201
|
Tybulewicz VLJ, Fisher EMC. New techniques to understand chromosome dosage: mouse models of aneuploidy. Hum Mol Genet 2006; 15 Spec No 2:R103-9. [PMID: 16987872 DOI: 10.1093/hmg/ddl179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrations in human chromosome copy number and structure are common and extremely deleterious. Their downstream effects on phenotype are caused by aberrant dosage of sequences in the affected regions. However, we know little about why the abnormal gene copy number causes disease or why specific features result from deficits in specific chromosomes. Mice are the organism of choice to help us try to tease apart the complex relationships between genotype and phenotype in aneuploidy and segmental aneusomy syndromes. As new technologies such as chromosome engineering and the creation of transchromosomic mice become routine, these will help us identify individual dosage-sensitive genes that are causative in specific syndromes and will enable us to produce mouse models to accurately recapitulate human chromosomal disorders.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
202
|
Moore CS. Postnatal lethality and cardiac anomalies in the Ts65Dn Down syndrome mouse model. Mamm Genome 2006; 17:1005-12. [PMID: 17019652 DOI: 10.1007/s00335-006-0032-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
The Ts65Dn mouse is a well-studied model for Down syndrome (DS). The presence of the translocation chromosome T17 16 (referred to as T65Dn) produces a trisomic dosage imbalance for over 100 genes on the distal region of mouse Chromosome 16. This dosage imbalance, with more than half of the orthologs of human Chromosome 21 (Hsa21), causes several phenotypes in the trisomic mice that are reminiscent of DS. Careful examination of neonates in a newly established Ts65Dn colony indicated high rates of postnatal lethality. Although the transmission rate for the T65Dn chromosome has been previously reported as 20%-40%, genotyping of all progeny indicates transmission at birth is near the 50% expected with Mendelian transmission and survival. Remarkably, in litters with maternal care that allowed survival of some pups, postnatal lethality occurred primarily in pups that inherited the T65Dn marker chromosome. This selective loss within 48 h of birth reduced the transmission of the marker chromosome from 49% at birth to 34% at weaning. Gross morphologic examination revealed cardiovascular anomalies, i.e., right aortic arch accompanied by septal defects, in 8.3% of the trisomic newborn cadavers examined. This is an intriguing finding because the orthologs of the DiGeorge region of HSA22, which are posited to contribute to the aortic arch abnormalities seen in trisomy 16 mice, are not triplicated in Ts65Dn mice. These new observations suggest that the Ts65Dn mouse models DS not only in its previously described phenotypes but also with elevated postnatal lethality and congenital heart malformations that may contribute to mortality.
Collapse
Affiliation(s)
- Clara S Moore
- Biology Department, Franklin & Marshall College, P.O. Box 3003, Lancaster, Pennsylvania, 17603, USA.
| |
Collapse
|
203
|
de la Luna S, Estivill X. Cooperation to amplify gene-dosage-imbalance effects. Trends Mol Med 2006; 12:451-4. [PMID: 16919501 DOI: 10.1016/j.molmed.2006.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/11/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Trisomy 21, also known as Down syndrome (DS), is a complex developmental disorder that affects many organs, including the brain, heart, skeleton and immune system. A working hypothesis for understanding the consequences of trisomy 21 is that the overexpression of certain genes on chromosome 21, alone or in cooperation, is responsible for the clinical features of DS. There is now compelling evidence that the protein products of two genes on chromosome 21, Down syndrome candidate region 1 (DSCR1) and dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), interact functionally, and that their increased dosage cooperatively leads to dysregulation of the signaling pathways that are controlled by the nuclear factor of activated T cells (NFAT) family of transcription factors, with potential consequences for several organs and systems that are affected in DS individuals.
Collapse
Affiliation(s)
- Susana de la Luna
- ICREA and Gene Function Group, Genes and Disease Program, Center for Genomic Regulation-CRG, 08003-Barcelona, Spain.
| | | |
Collapse
|
204
|
Antonarakis SE, Epstein CJ. The challenge of Down syndrome. Trends Mol Med 2006; 12:473-9. [PMID: 16935027 DOI: 10.1016/j.molmed.2006.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 07/21/2006] [Accepted: 08/14/2006] [Indexed: 01/01/2023]
Abstract
Down syndrome (DS) has been recognized as a clinical entity for about 150 years, but it is only recently that there has been hope for the possibility to understand its pathogenesis and to use this information to devise approaches for the prevention and treatment of its numerous features. The earlier pessimism was due to several reasons, including: (i) the nature of the genetic defect that leads to the syndrome; (ii) the multiplicity of systems involved; and (iii) the high degree of variability of the phenotype. However, science has now caught up with the problem, and recent developments, especially in genetics, genomics, developmental biology and neuroscience, suggest that these potential impediments might not be as arduous as once appeared. As a result, basic research on DS is now rapidly accelerating, and there is hope that the findings will be translatable into benefit for people with DS.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, University Hospitals of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | | |
Collapse
|
205
|
Brault V, Pereira P, Duchon A, Hérault Y. Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization. PLoS Genet 2006; 2:e86. [PMID: 16839184 PMCID: PMC1500809 DOI: 10.1371/journal.pgen.0020086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Transgénose, IEM, CNRS Uni Orléans, UMR6218, Orléans, France
| | | | | | | |
Collapse
|
206
|
Gardiner K, Costa ACS. The proteins of human chromosome 21. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2006; 142C:196-205. [PMID: 17048356 PMCID: PMC3299406 DOI: 10.1002/ajmg.c.30098] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent genomic sequence annotation suggests that the long arm of human chromosome 21 encodes more than 400 genes. Because there is no evidence to exclude any significant segment of 21 q from containing genes relevant to the Down syndrome (DS) cognitive phenotype, all genes in this entire set must be considered as candidates. Only a subset, however, is likely to make critical contributions. Determining which these are is both a major focus in biology and a critical step in efficient development of therapeutics. The subtle molecular abnormality in DS, the 50% increase in chromosome 21 gene expression, presents significant challenges for researchers in detection and quantitation. Another challenge is the current limitation in understanding gene functions and in interpreting biological characteristics. Here, we review information on chromosome 21-encoded proteins compiled from the literature and from genomics and proteomics databases. For each protein, we summarize their evolutionary conservation, the complexity of their known protein interactions and their level of expression in brain, and discuss the implications and limitations of these data. For a subset, we discuss neurologically relevant phenotypes of mouse models that include knockouts, mutations, or overexpression. Lastly, we highlight a small number of genes for which recent evidence suggests a function in biochemical/cellular pathways that are relevant to cognition. Until knowledge deficits are overcome, we suggest that effective development of gene-phenotype correlations in DS requires a serious and continuous effort to assimilate broad categories of information on chromosome 21 genes, plus the creation of more versatile mouse models.
Collapse
Affiliation(s)
- Katheleen Gardiner
- Eleanor Roosevelt Institute at the University of Denver, 1899 Gaylord Street, Denver, Colorado 80206
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Science Center, Denver, CO
| | - Alberto C. S. Costa
- Eleanor Roosevelt Institute at the University of Denver, 1899 Gaylord Street, Denver, Colorado 80206
- Department of Psychiatry, University of Colorado at Denver and Health Science Center, Denver, CO
| |
Collapse
|
207
|
Abstract
Down syndrome is a collection of features that are caused by trisomy for human Chromosome 21. While elevated transcript levels of the more than 350 genes on the chromosome are primarily responsible, it is likely that multiple genetic mechanisms underlie the numerous ways in which development and function diverge in individuals with trisomy 21 compared to euploid individuals. We consider genotype–phenotype interactions with the goal of producing working concepts that will be useful for approaches to ameliorate the effects of trisomy.
Collapse
|
208
|
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21. All individuals with DS exhibit some level of cognitive dysfunction. It is generally accepted that these abnormalities are a result of the upregulation of genes encoded by chromosome 21. Many chromosome 21 proteins are known or predicted to function in critical neurological processes, but typically they function as modulators of these processes, not as key regulators. Thus, upregulation in DS is expected to cause only modest perturbations of normal processes. Systematic approaches such as intracellular network construction and analysis have not been generally applied in DS research. Networks can be assembled from high-throughput experiments or by text-mining of experimental literature. We survey some new developments in constructing such networks, focusing on newly developed network analysis methodologies. We propose how these methods could be integrated with creation and manipulation of mouse models of DS to advance our understanding of the perturbed cell signaling pathways in DS. This understanding could lead to potential therapeutics.
Collapse
Affiliation(s)
- Avi Ma’ayan
- />Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 10029 New York, New York
| | - Katheleen Gardiner
- />Eleanor Roosevelt Institute at the University of Denver, University of Colorado at Denver and the Health Sciences Center, 80206 Denver, Colorado
| | - Ravi Iyengar
- />Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 10029 New York, New York
| |
Collapse
|
209
|
Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L, Heit JJ, Kim SK, Yamasaki N, Miyakawa T, Francke U, Graef IA, Crabtree GR. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 2006; 441:595-600. [PMID: 16554754 DOI: 10.1038/nature04678] [Citation(s) in RCA: 529] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Accepted: 02/27/2006] [Indexed: 11/10/2022]
Abstract
Trisomy 21 results in Down's syndrome, but little is known about how a 1.5-fold increase in gene dosage produces the pleiotropic phenotypes of Down's syndrome. Here we report that two genes, DSCR1 and DYRK1A , lie within the critical region of human chromosome 21 and act synergistically to prevent nuclear occupancy of NFATc transcription factors, which are regulators of vertebrate development. We use mathematical modelling to predict that autoregulation within the pathway accentuates the effects of trisomy of DSCR1 and DYRK1A, leading to failure to activate NFATc target genes under specific conditions. Our observations of calcineurin-and Nfatc-deficient mice, Dscr1- and Dyrk1a-overexpressing mice, mouse models of Down's syndrome and human trisomy 21 are consistent with these predictions. We suggest that the 1.5-fold increase in dosage of DSCR1 and DYRK1A cooperatively destabilizes a regulatory circuit, leading to reduced NFATc activity and many of the features of Down's syndrome. More generally, these observations suggest that the destabilization of regulatory circuits can underlie human disease.
Collapse
Affiliation(s)
- Joseph R Arron
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Reeves RH. Down syndrome mouse models are looking up. Trends Mol Med 2006; 12:237-40. [PMID: 16677859 DOI: 10.1016/j.molmed.2006.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 03/17/2006] [Accepted: 04/20/2006] [Indexed: 11/23/2022]
Abstract
A new mouse model of Down syndrome (DS) carries a copy of human chromosome 21 (Hsa21), in addition to a full complement of mouse chromosomes. In terms of the number of trisomic genes represented, this model, known as 'Tc1', is closer to the genetic background of DS than any previous model. The Tc1 model not only recapitulates several of the DS features present in other mouse models but also exhibits heart defects that are similar to those that make trisomy 21 the leading cause of congenital heart disease in humans. Many cells in adult Tc1 mice show mosaicism - that is, the Hsa21 is lost from some cells during development - increasing the complexity of analyses using this model. Tc1 mice provide a powerful tool for investigation of the pathogenesis of trisomy 21, and a platform for analysis of similarities and differences in the evolution of gene regulation.
Collapse
Affiliation(s)
- Roger H Reeves
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Biophysics 201, 725 North Wolfe Street, Baltimore, MD 21025, USA.
| |
Collapse
|
211
|
Roubertoux PL, Kerdelhué B. Trisomy 21: From Chromosomes to Mental Retardation. Behav Genet 2006; 36:346-54. [PMID: 16596471 DOI: 10.1007/s10519-006-9052-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
Abstract
The first descriptions of the trisomy 21 phenotype were by Jean-Etienne-Dominique Esquirol (1838), Edouard Séguin (1846) and later by John L. H. Down in 1862. It took more than a century to discover the extra-chromosomal origin of the syndrome commonly called "Down's syndrome" and which, we suggest, should be referred to as "Trisomy 21". In this review we are presenting the landmarks, from the pioneering description of the syndrome in 1838 to Jérôme Lejeune's discovery of the first genetic substrate for mental retardation. The sequencing of HSA21 was a new starting point that generated transcriptome studies, and we have noted that studies of gene over-expression have provided the impetus for discovering the HSA21 genes associated with trisomy 21 cognitive impairment.
Collapse
Affiliation(s)
- Pierre L Roubertoux
- Génomique Fonctionnelle, Pathologies, Comportements, P3M, UMR 6196, CNRS-Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
212
|
Kahlem P. Gene-dosage effect on chromosome 21 transcriptome in trisomy 21: implication in Down syndrome cognitive disorders. Behav Genet 2006; 36:416-28. [PMID: 16557362 DOI: 10.1007/s10519-006-9053-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/20/2005] [Indexed: 10/24/2022]
Abstract
In the era of human functional genomics, the chromosome 21 has represented a prototype for pioneering global biotechnologies. Its relatively low gene content enabled studying Down syndrome at the chromosomal scale, for which the last years have seen intense research activity aiming at genotype-phenotype correlations. The global gene-dose dependent upregulation of gene expression seen in the context of trisomy and preliminary functional annotation of chromosome 21 genes points towards candidate genes and molecular pathways potentially associated with the cognitive defects observed in Down syndrome.
Collapse
Affiliation(s)
- Pascal Kahlem
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Germany.
| |
Collapse
|
213
|
Pimenta AF, Levitt P. Applications of gene targeting technology to mental retardation and developmental disability research. ACTA ACUST UNITED AC 2006; 11:295-302. [PMID: 16240411 DOI: 10.1002/mrdd.20084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on applications to CNS development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aurea F Pimenta
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|
214
|
Gardiner K. Transcriptional dysregulation in Down syndrome: predictions for altered protein complex stoichiometries and post-translational modifications, and consequences for learning/behavior genes ELK, CREB, and the estrogen and glucocorticoid receptors. Behav Genet 2006; 36:439-53. [PMID: 16502135 DOI: 10.1007/s10519-006-9051-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Accepted: 08/01/2005] [Indexed: 11/28/2022]
Abstract
The phenotype of Down syndrome, trisomy of chromosome 21, is hypothesized to be produced by the increased expression due to gene dosage of normal chromosome 21 genes. Chromosome 21 encodes a number of proteins that, based on experimental evidence or domain composition, are classed as transcription factors or their co-regulators. Other chromosome 21 proteins contribute to post-translational modification of transcription factors, including their phosphorylation, dephosphorylation and sumoylation. Several of these chromosome 21 proteins and the pathways in which they function have overlapping transcription factor specificities. Thus, altered stoichiometry in complexes and altered levels of activation of individual transcription factors may contribute to the Down syndrome phenotype by perturbation of downstream gene expression. Here we review recent data on four chromosome 21 proteins: NRIP1, GABPA, DYRK1A and SUMO3. We discuss the implications for activation of ELK, CREB, C/EBP alpha, beta estrogen and glucocorticoid receptors, and for expression of BDNF. Each of these proteins is relevant to learning, behavior and/or development and therefore perturbation of their activation may contribute to the Down syndrome phenotype.
Collapse
|
215
|
Harashima C, Jacobowitz DM, Witta J, Borke RC, Best TK, Siarey RJ, Galdzicki Z. Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: a model of Down syndrome. J Comp Neurol 2006; 494:815-33. [PMID: 16374808 PMCID: PMC2929960 DOI: 10.1002/cne.20844] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ts65Dn, a mouse model of Down syndrome (DS), demonstrates abnormal hippocampal synaptic plasticity and behavioral abnormalities related to spatial learning and memory. The molecular mechanisms leading to these impairments have not been identified. In this study, we focused on the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) gene that is highly expressed in the hippocampus region. We studied the expression pattern of GIRK subunits in Ts65Dn and found that GIRK2 was overexpressed in all analyzed Ts65Dn brain regions. Interestingly, elevated levels of GIRK2 protein in the Ts65Dn hippocampus and frontal cortex correlated with elevated levels of GIRK1 protein. This suggests that heteromeric GIRK1-GIRK2 channels are overexpressed in Ts65Dn hippocampus and frontal cortex, which could impair excitatory input and modulate spike frequency and synaptic kinetics in the affected regions. All GIRK2 splicing isoforms examined were expressed at higher levels in the Ts65Dn in comparison to the diploid hippocampus. The pattern of GIRK2 expression in the Ts65Dn mouse brain revealed by in situ hybridization and immunohistochemistry was similar to that previously reported in the rodent brain. However, in the Ts65Dn mouse a strong immunofluorescent staining of GIRK2 was detected in the lacunosum molecular layer of the CA3 area of the hippocampus. In addition, tyrosine hydroxylase containing dopaminergic neurons that coexpress GIRK2 were more numerous in the substantia nigra compacta and ventral tegmental area in the Ts65Dn compared to diploid controls. In summary, the regional localization and the increased brain levels coupled with known function of the GIRK channel may suggest an important contribution of GIRK2 containing channels to Ts65Dn and thus to DS neurophysiological phenotypes.
Collapse
Affiliation(s)
- Chie Harashima
- Department of Anatomy, Physiology and Genetics, USUHS School of Medicine, Bethesda, MD
| | - David M. Jacobowitz
- Department of Anatomy, Physiology and Genetics, USUHS School of Medicine, Bethesda, MD
- Laboratory of Clinical Science, NIMH, Bethesda, MD
| | - Jassir Witta
- Department of Pharmacology, USUHS School of Medicine, Bethesda, MD
| | - Rosemary C. Borke
- Department of Anatomy, Physiology and Genetics, USUHS School of Medicine, Bethesda, MD
- Neuroscience Program, USUHS School of Medicine, Bethesda, MD
| | - Tyler K. Best
- Neuroscience Program, USUHS School of Medicine, Bethesda, MD
| | - Richard J. Siarey
- Department of Anatomy, Physiology and Genetics, USUHS School of Medicine, Bethesda, MD
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, USUHS School of Medicine, Bethesda, MD
- Neuroscience Program, USUHS School of Medicine, Bethesda, MD
| |
Collapse
|
216
|
Lensch MW, Daley GQ. Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood 2005; 107:2605-12. [PMID: 16332966 PMCID: PMC1895374 DOI: 10.1182/blood-2005-07-2991] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our considerable wealth of data concerning hematologic processes has come despite difficulties working with stem and progenitor cells in vitro and their propensity to differentiate. Key methodologies that have sought to overcome such limitations include transgenic/knock-out animals and in vitro studies using murine embryonic stem cells, because both permit investigation of the formation of hematopoietic tissue from nonhematopoietic precursors. Although there have been many successful studies in model animals for understanding hematopoietic-cell development, differences between lower vertebrates and humans have left gaps in our understanding. Clearly, human-specific strategies to study the onset of hematopoiesis, particularly the earliest events leading to the specification of both normal and abnormal hematopoietic tissue, could bring an investigational renaissance. The recent availability of human embryonic stem (hES) cells suggests that such a system is now at hand. This review highlights the potential of hES cells to model human hematologic processes in vitro with an emphasis on disease targets.
Collapse
Affiliation(s)
- M William Lensch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
217
|
Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL. Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 2005; 366:335-42. [PMID: 16288839 DOI: 10.1016/j.gene.2005.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/29/2005] [Accepted: 09/01/2005] [Indexed: 11/17/2022]
Abstract
Eight percent of the human genome is derived from endogenous retrovirus (ERV) insertions. ERV long terminal repeats (LTRs) contain strong promoters that are known to contribute to the transcriptional regulation of certain human genes. While some LTRs are known to possess bidirectional promoter activity in vitro, only sense orientation LTR promoters have previously been shown to regulate human gene expression. Here we demonstrate that an ERV1 LTR acts as a bidirectional promoter for the human Down syndrome critical region 4 (DSCR4) and DSCR8 genes. We show that while DSCR4 and DSCR8 are essentially co-expressed, their shared LTR promoter is more active in the sense than the antisense orientation. Through deletion analysis of the LTR we have identified positive and negative regulatory elements, and defined a core region of the promoter that is required for transcriptional activity in both orientations. Finally, we show that the ERV LTR also exists in the genomes of several non-human primates, and present evidence that potential transcription factor binding sites in the core region have been maintained throughout primate evolution.
Collapse
Affiliation(s)
- Catherine A Dunn
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
218
|
Rachidi M, Lopes C, Delezoide AL, Delabar JM. C21orf5, a human candidate gene for brain abnormalities and mental retardation in Down syndrome. Cytogenet Genome Res 2005; 112:16-22. [PMID: 16276086 DOI: 10.1159/000087509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 05/10/2005] [Indexed: 11/19/2022] Open
Abstract
Mental retardation represents the more invalidating pathological aspect of trisomy 21 and has a hard impact on public health. The dosage imbalance of chromosome 21 genes could be the cause of neurological alterations and mental retardation seen in Down syndrome. We studied C21orf5 that we have demonstrated to be overexpressed in Down syndrome tissues, as a candidate gene for trisomy 21. A new optical technology (Rachidi et al., 2000) was used to compare signal intensity and cell density in presumptive embryonic brain compartments, at their boundaries and in higher specialized brain centres during fetal lifespan. We showed a developmentally regulated transcriptional activity of C21orf5 and a regional and cellular specific distribution of gene transcripts during human embryonic and fetal development. A wide but differential expression was detected in the nervous system during embryogenesis with a relatively lower level in the forebrain than in the midbrain and hindbrain and the highest transcription intensity in the future cerebellum. This developmentally regulated expression is maintained during post-embryogenesis and evolves selectively in fetal cerebral, hippocampal and cerebellar areas. Differential and cellular specificity were detected in hippocampus with higher C21orf5 mRNA level in the pyramidal cells compared to granular cells of the dentate gyrus. The expression pattern detected in cortical and cerebellar structures correlates well to the altered cortical lamination and to the lower size of the cerebellum observed in Down syndrome patients. In addition, the patterned differential expression detected in the medial temporal-lobe system, including hippocampal formation and perirhinal cortex, working as control centres of the memory circuits and involved in cognitive processes and memory storage, also corresponds to abnormal brain regions seen in Down syndrome patients. The C21orf5 selective expression in the key brain structures for learning and memory suggests that C21orf5 overexpression could participate in mental retardation pathogenesis in Down syndrome patients.
Collapse
Affiliation(s)
- M Rachidi
- EA 3508 Université Denis Diderot, Paris, France. [corrected]
| | | | | | | |
Collapse
|
219
|
Lange AW, Rothermel BA, Yutzey KE. Restoration of DSCR1 to disomy in the trisomy 16 mouse model of Down syndrome does not correct cardiac or craniofacial development anomalies. Dev Dyn 2005; 233:954-63. [PMID: 15906378 DOI: 10.1002/dvdy.20433] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Down syndrome critical region 1 (DSCR1) gene is located in syntenic regions of human chromosome 21 and mouse chromosome 16 and encodes a regulatory protein in the calcineurin/NFAT pathway. DSCR1 expression in the embryonic brain, craniofacial structures, and heart is consistent with a role in contributing to Down syndrome developmental anomalies. In the trisomy 16 (Ts16) murine model of Down syndrome, expression of DSCR1 isoforms is elevated and NFAT transcriptional activity is decreased in the developing heart and brain. The individual contribution of DSCR1 to Down syndrome-related anomalies was examined by specific restoration of DSCR1 to disomic levels in Ts16 embryos. However, genetic restoration of DSCR1 did not rescue major morphological abnormalities in cardiac or craniofacial development. These data demonstrate that trisomy of DSCR1 alone does not significantly contribute to developmental defects in Ts16 mice and underscore the complexity of developmental anomalies associated with Down syndrome.
Collapse
Affiliation(s)
- Alexander W Lange
- Division of Molecular Cardiovascular Biology, Children's Medical Center Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
220
|
Crombez EA, Dipple KM, Schimmenti LA, Rao N. Duplication of the Down syndrome critical region does not predict facial phenotype in a baby with a ring chromosome 21. Clin Dysmorphol 2005. [DOI: 10.1097/00019605-200510000-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
221
|
O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TVP, Henderson DJ, Nizetic D, Tybulewicz VLJ, Fisher EMC. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 2005; 309:2033-7. [PMID: 16179473 PMCID: PMC1378183 DOI: 10.1126/science.1114535] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21 (Hsa21). This "transchromosomic" mouse line, Tc1, is a model of trisomy 21, which manifests as Down syndrome (DS) in humans, and has phenotypic alterations in behavior, synaptic plasticity, cerebellar neuronal number, heart development, and mandible size that relate to human DS. Transchromosomic mouse lines such as Tc1 may represent useful genetic tools for dissecting other human aneuploidies.
Collapse
Affiliation(s)
- Aideen O’Doherty
- Department of Neurodegenerative Disease
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Sandra Ruf
- Department of Neurodegenerative Disease
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Claire Mulligan
- Centre for Haematology, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine, 4 Newark Street, London E1 2AT, UK
| | - Victoria Hildreth
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Mick L. Errington
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Sam Cooke
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Abdul Sesay
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Sonie Modino
- Department of Craniofacial Development, Kings College London, Guy’s Hospital, London SE1 9RT, UK
| | - Lesley Vanes
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Diana Hernandez
- Department of Neurodegenerative Disease
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jacqueline M. Linehan
- Department of Neurodegenerative Disease
- Medical Research Council Prion Unit, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paul T. Sharpe
- Department of Craniofacial Development, Kings College London, Guy’s Hospital, London SE1 9RT, UK
| | | | - Timothy V. P. Bliss
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Deborah J. Henderson
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Dean Nizetic
- Centre for Haematology, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine, 4 Newark Street, London E1 2AT, UK
| | | | | |
Collapse
|
222
|
Bogani D, Willoughby C, Davies J, Kaur K, Mirza G, Paudyal A, Haines H, McKeone R, Cadman M, Pieles G, Schneider JE, Bhattacharya S, Hardy A, Nolan PM, Tripodis N, Depew MJ, Chandrasekara R, Duncan G, Sharpe PT, Greenfield A, Denny P, Brown SDM, Ragoussis J, Arkell RM. Dissecting the genetic complexity of human 6p deletion syndromes by using a region-specific, phenotype-driven mouse screen. Proc Natl Acad Sci U S A 2005; 102:12477-82. [PMID: 16109771 PMCID: PMC1194901 DOI: 10.1073/pnas.0500584102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monosomy of the human chromosome 6p terminal region results in a variety of congenital malformations that include brain, craniofacial, and organogenesis abnormalities. To examine the genetic basis of these phenotypes, we have carried out an unbiased functional analysis of the syntenic region of the mouse genome (proximal Mmu13). A genetic screen for recessive mutations in this region recovered thirteen lines with phenotypes relevant to a variety of clinical conditions. These include two loci that cause holoprosencephaly, two that underlie anophthalmia, one of which also contributes to other craniofacial abnormalities such as microcephaly, agnathia, and palatogenesis defects, and one locus responsible for developmental heart and kidney defects. Analysis of heterozygous carriers of these mutations shows that a high proportion of these loci manifest with behavioral activity and sensorimotor deficits in the heterozygous state. This finding argues for the systematic, reciprocal phenotypic assessment of dominant and recessive mouse mutants. In addition to providing a resource of single gene mutants that model 6p-associated disorders, the work reveals unsuspected genetic complexity at this region. In particular, many of the phenotypes associated with 6p deletions can be elicited by mutation in one of a number of genes. This finding implies that phenotypes associated with contiguous gene deletion syndromes can result not only from dosage sensitivity of one gene in the region but also from the combined effect of monosomy for multiple genes that function within the same biological process.
Collapse
Affiliation(s)
- Debora Bogani
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
|
224
|
Abstract
The pathogenesis of systemic sclerosis (SSc; scleroderma) is still enigmatic. Genetic, familial, and twin studies suggest that SSc occurs in genetically susceptible individuals. Recent high-throughput technologies, including gene expression profiling and proteomics, have accelerated the rate of information acquired on possible mechanisms involved in SSc pathogenesis. The potential of the data obtained lies in their use for identifying new disease markers, monitoring disease activity, and developing tailored therapies. The result is an era of unprecedented advance that will benefit SSc and many other diseases.
Collapse
Affiliation(s)
- Carol A Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Department of Medicine, 628 NW MUH, 3459 Fifth Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
225
|
Vacík T, Ort M, Gregorová S, Strnad P, Blatny R, Conte N, Bradley A, Bures J, Forejt J. Segmental trisomy of chromosome 17: a mouse model of human aneuploidy syndromes. Proc Natl Acad Sci U S A 2005; 102:4500-5. [PMID: 15755806 PMCID: PMC552979 DOI: 10.1073/pnas.0500802102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triplication of whole autosomes or large autosomal segments is detrimental to the development of a mammalian embryo. The trisomy of human chromosome (Chr) 21, known as Down's syndrome, is regularly associated with mental retardation and a variable set of other developmental anomalies. Several mouse models of Down's syndrome, triplicating 33-104 genes of Chr16, were designed in an attempt to analyze the contribution of specific orthologous genes to particular developmental features. However, a recent study challenged the concept of dosage-sensitive genes as a primary cause of an abnormal phenotype. To distinguish between the specific effects of dosage-sensitive genes and nonspecific effects of a large number of arbitrary genes, we revisited the mouse Ts43H/Ph segmental trisomy. It encompasses >310 known genes triplicated within the proximal 30 megabases (Mb) of Chr17. We refined the distal border of the trisomic segment to the interval bounded by bacterial artificial chromosomes RP23-277B13 (location 29.0 Mb) and Cbs gene (location 30.2 Mb). The Ts43H mice, viable on a mixed genetic background, exhibited spatial learning deficits analogous to those observed in Ts65Dn mice with unrelated trisomy. Quantitative analysis of the brain expression of 20 genes inside the trisomic interval and 12 genes lying outside on Chr17 revealed 1.2-fold average increase of mRNA steady-state levels of triplicated genes and 0.9-fold average down-regulation of genes beyond the border of trisomy. We propose that systemic comparisons of unrelated segmental trisomies, such as Ts65Dn and Ts43H, will elucidate the pathways leading from the triplicated sequences to the complex developmental traits.
Collapse
Affiliation(s)
- Tomás Vacík
- Institutes of Molecular Genetics and Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, Department of Biological Sciences, University of Denver, Colorado 80206, USA.
| | | |
Collapse
|
227
|
Affiliation(s)
- David L Nelson
- Department of Molecular and Human Genetics and the Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
228
|
Leslie M. The goldilocks genes. Our chromosomes can get sloppy and delete or pick up genes. Researchers are starting to probe how these DNA miscues affect health and longevity. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2004; 2004:ns8. [PMID: 15509874 DOI: 10.1126/sageke.2004.43.ns8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
229
|
Key genes may not create Down syndrome. Nature 2004. [DOI: 10.1038/news041018-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|