201
|
Hahn AC, Lyons CR, Lipscomb MF. Effect of Bacillus anthracis virulence factors on human dendritic cell activation. Hum Immunol 2008; 69:552-61. [PMID: 18662733 DOI: 10.1016/j.humimm.2008.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/13/2008] [Accepted: 06/24/2008] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis possesses three primary virulence factors: capsule, lethal toxin (LT), and edema toxin (ET). Dendritic cells (DCs) are critical to innate and acquired immunity and represent potential targets for these factors. We examined the ability of B. anthracis spores and bacilli to stimulate human monocyte-derived DC (MDDC), primary myeloid DC (mDC), and plasmacytoid DC (pDC) cytokine secretion. Exposure of MDDCs and mDCs to spores or vegetative bacilli of the genetically complete strain UT500 induced significantly increased cytokine secretion. Spores lacking genes required for capsule biosynthesis stimulated significantly higher cytokine secretion than UT500 spores from mDCs, but not MDDCs. In contrast, bacilli lacking capsule stimulated significantly higher cytokine secretion than UT500 bacilli in both MDDCs and mDCs. Spores or bacilli lacking both LT and ET stimulated significantly higher cytokine secretion than UT500 spores or bacilli, respectively, in both mDCs and MDDCs. pDCs exposed to spores or bacilli did not produce significant amounts of cytokines even when virulence factors were absent. In conclusion, B. anthracis employs toxins as well as capsule to inhibit human MDDC and mDC cytokine secretion, whereas human pDCs respond poorly even when capsule or both toxins are absent.
Collapse
Affiliation(s)
- Andrew C Hahn
- Center for Infectious Disease and Immunity, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
202
|
Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Grauer DC, Lehmann M, Meijler MM, Janda KD, Ulevitch RJ. Modulation of Gene Expression via Disruption of NF- B Signaling by a Bacterial Small Molecule. Science 2008; 321:259-63. [DOI: 10.1126/science.1156499] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
203
|
Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem 2008; 2:152-71. [PMID: 17163561 DOI: 10.1002/cmdc.200600204] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of metalloproteins are important medicinal targets for conditions ranging from pathogenic infections to cancer. Many but not all of these metalloproteins contain a zinc(II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In this review several metalloproteins of interest are discussed, including matrix metalloproteinases (MMPs), histone deacetylases (HDACs), anthrax lethal factor (LF), and others. Different strategies that have been employed to design effective inhibitors against these proteins are described, with an effort to highlight the strengths and drawbacks of each approach. An emphasis is placed on examining the bioinorganic chemistry of these metal active sites and how a better understanding of the coordination chemistry in these systems may lead to improved inhibitors. It is hoped that this review will help inspire medicinal, biological, and inorganic chemists to tackle this important problem by considering all aspects of metalloprotein inhibitor design.
Collapse
Affiliation(s)
- Faith E Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
204
|
Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3:224-32. [PMID: 18407066 DOI: 10.1016/j.chom.2008.03.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/27/2007] [Accepted: 03/11/2008] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) parasitizes host macrophages and subverts host innate and adaptive immunity. Several cytokines elicited by Mtb are mediators of mycobacterial clearance or are involved in tuberculosis pathology. Surprisingly, interleukin-1beta (IL-1beta), a major proinflammatory cytokine, has not been implicated in host-Mtb interactions. IL-1beta is activated by processing upon assembly of the inflammasome, a specialized inflammatory caspase-activating protein complex. Here, we show that Mtb prevents inflammasome activation and IL-1beta processing. An Mtb gene, zmp1, which encodes a putative Zn(2+) metalloprotease, is required for this process. Infection of macrophages with zmp1-deleted Mtb triggered activation of the inflammasome, resulting in increased IL-1beta secretion, enhanced maturation of Mtb containing phagosomes, improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs of aerosol-infected mice. Thus, we uncovered a previously masked role for IL-1beta in the control of Mtb and a mycobacterial system that prevents inflammasome and, therefore, IL-1beta activation.
Collapse
Affiliation(s)
- Sharon S Master
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
|
206
|
Watts CJ, Hahn BL, Sohnle PG. Progressive and destructive hair follicle infections in a murine cutaneous anthrax model. Microb Pathog 2008; 44:363-9. [PMID: 18551767 DOI: 10.1016/j.micpath.2007.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hair follicles may allow pathogen entry because they represent potential barrier defects and because there is immunological privilege within actively growing follicles. Experimental cutaneous Bacillus anthracis infections in mice have previously shown prominent organism invasion and proliferation within hair follicles. For the present study, C57BL/6 mice were inoculated with B. anthracis (Sterne) spores onto abraded skin with either anagen (actively growing) or telogen (inactive) hair follicles; skin samples were evaluated by histologic methods and electron microscopy. The infections were found to progress similarly in either anagen or telogen hair follicles, with bacilli occasionally invading deeper sites in anagen hair follicles. The infections progressed from the surface inward, rather than growing outward from within the follicles. Infecting bacilli destroyed the hair follicle keratinocytes and were initially not contacted by inflammatory cells within the follicles. However, at 3-4 days after inoculation, inflammatory cells did contact and disperse the massed follicle bacilli and led to apparent resolution of the follicle infections. Therefore, in this model system B. anthracis initially attacks superficial sites in active or inactive hair follicles and then progresses inward, producing destructive infections of the hair follicles; these infections clear when the massed bacilli are eventually contacted and dispersed by inflammatory cells.
Collapse
Affiliation(s)
- Christopher J Watts
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
207
|
Xu L, Fang H, Frucht DM. Anthrax lethal toxin increases superoxide production in murine neutrophils via differential effects on MAPK signaling pathways. THE JOURNAL OF IMMUNOLOGY 2008; 180:4139-47. [PMID: 18322225 DOI: 10.4049/jimmunol.180.6.4139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The combination of lethal factor and its receptor-binding partner, protective Ag, is termed lethal toxin (LT) and has critical pathogenic activity during infection with Bacillus anthracis. We herein report that anthrax LT binds and enters murine neutrophils, leading to the cleavage of mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7. Anthrax LT treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax LT treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax LT treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the LT-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax LT. These findings reveal a previously unrecognized mechanism through which anthrax LT supports a critical proinflammatory response of murine neutrophils.
Collapse
Affiliation(s)
- Lixin Xu
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
208
|
Zwaferink H, Stockinger S, Hazemi P, Lemmens-Gruber R, Decker T. IFN-beta increases listeriolysin O-induced membrane permeabilization and death of macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:4116-23. [PMID: 18322222 DOI: 10.4049/jimmunol.180.6.4116] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type I IFN (IFN-I) signaling is detrimental to cells and mice infected with Listeria monocytogenes. In this study, we investigate the impact of IFN-I on the activity of listeriolysin O (LLO), a pore-forming toxin and virulence protein released by L. monocytogenes. Treatment of macrophages with IFN-beta increased the ability of sublytic LLO concentrations to cause transient permeability of the plasma membrane. At higher LLO concentrations, IFN-beta enhanced the complete breakdown of membrane integrity and cell death. This activity of IFN-beta required Stat1. Perturbation of the plasma membrane by LLO resulted in activation of the p38MAPK pathway. IFN-beta pretreatment enhanced LLO-mediated signaling through this pathway, consistent with its ability to increase membrane damage. p38MAPK activation in response to LLO was independent of TLR4, a putative LLO receptor, and inhibition of p38MAPK neither enhanced nor prevented LLO-induced death. IFN-beta caused cells to express increased amounts of caspase 1 and to produce a detectable caspase 1 cleavage product after LLO treatment. Contrasting recent reports with another pore-forming toxin, this pathway did not aid cell survival as caspase 1-deficient cells were equally sensitive to lysis by LLO. Key lipogenesis enzymes were suppressed in IFN-beta-treated cells, which may exacerbate the membrane damage caused by LLO.
Collapse
Affiliation(s)
- Heather Zwaferink
- Max F. Perutz Laboratories, Vienna Biocenter, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
209
|
Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS. Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 2008; 38:1574-84. [PMID: 18493980 PMCID: PMC3681412 DOI: 10.1002/eji.200838141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous reports suggested that lethal toxin (LT)-induced caspase-1 activity and/or IL-1beta accounted for Bacillus anthracis (BA) infection lethality. In contrast, we now report that caspase-1-mediated IL-1beta expression in response to BA spores is required for anti-BA host defenses. Caspase-1(-/-) and IL-1beta(-/-) mice are more susceptible than wild-type (WT) mice to lethal BA infection, are less able to kill BA both in vivo and in vitro, and addition of rIL-1beta to macrophages from these mice restored killing in vitro. Non-germinating BA spores induced caspase-1 activity, IL-1beta and nitric oxide, by which BA are killed in WT but not in caspase-1(-/-) mice, suggesting that the spore itself stimulated inflammatory responses. While spores induced IL-1beta in LT-susceptible and -resistant macrophages, LT induced IL-1beta only in LT-susceptible macrophages. Cooperation between MyD88-dependent and -independent signaling pathways was required for spore-induced, but not LT-induced, IL-1beta. While both spores and LT induced caspase-1 activity and IL-1beta, LT did not induce IL-1beta mRNA, and spores did not induce cell death. Thus different components of the same bacterium each induce IL-1beta by distinct signaling pathways. Whereas the spore-induced IL-1beta limits BA infection, LT-induced IL-1beta enables BA to escape host defenses.
Collapse
Affiliation(s)
- Tae Jin Kang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Subhendu Basu
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Lei Zhang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Karen E. Thomas
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Les Baillie
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, USA
| | - Alan S. Cross
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
210
|
A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A 2008; 105:7803-8. [PMID: 18511561 DOI: 10.1073/pnas.0802726105] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NOD2, a NOD-like receptor (NLR), is an intracellular sensor of bacterial muramyl dipeptide (MDP) that was suggested to promote secretion of the proinflammatory cytokine IL-1beta. Yet, the molecular mechanism by which NOD2 can stimulate IL-1beta secretion, and its biological significance were heretofore unknown. We found that NOD2 through its N-terminal caspase recruitment domain directly binds and activates caspase-1 to trigger IL-1beta processing and secretion in MDP-stimulated macrophages, whereas the C-terminal leucine-rich repeats of NOD2 prevent caspase-1 activation in nonstimulated cells. MDP challenge induces the association of NOD2 with another NLR protein, NALP1, and gel filtration analysis revealed the formation of a complex consisting of NOD2, NALP1, and caspase-1. Importantly, Bacillus anthracis infection induces IL-1beta secretion in a manner that depended on caspase-1 and NOD2. In vitro, Anthrax lethal toxin strongly potentiated IL-1beta secretion, and that response was NOD2 and caspase-1-dependent. Thus, NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1beta secretion.
Collapse
|
211
|
Reig N, Jiang A, Couture R, Sutterwala FS, Ogura Y, Flavell RA, Mellman I, van der Goot FG. Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax lethal toxin. Cell Microbiol 2008; 10:1190-207. [PMID: 18194483 PMCID: PMC2861895 DOI: 10.1111/j.1462-5822.2008.01121.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anthrax lethal toxin (LT) contributes to the immune evasion strategy of Bacillus anthracis by impairing the function of cells of the immune system, such as macrophages and dendritic cells (DCs). Macrophages from certain inbred mice strains undergo rapid death upon LT treatment mediated by caspase-1 activation dependent on Nalp1b, an inflammasome component. Rapid LT-induced death is however, not observed in macrophages from human and many mouse strains. Here, we focused on the responses of various murine DCs to LT. Using a variety of knockout mice, we found that depending on the mouse strain, death of bone marrow-derived DCs and macrophages was mediated either by a fast Nalp1b and caspase-1-dependent, or by a slow caspase-1-independent pathway that was triggered by the impairment of MEK1/2 pathways. Caspase-1-independent death was observed in cells of different genetic backgrounds and interestingly occurred only in immature DCs. Maturation, triggered by different types of stimuli, led to full protection of DCs. These studies illustrate that the cellular damage inflicted by LT depends not only on the innate responses but also on the maturation stage of the cell, which modulates the more general caspase-1-independent responses.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| | - Aimin Jiang
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Rachael Couture
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Fayyaz S. Sutterwala
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Yasunori Ogura
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Richard A. Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Ira Mellman
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - F. Gisou van der Goot
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| |
Collapse
|
212
|
Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc Natl Acad Sci U S A 2008; 105:6150-5. [PMID: 18427110 DOI: 10.1073/pnas.0800105105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus anthracis, the etiologic agent of anthrax, avoids immune surveillance and commandeers host macrophages as a vehicle for lymphatic spreading. Here, we show that B. anthracis edema toxin (ET), via its adenylyl cyclase activity, dramatically increases the motility of infected macrophages and the expression of vascular endothelial growth factor. The transcription factor CREB and the syndecan-1 gene, a CREB target, play crucial roles in ET-induced macrophage migration. These molecular and cellular responses occur in macrophages engaged in antiinflammatory G protein-coupled receptor activation, thus illustrating a common signaling circuitry controlling resolution of inflammation and host cell hijacking by B. anthracis.
Collapse
|
213
|
Anamnestic protective immunity to Bacillus anthracis is antibody mediated but independent of complement and Fc receptors. Infect Immun 2008; 76:2177-82. [PMID: 18316379 DOI: 10.1128/iai.00647-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The threat of bioterrorist use of Bacillus anthracis has focused urgent attention on the efficacy and mechanisms of protective immunity induced by available vaccines. However, the mechanisms of infection-induced immunity have been less well studied and defined. We used a combination of complement depletion along with immunodeficient mice and adoptive transfer approaches to determine the mechanisms of infection-induced protective immunity to B. anthracis. B- or T-cell-deficient mice lacked the complete anamnestic protection observed in immunocompetent mice. In addition, T-cell-deficient mice generated poor antibody titers but were protected by the adoptive transfer of serum from B. anthracis-challenged mice. Adoptively transferred sera were protective in mice lacking complement, Fc receptors, or both, suggesting that they operate independent of these effectors. Together, these results indicate that antibody-mediated neutralization provides significant protection in B. anthracis infection-induced immunity.
Collapse
|
214
|
Kim J, Park H, Myung-Hyun J, Han SH, Chung H, Lee JS, Park JS, Yoon MY. The effects of anthrax lethal factor on the macrophage proteome: potential activity on nitric oxide synthases. Arch Biochem Biophys 2008; 472:58-64. [PMID: 18269913 DOI: 10.1016/j.abb.2008.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 01/26/2008] [Indexed: 11/17/2022]
Abstract
Anthrax lethal factor (LeTx) is a critical virulence factor in toxin-challenged cells, as lethal factor (LF) cleaves mitogen-activated protein kinase kinases (MKKs), inhibiting their activity. The physiological importance of this cleavage for macrophage cytolysis remains unclear, because similar proteolysis has been also observed in LeTx-resistant macrophages. Here, we analyzed in vitro proteomic profiles of Raw264.7 lysates treated with LF. In our experiments, neuronal NO synthase (nNOS) was found to be a fragment, suggesting that LF may act on nNOS cleavage. A similar cleavage of nNOS was shown in LeTx-challenged HEK293 cells expressing nNOS by a transient transfection. However, the cleavage site on nNOS is a unique leader sequence among the NOS family and this LF-mediated cleavage was not observed in iNOS, a major NOS isoform for anti-bactericidal NO production, even though NO level in LeTx-challenged cells was dramatically reduced. Our findings suggest that LF is directly capable of cleaving cellular protein(s) other than MKKs, and that these actions potentiate to promote the cytotoxic mechanisms of anthrax.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Johnson SL, Chen LH, Harbach R, Sabet M, Savinov A, Cotton NJH, Strongin A, Guiney D, Pellecchia M. Rhodanine Derivatives as Selective Protease Inhibitors Against Bacterial Toxins. Chem Biol Drug Des 2008; 71:131-9. [DOI: 10.1111/j.1747-0285.2007.00617.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
216
|
Mbalaviele G, Monahan JB. Mechanisms of the joint-protective effects of p38 MAPK inhibitors in rodent arthritis. Expert Opin Drug Discov 2008; 3:163-72. [DOI: 10.1517/17460441.3.2.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
217
|
Roy CR, Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2008; 8:1179-87. [PMID: 17952043 DOI: 10.1038/ni1528] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.
Collapse
Affiliation(s)
- Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut 06535, USA
| | | |
Collapse
|
218
|
Todorova NA, Doseeva V, Ramprakash J, Schwarz FP. Effect of the distal C162S mutation on the energetics of drug binding to p38α MAP kinase. Arch Biochem Biophys 2008; 469:232-42. [DOI: 10.1016/j.abb.2007.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/02/2007] [Accepted: 10/23/2007] [Indexed: 11/24/2022]
|
219
|
Yan M, Roehrl MH, Basar E, Wang JY. Selection and evaluation of the immunogenicity of protective antigen mutants as anthrax vaccine candidates. Vaccine 2007; 26:947-55. [PMID: 18192092 DOI: 10.1016/j.vaccine.2007.11.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022]
Abstract
Protective antigen (PA) is a central component of anthrax toxin and a major antigen in anthrax vaccines. However, the use of native PA as a vaccine is not optimal. If administered to people who have been freshly exposed to anthrax, PA may actually aid in anthrax toxin formation and thus may pose a serious safety concern for postexposure vaccination applications. A non-functional PA mutant may be a much safer alternative. To identify an improved anthrax vaccine antigen, we examined four non-functional mutants of PA, each being impaired in a critical step of the cellular intoxication pathway of PA. These mutants were Rec(-) (unable to bind PA-receptors), SSSR (resistant to activation by furin), Oligo(-) (unable to form oligomers), and DNI (Dominant Negative Inhibitory, unable to form endosomal transmembrane pores). When tested in mice and after three doses of immunization, all four mutants were highly potent in eliciting PA-specific, toxin-neutralizing antibodies, with immunogenicity increasing in the order of PA<Rec(-)<SSSR<Oligo(-)<DNI. While the differences between Rec(-) or SSSR and PA were small and not statistically significant, DNI and Oligo(-) were significantly more immunogenic than wild-type PA. One year after immunization and compared with PA-immunized mice, DNI-immunized mice maintained significantly higher levels of anti-PA IgG with correspondingly higher titers of toxin-neutralizing activity. In contrast, Oligo(-)-immunized mice had high levels of anti-PA IgG but lower titers of toxin-neutralizing activity, suggesting that Oligo(-) mutation sites may overlap with critical protective epitopes of PA. Our study demonstrates that PA-based vaccines could be improved both in terms of safety and efficacy by strategic mutations that not only render PA non-functional but also simultaneously enhance its immunogenic potency. Recombinant PA mutants, particularly DNI, hold great promise as better and safer antigens than wild-type PA for use in postexposure vaccination.
Collapse
Affiliation(s)
- Ming Yan
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
220
|
Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling. Br J Nutr 2007; 99:1247-54. [PMID: 18081943 DOI: 10.1017/s0007114507879128] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tocotrienols have been shown to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in tocotrienol-induced apoptosis are still unclear. In the present study, gamma-tocotrienol induced apoptosis in human gastric adenocarcinoma SGC-7901 cell line through down regulation of the extracellular signal-regulated kinase (ERK) signalling pathway. Furthermore, gamma-tocotrienol-induced apoptosis was accompanied by down regulation of Bcl-2, up regulation of Bax, activation of caspase-3, and subsequent poly (ADP-ribose) polymerase cleavage. These results indicated that up or down regulation of Bcl-2 family proteins play a major role in the initiation of gamma-tocotrienol-induced apoptosis as an activator of caspase-3. Gamma-tocotrienol also down regulated the activation of the Raf-ERK signalling pathway, and down regulated c-Myc by decreasing the expressions of Raf-1 and p-ERK1/2 proteins. The results suggest that key regulators in tocotrienol-induced apoptosis may be Bcl-2 families and caspase-3 in SGC-7901 cells through down regulation of the Raf-ERK signalling pathway.
Collapse
|
221
|
Passalacqua KD, Bergman NH. Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 2007; 1:397-415. [PMID: 17661631 DOI: 10.2217/17460913.1.4.397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its potential as a bioweapon, Bacillus anthracis has received a great deal of attention in recent years, and a significant effort has been devoted to understanding how this organism causes anthrax. There has been a particular focus on the inhalational form of the disease, and studies over the past several years have painted an increasingly complex picture of how B. anthracis enters the mammalian host, survives the host's defense mechanisms, disseminates throughout the body and causes death. This article reviews recent advances in these areas, with a focus on how the bacterium interacts with its host in establishing infection and causing anthrax.
Collapse
Affiliation(s)
- Karla D Passalacqua
- University of Michigan Medical School, Department of Microbiology & Immunology, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
222
|
Buck M, Chojkier M. C/EBPβ phosphorylation rescues macrophage dysfunction and apoptosis induced by anthrax lethal toxin. Am J Physiol Cell Physiol 2007; 293:C1788-96. [PMID: 17855774 DOI: 10.1152/ajpcell.00141.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bacillus anthracis lethal toxin (LT) impairs innate and adaptive immunity. Anthrax lethal factor stimulates cleavage of MAPK kinases, which prevents the activation of antiapoptotic MAPK targets. However, these MAPK targets have not been yet identified. Here, we found that LT induces macrophage apoptosis by enhancing caspase 8 activation and by preventing the activation of ribosomal S6 kinase-2 (RSK), a MAPK target, and the phosphorylation of CCAAT/enhancer binding protein-β (C/EBPβ) on T217, a RSK target. Expression of the dominant positive, phosphorylation mimic C/EBPβ-E217rescued macrophages from LT-induced apoptosis by blocking the activation of procaspase 8. LT inhibited macrophage phagocytosis and oxidative burst and induced apoptosis in normal mice but not in C/EBPβ-E217transgenic mice. These findings suggest that C/EBPβ may play a critical role in anthrax pathogenesis, at least in macrophages.
Collapse
Affiliation(s)
- Martina Buck
- Department of Medicine, University of California San Diego, and Veterans Affairs Healthcare System, San Diego, CA 92161, USA.
| | | |
Collapse
|
223
|
Vicente-Suarez I, Takahashi Y, Cheng F, Horna P, Wang H, Wang HG, Sotomayor E. Identification of a novel negative role of flagellin in regulating IL-10 production. Eur J Immunol 2007; 37:3164-75. [DOI: 10.1002/eji.200737306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
224
|
Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis 2007; 39:329-35. [PMID: 17659913 PMCID: PMC3268059 DOI: 10.1016/j.bcmd.2007.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in either cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Recently we have taken advantage of gadd45a and gadd45b deficient mice to determine the role gadd45a and gadd45b play in the response of bone marrow (BM) cells to genotoxic stress. Myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16, and daunorubicin (DNR)-induced apoptosis compared to wild-type (wt) cells. The increased apoptosis in gadd45a and gadd45b deficient cells was evident also by enhanced activation of caspase-3 and PARP cleavage and decreased expression of cIAP-1, Bcl-2, and Bcl-xL compared to wt cells. Reintroduction of gadd45 into gadd45 deficient BM cells restored the wt apoptotic phenotype. Both gadd45a and gadd45b deficient BM cells also displayed defective G2/M arrest following exposure to UVC and VP-16, but not to DNR, indicating the existence of different G2/M checkpoints that are either dependent or independent of gadd45. Additional work conducted in this laboratory has shown that in hematopoietic cells exposed to UV radiation gaddd45a and gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the Gadd45a-p38-NF-kB-mediated survival pathway and Gadd45b-mediated inhibition of the stress response MKK4-JNK pathway [O. Kovalsky, F.D. Lung, P.P. Roller, A.J. Fornace, Jr. Oligomerization of human Gadd45a protein. J Biol Chem. 276 (42) (2001) 39330-39339]. These data reveal novel mechanisms that mediate the pro-survival functions of gadd45a and gadd45b in hematopoietic cells following UV irradiation. Taken together, these findings identify gadd45a and gadd45b as anti-apoptotic genes that increase the survival of hematopoietic cells following exposure to UV radiation and certain anticancer drugs. This knowledge should contribute to a greater understanding of the genetic events involved in the pathogenesis of different leukemias and response of normal and malignant hematopoietic cells to chemo and radiation therapy. These observations set the stage to evaluate, in clinically relevant settings, the impact that the status of gadd45a and gadd45b might have on the efficacy of DNR or VP-16 in killing leukemic cells.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology, and Department of Biochemistry, Temple University School of Medicine, 3307 N Broad St. Philadelphia, PA 19140, USA.
| | | |
Collapse
|
225
|
Buchholz KR, Stephens RS. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect Immun 2007; 75:5924-9. [PMID: 17893134 PMCID: PMC2168325 DOI: 10.1128/iai.01029-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Diseases associated with Chlamydia infection, such as pelvic inflammatory disease and ectopic pregnancy, are due to inflammation-mediated tissue damage and scarring that occur after chronic or repeated infections. The inflammatory chemokine interleukin-8 (IL-8) is produced by Chlamydia-infected cells through an endogenous mechanism of activation, independent of soluble factors in the supernatant. The host signaling pathways necessary for this response are not understood, but the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) has been shown to be activated at similar times as IL-8 mRNA up-regulation. The purpose of this study was to elucidate the MAPK pathways necessary to induce the endogenous IL-8 response to Chlamydia trachomatis infection of epithelial cells. IL-8 induced by infection with C. trachomatis L2 was shown to be dependent on ERK and independent of p38 and Jun N-terminal MAPK by use of chemical inhibitors of the signaling pathways. Persistent ERK activation during IL-8 mRNA production at 24 h postinfection was necessary to maintain the response. C. trachomatis serovar D also induced IL-8 in an ERK-dependent manner. We concluded that IL-8 induced during infection of epithelial cells is dependent on continual activation of ERK by C. trachomatis.
Collapse
Affiliation(s)
- Kerry R Buchholz
- Program in Infectious Diseases and Immunity, School of Public Health, University of California-Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
226
|
Qiu L, Song L, Yu Y, Xu W, Ni D, Zhang Q. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2007; 23:614-23. [PMID: 17383200 DOI: 10.1016/j.fsi.2007.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/05/2007] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5'-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 h after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system.
Collapse
Affiliation(s)
- Limei Qiu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
227
|
Glomski IJ, Corre JP, Mock M, Goossens PL. Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice. Infect Immun 2007; 75:4754-61. [PMID: 17635863 PMCID: PMC2044546 DOI: 10.1128/iai.00575-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-gamma-D-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce toxins but no capsule. While these models have been useful in studying both toxinogenic infections and antitoxin vaccine efficacy, we questioned whether eliminating the capsule changed bacterial growth and dissemination characteristics. Thus, the progression of infection by toxinogenic noncapsulated B. anthracis was analyzed and compared to that by previously reported nontoxinogenic capsulated bacteria, using in vivo bioluminescence imaging. The influence of immunization with the toxin component protective antigen (PA) on the development of infection was also examined. The toxinogenic noncapsulated bacteria were initially confined to the cutaneous site of infection. Bacteria then progressed to the draining lymph nodes and, finally, late in the infection, to the lungs, kidneys, and frequently the gastrointestinal tract. There was minimal colonization of the spleen. PA immunization reduced bacterial growth from the outset and limited infection to the site of inoculation. These in vivo observations show that dissemination by toxinogenic noncapsulated strains differs markedly from that by nontoxinogenic capsulated strains. Additionally, PA immunization counters bacterial growth and dissemination in vivo from the onset of infection.
Collapse
Affiliation(s)
- Ian J Glomski
- Unité des Toxines et Pathogénie Bactérienne, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
228
|
Li Y, Sherer K, Cui X, Eichacker PQ. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Expert Opin Biol Ther 2007; 7:843-54. [PMID: 17555370 DOI: 10.1517/14712598.7.6.843] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inhalational Bacillus anthracis infection is a leading bioterrorist health threat in the US today. Lethal (LeTx) and edema toxin production are key to the virulent effects of this lethal bacteria. Recent insights into the structure and function of these toxins have increased the understanding of both the pathogenesis and treatment of anthrax. These are binary type toxins comprised of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. Primary cellular receptors for protective antigen have been identified and the processing of the completed toxins clarified. Consistent with the ability of lethal factor to cleave mitogen activated protein kinase kinases, the evidence indicates that an excessive inflammatory response does not contribute to shock with LeTx. Rather, the immunosuppressive effects of LeTx could promote infection; however, direct endothelial dysfunction may have an important role in shock due to LeTx. Recent studies show that edema factor, a potent adenyl cyclase, may have a major role in shock during anthrax and that it may also be immunosuppresive. Therapies under development which target several steps in the cellular uptake and function of these two toxins have been effective in both in vitro and in vivo systems. Understanding how best to apply these agents in combination with conventional treatments should be a goal of future research.
Collapse
MESH Headings
- Adenylyl Cyclases/immunology
- Adenylyl Cyclases/metabolism
- Animals
- Anthrax/complications
- Anthrax/drug therapy
- Anthrax/metabolism
- Anthrax Vaccines/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacillus anthracis/metabolism
- Bacillus anthracis/pathogenicity
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/physiopathology
- Humans
- Receptors, Peptide/metabolism
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/physiopathology
- Virulence
Collapse
Affiliation(s)
- Yan Li
- National Institutes of Health, Critical Care Medicine Department, Clinical Center, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
229
|
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 2007; 6:391-403. [PMID: 17473844 DOI: 10.1038/nrd2289] [Citation(s) in RCA: 393] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases, many of which dephosphorylate threonine and tyrosine residues on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). The regulated expression and activity of DUSP family members in different cells and tissues controls MAPK intensity and duration to determine the type of physiological response. For immune cells, DUSPs regulate responses in both positive and negative ways, and DUSP-deficient mice have been used to identify individual DUSPs as key regulators of immune responses. From a drug discovery perspective, DUSP family members are promising drug targets for manipulating MAPK-dependent immune responses in a cell-type and disease-context-dependent manner, to either boost or subdue immune responses in cancers, infectious diseases or inflammatory disorders.
Collapse
Affiliation(s)
- Kate L Jeffrey
- Immunology and Inflammation Research Program, The Garvan Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | |
Collapse
|
230
|
Fontaine C, Rigamonti E, Nohara A, Gervois P, Teissier E, Fruchart JC, Staels B, Chinetti-Gbaguidi G. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ Res 2007; 101:40-9. [PMID: 17540978 DOI: 10.1161/circresaha.106.135814] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophages play a central role in host defense against pathogen microbes by recognizing bacterial components, resulting in the activation of an arsenal of anti-microbial effectors. Toll-like receptor (TLR)-4 mediates the recognition of lipopolysaccharide, a pathogen-associated molecular pattern from gram-negative bacteria. Activation of the TLR-4 signaling pathway by lipopolysaccharide increases antibacterial effects by inducing secretion of cytokines that activate an immune inflammatory response and by generating bactericidal reactive oxygen species via the NADPH oxidase system. Liver X Receptors (LXRs) are nuclear receptors controlling cholesterol homeostasis and inflammation in macrophages. In addition, LXRs are critical for macrophage survival and play a role in the innate immune response in the mouse. In this study, we investigated whether LXR activation also regulates host defense mechanisms in human macrophages. In primary human macrophages, oxidized LDL and synthetic LXR ligands increased TLR-4 gene expression. Transient transfection assays, gel shift and chromatin immunoprecipitation analysis indicated that LXRs induce human TLR-4 promoter activity by binding to a DR4-type LXR response element. LXR induction of TLR-4 mRNA was followed by an induction of TLR-4 protein expression. Moreover, although short-term pretreatment with LXR agonists significantly reduced the inflammatory response induced by lipopolysaccharide, pretreatment of macrophages for 48 hours with LXR agonists resulted in an enhanced lipopolysaccharide response. Finally, LXR activation increased reactive oxygen species generation by enhancing the expression of NADPH oxidase subunits. These data provide evidence for an immunomodulatory function of LXRs in human macrophages via mechanisms distinct from those previously identified in mouse macrophages.
Collapse
Affiliation(s)
- Coralie Fontaine
- Institut Pasteur de Lille, Département d'Athérosclérose, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Ratha J, Majumdar KN, Dhara K, Singh SK, Saha KD, Bhadra R. Attenuated Leishmanial sphingolipid induces apoptosis in A375 human melanoma cell via both caspase-dependent and -independent pathways. Mol Cell Biochem 2007; 304:143-54. [PMID: 17530191 DOI: 10.1007/s11010-007-9495-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
A fraction of attenuated Leishmanial lipid (ALL) rich in sphingolipids, previously shown to have apoptosis inducing activity in mouse melanoma (B16F10) and human melanoma (A375) cells, was resolved to isolate the bioactive sphingolipid. The mechanism of apoptosis induction by this bioactive attenuated Leishmanial sphingolipid (ALSL) was studied in A375 cells. Apoptosis induced by ALSL in A375 cells was found to be dose and time-dependent. Exposure of cells to ALSL resulted in a rapid increase in reactive oxygen species generation. Pretreatment of cells with the antioxidant N-acetyl-cystein reduced ROS generation and attenuated apoptosis induced by ALSL. Again, ALSL sensitization resulted in the activation of caspase-3 and -9 but not caspase-8. However, inhibitors of these caspases could not protect the cells completely from ALSL-induced apoptosis. N-acetyl-cystein pretreatment was again found to attenuate the activation of caspase-3 and -9. ALSL treatment also resulted in the alteration of mitochondrial membrane potential, and release of pro-apoptotic factors such as cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Furthermore, c-Jun N-terminal kinase was activated that resulted in apoptosis of A375 cells, whereas p38 MAPK was activated to counteract the stress generated in cells in response to ALSL treatment. Taken together, our results indicate that ALSL-induced apoptosis of A375 cells is mediated by both mitochondrial caspase-dependent and -independent pathways and it involves ROS and JNK activation in the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- Jagnyeswar Ratha
- Cellular Biochemistry Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
232
|
Kimura RH, Steenblock ER, Camarero JA. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease. Anal Biochem 2007; 369:60-70. [PMID: 17586456 DOI: 10.1016/j.ab.2007.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/23/2007] [Accepted: 05/14/2007] [Indexed: 11/23/2022]
Abstract
We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased five times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.
Collapse
Affiliation(s)
- Richard H Kimura
- Biosciences and Biotechnology Division, Livermore National Laboratory, University of California, Livermore, CA 94550, USA
| | | | | |
Collapse
|
233
|
Geny B, Khun H, Fitting C, Zarantonelli L, Mazuet C, Cayet N, Szatanik M, Prevost MC, Cavaillon JM, Huerre M, Popoff MR. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1003-17. [PMID: 17322384 PMCID: PMC1864880 DOI: 10.2353/ajpath.2007.060583] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.
Collapse
Affiliation(s)
- Blandine Geny
- Unités des Bactéries Anaérobies et Toxines, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Beyond the innate response that is elicited when tissues are infected, bacterial pathogens have evolved strategies to subvert the immune response and "recalibrate" it both qualitatively and quantitatively, thereby achieving a balance consistent with the survival of both the microbe and its infected host, a compromise that is likely the result of a long process of coevolution between pathogens and their hosts. By collaboratively studying the mechanisms employed, microbiologists and immunologists are fostering development of a renewed approach of infectious diseases that is expected to provide useful new concepts and applications for their control. In addition, the molecular strategies developed by bacteria to dampen immune mechanisms result from such strong and prolonged selective pressure for survival that they may point to original mechanisms and targets to conceive novel immunomodulatory, anti-inflammatory, and anti-infectious molecules.
Collapse
Affiliation(s)
- Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris, Cedex 15, France.
| | | |
Collapse
|
235
|
During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J, Southwick FS. Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. EMBO J 2007; 26:2240-50. [PMID: 17446863 PMCID: PMC1864983 DOI: 10.1038/sj.emboj.7601687] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 03/22/2007] [Indexed: 11/09/2022] Open
Abstract
Inhalation of anthrax causes fatal bacteremia, indicating a meager host immune response. We previously showed that anthrax lethal toxin (LT) paralyzes neutrophils, a major component of innate immunity. Here, we have found that LT also inhibits actin-based motility of the intracellular pathogen Listeria monocytogenes. LT inhibition of actin assembly is mediated by blockade of Hsp27 phosphorylation, and can be reproduced by treating cells with the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580. Nonphosphorylated Hsp27 inhibits Listeria actin-based motility in cell extracts, and binds to and sequesters purified actin monomers. Phosphorylation of Hsp27 reverses these effects. RNA interference knockdown of Hsp27 blocks LT inhibition of Listeria actin-based motility. Rescue with wild-type Hsp27 accelerates Listeria speed in knockdown cells, whereas introduction of Hsp27 mutants incapable of phosphorylation or dephosphorylation causes slowing down. We propose that Hsp27 facilitates actin-based motility through a phosphorylation cycle that shuttles actin monomers to regions of new actin filament assembly. Our findings provide a previously unappreciated mechanism for LT virulence, and emphasize a central role for p38 MAP kinase-mediated phosphorylation of Hsp27 in actin-based motility and innate immunity.
Collapse
Affiliation(s)
- Russell L During
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bruce G Gibson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wei Li
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ellen A Bishai
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Gurjit S Sidhu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jacques Landry
- Centre de recherche en cancérologie de l'Université Laval, CHUQ-HDQ, Québec, Canada
| | - Frederick S Southwick
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- None of the authors have commercial or other associations that might pose a conflict of interest
- Division of Infectious Diseases, University of Florida College of Medicine, Box 100277, 1600 Archer Rd., Gainesville, FL 32610, USA. Tel.: +1 352 392 4058; Fax: +1 352 392 6481; E-mail:
| |
Collapse
|
236
|
Nye SH, Wittenburg AL, Evans DL, O'Connor JA, Roman RJ, Jacob HJ. Rat survival to anthrax lethal toxin is likely controlled by a single gene. THE PHARMACOGENOMICS JOURNAL 2007; 8:16-22. [PMID: 17440430 DOI: 10.1038/sj.tpj.6500448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined whether survival of different rat strains administered anthrax lethal toxin is genetically determined. A reproducible test population of first filial generation hybrid rats was bred based on the susceptibility of progenitors to anthrax lethal toxin and to maximize genetic diversity across the strains. These rats were then tested with varying doses of anthrax lethal toxin. We found that all 'sensitive' strains died within 2 h following systemic administration of 240 mug/kg lethal toxin, while one strain survived following a five times higher dose (1.4 mg/kg). The ability of lethal toxin to lyse macrophage cultures derived from the bone marrow of these strains corresponded with in vivo results. We conclude that a rat test population can detect strain differences in response to anthrax lethal toxin. Survival is influenced by the host genome background and is likely due to a single gene with a recessive mode of inheritance.
Collapse
Affiliation(s)
- S H Nye
- PhysioGenix Inc., 10437 Innovation Drive, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
237
|
Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007; 315:1000-3. [PMID: 17303758 DOI: 10.1126/science.1138960] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the alpha proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.
Collapse
Affiliation(s)
- Hongtao Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
239
|
Lombardo E, Alvarez-Barrientos A, Maroto B, Boscá L, Knaus UG. TLR4-mediated survival of macrophages is MyD88 dependent and requires TNF-alpha autocrine signalling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3731-3739. [PMID: 17339471 DOI: 10.4049/jimmunol.178.6.3731] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of macrophage survival is a critical factor in the resolution of inflammatory responses. Exposure to LPS protects innate immune cells against apoptosis, although the precise pathways responsible for prolongation of macrophage survival remain to be fully established. The goal of this study was to characterize the mechanism of TLR4-mediated survival of murine bone marrow-derived macrophages upon M-CSF withdrawal in more detail. Using a combination of knockout mice and pharmacological inhibitors allowed us to show that TLR4 and TLR2 stimulation promotes long-term survival of macrophages in a MyD88-, PI3K-, ERK-, and NF-kappaB-dependent manner. LPS-induced long-term, but not short-term, survival requires autocrine signaling via TNF-alpha and is facilitated by a general cytoprotective program, similar to that mediated by M-CSF. TLR4-mediated macrophage survival is accompanied by a remarkable up-regulation of specific cell surface markers, suggesting that LPS stimulation leads to the differentiation of macrophages toward a mixed macrophage/dendritic cell-like phenotype.
Collapse
Affiliation(s)
- Eleuterio Lombardo
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
240
|
Basu S, Kang TJ, Chen WH, Fenton MJ, Baillie L, Hibbs S, Cross AS. Role of Bacillus anthracis spore structures in macrophage cytokine responses. Infect Immun 2007; 75:2351-8. [PMID: 17339355 PMCID: PMC1865778 DOI: 10.1128/iai.01982-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response of macrophages (Mphi) to spores, the environmentally acquired form of Bacillus anthracis, is poorly characterized. We therefore examined the early Mphi cytokine response to B. anthracis spores, before germination. Mphi were exposed to bacilli and spores of Sterne strain 34F2 and its congenic nongerminating mutant (DeltagerH), and cytokine expression was measured by real-time PCR and an enzyme-linked immunosorbent assay. The exosporium spore layer was retained (exo+) or removed by sonication (exo-). Spores consistently induced a strong cytokine response, with the exo- spores eliciting a two- to threefold-higher response than exo+ spores. The threshold for interleukin-1beta (IL-1beta) production by wild-type Mphi was significantly lower than that required for tumor necrosis factor alpha expression. Cytokine production was largely dependent on MyD88, suggesting Toll-like receptor involvement; however, the expression of beta interferon in MyD88-/- Mphi suggests involvement of a MyD88-independent pathway. We conclude that (i) the B. anthracis spore is not immunologically inert, (ii) the exosporium masks epitopes recognized by the Mphi, (iii) the Mphi cytokine response to B. anthracis involves multiple pattern recognition receptors and signaling pathways, and (iv) compared to other cytokines, IL-1beta is expressed at a lower spore concentration.
Collapse
Affiliation(s)
- Subhendu Basu
- Center for Vaccine Development, Department of Medicine, University of Maryland, 685 W. Baltimore Street, HSF I-480, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
241
|
Panchal RG, Ruthel G, Brittingham KC, Lane D, Kenny TA, Gussio R, Lazo JS, Bavari S. Chemical Genetic Screening Identifies Critical Pathways in Anthrax Lethal Toxin-Induced Pathogenesis. ACTA ACUST UNITED AC 2007; 14:245-55. [PMID: 17379140 DOI: 10.1016/j.chembiol.2007.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/28/2006] [Accepted: 01/09/2007] [Indexed: 11/23/2022]
Abstract
Anthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity. Interestingly, the compounds activated MAPK-signaling molecules, induced proinflammatory cytokine production, and inhibited LT-induced macrophage apoptosis in a concentration-dependent manner. We propose that induction of antiapoptotic responses by MAPK-dependent or -independent pathways and activation of host innate responses may protect macrophages from anthrax LT-induced cell death. Altering host responses through a chemical genetics approach can help identify critical cellular pathways involved in the pathogenesis of anthrax and can be exploited to further explore host-pathogen interactions.
Collapse
Affiliation(s)
- Rekha G Panchal
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Johnson SL, Chen LH, Pellecchia M. A high-throughput screening approach to anthrax lethal factor inhibition. Bioorg Chem 2007; 35:306-12. [PMID: 17320146 PMCID: PMC2020844 DOI: 10.1016/j.bioorg.2006.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/27/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022]
Abstract
A high-throughput screening approach was used to identify new inhibitors of the metallo-protease lethal factor from Bacillus anthracis. A library of approximately 14,000 compounds was screened using a fluorescence-based in vitro assay and hits were further characterized enzymatically via measurements of IC50 and Ki values against a small panel of metallo-proteases. This study led to the identification of new scaffolds that inhibit LF and the Botulinum Neurotoxin Type A in the low micromolar range, while sparing the human metallo-proteases MMP-2 and MMP-9. Therefore, these scaffolds could be further exploited for the development of potent and selective anti-toxin agents.
Collapse
Affiliation(s)
| | | | - Maurizio Pellecchia
- * To whom correspondence should be addressed: Tel. 858.646.3159 Fax. 858.795.5225
| |
Collapse
|
243
|
Hirsh MI, Manov I, Cohen-Kaplan V, Iancu TC. Ultrastructural features of lymphocyte suppression induced by anthrax lethal toxin and treated with chloroquine. J Transl Med 2007; 87:182-8. [PMID: 17179957 DOI: 10.1038/labinvest.3700505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antibacterial therapy does not fully protect against anthrax because of severe systemic intoxication. Lysosomal processing of anthrax lethal toxin (LTX) is a key event in the disease pathogenesis, and agents interfering with this process, like chloroquine (CQ), may have practical applications. Although LTX is known to induce T-cell suppression, precise mechanisms of this phenomenon are not completely characterized. In the present study, we investigated alterations of lymphocyte ultrastructure caused by LTX and associated with favorable effect of CQ on the LTX-related dysfunction. Peripheral blood lymphocytes were activated via CD3 crosslinking in the presence or absence of LTX and CQ, and examined by transmission electron microscopy, flow cytometry and immunoblotting. Crosslinking of CD3 induced ultrastructural signs of lymphocyte activation, mostly disappeared after LTX treatment. The cell ultrastructure was well preserved in LTX-treated cells, despite dose- and time-dependent inhibition of T-cell function associated with impaired activation of mitogen-activated protein kinase. Regardless of intracellular signaling abnormalities, LTX did not decrease T-cell viability. CQ restored expression of CD69 (P<0.001) and improved phosphorylation of p38 (P=0.022) in LTX-exposed T lymphocytes. The exposure of cells to CQ, with or without LTX, led to appearance of many phagolysosomes with heterogeneous content, possibly representing unprocessed internalized material. In conclusion, LTX suppressed T-cell functions, but did not affect the viability and caused no ultrastructural damage. Ultrastructural observations indicated that CQ reduced harmful effects of LTX, possibly by interfering with lysosomal activity.
Collapse
Affiliation(s)
- Mark I Hirsh
- Laboratory for Shock and Trauma Research, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | | | | | |
Collapse
|
244
|
Hanna ML, Tarasow TM, Perkins J. Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor. Bioorg Chem 2007; 35:50-8. [PMID: 16949126 DOI: 10.1016/j.bioorg.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
A systematically generated series of hydrazones were analyzed as potential inhibitors of anthrax lethal factor. The hydrazones were screened using one UV-based and two fluorescence-based in vitro assays. The study identified several inhibitors with IC50 values in the micromolar range, and importantly, significant differences in the types of inhibition were observed with the different assays.
Collapse
Affiliation(s)
- M Leslie Hanna
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | | | | |
Collapse
|
245
|
Glomski IJ, Fritz JH, Keppler SJ, Balloy V, Chignard M, Mock M, Goossens PL. Murine splenocytes produce inflammatory cytokines in a MyD88-dependent response to Bacillus anthracis spores. Cell Microbiol 2007; 9:502-13. [PMID: 16978234 DOI: 10.1111/j.1462-5822.2006.00806.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus anthracis is a sporulating Gram-positive bacterium that causes the disease anthrax. The highly stable spore is the infectious form of the bacterium that first interacts with the prospective host, and thus the interaction between the host and spore is vital to the development of disease. We focused our study on the response of murine splenocytes to the B. anthracis spore by using paraformaldehyde-inactivated spores (FIS), a treatment that prevents germination and production of products associated with vegetative bacilli. We found that murine splenocytes produce IL-12 and IFN-gamma in response to FIS. The IL-12 was secreted by CD11b cells, which functioned to induce the production of IFN-gamma by CD49b (DX5) NK cells. The production of these cytokines by splenocytes was not dependent on TLR2, TLR4, TLR9, Nod1, or Nod2; however, it was dependent on the signalling adapter protein MyD88. Unlike splenocytes, Nod1- and Nod2-transfected HEK cells were activated by FIS. Both IL-12 and IFN-gamma secretion were inhibited by treatment with B. anthracis lethal toxin. These observations suggest that the innate immune system recognizes spores with a MyD88-dependent receptor (or receptors) and responds by secreting inflammatory cytokines, which may ultimately aid in resisting infection.
Collapse
Affiliation(s)
- Ian J Glomski
- Institut Pasteur, Unité des Toxines et Pathogénie Bactérienne, Paris, F-75015, France
| | | | | | | | | | | | | |
Collapse
|
246
|
Drysdale M, Olson G, Koehler TM, Lipscomb MF, Lyons CR. Murine innate immune response to virulent toxigenic and nontoxigenic Bacillus anthracis strains. Infect Immun 2007; 75:1757-64. [PMID: 17242059 PMCID: PMC1865709 DOI: 10.1128/iai.01712-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Effective treatment of anthrax is hampered by our limited understanding of the pathophysiology of Bacillus anthracis infection. We used a genetically complete (pXO1(+) pXO2(+)) virulent B. anthracis strain and four isogenic toxin-null mutants to determine the effects of the anthrax edema toxin (ET; edema factor [EF] plus protective antigen [PA]) and lethal toxin (LT; lethal factor [LF] plus PA) on the host innate response during systemic infection. Using the spleen as an indicator for host response, we found that intravenous inoculation of LT-deficient mutants into C57BL/6 mice significantly increased production of several cytokines over that observed after infection with the parent strain or an EF-deficient mutant. Bacteria producing one or both of the toxins were capable of inducing significant apoptosis of cells present in spleens, whereas apoptosis was greatly reduced in mice infected with nontoxigenic mutants. Mice infected with toxin-producing strains also showed increased splenic neutrophil recruitment compared to mice infected with nontoxigenic strains and neutrophil depletion prior to infection with toxin-producing strains, leading to decreased levels of apoptosis. Together, these studies indicate that anthrax LT suppresses cytokine secretion during infection, but both EF and LF play roles in inducing neutrophil recruitment and enhancing apoptosis. Interestingly, in the absence of LF the effect of EF-induced cell recruitment is further enhanced, perhaps because LF so effectively suppresses the secretion of chemokines.
Collapse
Affiliation(s)
- Melissa Drysdale
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
247
|
Tournier JN, Quesnel-Hellmann A, Cleret A, Vidal DR. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell Microbiol 2007; 9:555-65. [PMID: 17223930 DOI: 10.1111/j.1462-5822.2006.00866.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short-distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long-distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Pôle interactions hôte-pathogènes, Département de biologie des agents transmissibles, CRSSA, F-38702 La Tronche cedex, France.
| | | | | | | |
Collapse
|
248
|
Ruhland A, Leal N, Kima PE. Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol 2007; 9:84-96. [PMID: 16889626 DOI: 10.1111/j.1462-5822.2006.00769.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.
Collapse
Affiliation(s)
- Aaron Ruhland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 326111, USA
| | | | | |
Collapse
|
249
|
Scobie HM, Wigelsworth DJ, Marlett JM, Thomas D, Rainey GJA, Lacy DB, Manchester M, Collier RJ, Young JAT. Anthrax toxin receptor 2-dependent lethal toxin killing in vivo. PLoS Pathog 2006; 2:e111. [PMID: 17054395 PMCID: PMC1617126 DOI: 10.1371/journal.ppat.0020111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 09/11/2006] [Indexed: 01/21/2023] Open
Abstract
Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. The bacterium that causes anthrax produces a toxin which is largely responsible for the symptoms and death associated with this disease. The toxin acts by first docking onto specific proteins, called receptors, located on the host cell surface, and it is then taken up into cells where it can act on its cellular substrates. There are two known receptors for the toxin, anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2). However, the physiological importance of each receptor in host organisms is not yet understood. To address this issue directly, the authors designed a form of the toxin which binds specifically to ANTXR2 but not to ANTXR1. They show that this ANTXR2-specific form of the toxin is capable of killing rats following intravenous injection. These studies provide direct evidence for the physiological importance of ANTXR2 in anthrax toxin action in a model host organism.
Collapse
Affiliation(s)
- Heather M Scobie
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Darran J Wigelsworth
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John M Marlett
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Diane Thomas
- Department of Cell Biology, Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - G. Jonah A Rainey
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - D. Borden Lacy
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marianne Manchester
- Department of Cell Biology, Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - R. John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John A. T Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
250
|
Yasui H, Hideshima T, Ikeda H, Jin J, Ocio EM, Kiziltepe T, Okawa Y, Vallet S, Podar K, Ishitsuka K, Richardson PG, Pargellis C, Moss N, Raje N, Anderson KC. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol 2006; 136:414-23. [PMID: 17173546 DOI: 10.1111/j.1365-2141.2006.06443.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that heat shock protein (Hsp) 27 or its upstream activator p38 mitogen-activated protein kinase (MAPK) confers resistance to bortezomib and dexamethasone (Dex) in multiple myeloma (MM) cells. This study examined anti-MM activity of a novel p38 MAPK inhibitor, BIRB 796, alone and in combination with conventional and novel therapeutic agents. BIRB 796 blocked baseline and bortezomib-triggered upregulation of p38 MAPK and Hsp27 phosphorylation, thereby enhancing cytotoxicity and caspase activation. The Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin (17-AAG) upregulated protein expression and phosphorylation of Hsp27; conversely, BIRB 796 inhibited this phosphorylation and enhanced 17-AAG-induced cytotoxicity. Importantly, BIRB 796 inhibited Hsp27 phosphorylation induced by 17-AAG plus bortezomib, thereby enhancing cytotoxicity. In bone marrow stromal cells (BMSC), BIRB 796 inhibited phosphorylation of p38 MAPK and secretion of interleukin-6 (IL-6) and vascular endothelial growth factor triggered by either tumour necrosis factor-alpha or tumour growth factor-beta1. BIRB 796 also inhibited IL-6 secretion induced in BMSCs by adherence to MM cells, thereby inhibiting tumour cell proliferation. These studies therefore suggest that BIRB 796 overcomes drug-resistance in the BM microenvironment, providing the framework for clinical trials of a p38 MAPK inhibitor, alone and in combination with bortezomib, Hsp90 inhibitor, or Dex, to improve patient outcome in MM.
Collapse
Affiliation(s)
- Hiroshi Yasui
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|