Di
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Limin He
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lu Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lei Zhu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Sisi Zhao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| |
Collapse
|
234
|
Yuan L, Fan L, Zhang Z, Huang X, Liu Q, Zhang Z. Procyanidin B2 alleviates oxidized low-density lipoprotein-induced cell injury, inflammation, monocyte chemotaxis, and oxidative stress by inhibiting the nuclear factor kappa-B pathway in human umbilical vein endothelial cells. BMC Cardiovasc Disord 2024; 24:231. [PMID: 38679696 PMCID: PMC11057093 DOI: 10.1186/s12872-024-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.
Collapse
Affiliation(s)
- Limei Yuan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Lihua Fan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiqiang Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Xing Huang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Qingle Liu
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiguo Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China.
| |
Collapse
|
235
|
Tan Q, Chen M, Yang H, Guo Y, Zou X. Subclinical Hypothyroidism Predicted Adverse Cardiovascular Events in Patients with Ejection Fraction Preserved Heart Failure. Ther Clin Risk Manag 2024; 20:227-237. [PMID: 38706881 PMCID: PMC11068049 DOI: 10.2147/tcrm.s433489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Background Subclinical hypothyroidism (SH) increases the risk of cardiovascular events, however the influence of SH on prognosis of ejection fraction preserved heart failure (HFpEF) is not fully understood. Methods In this prospective observational study, patients with HFpEF were divided into euthyroidism group (n = 413) and SH group (n = 79). Patients were followed up for at least 30 months to examine the association between SH and cardiovascular events in patients with HFpEF. The primary end point was composite cardiovascular events (cardiovascular death and re-hospitalization). The patients underwent flow-mediated dilation (FMD) measurement by ultrasound in order to value endothelial function. Results The rate of composite cardiovascular events was higher in SH group than in euthyroidism group (54.49% and 26.36%, respectively; p < 0.001). The higher risk of cardiovascular events in SH group was primarily due to a higher risk of re-hospitalization compared to euthyroidism group (45.56% and 20.58%, respectively; p < 0.001). The rate of cardiovascular death was higher in SH group than in euthyroidism group (13.92% and 5.81%, respectively; p = 0.017). Cox proportional hazards regression showed that SH (hazard ratios [HR] 1.921, 95% confidence interval [CI] 1.139-3.240), level of TSH (HR 1.025, 95% CI 1.010-1.054), age (HR 1.017, 95% CI 1.002-1.034), LVEF (HR 0.975, 95% CI 0.953-0.996), atrial fibrillation (HR 1.581, 95% CI 1.083-2.307), eGFR (HR 0.987, 95% CI 0.978-0.997), and NYHA cardiac function (HR 2.342, 95% CI 1.649-3.326) were independent predictors of cardiovascular events in patients with HFpEF (all P < 0.05). Conclusion Subclinical hypothyroidism was associated with increased cardiovascular events and death in patients with HFpEF.
Collapse
Affiliation(s)
- Qiang Tan
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Ming Chen
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Hongmei Yang
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Yao Guo
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Xiaoyi Zou
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| |
Collapse
|
236
|
Drera A, Rodella L, Brangi E, Riccardi M, Vizzardi E. Endothelial Dysfunction in Heart Failure: What Is Its Role? J Clin Med 2024; 13:2534. [PMID: 38731063 PMCID: PMC11084443 DOI: 10.3390/jcm13092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The endothelium is a continuous layer of cells that coats the interior walls of arteries, capillaries, and veins. It has an essential regulatory role in hemostatic function, vascular tone, inflammation, and platelet activity. Endothelial dysfunction is characterized by a shift to a proinflammatory and prothrombic state, and it could have a bidirectional relationship with heart failure (HF). Due to neurohormonal activation and shear stress, HFrEF may promote endothelial dysfunction, increase ROS synthesis, and reduce nitric oxide production. Different studies have also shown that endothelium function is damaged in HFpEF because of a systemic inflammatory state. Some clinical trials suggest that drugs that have an effect on endothelial dysfunction in patients with HF or cardiovascular disease may be a therapeutic option. The aim of this review is to highlight the pathogenetic correlation between endothelial dysfunction and heart failure and the related potential therapeutic options.
Collapse
Affiliation(s)
- Andrea Drera
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Luca Rodella
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Elisa Brangi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Enrico Vizzardi
- Cardiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Spedali Civili di Brescia, 23123 Brescia, Italy
| |
Collapse
|
237
|
Marder M, Remmert C, Perschel JA, Otgonbayar M, von Toerne C, Hauck S, Bushe J, Feuchtinger A, Sheikh B, Moussus M, Meier M. Stem cell-derived vessels-on-chip for cardiovascular disease modeling. Cell Rep 2024; 43:114008. [PMID: 38536819 DOI: 10.1016/j.celrep.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.
Collapse
Affiliation(s)
- Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Julius A Perschel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Stefanie Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Judith Bushe
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Bilal Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany; Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
238
|
Hou Y, Liu B. The Role of Vascular Endothelial Dysfunction in Hypertension With Hearing Loss. Angiology 2024:33197241247076. [PMID: 38626404 DOI: 10.1177/00033197241247076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Hypertension can cause hearing loss, but there is no clear definition of the mechanism(s) involved. The study aimed to explore the role of vascular endothelial dysfunction in hypertension with hearing loss. Patients with hypertension were divided into two groups based on hearing loss. Pure tone audiometry (PTA) and endothelial function testing were performed. A total of 216 (432 ears) hypertensive patients were divided into hypertension with hearing loss group (n = 104) and hypertension without hearing loss group (n = 112). The vascular endothelial biomarkers, ET-1 (endothelin-1) and vWF (von Willebrand factor) were significantly higher (P < .05) in the hypertension with hearing loss group. RHI (reactive hyperemia index), ET-1, and vWF were the factors related to hearing loss. The area under the receiver operating characteristic (ROC) curve (AUC) of RHI in the diagnosis of hypertension with hearing loss was .652 (95% CI .552-.751, P = .005), and the Youden index was 26.2%. The AUC of ET-1 was .706 (95% CI .612-.799, P = .001), and the Youden index was 38.9%. The AUC of vWF was .617 (95% CI .512-.721, P = .003), and the Youden index was 28.1%. Vascular endothelial dysfunction may play a role in the pathogenesis of hypertension with hearing loss.
Collapse
Affiliation(s)
- Yinjing Hou
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
239
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
240
|
Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, Liu K, Yan J, Qi Z. Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics (Basel) 2024; 13:352. [PMID: 38667028 PMCID: PMC11047355 DOI: 10.3390/antibiotics13040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.
Collapse
Affiliation(s)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Bin Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd., No. 2, Hai Tai Development 2nd Road, Huayuan Industrial Zone, Tianjin 300384, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
241
|
Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne) 2024; 15:1359255. [PMID: 38645427 PMCID: PMC11026568 DOI: 10.3389/fendo.2024.1359255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.
Collapse
Affiliation(s)
- Dong-Rong Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
242
|
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals (Basel) 2024; 17:464. [PMID: 38675424 PMCID: PMC11054808 DOI: 10.3390/ph17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine's actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine's multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
243
|
Wei G, Huang N, Li M, Guan F, Chen L, Liao Y, Xie X, Li Y, Su Z, Chen J, Liu Y. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein. Eur J Pharmacol 2024; 968:176433. [PMID: 38369273 DOI: 10.1016/j.ejphar.2024.176433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The promotion of excess low-density lipoprotein (LDL) clearance stands as an effective clinical approach for treating hyperlipidemia. Tetrahydroberberine, a metabolite of berberine, exhibits superior bioavailability compared to berberine and demonstrates a pronounced hypolipidemic effect. Despite these characteristics, the impact of tetrahydroberberine on improving excessive LDL clearance in hyperlipidemia has remained unexplored. Thus, this study investigates the potential effects of tetrahydroberberine on high-fat diet-induced hyperlipidemia in mice. The findings reveal that tetrahydroberberine exerts a more potent lipid-lowering effect than berberine, particularly concerning LDL-cholesterol in hyperlipidemic mice. Notably, tetrahydroberberine significantly reduces serum levels of upstream lipoproteins, including intermediate-density lipoprotein (IDL) and very low-density lipoprotein, by promoting their conversion to LDL. This reduction is further facilitated by the upregulation of hepatic LDL receptor expression induced by tetrahydroberberine. Intriguingly, tetrahydroberberine enhances the apolipoprotein E (ApoE)/apolipoprotein B100 (ApoB100) ratio, influencing lipoprotein assembly in the serum. This effect is achieved through the activation of the efflux of ApoE-containing cholesterol in the liver. The ApoE/ApoB100 ratio exhibits a robust negative correlation with serum levels of LDL and IDL, indicating its potential as a diagnostic indicator for hyperlipidemia. Moreover, tetrahydroberberine enhances hepatic lipid clearance without inducing lipid accumulation in the liver and alleviates existing liver lipid content. Importantly, no apparent hepatorenal toxicity is observed following tetrahydroberberine treatment for hyperlipidemia. In summary, tetrahydroberberine demonstrates a positive impact against hyperlipidemia by modulating lipoprotein assembly-induced clearance of LDL and IDL. The ApoE/ApoB100 ratio emerges as a promising diagnostic indicator for hyperlipidemia, showcasing the potential clinical significance of tetrahydroberberine in lipid management.
Collapse
Affiliation(s)
- Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
244
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
245
|
Liu Y, Gong J, Wang Q, Wei N, Zhao L, Wu Z. Activation of the Nrf2/HO-1 axis by glutaredoxin 2 overexpression antagonizes vascular endothelial cell oxidative injury and inflammation under LPS exposure. Cytotechnology 2024; 76:167-178. [PMID: 38495299 PMCID: PMC10940561 DOI: 10.1007/s10616-023-00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/03/2023] [Indexed: 03/19/2024] Open
Abstract
Atherosclerosis constitutes a proverbial pathogenic mechanism for cardio-cerebrovascular disease that accounts for the most common cause of disability and morbidity for human health worldwide. Endothelial dysfunction and inflammation are the key contributors to the progression of atherosclerosis. Glutaredoxin 2 (GLRX2) is abundantly existed in various tissues and possesses a range of pleiotropic efficacy including anti-oxidative and anti-inflammatory responses. However, its role in atherosclerosis is still undefined. Here, down-regulation of GLRX2 was validated in lipopolysaccha (LPS)-induced vascular endothelial cells (HUVECs). Moreover, elevation of GLRX2 reversed the inhibition of cell viability in LPS-treated HUVECs and decreased LPS-induced increases in cell apoptosis and caspase-3 activity. Additionally, enhancement of GLRX2 expression antagonized oxidative stress in HUVECs under LPS exposure by inhibiting ROS, lactate dehydrogenase and malondialdehyde production and increased activity of anti-oxidative stress superoxide dismutase. Notably, GLRX2 abrogated LPS-evoked transcripts and releases of pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β), chemokine MCP-1 and adhesion molecule ICAM-1 expression. Furthermore, the activation of Nrf2/HO-1 signaling was demonstrated in LPS-stimulated HUVECs. Importantly, blockage of the Nrf2 pathway counteracted the protective roles of GLRX2 in LPS-triggered endothelial cell injury, oxidative stress and inflammatory response. Thus, these data reveal that GLRX2 may alleviate the progression of atherosclerosis by regulating vascular endothelial dysfunction and inflammation via the activation of the Nrf2 signaling, supporting a promising therapeutic approach for atherosclerosis and its complications. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00606-x.
Collapse
Affiliation(s)
- Yuna Liu
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Jinlin Gong
- Department of Medical Technology Support, Jingxi Medical District, Chinese PLA General Hospital, Beijing, 100097 People’s Republic of China
| | - Qing Wang
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Na Wei
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Lei Zhao
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| | - Zhenan Wu
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Yongding Road East Street, Beijing, 100039 People’s Republic of China
| |
Collapse
|
246
|
Xue W, Deng L. EP300 improves endothelial injury and mitochondrial dysfunction in coronary artery disease by regulating histone acetylation of SOCS1 promoter via inhibiting JAK/STAT pathway. Cytokine 2024; 176:156507. [PMID: 38244240 DOI: 10.1016/j.cyto.2024.156507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Endothelial cell injury and mitochondrial dysfunction are crucial events during coronary artery disease (CAD). Suppressor of cytokine signaling-1 (SOCS1) is a negative mediator for inflammation, but there are few reports regarding histone acetylation of SOCS1 in CAD. The aim of the current study is to examine the impact of SOCS1 in CAD patients and human umbilical vein endothelial cells (HUVECs). We enrolled patients with CAD and healthy volunteers. HUVECs treated with ox-LDL were used as in vitro model. This study showed that SOCS1 expression was decreased in patients with CAD and ox-LDL-stimulated HUVECs. Overexpressing SOCS1 ameliorated endothelial cell injury and mitochondrial dysfunction induced by ox-LDL in vitro. Moreover, EP300 promoted SOCS1 transcription through increasing the acetylation of SOCS1 and recruiting H3K27ac to the SOCS1 gene promoter in HUVECs induced by ox-LDL. Additionally, SOCS1 repressed JAK/STAT cascade in ox-LDL-stimulated HUVECs. Silencing of EP300 reversed endothelial cell injury and mitochondrial dysfunction ameliorated by overexpression of SOCS1 in ox-LDL-induced HUVECs. In summary, SOCS1 alleviated endothelial injury and mitochondrial dysfunction via enhancing H3K27ac acetylation by recruiting EP300 to promoter region and inhibiting JAK/STAT pathway. These results contribute to discover underlying diagnostic biomarkers and therapeutic targets for CAD.
Collapse
Affiliation(s)
- Wenbo Xue
- Department of cardio-thoracic surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, China
| | - Liuping Deng
- Department of cardio-thoracic surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, China..
| |
Collapse
|
247
|
Liu J, He J, Liao Z, Chen X, Ye Y, Pang Q, Fan R. Environmental dose of 16 priority-controlled PAHs induce endothelial dysfunction: An in vivo and in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170711. [PMID: 38340817 DOI: 10.1016/j.scitotenv.2024.170711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/24/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is related to the occurrence of cardiovascular diseases (CVDs). Endothelial dysfunction is considered an initial event of CVDs. To confirm the relationship of PAHs exposure with endothelial dysfunction, 8-week-old male SD rats and primary human umbilical vein endothelial cells (HUVECs) were co-treated with environmental doses of 16 priority-controlled PAHs for 90 d and 48 h, respectively. Results showed that 10× PAHs exposure remarkably raised tumor necrosis factor-α and malonaldehyde levels in rat serum (p < 0.05), but had no effects on interleukin-8 levels and superoxide dismutase activity. The expressions of SIRT1 in HUVECs and rat aorta were attenuated after PAHs treatment. Interestingly, PAHs exposure did not activate the expression of total endothelial nitric oxide synthase (eNOS), but 10× PAHs exposure significantly elevated the expression of phosphorylated eNOS (Ser1177) in HUVECs and repressed it in aortas, accompanied with raised nitrite level both in serum and HUVECs by 48.50-253.70 %. PAHs exposure also led to the augment of endothelin-1 (ET-1) levels by 19.76-38.54 %, angiotensin (Ang II) levels by 20.09-39.69 % in HUVECs, but had no effects on ET-1 and Ang II levels in serum. Additionally, PAHs exposure improved endocan levels both in HUVECs and serum by 305.05-620.48 % and stimulated the THP-1 cells adhered to HUVECs (p < 0.05). After PAHs treatment, the smooth muscle alignment was disordered and the vascular smooth muscle locally proliferated in rat aorta. Notably, the systolic blood pressure of rats exposed to 10× PAHs increased significantly compared with the control ones (131.28 ± 5.20 vs 116.75 ± 5.33 mmHg). In summary, environmental chronic PAHs exposure may result in endothelial dysfunction in SD rats and primary HUVECs. Our research can confirm the cardiovascular damage caused by chronic exposure to PAHs and provide ideas for the prevention or intervention of CVDs affected by environmental factors.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zengquan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yufeng Ye
- Medical Imaging Institute of Panyu, Guangzhou 511486, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
248
|
Mu X, Liu SJ, Zheng LY, Ouyang C, Abdalla AME, Wang XX, Chen K, Yang FF, Meng N. The long coiled-coil protein NECC2 regulates oxLDL-induced endothelial oxidative damage and exacerbates atherosclerosis development in apolipoprotein E -/- mice. Free Radic Biol Med 2024; 216:106-117. [PMID: 38461872 DOI: 10.1016/j.freeradbiomed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.
Collapse
Affiliation(s)
- Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China; The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shangdong, 252000, China
| | - Shu-Jun Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ahmed M E Abdalla
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai Chen
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China; Shandong Innovation Center of Engineered Bacteriophage Therapeutics, Jinan, China.
| | - Fei-Fei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
249
|
Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res 2024; 134:931-949. [PMID: 38547250 DOI: 10.1161/circresaha.123.324055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics (Y.Z.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
250
|
Qiu B, Zhou Y, Tao X, Hou X, Du L, Lv Y, Yu L. The effect of exercise on flow-mediated dilation in people with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2024; 15:1347399. [PMID: 38596227 PMCID: PMC11002232 DOI: 10.3389/fendo.2024.1347399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction An increasing number of studies have investigated the effect of exercise on flow-mediated dilation (FMD) in people with type 2 diabetes mellitus (T2DM), while the findings were controversial. The primary aim of this systematic review and meta-analysis was to investigate the effect of exercise on FMD in T2DM patients, and the secondary aim was to investigate the optimal type, frequency, session duration, and weekly time of exercise for T2DM patients. Methods Searches were conducted in PubMed, Cochrane Library, Scopus, Web of Science, Embase and EBSCO databases. The Cochrane risk of bias tool (RoB2) in randomized trial and Physiotherapy Evidence Database (PEDro) scale were used to assess the methodological quality of the included studies. Results From the 3636 search records initially retrieved, 13 studies met the inclusion criteria. Our meta-analysis revealed that exercise had a significant effect on improving FMD in T2DM patients [WMD, 2.18 (95% CI, 1.78-2.58), p < 0.00001, I2 = 38%], with high-intensity interval training (HIIT) being the most effective intervention type [HIIT, 2.62 (1.42-3.82); p < 0.0001; aerobic exercise, 2.20 (1.29-3.11), p < 0.00001; resistance exercise, 1.91 (0.01-3.82), p = 0.05; multicomponent training, 1.49 (0.15-2.83), p = 0.03]. In addition, a higher frequency [> 3 times, 3.06 (1.94-4.19), p < 0.00001; ≤ 3 times, 2.02 (1.59-2.45), p < 0.00001], a shorter session duration [< 60 min, 3.39 (2.07-4.71), p < 0.00001; ≥ 60 min, 1.86 (1.32-2.40), p < 0.00001], and a shorter weekly time [≤ 180 min, 2.40 (1.63-3.17), p < 0.00001; > 180 min, 2.11 (0.82-3.40), p = 0.001] were associated with larger improvements in FMD. Conclusion This meta-analysis provides clinicians with evidence to recommended that T2DM patients participate in exercise, especially HIIT, more than 3 times per week for less than 60 min, with a target of 180 min per week being reached by increasing the frequency of exercise. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023466575.
Collapse
Affiliation(s)
- Bopeng Qiu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yilun Zhou
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Xifeng Tao
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
- School of Physical Education, Xihua University, Chengdu, China
| | - Xiao Hou
- School of Sport Sciences, Beijing Sport University, Beijing, China
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| |
Collapse
|