201
|
Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, Schumacher SE, Wang C, Hu H, Liu J, Lazar AJ, Cherniack AD, Beroukhim R, Meyerson M. Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell 2018; 33:676-689.e3. [PMID: 29622463 PMCID: PMC6028190 DOI: 10.1016/j.ccell.2018.03.007] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.
Collapse
Affiliation(s)
- Alison M Taylor
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Juliann Shih
- Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Gavin Ha
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Galen F Gao
- Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ashton C Berger
- Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Steven E Schumacher
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA
| | - Alexander J Lazar
- Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 85, Houston, TX, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
202
|
Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, Seoane JA, Farshidfar F, Bowlby R, Islam M, Kim J, Chatila W, Akbani R, Kanchi RS, Rabkin CS, Willis JE, Wang KK, McCall SJ, Mishra L, Ojesina AI, Bullman S, Pedamallu CS, Lazar AJ, Sakai R, Thorsson V, Bass AJ, Laird PW. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 2018; 33:721-735.e8. [PMID: 29622466 PMCID: PMC5966039 DOI: 10.1016/j.ccell.2018.03.010] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
We analyzed 921 adenocarcinomas of the esophagus, stomach, colon, and rectum to examine shared and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIACs). Hypermutated tumors were distinct regardless of cancer type and comprised those enriched for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of MLH1 in the context of CpG island methylator phenotype, plus tumors with elevated single-nucleotide variants associated with mutations in POLE. Tumors with chromosomal instability were diverse, with gastroesophageal adenocarcinomas harboring fragmented genomes associated with genomic doubling and distinct mutational signatures. We identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed genome stable and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and PCBP1.
Collapse
Affiliation(s)
- Yang Liu
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nilay S Sethi
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Barbara G Schneider
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Francisco Sanchez-Vega
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jose A Seoane
- Department of Medicine, and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Farshad Farshidfar
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgarry, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Mirazul Islam
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jaegil Kim
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Walid Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lopa Mishra
- Center for Translational Research, Department of Surgery, George Washington University Cancer Center, Washington, DC 20052, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryo Sakai
- PharmiWeb Solutions, Bracknell RG12 1QB, UK
| | | | - Adam J Bass
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
203
|
Libouban MAA, de Roos JADM, Uitdehaag JCM, Willemsen-Seegers N, Mainardi S, Dylus J, de Man J, Tops B, Meijerink JPP, Storchová Z, Buijsman RC, Medema RH, Zaman GJR. Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget 2018; 8:38309-38325. [PMID: 28415765 PMCID: PMC5503534 DOI: 10.18632/oncotarget.16213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 01/26/2023] Open
Abstract
Inhibition of the spindle assembly checkpoint kinase TTK causes chromosome mis-segregation and tumor cell death. However, high levels of TTK correlate with chromosomal instability (CIN), which can lead to aneuploidy. We show that treatment of tumor cells with the selective small molecule TTK inhibitor NTRC 0066-0 overrides the mitotic checkpoint, irrespective of cell line sensitivity. In stable aneuploid cells NTRC 0066-0 induced acute CIN, whereas in cells with high levels of pre-existing CIN there was only a small additional fraction of cells mis-segregating their chromosomes. In proliferation assays stable aneuploid cells were more sensitive than cell lines with pre-existing CIN. Tetraploids are thought to be an intermediate between diploid and unstable aneuploid cells. TTK inhibitors had the same potency on post-tetraploid and parental diploid cells, which is remarkable because the post-tetraploids are more resistant to mitotic drugs. Finally, we confirm that the reference compound reversine is a TTK inhibitor and like NTRC 0066-0, inhibits the proliferation of patient-derived colorectal cancer organoids. In contrast, treatment with TTK inhibitor did not reduce the viability of non-proliferating T cell acute lymphoblastic leukemia cells samples. Consequently, TTK inhibitor therapy is expected to spare non-dividing cells, and may be used to target stable aneuploid tumors.
Collapse
Affiliation(s)
- Marion A A Libouban
- Netherlands Translational Research Center B.V., Oss, The Netherlands.,Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Sara Mainardi
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Dylus
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | - Bastiaan Tops
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | - René H Medema
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| |
Collapse
|
204
|
Soto M, Raaijmakers JA, Bakker B, Spierings DCJ, Lansdorp PM, Foijer F, Medema RH. p53 Prohibits Propagation of Chromosome Segregation Errors that Produce Structural Aneuploidies. Cell Rep 2018. [PMID: 28636931 DOI: 10.1016/j.celrep.2017.05.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The presence of an abnormal karyotype has been shown to be profoundly detrimental at the cellular and organismal levels but is an overt hallmark of cancer. Aneuploidy can lead to p53 activation and thereby prevents proliferation, but the exact trigger for p53 activation has remained controversial. Here, we have used a system to induce aneuploidy in untransformed human cells to explore how cells deal with different segregation errors. We show that p53 is activated only in a subset of the cells with altered chromosome content. Importantly, we find that at least a subset of whole-chromosome aneuploidies can be propagated in p53-proficient cells, indicating that aneuploidy does not always lead to activation of p53. Finally, we demonstrate that propagation of structural aneuploidies (gain or loss of part of a chromosome) induced by segregation errors is limited to p53-deficient cells.
Collapse
Affiliation(s)
- Mar Soto
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jonne A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - René H Medema
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
205
|
Dürrbaum M, Kruse C, Nieken KJ, Habermann B, Storchová Z. The deregulated microRNAome contributes to the cellular response to aneuploidy. BMC Genomics 2018; 19:197. [PMID: 29703144 PMCID: PMC6389165 DOI: 10.1186/s12864-018-4556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress and triggers conserved transcriptome and proteome changes. RESULTS In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development, growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a subset of mRNAs that contain so called 5'TOP motif and we show that its upregulation in aneuploids provides resistance to starvation-induced shut down of ribosomal protein translation. CONCLUSIONS Our work suggests that the changes of the microRNAome contribute on one hand to the adverse effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting translation under adverse conditions.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Christine Kruse
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - K. Julia Nieken
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Computational Biology Group, Developmental Biology Institute of Marseille (IBDM) UMR 7288, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Zuzana Storchová
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
206
|
Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol 2018; 15:139-150. [PMID: 29297505 DOI: 10.1038/nrclinonc.2017.198] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant chromosomal architecture, ranging from small insertions or deletions to large chromosomal alterations, is one of the most common characteristics of cancer genomes. Chromosomal instability (CIN) underpins much of the intratumoural heterogeneity observed in cancers and drives phenotypic adaptation during tumour evolution. Thus, an urgent need exists to increase our efforts to target CIN as if it were a molecular entity. Indeed, CIN accelerates the development of anticancer drug resistance, often leading to treatment failure and disease recurrence, which limit the effectiveness of most current therapies. Identifying novel strategies to modulate CIN and to exploit the fitness cost associated with aneuploidy in cancer is, therefore, of paramount importance for the successful treatment of cancer. Modern sequencing and analytical methods greatly facilitate the identification and cataloguing of somatic copy-number alterations and offer new possibilities to better exploit the dynamic process of CIN. In this Review, we describe the principles governing CIN propagation in cancer and how CIN might influence sensitivity to immune-checkpoint inhibition, and survey the vulnerabilities associated with CIN that offer potential therapeutic opportunities.
Collapse
Affiliation(s)
- Laurent Sansregret
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
207
|
Coskun P, Helguera P, Nemati Z, Bohannan RC, Thomas J, Samuel SE, Argueta J, Doran E, Wallace DC, Lott IT, Busciglio J. Metabolic and Growth Rate Alterations in Lymphoblastic Cell Lines Discriminate Between Down Syndrome and Alzheimer's Disease. J Alzheimers Dis 2018; 55:737-748. [PMID: 27802222 DOI: 10.3233/jad-160278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Deficits in mitochondrial function and oxidative stress play pivotal roles in Down syndrome (DS) and Alzheimer's disease (AD) and these alterations in mitochondria occur systemically in both conditions. OBJECTIVE We hypothesized that peripheral cells of elder subjects with DS exhibit disease-specific and dementia-specific metabolic features. To test this, we performed a comprehensive analysis of energy metabolism in lymphoblastic-cell-lines (LCLs) derived from subjects belonging to four groups: DS-with-dementia (DSAD), DS-without-dementia (DS), sporadic AD, and age-matched controls. METHODS LCLs were studied under regular or minimal feeding regimes with galactose or glucose as primary carbohydrate sources. We assessed metabolism under glycolysis or oxidative phosphorylation by quantifying cell viability, oxidative stress, ATP levels, mitochondrial membrane potential (MMP), mitochondrial calcium uptake, and autophagy. RESULTS DS and DSAD LCLs showed slower growth rates under minimal feeding. DS LCLs mainly dependent on mitochondrial respiration exhibited significantly slower growth and higher levels of oxidative stress compared to other groups. While ATP levels (under mitochondrial inhibitors) and mitochondrial calcium uptake were significantly reduced in DSAD and AD cells, MMP was decreased in DS, DSAD, and AD LCLs. Finally, DS LCLs showed markedly reduced levels of the autophagy marker LC3-II, underscoring the close association between metabolic dysfunction and impaired autophagy in DS. CONCLUSION There are significant mitochondrial functional changes in LCLs derived from DS, DSAD, and AD patients. Several parameters analyzed were consistently different between DS, DSAD, and AD lines suggesting that metabolic indicators between LCL groups may be utilized as biomarkers of disease progression and/or treatment outcomes.
Collapse
Affiliation(s)
- Pinar Coskun
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| | - Pablo Helguera
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA.,Instituto de Investigación Médica Mercedes y Martin Ferreyra, Córdoba, Argentina, USA
| | - Zahra Nemati
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| | - Jean Thomas
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| | - Schriner E Samuel
- Department of Pharmaceutical Science, University of California, Irvine, CA, USA
| | - Jocelyn Argueta
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine (CMEM), Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ira T Lott
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA, USA
| |
Collapse
|
208
|
Wangsa D, Quintanilla I, Torabi K, Vila-Casadesús M, Ercilla A, Klus G, Yuce Z, Galofré C, Cuatrecasas M, Lozano JJ, Agell N, Cimini D, Castells A, Ried T, Camps J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB J 2018; 32:3502-3517. [PMID: 29452566 DOI: 10.1096/fj.201700247rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A considerable proportion of tumors exhibit aneuploid karyotypes, likely resulting from the progressive loss of chromosomes after whole-genome duplication. Here, by using isogenic diploid and near-tetraploid (4N) single-cell-derived clones from the same parental cell lines, we aimed at exploring how polyploidization affects cellular functions and how tetraploidy generates chromosome instability. Gene expression profiling in 4N clones revealed a significant enrichment of transcripts involved in cell cycle and DNA replication. Increased levels of replication stress in 4N cells resulted in DNA damage, impaired proliferation caused by a cell cycle delay during S phase, and higher sensitivity to S phase checkpoint inhibitors. In fact, increased levels of replication stress were also observed in nontransformed, proliferative posttetraploid RPE1 cells. Additionally, replication stress promoted higher levels of intercellular genomic heterogeneity and ongoing genomic instability, which could be explained by high rates of mitotic defects, and was alleviated by the supplementation of exogenous nucleosides. Finally, our data found that 4N cancer cells displayed increased migratory and invasive capacity, both in vitro and in primary colorectal tumors, indicating that tetraploidy can promote aggressive cancer cell behavior.-Wangsa, D., Quintanilla, I., Torabi, K., Vila-Casadesús, M., Ercilla, A., Klus, G., Yuce, Z., Galofré, C., Cuatrecasas, M., Lozano, J. J., Agell, N., Cimini, D., Castells, A., Ried, T., Camps, J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness.
Collapse
Affiliation(s)
- Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel Quintanilla
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vila-Casadesús
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Amaia Ercilla
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gregory Klus
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zeynep Yuce
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Claudia Galofré
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology-Centro de Diagnóstico Biomédico (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Neus Agell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Daniela Cimini
- Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
209
|
Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents. Cell Rep 2017; 19:101-113. [PMID: 28380350 PMCID: PMC5614506 DOI: 10.1016/j.celrep.2017.03.038] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/12/2023] Open
Abstract
Antimitotic agents, including Taxol, disrupt microtubule dynamics and cause a protracted mitotic arrest and subsequent cell death. Despite the broad utility of these drugs in breast cancer and other tumor types, clinical response remains variable. Tumor-associated macrophages (TAMs) suppress the duration of Taxol-induced mitotic arrest in breast cancer cells and promote earlier mitotic slippage. This correlates with a decrease in the phosphorylated form of histone H2AX (γH2AX), decreased p53 activation, and reduced cancer cell death in interphase. TAMs promote cancer cell viability following mitotic slippage in a manner sensitive to MAPK/ERK kinase (MEK) inhibition. Acute depletion of major histocompatibility complex class II low (MHCIIlo) TAMs increased Taxol-induced DNA damage and apoptosis in cancer cells, leading to greater efficacy in intervention trials. MEK inhibition blocked the protective capacity of TAMs and phenocopied the effects of TAM depletion on Taxol treatment. TAMs suppress the cytotoxic effects of Taxol, in part through cell non-autonomous modulation of mitotic arrest in cancer cells, and targeting TAM-cancer cell interactions potentiates Taxol efficacy.
Collapse
Affiliation(s)
- Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyunjung Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland; Department of Oncology, University of Lausanne, 1066 Lausanne, Switzerland.
| |
Collapse
|
210
|
Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, Chen Q, Tang D, Yu Y, Li C. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 2017; 8:1937. [PMID: 29203764 PMCID: PMC5715138 DOI: 10.1038/s41467-017-01793-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 10/17/2017] [Indexed: 01/06/2023] Open
Abstract
The Hi-C method is widely used to study the functional roles of the three-dimensional (3D) architecture of genomes. Here, we integrate Hi-C, whole-genome sequencing (WGS) and RNA-seq to study the 3D genome architecture of multiple myeloma (MM) and how it associates with genomic variation and gene expression. Our results show that Hi-C interaction matrices are biased by copy number variations (CNVs) and can be used to detect CNVs. Also, combining Hi-C and WGS data can improve the detection of translocations. We find that CNV breakpoints significantly overlap with topologically associating domain (TAD) boundaries. Compared to normal B cells, the numbers of TADs increases by 25% in MM, the average size of TADs is smaller, and about 20% of genomic regions switch their chromatin A/B compartment types. In summary, we report a 3D genome interaction map of aneuploid MM cells and reveal the relationship among CNVs, translocations, 3D genome reorganization, and gene expression regulation. Chromosome conformation capture techniques enable the study of genome organization in cancer cells. Here, the authors use Hi-C, WGS, and RNA-seq to study the 3D genome of multiple myeloma and find that genome disorganization is associated with copy number variations and changes in gene expression.
Collapse
Affiliation(s)
- Pengze Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Tingting Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ruifeng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lumeng Jia
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ping Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yifang Liu
- PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Daiwei Tang
- PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuezhou Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China. .,Center for Statistical Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
211
|
Thomas R, Marks DH, Chin Y, Benezra R. Whole chromosome loss and associated breakage-fusion-bridge cycles transform mouse tetraploid cells. EMBO J 2017; 37:201-218. [PMID: 29196303 DOI: 10.15252/embj.201797630] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 01/23/2023] Open
Abstract
Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components, but interpretations of these experiments are clouded by the multiple functions of these proteins. Here, we used a Cre recombinase-mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12, or 14 in tetraploid immortalized murine embryonic fibroblasts. This methodology also involves the generation of a dicentric chromosome intermediate, which subsequently undergoes a series of breakage-fusion-bridge (BFB) cycles. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere-forming conditions and three of the four lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo Thus, these studies demonstrate a causative role for whole chromosome loss and the associated BFB-mediated instability in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.
Collapse
Affiliation(s)
- Rozario Thomas
- BCMB Program, Weill Cornell Graduate School of Medical Sciences (WCGSMS), New York, NY, USA.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Daniel Henry Marks
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Robert Benezra
- BCMB Program, Weill Cornell Graduate School of Medical Sciences (WCGSMS), New York, NY, USA .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| |
Collapse
|
212
|
Zuo E, Huo X, Yao X, Hu X, Sun Y, Yin J, He B, Wang X, Shi L, Ping J, Wei Y, Ying W, Wei W, Liu W, Tang C, Li Y, Hu J, Yang H. CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol 2017; 18:224. [PMID: 29178945 PMCID: PMC5701507 DOI: 10.1186/s13059-017-1354-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The CRISPR/Cas9 system has become an efficient gene editing method for generating cells carrying precise gene mutations, including the rearrangement and deletion of chromosomal segments. However, whether an entire chromosome could be eliminated by this technology is still unknown. RESULTS Here we demonstrate the use of the CRISPR/Cas9 system to eliminate targeted chromosomes. Using either multiple cleavages induced by a single-guide RNA (sgRNA) that targets multiple chromosome-specific sites or a cocktail of multiple sgRNAs, each targeting one specific site, we found that a sex chromosome could be selectively eliminated in cultured cells, embryos, and tissues in vivo. Furthermore, this approach was able to produce a targeted autosome loss in aneuploid mouse embryonic stem cells with an extra human chromosome and human induced pluripotent stem cells with trisomy 21, as well as cancer cells. CONCLUSIONS CRISPR/Cas9-mediated targeted chromosome elimination offers a new approach to develop animal models with chromosome deletions, and a potential therapeutic strategy for human aneuploidy diseases involving additional chromosomes.
Collapse
Affiliation(s)
- Erwei Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaona Huo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yidi Sun
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianhang Yin
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Bingbing He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jie Ping
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai University, Shanghai, 200444, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wenjia Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiazhi Hu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
213
|
Schukken KM, Foijer F. CIN and Aneuploidy: Different Concepts, Different Consequences. Bioessays 2017; 40. [PMID: 29160563 DOI: 10.1002/bies.201700147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are similar concepts but not synonymous. CIN is the process that leads to chromosome copy number alterations, and aneuploidy is the result. While CIN and resulting aneuploidy often cause growth defects, they are also selected for in cancer cells. Although such contradicting fates may seem paradoxical at first, they can be better understood when CIN and aneuploidy are assessed separately, taking into account the in vitro or in vivo context, the rate of CIN, and severity of the aneuploid karyotype. As CIN can only be measured in living cells, which proves to be technically challenging in vivo, aneuploidy is more frequently quantified. However, CIN rates might be more predictive for tumor outcome than assessing aneuploidy rates alone. In reviewing the literature, we therefore conclude that there is an urgent need for new models in which we can monitor chromosome mis-segregation and its consequences in vivo. Also see the video abstract here: https://youtu.be/fL3LxZduchg.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
214
|
Li T, Zhao H, Han X, Yao J, Zhang L, Guo Y, Shao Z, Jin Y, Lai D. The spontaneous differentiation and chromosome loss in iPSCs of human trisomy 18 syndrome. Cell Death Dis 2017; 8:e3149. [PMID: 29072700 PMCID: PMC5680928 DOI: 10.1038/cddis.2017.565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Aneuploidy including trisomy results in developmental disabilities and is the leading cause of miscarriages in humans. Unlike trisomy 21, pathogenic mechanisms of trisomy 18 remain unclear. Here, we successfully generated induced pluripotent stem cells (iPSCs) from human amniotic fluid cells (AFCs) with trisomy 18 pregnancies. We found that trisomy 18 iPSCs (18T-iPSCs) were prone to differentiate spontaneously. Intriguingly, 18T-iPSCs lost their extra 18 chromosomes and converted to diploid cells after 10 generations. fluorescence in situ hybridization analysis showed chromosome loss was a random event that might happen in any trisomic cells. Selection undifferentiated cells for passage accelerated the recovery of euploid cells. Overall, our findings indicate the genomic instability of trisomy 18 iPSCs bearing an extra chromosome 18.
Collapse
Affiliation(s)
- Ting Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200032, China
| | - Xu Han
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiaying Yao
- Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingling Zhang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200032, China
| | - Ying Guo
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Shao
- Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200032, China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
215
|
McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer 2017; 24:T23-T31. [PMID: 28696210 DOI: 10.1530/erc-17-0187] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability.
Collapse
|
216
|
Tang YC, Yuwen H, Wang K, Bruno PM, Bullock K, Deik A, Santaguida S, Trakala M, Pfau SJ, Zhong N, Huang T, Wang L, Clish CB, Hemann MT, Amon A. Aneuploid Cell Survival Relies upon Sphingolipid Homeostasis. Cancer Res 2017; 77:5272-5286. [PMID: 28775166 DOI: 10.1158/0008-5472.can-17-0049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
Aneuploidy, a hallmark of cancer cells, poses an appealing opportunity for cancer treatment and prevention strategies. Using a cell-based screen to identify small molecules that could selectively kill aneuploid cells, we identified the compound N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride (DL-PDMP), an antagonist of UDP-glucose ceramide glucosyltransferase. DL-PDMP selectively inhibited proliferation of aneuploid primary mouse embryonic fibroblasts and aneuploid colorectal cancer cells. Its selective cytotoxic effects were based on further accentuating the elevated levels of ceramide, which characterize aneuploid cells, leading to increased apoptosis. We observed that DL-PDMP could also enhance the cytotoxic effects of paclitaxel, a standard-of-care chemotherapeutic agent that causes aneuploidy, in human colon cancer and mouse lymphoma cells. Our results offer pharmacologic evidence that the aneuploid state in cancer cells can be targeted selectively for therapeutic purposes, or for reducing the toxicity of taxane-based drug regimens. Cancer Res; 77(19); 5272-86. ©2017 AACR.
Collapse
Affiliation(s)
- Yun-Chi Tang
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Yuwen
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter M Bruno
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin Bullock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stefano Santaguida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah J Pfau
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Na Zhong
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
217
|
Ly P, Cleveland DW. Interrogating cell division errors using random and chromosome-specific missegregation approaches. Cell Cycle 2017. [PMID: 28650219 DOI: 10.1080/15384101.2017.1325047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Accurate segregation of the duplicated genome in mitosis is essential for maintaining genetic stability. Errors in this process can cause numerical and/or structural chromosome abnormalities - hallmark genomic features commonly associated with both tumorigenesis and developmental disorders. A cell-based approach was recently developed permitting inducible missegregation of the human Y chromosome by selectively disrupting kinetochore assembly onto the Y centromere. Although this strategy initially requires several steps of genetic manipulation, it is easy to use, highly efficient and specific for the Y without affecting the autosomes or the X, and does not require cell cycle synchronization or mitotic perturbation. Here we describe currently available tools for studying chromosome segregation errors, aneuploidy, and micronuclei, as well as discuss how the Y-specific missegregation system has been used to elucidate how chromosomal micronucleation can trigger a class of extensive rearrangements termed chromothripsis. The combinatorial use of these different tools will allow unresolved aspects of cell division defects and chromosomal instability to be experimentally explored.
Collapse
Affiliation(s)
- Peter Ly
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| | - Don W Cleveland
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
218
|
Beach RR, Ricci-Tam C, Brennan CM, Moomau CA, Hsu PH, Hua B, Silberman RE, Springer M, Amon A. Aneuploidy Causes Non-genetic Individuality. Cell 2017; 169:229-242.e21. [PMID: 28388408 DOI: 10.1016/j.cell.2017.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.
Collapse
Affiliation(s)
- Rebecca R Beach
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiara Ricci-Tam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Brennan
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A Moomau
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pei-Hsin Hsu
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
219
|
Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, Wong YL, Rhind N, Desai A, Amon A. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Dev Cell 2017; 41:638-651.e5. [PMID: 28633018 PMCID: PMC5536848 DOI: 10.1016/j.devcel.2017.05.022] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023]
Abstract
Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.
Collapse
Affiliation(s)
- Stefano Santaguida
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| | - Amelia Richardson
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ons M'Saad
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Lauren Zasadil
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Kristin A Knouse
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA; Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Liang Wong
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelika Amon
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| |
Collapse
|
220
|
Fang X, Hu T, Yin H, Yang J, Tang W, Hu S, Xu X. Differences in telomerase activity and the effects of AZT in aneuploid and euploid cells in colon cancer. Int J Oncol 2017. [PMID: 28627647 DOI: 10.3892/ijo.2017.4043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomerase-targeted treatments for cancer have received a great deal of attention because telomerase is detected in nearly all cancer cells but is not expressed in most normal tissues. Aneuploidy refers to a chromosome number that is not a multiple of the base chromosome number and can indicate either hypo- or hyperploid chromosome numbers. Most solid tumors are aneuploid. In the present study, we sought to determine whether there are differences in telomerase activity and hTERT gene expression between aneuploid and euploid cells. Furthermore, we investigated telomerase inhibitor 3'-azido-3'-deoxythymidine (AZT)-induced cell apoptosis using the p53-Puma/Noxa/Bax pathway and cell cycle arrest using the p53-p21 pathway in both aneuploid and euploid cells. Our results demonstrate that telomerase activity and hTERT gene expression were higher in aneuploid than in euploid cells. In addition, AZT exerted time- and dose-dependent cytotoxic effects on both aneuploid and euploid cells, and aneuploid cells were more sensitive to AZT-induced cytotoxicity. In addition, both the p53-Puma/Noxa/Bax pathway and the cell cycle arrest-associated p53-p21 pathway were involved in the AZT-induced suppression of tumor cells. Importantly, aneuploid cells were more sensitive to AZT-induced cell cycle arrest (p53-p21) and DNA double-strand breaks (γ-H2AX), while euploid cells were more sensitive to AZT-induced apoptosis (p53-Puma/Bax/Noxa).
Collapse
Affiliation(s)
- Xiao Fang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Tenghui Hu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Hua Yin
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Junjun Yang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Weian Tang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Siqi Hu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xingxiang Xu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
221
|
Funk LC, Zasadil LM, Weaver BA. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression. Dev Cell 2017; 39:638-652. [PMID: 27997823 DOI: 10.1016/j.devcel.2016.10.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.
Collapse
Affiliation(s)
- Laura C Funk
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren M Zasadil
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, 6109 WIMR I, Madison, WI 53705-2275, USA.
| |
Collapse
|
222
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
223
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
224
|
Bakhoum SF, Landau DA. Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029611. [PMID: 28213433 DOI: 10.1101/cshperspect.a029611] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Large-scale, massively parallel sequencing of human cancer samples has revealed tremendous genetic heterogeneity within individual tumors. Indeed, tumors are composed of an admixture of diverse subpopulations-subclones-that vary in space and time. Here, we discuss a principal driver of clonal diversification in cancer known as chromosomal instability (CIN), which complements other modes of genetic diversification creating the multilayered genomic instability often seen in human cancer. Cancer cells have evolved to fine-tune chromosome missegregation rates to balance the acquisition of heterogeneity while preserving favorable genotypes, a dependence that can be exploited for a therapeutic benefit. We discuss how whole-genome doubling events accelerate clonal evolution in a subset of tumors by providing a viable path toward favorable near-triploid karyotypes and present evidence for CIN-induced clonal speciation that can overcome the dependence on truncal initiating events.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065
| | - Dan Avi Landau
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065.,Division of Hematology and Medical Oncology and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021.,Core member of the New York Genome Center, New York, New York 10013
| |
Collapse
|
225
|
McFarland CD, Yaglom JA, Wojtkowiak JW, Scott JG, Morse DL, Sherman MY, Mirny LA. The Damaging Effect of Passenger Mutations on Cancer Progression. Cancer Res 2017; 77:4763-4772. [PMID: 28536279 DOI: 10.1158/0008-5472.can-15-3283-t] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
Genomic instability and high mutation rates cause cancer to acquire numerous mutations and chromosomal alterations during its somatic evolution; most are termed passengers because they do not confer cancer phenotypes. Evolutionary simulations and cancer genomic studies suggest that mildly deleterious passengers accumulate and can collectively slow cancer progression. Clinical data also suggest an association between passenger load and response to therapeutics, yet no causal link between the effects of passengers and cancer progression has been established. To assess this, we introduced increasing passenger loads into human cell lines and immunocompromised mouse models. We found that passengers dramatically reduced proliferative fitness (∼3% per Mb), slowed tumor growth, and reduced metastatic progression. We developed new genomic measures of damaging passenger load that can accurately predict the fitness costs of passengers in cell lines and in human breast cancers. We conclude that genomic instability and an elevated load of DNA alterations in cancer is a double-edged sword: it accelerates the accumulation of adaptive drivers, but incurs a harmful passenger load that can outweigh driver benefit. The effects of passenger alterations on cancer fitness were unrelated to enhanced immunity, as our tests were performed either in cell culture or in immunocompromised animals. Our findings refute traditional paradigms of passengers as neutral events, suggesting that passenger load reduces the fitness of cancer cells and slows or prevents progression of both primary and metastatic disease. The antitumor effects of chemotherapies can in part be due to the induction of genomic instability and increased passenger load. Cancer Res; 77(18); 4763-72. ©2017 AACR.
Collapse
Affiliation(s)
| | - Julia A Yaglom
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacob G Scott
- Translational Hematology and Oncology Research, and Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.
| | - Leonid A Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
226
|
Gao Y, Ni X, Guo H, Su Z, Ba Y, Tong Z, Guo Z, Yao X, Chen X, Yin J, Yan Z, Guo L, Liu Y, Bai F, Xie XS, Zhang N. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Res 2017; 27:1312-1322. [PMID: 28487279 PMCID: PMC5538548 DOI: 10.1101/gr.216788.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 01/07/2023]
Abstract
Copy number alteration (CNA) is a major contributor to genome instability, a hallmark of cancer. Here, we studied genomic alterations in single primary tumor cells and circulating tumor cells (CTCs) from the same patient. Single-nucleotide variants (SNVs) in single cells from both samples occurred sporadically, whereas CNAs among primary tumor cells emerged accumulatively rather than abruptly, converging toward the CNA in CTCs. Focal CNAs affecting the MYC gene and the PTEN gene were observed only in a minor portion of primary tumor cells but were present in all CTCs, suggesting a strong selection toward metastasis. Single-cell structural variant (SV) analyses revealed a two-step mechanism, a complex rearrangement followed by gene amplification, for the simultaneous formation of anomalous CNAs in multiple chromosome regions. Integrative CNA analyses of 97 CTCs from 23 patients confirmed the convergence of CNAs and revealed single, concurrent, and mutually exclusive CNAs that could be the driving events in cancer metastasis.
Collapse
Affiliation(s)
- Yan Gao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaohui Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hua Guo
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zhe Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yi Ba
- Department of Gastrointestinal Oncology
| | | | - Zhi Guo
- Department of Interventional Therapy
| | - Xin Yao
- Department of Urologic Oncology
| | - Xixi Chen
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Yin
- Department of Breast Reconstruction, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zhao Yan
- Pharmacological Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lin Guo
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ying Liu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - X Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ning Zhang
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
227
|
Pappas L, Xu XL, Abramson DH, Jhanwar SC. Genomic instability and proliferation/survival pathways in RB1-deficient malignancies. Adv Biol Regul 2017; 64:20-32. [PMID: 28242412 DOI: 10.1016/j.jbior.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Genomic instability (GIN) is a hallmark of most cancer cells. However, compared to most human cancer cell types, the retinoblastoma tumor cells show a relatively stable genome. The fundamental basis of this genomic stability has yet to be elucidated, and the role of certain proteins involved in cell cycle regulation may be the key to the development of these specific genotypes. We examined whether thyroid hormone receptor beta 1 and 2 (TRβ1 and TRβ2), known to regulate tumorigenesis, and PTTG1, a mitotic checkpoint protein, play a role in maintaining genomic stability in retinoblastoma. In order to elucidate the role of these proteins in development of aneuploidy/polyploidy, an indicator of GIN, we first studied comparative GIN in retinoblastomas and multiple RB mutant cancer cell lines using single nucleotide polymorphism (SNP) analysis. We then utilized pLKO lentiviral vectors to selectively modify expression of the targeted cell cycle proteins and interpret their effect on downstream cell cycle proteins and their relative effects on the development of polyploidy in multiple tumor cell lines. The SNP analysis showed that retinoblastomas displayed relatively fewer genomic copy number changes as compared to other RB1-deficient cancer cell lines. Both TRβ1 and TRβ2 knockdown led to accumulation of E2F1 and PTTG1 and increased GIN as demonstrated by an increase in polyploidy. Downregulation of PTTG1 led to a relative decrease in GIN while upregulation of PTTG1 led to a relative increase in GIN. Knockdown of E2F1 led to a downstream decrease in PTTG1 expression. Rb-knockdown also upregulated E2F1 and PTTG1 leading to increased GIN. We showed that Rb is necessary for PTTG1 inhibition and genomic stability. A relatively stable genome in retinoblastoma tumor cells is maintained by TRβ1 and TRβ2-mediated PTTG1 inhibition, counteracting Rb-deficiency-related GIN. TRβ1, TRβ2 and Rb-KD all led to the downstream PTTG1 accumulation, apparently through an activation of E2F1 resulting in extensive genomic instability as seen in other Rb-deficient tumors.
Collapse
Affiliation(s)
- Lara Pappas
- Departments of Pathology, Pediatrics, Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Xiaoliang Leon Xu
- Departments of Pathology, Pediatrics, Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - David H Abramson
- Departments of Pathology, Pediatrics, Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Suresh C Jhanwar
- Departments of Pathology, Pediatrics, Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
228
|
Veitia RA, Govindaraju DR, Bottani S, Birchler JA. Aging: Somatic Mutations, Epigenetic Drift and Gene Dosage Imbalance. Trends Cell Biol 2017; 27:299-310. [DOI: 10.1016/j.tcb.2016.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
229
|
Foijer F, Albacker LA, Bakker B, Spierings DC, Yue Y, Xie SZ, Davis S, Lutum-Jehle A, Takemoto D, Hare B, Furey B, Bronson RT, Lansdorp PM, Bradley A, Sorger PK. Deletion of the MAD2L1 spindle assembly checkpoint gene is tolerated in mouse models of acute T-cell lymphoma and hepatocellular carcinoma. eLife 2017; 6. [PMID: 28318489 PMCID: PMC5400506 DOI: 10.7554/elife.20873] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/18/2017] [Indexed: 12/17/2022] Open
Abstract
Chromosome instability (CIN) is deleterious to normal cells because of the burden of aneuploidy. However, most human solid tumors have an abnormal karyotype implying that gain and loss of chromosomes by cancer cells confers a selective advantage. CIN can be induced in the mouse by inactivating the spindle assembly checkpoint. This is lethal in the germline but we show here that adult T cells and hepatocytes can survive conditional inactivation of the Mad2l1 SAC gene and resulting CIN. This causes rapid onset of acute lymphoblastic leukemia (T-ALL) and progressive development of hepatocellular carcinoma (HCC), both lethal diseases. The resulting DNA copy number variation and patterns of chromosome loss and gain are tumor-type specific, suggesting differential selective pressures on the two tumor cell types.
Collapse
Affiliation(s)
- Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Lee A Albacker
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ying Yue
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Stephanie Z Xie
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Stephanie Davis
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | | | - Darin Takemoto
- Vertex Pharmaceuticals Incorporated, Cambridge, United States
| | - Brian Hare
- Vertex Pharmaceuticals Incorporated, Cambridge, United States
| | - Brinley Furey
- Vertex Pharmaceuticals Incorporated, Cambridge, United States
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, United States
| | | | - Allan Bradley
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
230
|
Buccitelli C, Salgueiro L, Rowald K, Sotillo R, Mardin BR, Korbel JO. Pan-cancer analysis distinguishes transcriptional changes of aneuploidy from proliferation. Genome Res 2017; 27:501-511. [PMID: 28320919 PMCID: PMC5378169 DOI: 10.1101/gr.212225.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Patterns of gene expression in tumors can arise as a consequence of or result in genomic instability, characterized by the accumulation of somatic copy number alterations (SCNAs) and point mutations (PMs). Expression signatures have been widely used as markers for genomic instability, and both SCNAs and PMs could be thought to associate with distinct signatures given their different formation mechanisms. Here we test this notion by systematically investigating SCNA, PM, and transcriptome data from 2660 cancer patients representing 11 tumor types. Notably, our data indicate that similar expression signatures can be derived from correlating gene expression with either SCNA or PM load. Gene sets related to cell growth and proliferation generally associated positively, and immunoregulatory gene sets negatively, with variant burden. In-depth analyses revealed several genes whose de-regulation correlates with SCNA but not with PM burden, yielding downstream effectors of TP53 and MYC signaling unique to high-SCNA tumors. We compared our findings to expression changes observed in two different cancer mouse models with persistent mitotic chromosomal instability, observing a decrease in proliferative expression signatures. Our results suggest that overexpression of cell-cycle-related genes are a characteristic of proliferation, and likely tumor evolution, rather than ongoing genomic instability.
Collapse
Affiliation(s)
- Christopher Buccitelli
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Lorena Salgueiro
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Konstantina Rowald
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Rocio Sotillo
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Balca R Mardin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany.,EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
231
|
Knouse KA, Davoli T, Elledge SJ, Amon A. Aneuploidy in Cancer: Seq-ing Answers to Old Questions. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-042616-072231] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristin A. Knouse
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115
| | - Teresa Davoli
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Angelika Amon
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
232
|
Graham NA, Minasyan A, Lomova A, Cass A, Balanis NG, Friedman M, Chan S, Zhao S, Delgado A, Go J, Beck L, Hurtz C, Ng C, Qiao R, Ten Hoeve J, Palaskas N, Wu H, Müschen M, Multani AS, Port E, Larson SM, Schultz N, Braas D, Christofk HR, Mellinghoff IK, Graeber TG. Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Mol Syst Biol 2017; 13:914. [PMID: 28202506 PMCID: PMC5327725 DOI: 10.15252/msb.20167159] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.
Collapse
Affiliation(s)
- Nicholas A Graham
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Aspram Minasyan
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anastasia Lomova
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ashley Cass
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nikolas G Balanis
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael Friedman
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shawna Chan
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sophie Zhao
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Adrian Delgado
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James Go
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lillie Beck
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christian Hurtz
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Carina Ng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Rong Qiao
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Johanna Ten Hoeve
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nicolaos Palaskas
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hong Wu
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- School of Life Sciences & Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Asha S Multani
- Department of Genetics, M. D. Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Elisa Port
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Braas
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Thomas G Graeber
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
233
|
Naylor RM, van Deursen JM. Singling Out Chromosome Gains in Tumor Evolution. Cancer Cell 2017; 31:165-166. [PMID: 28196590 PMCID: PMC5446207 DOI: 10.1016/j.ccell.2017.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of Cancer Cell, Sheltzer et al. shed new light on Theodor Boveri's century-old hypothesis by demonstrating that aneuploidy characterized by single-chromosome gains acts to suppress tumorigenesis and that aneuploidy itself is a nidus for genomic instability.
Collapse
Affiliation(s)
- Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
234
|
Sheltzer JM, Ko JH, Replogle JM, Habibe Burgos NC, Chung ES, Meehl CM, Sayles NM, Passerini V, Storchova Z, Amon A. Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell 2017; 31:240-255. [PMID: 28089890 PMCID: PMC5713901 DOI: 10.1016/j.ccell.2016.12.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
Aneuploidy is a hallmark of cancer, although its effects on tumorigenesis are unclear. Here, we investigated the relationship between aneuploidy and cancer development using cells engineered to harbor single extra chromosomes. We found that nearly all trisomic cell lines grew poorly in vitro and as xenografts, relative to genetically matched euploid cells. Moreover, the activation of several oncogenic pathways failed to alleviate the fitness defect induced by aneuploidy. However, following prolonged growth, trisomic cells acquired additional chromosomal alterations that were largely absent from their euploid counterparts and that correlated with improved fitness. Thus, while single-chromosome gains can suppress transformation, the genome-destabilizing effects of aneuploidy confer an evolutionary flexibility that may contribute to the aggressive growth of advanced malignancies with complex karyotypes.
Collapse
Affiliation(s)
- Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Julie H Ko
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John M Replogle
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole C Habibe Burgos
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erica S Chung
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Colleen M Meehl
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole M Sayles
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zuzana Storchova
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
235
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
236
|
Abstract
Chromosomal aberrations during cell division represent one of the first recognized features of human cancer cells, and modern detection methods have revealed the pervasiveness of aneuploidy in cancer. The ongoing karyotypic changes brought about by chromosomal instability (CIN) contribute to tumor heterogeneity, drug resistance, and treatment failure. Whole-chromosome and segmental aneuploidies resulting from CIN have been proposed to allow "macroevolutionary" leaps that may contribute to profound phenotypic change. In this review, we will outline evidence indicating that aneuploidy and CIN contribute to cancer evolution.
Collapse
Affiliation(s)
- Laurent Sansregret
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
- CRUK Lung Cancer Centre of Excellence/UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
237
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
238
|
Abstract
Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
Collapse
|
239
|
Huang T, Chinn K, Kosasa T, Ahn H, Kessel B. Morphokinetics of human blastocyst expansion in vitro. Reprod Biomed Online 2016; 33:659-667. [DOI: 10.1016/j.rbmo.2016.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/01/2022]
|
240
|
Abstract
Chromosomal instability (CIN), the persistent inability of a cell to faithfully segregate its genome, is a feature of many cancer cells. It stands to reason that CIN enables the acquisition of multiple cancer hallmarks; however, there is a growing body of evidence suggesting that CIN impairs cellular fitness and prevents neoplastic transformation. Here, we suggest a new perspective to reconcile this apparent paradox and share an unexpected link between aneuploidy and aging that was discovered through attempts to investigate the CIN-cancer relationship. Additionally, we provide a comprehensive overview of the function and regulation of the anaphase-promoting complex, an E3 ubiquitin ligase that mediates high-fidelity chromosome segregation, and describe the mechanisms that lead to whole-chromosome gain or loss. With this review, we aim to expand our understanding of the role of CIN in cancer and aging with the long-term objective of harnessing this information for the advancement of patient care.
Collapse
Affiliation(s)
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905;
| |
Collapse
|
241
|
Capo-Chichi CD, Yeasky TM, Smith ER, Xu XX. Nuclear envelope structural defect underlies the main cause of aneuploidy in ovarian carcinogenesis. BMC Cell Biol 2016; 17:37. [PMID: 27875985 PMCID: PMC5120486 DOI: 10.1186/s12860-016-0114-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Cancer Atlas project has shown that p53 is the only commonly (96 %) mutated gene found in high-grade serous epithelial ovarian cancer, the major histological subtype. Another general genetic change is extensive aneuploidy caused by chromosomal numerical instability, which is thought to promote malignant transformation. Conventionally, aneuploidy is thought to be the result of mitotic errors and chromosomal nondisjunction during mitosis. Previously, we found that ovarian cancer cells often lost or reduced nuclear lamina proteins lamin A/C, and suppression of lamin A/C in cultured ovarian epithelial cells leads to aneuploidy. Following up, we investigated the mechanisms of lamin A/C-suppression in promoting aneuploidy and synergy with p53 inactivation. RESULTS We found that suppression of lamin A/C by siRNA in human ovarian surface epithelial cells led to frequent nuclear protrusions and formation of micronuclei. Lamin A/C-suppressed cells also often underwent mitotic failure and furrow regression to form tetraploid cells, which frequently underwent aberrant multiple polar mitosis to form aneuploid cells. In ovarian surface epithelial cells isolated from p53 null mice, transient suppression of lamin A/C produced massive aneuploidy with complex karyotypes, and the cells formed malignant tumors when implanted in mice. CONCLUSIONS Based on the results, we conclude that a nuclear envelope structural defect, such as the loss or reduction of lamin A/C proteins, leads to aneuploidy by both the formation of tetraploid intermediates following mitotic failure, and the reduction of chromosome (s) following nuclear budding and subsequent loss of micronuclei. We suggest that the nuclear envelope defect, rather than chromosomal unequal distribution during cytokinesis, is the main cause of aneuploidy in ovarian cancer development.
Collapse
Affiliation(s)
- Callinice D Capo-Chichi
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Institute of Biomedical Sciences, Laboratory of Biochemistry and Molecular Biology, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Toni M Yeasky
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Elizabeth R Smith
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA. .,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
242
|
Roussel-Gervais A, Naciri I, Kirsh O, Kasprzyk L, Velasco G, Grillo G, Dubus P, Defossez PA. Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis. Cancer Res 2016; 77:62-73. [PMID: 27815388 DOI: 10.1158/0008-5472.can-16-1181] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/01/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.
Collapse
Affiliation(s)
- Audrey Roussel-Gervais
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Ikrame Naciri
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Olivier Kirsh
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Laetitia Kasprzyk
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Guillaume Velasco
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Giacomo Grillo
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Pierre Dubus
- University Bordeaux, UMR INSERM 1053, Bordeaux, France
| | - Pierre-Antoine Defossez
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France.
| |
Collapse
|
243
|
Dodgson SE, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes Dev 2016; 30:2259-2271. [PMID: 27807036 PMCID: PMC5110993 DOI: 10.1101/gad.287474.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
In this study, Dodgson et al. used a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast and identified the deubiquitinase Ubp3 as a key regulator of aneuploid cell homeostasis. They found that Ubp3 is a guardian of aneuploid cell fitness conserved across species. Aneuploidy—or an unbalanced karyotype in which whole chromosomes are gained or lost—causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Stacie E Dodgson
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Stefano Santaguida
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Sharon Kim
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jason Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
244
|
Passerini V, Storchová Z. Too much to handle - how gaining chromosomes destabilizes the genome. Cell Cycle 2016; 15:2867-2874. [PMID: 27636196 PMCID: PMC5105935 DOI: 10.1080/15384101.2016.1231285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022] Open
Abstract
Most eukaryotic organisms are diploid, with 2 chromosome sets in their nuclei. Whole chromosomal aneuploidy, a deviation from multiples of the haploid chromosome number, arises from chromosome segregation errors and often has detrimental consequences for cells. In humans, numerical aneuploidy severely impairs embryonic development and the rare survivors develop disorders characterized by multiple pathologies. Moreover, as many as 75 % of malignant tumors display aneuploidy. Although the exact contribution of aneuploidy to tumorigenesis remains unclear, previous studies have suggested that aneuploidy may affect the maintenance of genome integrity. We found that human cells with extra chromosomes showed phenotypes suggestive of replication defects, a phenomenon which we went on to characterize as being due to the aneuploidy-driven downregulation of replication factors, in particular of the replicative helicase MCM2-7. Thus, missegregation of even a single chromosome can further promote genomic instability and thereby contribute to tumor development. In this review we will examine the possible causes of downregulation of replicative factors and discuss the consequences of genomic instability in aneuploid cells.
Collapse
Affiliation(s)
- Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
- Center for Integrated Protein Science, Ludwig-Maximilian-University, Munich, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
- Center for Integrated Protein Science, Ludwig-Maximilian-University, Munich, Germany
- Technical University Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
245
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
246
|
Andriani GA, Almeida VP, Faggioli F, Mauro M, Tsai WL, Santambrogio L, Maslov A, Gadina M, Campisi J, Vijg J, Montagna C. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep 2016; 6:35218. [PMID: 27731420 PMCID: PMC5059742 DOI: 10.1038/srep35218] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion.
Collapse
Affiliation(s)
| | - Vinnycius Pereira Almeida
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiania, GO, Brazil
| | - Francesca Faggioli
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Maurizio Mauro
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alexander Maslov
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California, USA
| | - Jan Vijg
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Ophthalmology and Visual Science, Albert Einstein College of Medicine, New York, United States.,Obstetrics &Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Cristina Montagna
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Pathology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
247
|
Chen S, Stout JR, Dharmaiah S, Yde S, Calvi BR, Walczak CE. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol Biol Cell 2016; 27:2911-23. [PMID: 27489338 PMCID: PMC5042578 DOI: 10.1091/mbc.e16-03-0159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Polyploid cancer cells exhibit chromosomal instability (CIN), which is associated with tumorigenesis and therapy resistance. The mechanisms that induce polyploidy and how these mechanisms contribute to CIN are not fully understood. Here we evaluate CIN in human cells that become polyploid through an experimentally induced endoreplication cycle. When these induced endoreplicating cells (iECs) returned to mitosis, it resulted in aneuploidy in daughter cells. This aneuploidy resulted from multipolar divisions, chromosome missegregation, and failure in cytokinesis. The iECs went through several rounds of division, ultimately spawning proliferative cells of reduced ploidy. iECs have reduced levels of the kinesin-14 HSET, which likely accounts for the multipolar divisions, and overexpression of HSET reduced spindle multipolarity. However, HSET overexpression had only mild effects on CIN, suggesting that additional defects must contribute to genomic instability in dividing iECs. Overall our results suggest that transient endoreplication cycles generate a diverse population of proliferative aneuploid cells that have the potential to contribute to tumor heterogeneity.
Collapse
Affiliation(s)
- Shengyao Chen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| | | | - Sarah Yde
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| |
Collapse
|
248
|
Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, Chathoth K, Vukovic M, Tarrats N, Jamieson D, Campbell KJ, Blyth K, Acosta JC, Ylstra B, Arends MJ, Kranc KR, Jackson AP, Bickmore WA, Wood AJ. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev 2016; 30:2173-2186. [PMID: 27737961 PMCID: PMC5088566 DOI: 10.1101/gad.284562.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022]
Abstract
Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis.
Collapse
Affiliation(s)
- Jessica Woodward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gillian C Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Daoud Sie
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - David Read
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Keerthi Chathoth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Milica Vukovic
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Nuria Tarrats
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - David Jamieson
- Northern Institute for Cancer Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4AD, United Kingdom
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Juan Carlos Acosta
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Mark J Arends
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrew J Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
249
|
Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends Cancer 2016; 2:561-571. [DOI: 10.1016/j.trecan.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
|
250
|
Burrack LS, Hutton HF, Matter KJ, Clancey SA, Liachko I, Plemmons AE, Saha A, Power EA, Turman B, Thevandavakkam MA, Ay F, Dunham MJ, Berman J. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome. PLoS Genet 2016; 12:e1006317. [PMID: 27662467 PMCID: PMC5035033 DOI: 10.1371/journal.pgen.1006317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus. The accurate segregation of chromosomes during cell division is essential for maintaining genome integrity. The centromere is the DNA region on each chromosome where assembly of a large protein complex, the kinetochore, is required to maintain proper chromosome segregation. In addition, active centromeres exhibit a specific three-dimensional organization within the nucleus: the centromeres associate with one another in a clustered manner. Neocentromeres, or new centromeres, appear at new places along the chromosome when a native centromere becomes non-functional. We used a yeast model, Candida albicans, and isolated twenty instances in which neocentromeres had formed at different positions. All of these neocentromeres were able to direct chromosome segregation, but some had increased error rates. Like native centromeres, these neocentromeres cluster in the nucleus with the other active centromeres. This implies that formation of a neocentromere leads to reorganization of the three-dimensional structure of the nucleus so that different regions of the chromosome are in closer contact to regions of other chromosomes. Recent work suggests that approximately 3% of cancers may contain chromosomes with neocentromeres. Our observations that many neocentromeres have increased error rates provides insight into genome instability in cancer cells. Changes in chromosome copy number may benefit the cancer cells by increasing numbers of oncogenes and/or drug resistance genes, but may also sensitize the cells to chemotherapy approaches that target chromosome segregation mechanisms.
Collapse
Affiliation(s)
- Laura S. Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
- * E-mail: (LSB); (JB)
| | - Hannah F. Hutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kathleen J. Matter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Shelly Applen Clancey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | | | - Amrita Saha
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
| | - Erica A. Power
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
| | - Breanna Turman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail: (LSB); (JB)
| |
Collapse
|