201
|
Zhang J, Li H, Niswander LA. m 5C methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis. Nat Commun 2024; 15:5136. [PMID: 38879605 PMCID: PMC11180186 DOI: 10.1038/s41467-024-49368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Huili Li
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
202
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
203
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
204
|
Diamond PD, McGlincy NJ, Ingolia NT. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 2024; 84:2119-2134.e5. [PMID: 38848691 DOI: 10.1016/j.molcel.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
Collapse
Affiliation(s)
- Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas J McGlincy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
205
|
Kim KQ, Nanjaraj Urs AN, Lasehinde V, Greenlaw AC, Hudson BH, Zaher HS. eIF4F complex dynamics are important for the activation of the integrated stress response. Mol Cell 2024; 84:2135-2151.e7. [PMID: 38848692 PMCID: PMC11189614 DOI: 10.1016/j.molcel.2024.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Benjamin H Hudson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
206
|
Anastas V, Chavdoula E, La Ferlita A, Soysal B, Cosentini I, Nigita G, Kearse MG, Tsichlis PN. KDM2B is required for ribosome biogenesis and its depletion unequally affects mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595403. [PMID: 38826406 PMCID: PMC11142201 DOI: 10.1101/2024.05.22.595403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark. Contrary to earlier observations, KDM2B promotes ribosome biogenesis by stimulating the transcription of genes encoding ribosome biogenesis factors and ribosomal proteins, particularly those involved in the biogenesis of the 40S ribosomal subunits. Knockdown of KDM2B impaired the assembly of the small and large subunit processomes, as evidenced by specific defects in pre-ribosomal RNA processing. The final outcome was a decrease in the rate of ribosome assembly and in the abundance of ribosomes, and inhibition of mRNA translation. The inhibition of translation was distributed unequally among mRNAs with different features, suggesting that mRNA-embedded properties influence how mRNAs interpret ribosome abundance. This study identified a novel mechanism contributing to the regulation of translation and provided evidence for a rich biology elicited by a pathway that depends on KDM2B, and perhaps other regulators of translation.
Collapse
Affiliation(s)
- Vollter Anastas
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
207
|
Chacko J, Ozadam H, Cenik C. RiboGraph: an interactive visualization system for ribosome profiling data at read length resolution. Bioinformatics 2024; 40:btae369. [PMID: 38897662 PMCID: PMC11197854 DOI: 10.1093/bioinformatics/btae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
MOTIVATION Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. RESULTS In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. AVAILABILITY AND IMPLEMENTATION Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.
Collapse
Affiliation(s)
- Jonathan Chacko
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
208
|
Zhu S, Yuan S, Niu R, Zhou Y, Wang Z, Xu G. RNAirport: a deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 2024; 51:652-664. [PMID: 38518981 DOI: 10.1016/j.jgg.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
A 5'-leader, known initially as the 5'-untranslated region, contains multiple isoforms due to alternative splicing (aS) and alternative transcription start site (aTSS). Therefore, a representative 5'-leader is demanded to examine the embedded RNA regulatory elements in controlling translation efficiency. Here, we develop a ranking algorithm and a deep-learning model to annotate representative 5'-leaders for five plant species. We rank the intra-sample and inter-sample frequency of aS-mediated transcript isoforms using the Kruskal-Wallis test-based algorithm and identify the representative aS-5'-leader. To further assign a representative 5'-end, we train the deep-learning model 5'leaderP to learn aTSS-mediated 5'-end distribution patterns from cap-analysis gene expression data. The model accurately predicts the 5'-end, confirmed experimentally in Arabidopsis and rice. The representative 5'-leader-contained gene models and 5'leaderP can be accessed at RNAirport (http://www.rnairport.com/leader5P/). The Stage 1 annotation of 5'-leader records 5'-leader diversity and will pave the way to Ribo-Seq open-reading frame annotation, identical to the project recently initiated by human GENCODE.
Collapse
Affiliation(s)
- Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
209
|
Awad S, Valleriani A, Chiarugi D. A data-driven estimation of the ribosome drop-off rate in S. cerevisiae reveals a correlation with the genes length. NAR Genom Bioinform 2024; 6:lqae036. [PMID: 38638702 PMCID: PMC11025885 DOI: 10.1093/nargab/lqae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Ribosomes are the molecular machinery that catalyse all the fundamental steps involved in the translation of mRNAs into proteins. Given the complexity of this process, the efficiency of protein synthesis depends on a large number of factors among which ribosome drop-off (i.e. the premature detachment of the ribosome from the mRNA template) plays an important role. However, an in vitro quantification of the extent to which ribosome drop-off occurs is not trivial due to difficulties in obtaining the needed experimental evidence. In this work we focus on the study of ribosome drop-off in Saccharomyces cerevisiae by using 'Ribofilio', a novel software tool that relies on a high sensitive strategy to estimate the ribosome drop-off rate from ribosome profiling data. Our results show that ribosome drop-off events occur at a significant rate also when S. cerevisiae is cultured in standard conditions. In this context, we also identified a correlation between the ribosome drop-off rate and the genes length: the longer the gene, the lower the drop-off rate.
Collapse
Affiliation(s)
- Sherine Awad
- Genomics and Bioinformatics Core Facility, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Davide Chiarugi
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig - Germany
| |
Collapse
|
210
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
211
|
Román ÁC, Benítez DA, Díaz-Pizarro A, Del Valle-Del Pino N, Olivera-Gómez M, Cumplido-Laso G, Carvajal-González JM, Mulero-Navarro S. Next generation sequencing technologies to address aberrant mRNA translation in cancer. NAR Cancer 2024; 6:zcae024. [PMID: 38751936 PMCID: PMC11094761 DOI: 10.1093/narcan/zcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In this review, we explore the transformative impact of next generation sequencing technologies in the realm of translatomics (the study of how translational machinery acts on a genome-wide scale). Despite the expectation of a direct correlation between mRNA and protein content, the complex regulatory mechanisms that affect this relationship remark the limitations of standard RNA-seq approaches. Then, the review characterizes crucial techniques such as polysome profiling, ribo-seq, trap-seq, proximity-specific ribosome profiling, rnc-seq, tcp-seq, qti-seq and scRibo-seq. All these methods are summarized within the context of cancer research, shedding light on their applications in deciphering aberrant translation in cancer cells. In addition, we encompass databases and bioinformatic tools essential for researchers that want to address translatome analysis in the context of cancer biology.
Collapse
Affiliation(s)
- Ángel-Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Dixan A Benítez
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Alba Díaz-Pizarro
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Nuria Del Valle-Del Pino
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Marcos Olivera-Gómez
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Jose M Carvajal-González
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| |
Collapse
|
212
|
Sun J, Hwang P, Sakkas ED, Zhou Y, Perez L, Dave I, Kwon JB, McMahon AE, Wichman M, Raval M, Scopino K, Krizanc D, Thayer KM, Weir MP. GNN Codon Adjacency Tunes Protein Translation. Int J Mol Sci 2024; 25:5914. [PMID: 38892101 PMCID: PMC11172435 DOI: 10.3390/ijms25115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.
Collapse
Affiliation(s)
- Joyce Sun
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Pete Hwang
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Eric D. Sakkas
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Yancheng Zhou
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Luis Perez
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Ishani Dave
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Jack B. Kwon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Audrey E. McMahon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mia Wichman
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mitsu Raval
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Kristen Scopino
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Daniel Krizanc
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Kelly M. Thayer
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Michael P. Weir
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
213
|
Inamo J, Suzuki A, Ueda MT, Yamaguchi K, Nishida H, Suzuki K, Kaneko Y, Takeuchi T, Hatano H, Ishigaki K, Ishihama Y, Yamamoto K, Kochi Y. Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms. Nat Commun 2024; 15:4285. [PMID: 38806455 PMCID: PMC11133395 DOI: 10.1038/s41467-024-48615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing events are a major causal mechanism for complex traits, but they have been understudied due to the limitation of short-read sequencing. Here, we generate a full-length isoform annotation of human immune cells from an individual by long-read sequencing for 29 cell subsets. This contains a number of unannotated transcripts and isoforms such as a read-through transcript of TOMM40-APOE in the Alzheimer's disease locus. We profile characteristics of isoforms and show that repetitive elements significantly explain the diversity of unannotated isoforms, providing insight into the human genome evolution. In addition, some of the isoforms are expressed in a cell-type specific manner, whose alternative 3'-UTRs usage contributes to their specificity. Further, we identify disease-associated isoforms by isoform switch analysis and by integration of several quantitative trait loci analyses with genome-wide association study data. Our findings will promote the elucidation of the mechanism of complex diseases via alternative splicing.
Collapse
Affiliation(s)
- Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Biomedical Engineering Research Innovation Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hiroshi Nishida
- Department of Molecular Systems Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Saitama Medical University, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Hiroaki Hatano
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
214
|
Tong G, Hah N, Martinez TF. Comparison of software packages for detecting unannotated translated small open reading frames by Ribo-seq. Brief Bioinform 2024; 25:bbae268. [PMID: 38842510 PMCID: PMC11155197 DOI: 10.1093/bib/bbae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.
Collapse
Affiliation(s)
- Gregory Tong
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, United States
| | - Nasun Hah
- Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, United States
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, United States
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92617, United States
| |
Collapse
|
215
|
Yu Y, Kass MA, Zhang M, Youssef N, Freije CA, Brock KP, Aguado LC, Seifert LL, Venkittu S, Hong X, Shlomai A, de Jong YP, Marks DS, Rice CM, Schneider WM. Deep mutational scanning of hepatitis B virus reveals a mechanism for cis-preferential reverse transcription. Cell 2024; 187:2735-2745.e12. [PMID: 38723628 PMCID: PMC11127778 DOI: 10.1016/j.cell.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.
Collapse
Affiliation(s)
- Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian A Kass
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Mengyin Zhang
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Noor Youssef
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Catherine A Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Lauren C Aguado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Leon L Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Sanjana Venkittu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Xupeng Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
216
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome decision graphs for the representation of eukaryotic RNA translation complexity. Genome Res 2024; 34:530-538. [PMID: 38719470 PMCID: PMC11146595 DOI: 10.1101/gr.278810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork T12 K8AF, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland;
| |
Collapse
|
217
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
218
|
Cui X, Cao Q, Li F, Jing J, Liu Z, Yang X, Schwartz GJ, Yu L, Shi H, Shi H, Xue B. The histone methyltransferase SUV420H2 regulates brown and beige adipocyte thermogenesis. JCI Insight 2024; 9:e164771. [PMID: 38713533 PMCID: PMC11382888 DOI: 10.1172/jci.insight.164771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.
Collapse
Affiliation(s)
- Xin Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhixue Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Xiaosong Yang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huidong Shi
- Georgia Cancer Center and
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
219
|
Teyssonnière EM, Trébulle P, Muenzner J, Loegler V, Ludwig D, Amari F, Mülleder M, Friedrich A, Hou J, Ralser M, Schacherer J. Species-wide quantitative transcriptomes and proteomes reveal distinct genetic control of gene expression variation in yeast. Proc Natl Acad Sci U S A 2024; 121:e2319211121. [PMID: 38696467 PMCID: PMC11087752 DOI: 10.1073/pnas.2319211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Elie Marcel Teyssonnière
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Pauline Trébulle
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Julia Muenzner
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Victor Loegler
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Daniela Ludwig
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Fatma Amari
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Anne Friedrich
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Jing Hou
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Markus Ralser
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
| | - Joseph Schacherer
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
- Institut Universitaire de France, Paris75000, France
| |
Collapse
|
220
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
221
|
Li F, Xiang R, Liu Y, Hu G, Jiang Q, Jia T. Approaches and challenges in identifying, quantifying, and manipulating dynamic mitochondrial genome variations. Cell Signal 2024; 117:111123. [PMID: 38417637 DOI: 10.1016/j.cellsig.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoliang Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Quanbo Jiang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; CNRS-UMR9187, INSERM U1196, PSL-Research University, 91405 Orsay, France; CNRS-UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
222
|
Tanaka M, Yokoyama T, Saito H, Nishimoto M, Tsuda K, Sotta N, Shigematsu H, Shirouzu M, Iwasaki S, Ito T, Fujiwara T. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1. Nat Chem Biol 2024; 20:605-614. [PMID: 38267667 DOI: 10.1038/s41589-023-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hironori Saito
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kengo Tsuda
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Shintaro Iwasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan.
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
223
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
224
|
Huo D, Liu S, Zhang L, Yang H, Sun L. Importance of the ECM-receptor interaction for adaptive response to hypoxia based on integrated transcription and translation analysis. Mol Ecol 2024:e17352. [PMID: 38624130 DOI: 10.1111/mec.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Low dissolved oxygen (LO) conditions represent a major environmental challenge to marine life, especially benthic animals. For these organisms, drastic declines in oxygen availability (hypoxic events) can trigger mass mortality events and thus, act as agents of selection influencing the evolution of adaptations. In sea cucumbers, one of the most successful groups of benthic invertebrates, the exposure to hypoxic conditions triggers adaptive adjustments in metabolic rates and behaviour. It is unclear, however, how these adaptive responses are regulated and the genetic mechanisms underpinning them. Here, we addressed this knowledge gap by assessing the genetic regulation (transcription and translation) of hypoxia exposure in the sea cucumber Apostichopus japonicus. Transcriptional and translational gene expression profiles under short- and long-term exposure to low oxygen conditions are tightly associated with extracellular matrix (ECM)-receptor interaction in which laminin and collagen likely have important functions. Finding revealed that genes with a high translational efficiency (TE) had a relatively short upstream open reading frame (uORF) and a high uORF normalized minimal free energy, suggesting that sea cucumbers may respond to hypoxic stress via altered TE. These results provide valuable insights into the regulatory mechanisms that confer adaptive capacity to holothurians to survive oxygen deficiency conditions and may also be used to inform the development of strategies for mitigating the harmful effects of hypoxia on other marine invertebrates facing similar challenges.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| |
Collapse
|
225
|
Zhou H, Wu Y, Cai J, Zhang D, Lan D, Dai X, Liu S, Song T, Wang X, Kong Q, He Z, Tan J, Zhang J. Micropeptides: potential treatment strategies for cancer. Cancer Cell Int 2024; 24:134. [PMID: 38622617 PMCID: PMC11020647 DOI: 10.1186/s12935-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, 563000, China
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
226
|
Que Y, Qiu Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. The role of molecular chaperone CCT/TRiC in translation elongation: A literature review. Heliyon 2024; 10:e29029. [PMID: 38596045 PMCID: PMC11002246 DOI: 10.1016/j.heliyon.2024.e29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and strictly controlled biological process. Translation elongation is a well-coordinated and multifactorial step in translation that ensures the accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of messenger RNA (mRNA). Which undergoes dynamic regulation due to cellular state and environmental determinants. An expanding body of research points to translational elongation as a crucial process that controls the translation of an mRNA through multiple feedback mechanisms. Molecular chaperones are key players in protein homeostasis to keep the balance between protein synthesis, folding, assembly, and degradation. Chaperonin-containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone that plays an essential role in assisting cellular protein folding and suppressing protein aggregation. In this review, we give an overview of the factors that influence translation elongation, focusing on different functions of molecular chaperones in translation elongation, including how they affect translation rates and post-translational modifications. We also provide an understanding of the mechanisms by which the molecular chaperone CCT plays multiple roles in the elongation phase of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yudan Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheyu Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shanshan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
227
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
228
|
Iosub IA, Wilkins OG, Ule J. Riboseq-flow: A streamlined, reliable pipeline for ribosome profiling data analysis and quality control. Wellcome Open Res 2024; 9:179. [PMID: 38846930 PMCID: PMC11153996 DOI: 10.12688/wellcomeopenres.21000.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 06/09/2024] Open
Abstract
Ribosome profiling is a powerful technique to study translation at a transcriptome-wide level. However, ensuring good data quality is paramount for accurate interpretation, as is ensuring that the analyses are reproducible. We introduce a new Nextflow DSL2 pipeline, riboseq-flow, designed for processing and comprehensive quality control of ribosome profiling experiments. Riboseq-flow is user-friendly, versatile and upholds high standards in reproducibility, scalability, portability, version control and continuous integration. It enables users to efficiently analyse multiple samples in parallel and helps them evaluate the quality and utility of their data based on the detailed metrics and visualisations that are automatically generated. Riboseq-flow is available at https://github.com/iraiosub/riboseq-flow.
Collapse
Affiliation(s)
- Ira A. Iosub
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oscar G. Wilkins
- The Francis Crick Institute, London, England, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jernej Ule
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
229
|
Zhang Q, Liu L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett 2024; 587:216691. [PMID: 38360139 DOI: 10.1016/j.canlet.2024.216691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
230
|
Fijalkowski I, Snauwaert V, Van Damme P. Proteins à la carte: riboproteogenomic exploration of bacterial N-terminal proteoform expression. mBio 2024; 15:e0033324. [PMID: 38511928 PMCID: PMC11005335 DOI: 10.1128/mbio.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Valdes Snauwaert
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
231
|
Zhang L, Ruan J, Gao F, Xin Q, Che LP, Cai L, Liu Z, Kong M, Rochaix JD, Mi H, Peng L. Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly. Nat Commun 2024; 15:3122. [PMID: 38600073 PMCID: PMC11006888 DOI: 10.1038/s41467-024-46863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.
Collapse
Affiliation(s)
- Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zekun Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
232
|
Bharti N, Santos L, Davyt M, Behrmann S, Eichholtz M, Jimenez-Sanchez A, Hong JS, Rab A, Sorscher EJ, Albers S, Ignatova Z. Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations. Nat Commun 2024; 15:2957. [PMID: 38580646 PMCID: PMC10997658 DOI: 10.1038/s41467-024-47258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.
Collapse
Affiliation(s)
- Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Stine Behrmann
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Marie Eichholtz
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | | | - Jeong S Hong
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Andras Rab
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
233
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. eLife 2024; 13:RP93255. [PMID: 38573742 PMCID: PMC10994665 DOI: 10.7554/elife.93255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
234
|
O’Connor PBF, Mahony J, Casey E, Baranov PV, van Sinderen D, Yordanova MM. Ribosome profiling reveals downregulation of UMP biosynthesis as the major early response to phage infection. Microbiol Spectr 2024; 12:e0398923. [PMID: 38451091 PMCID: PMC10986495 DOI: 10.1128/spectrum.03989-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.
Collapse
Affiliation(s)
- Patrick B. F. O’Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
235
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
236
|
Georgoulis I, Papadopoulos DK, Lattos A, Michaelidis B, Feidantsis K, Giantsis IA. Increased seawater temperature triggers thermal, oxidative and metabolic response of Ostrea edulis, leading to anaerobiosis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110943. [PMID: 38224830 DOI: 10.1016/j.cbpb.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Bivalves are among the marine organisms most influenced by climate change. Despite the flat oyster's Ostrea edulis high economic value, its culture is developed on a very small scale, since this species possesses a strong susceptibility to abiotic stressors. Due to climate change, temperature is one of the most critical environmental parameters for the welfare of the Mediterranean basin's marine inhabitants. The present study's purpose was to investigate the physiological performance of the Mediterranean's native O. edulis as it faces exposure to different temperatures. Since juveniles are more susceptible to abiotic stressors, this experimental procedure was focused on young individuals. The seawater temperatures studied included a standard control temperature of 21 °C (often observed in several marine areas throughout the Mediterranean), as well as increased seawater temperatures of 25 °C and 28 °C, occasionally occurring in shallow Mediterranean waters inhabited by bivalve spat. These were selected since the tissues of O. edulis becomes partly anaerobic in temperatures exceeding 26 °C, while cardiac dysfunction (arrhythmia) emerges at 28 °C. The results demonstrate that temperatures above 25 °C trigger both the transcriptional upregulation of hsp70 and hsp90, and the antioxidant genes Cu/Zn sod and catalase. Enhancement of thermal tolerance and increased defense against increased ROS production during thermal stress, were observed. As the intensity and duration of thermal stress increases, apoptotic damage may also occur. The increased oxidative and thermal stress incurred at the highest temperature of 28 °C, seemed to trigger the switch from aerobic to anaerobic metabolism, reflected by higher pepck mRNA expressions and lower ETS activity.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR- 53100 Florina, Greece
| |
Collapse
|
237
|
Chen S, Navickas A, Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol Sci 2024; 45:304-318. [PMID: 38453522 DOI: 10.1016/j.tips.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Albertas Navickas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
238
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
239
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
240
|
Qanmber G, You Q, Yang Z, Fan L, Zhang Z, Chai M, Gao B, Li F, Yang Z. Transcriptional and translational landscape fine-tune genome annotation and explores translation control in cotton. J Adv Res 2024; 58:13-30. [PMID: 37207930 PMCID: PMC10982868 DOI: 10.1016/j.jare.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION The unavailability of intergenic region annotation in whole genome sequencing and pan-genomics hinders efforts to enhance crop improvement. OBJECTIVES Despite advances in research, the impact of post-transcriptional regulation on fiber development and translatome profiling at different stages of fiber growth in cotton (G. hirsutum) remains unexplored. METHODS We utilized a combination of reference-guided de novo transcriptome assembly and ribosome profiling techniques to uncover the hidden mechanisms of translational control in eight distinct tissues of upland cotton. RESULTS Our study identified P-site distribution at three-nucleotide periodicity and dominant ribosome footprint at 27 nucleotides. Specifically, we have detected 1,589 small open reading frames (sORFs), including 1,376 upstream ORFs (uORFs) and 213 downstream ORFs (dORFs), as well as 552 long non-coding RNAs (lncRNAs) with potential coding functions, which fine-tune the annotation of the cotton genome. Further, we have identified novel genes and lncRNAs with strong translation efficiency (TE), while sORFs were found to affect mRNA transcription levels during fiber elongation. The reliability of these findings was confirmed by the high consistency in correlation and synergetic fold change between RNA-sequencing (RNA-seq) and Ribosome-sequencing (Ribo-seq) analyses. Additionally, integrated omics analysis of the normal fiber ZM24 and short fiber pag1 cotton mutant revealed several differentially expressed genes (DEGs), and fiber-specific expressed (high/low) genes associated with sORFs (uORFs and dORFs). These findings were further supported by the overexpression and knockdown of GhKCS6, a gene associated with sORFs in cotton, and demonstrated the potential regulation of the mechanism governing fiber elongation on both the transcriptional and post-transcriptional levels. CONCLUSION Reference-guided transcriptome assembly and the identification of novel transcripts fine-tune the annotation of the cotton genome and predicted the landscape of fiber development. Our approach provided a high-throughput method, based on multi-omics, for discovering unannotated ORFs, hidden translational control, and complex regulatory mechanisms in crop plants.
Collapse
Affiliation(s)
- Ghulam Qanmber
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qi You
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Liqiang Fan
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhibin Zhang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Mao Chai
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Baibai Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Zuoren Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
241
|
Peng Z, Li J, Jiang X, Wan C. sOCP: a framework predicting smORF coding potential based on TIS and in-frame features and effectively applied in the human genome. Brief Bioinform 2024; 25:bbae147. [PMID: 38600664 PMCID: PMC11006793 DOI: 10.1093/bib/bbae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Small open reading frames (smORFs) have been acknowledged to play various roles on essential biological pathways and affect human beings from diabetes to tumorigenesis. Predicting smORFs in silico is quite a prerequisite for processing the omics data. Here, we proposed the smORF-coding-potential-predicting framework, sOCP, which provides functions to construct a model for predicting novel smORFs in some species. The sOCP model constructed in human was based on in-frame features and the nucleotide bias around the start codon, and the small feature subset was proved to be competent enough and avoid overfitting problems for complicated models. It showed more advanced prediction metrics than previous methods and could correlate closely with experimental evidence in a heterogeneous dataset. The model was applied to Rattus norvegicus and exhibited satisfactory performance. We then scanned smORFs with ATG and non-ATG start codons from the human genome and generated a database containing about a million novel smORFs with coding potential. Around 72 000 smORFs are located on the lncRNA regions of the genome. The smORF-encoded peptides may be involved in biological pathways rare for canonical proteins, including glucocorticoid catabolic process and the prokaryotic defense system. Our work provides a model and database for human smORF investigation and a convenient tool for further smORF prediction in other species.
Collapse
Affiliation(s)
- Zhao Peng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Jiaqiang Li
- School of Computer Science, and Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Xingpeng Jiang
- School of Computer Science, and Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Cuihong Wan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| |
Collapse
|
242
|
Clauwaert J, McVey Z, Gupta R, Yannuzzi I, Menschaert G, Prensner JR. Deep learning to decode sites of RNA translation in normal and cancerous tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586110. [PMID: 38585907 PMCID: PMC10996544 DOI: 10.1101/2024.03.21.586110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.
Collapse
Affiliation(s)
- Jim Clauwaert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| | - Zahra McVey
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Oxford, United Kingdom
| | - Ramneek Gupta
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Oxford, United Kingdom
| | - Ian Yannuzzi
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
- These authors share senior authorship: Gerben Menschaert, John R. Prensner
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| | - John R. Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- These authors share senior authorship: Gerben Menschaert, John R. Prensner
- These authors are corresponding authors: Jim Clauwaert, Gerben Menschaert, John R. Prensner
| |
Collapse
|
243
|
Teyssonniere EM, Shichino Y, Mito M, Friedrich A, Iwasaki S, Schacherer J. Translation variation across genetic backgrounds reveals a post-transcriptional buffering signature in yeast. Nucleic Acids Res 2024; 52:2434-2445. [PMID: 38261993 PMCID: PMC10954453 DOI: 10.1093/nar/gkae030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Gene expression is known to vary among individuals, and this variability can impact the phenotypic diversity observed in natural populations. While the transcriptome and proteome have been extensively studied, little is known about the translation process itself. Here, we therefore performed ribosome and transcriptomic profiling on a genetically and ecologically diverse set of natural isolates of the Saccharomyces cerevisiae yeast. Interestingly, we found that the Euclidean distances between each profile and the expression fold changes in each pairwise isolate comparison were higher at the transcriptomic level. This observation clearly indicates that the transcriptional variation observed in the different isolates is buffered through a phenomenon known as post-transcriptional buffering at the translation level. Furthermore, this phenomenon seemed to have a specific signature by preferentially affecting essential genes as well as genes involved in complex-forming proteins, and low transcribed genes. We also explored the translation of the S. cerevisiae pangenome and found that the accessory genes related to introgression events displayed similar transcription and translation levels as the core genome. By contrast, genes acquired through horizontal gene transfer events tended to be less efficiently translated. Together, our results highlight both the extent and signature of the post-transcriptional buffering.
Collapse
Affiliation(s)
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
244
|
Mangkalaphiban K, Fu L, Du M, Thrasher K, Keeling KM, Bedwell DM, Jacobson A. Extended stop codon context predicts nonsense codon readthrough efficiency in human cells. Nat Commun 2024; 15:2486. [PMID: 38509072 PMCID: PMC10954755 DOI: 10.1038/s41467-024-46703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.
Collapse
Affiliation(s)
- Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01655, USA
- Department of Genomics and Computational Biology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01655, USA
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Ming Du
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Kari Thrasher
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01655, USA.
| |
Collapse
|
245
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
246
|
Litsios A, Grys BT, Kraus OZ, Friesen H, Ross C, Masinas MPD, Forster DT, Couvillion MT, Timmermann S, Billmann M, Myers C, Johnsson N, Churchman LS, Boone C, Andrews BJ. Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle. Cell 2024; 187:1490-1507.e21. [PMID: 38452761 PMCID: PMC10947830 DOI: 10.1016/j.cell.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.
Collapse
Affiliation(s)
- Athanasios Litsios
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin T Grys
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oren Z Kraus
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Catherine Ross
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Duncan T Forster
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie Timmermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | | | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; RIKEN Center for Sustainable Resource Science, Wako 351-0198 Saitama, Japan.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
247
|
Krueger J, Preusse M, Oswaldo Gomez N, Frommeyer YN, Doberenz S, Lorenz A, Kordes A, Grobe S, Müsken M, Depledge DP, Svensson SL, Weiss S, Kaever V, Pich A, Sharma CM, Ignatova Z, Häussler S. tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2312874121. [PMID: 38451943 PMCID: PMC10945773 DOI: 10.1073/pnas.2312874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024] Open
Abstract
The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.
Collapse
Affiliation(s)
- Jonas Krueger
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Sebastian Doberenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Adrian Kordes
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
| | - Svenja Grobe
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Daniel P. Depledge
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Institute of Virology, Hannover Medical School, Hannover30625, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover30625, Germany
| | - Sarah L. Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover30625, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Cynthia M. Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University Hamburg, 20146, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen2100, Denmark
| |
Collapse
|
248
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Isemura M, Kouzaki K, Tamura Y, Kotani T, Nakazato K. Belt electrode tetanus muscle stimulation reduces denervation-induced atrophy of rat multiple skeletal muscle groups. Sci Rep 2024; 14:5848. [PMID: 38462654 PMCID: PMC10925608 DOI: 10.1038/s41598-024-56382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan.
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan.
| | - Shohei Kamiya
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Ryuji Akimoto
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Shunta Tadano
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Mako Isemura
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Karina Kouzaki
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Yuki Tamura
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Takaya Kotani
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Koichi Nakazato
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| |
Collapse
|
249
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
250
|
Lewis CJT, Xie L, Bhandarkar S, Jin D, Abdallah KS, Draycott AS, Chen Y, Thoreen CC, Gilbert WV. Quantitative profiling of human translation initiation reveals regulatory elements that potently affect endogenous and therapeutically modified mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582532. [PMID: 38463950 PMCID: PMC10925289 DOI: 10.1101/2024.02.28.582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions and identify sequences that mediate 250-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissect mechanisms of human translation initiation and engineer more potent therapeutic mRNAs. Highlights Measurement of >30,000 human 5' UTRs reveals a 250-fold range of translation outputSystematic mutagenesis demonstrates the causality of short (3-6nt) regulatory elementsN1-methylpseudouridine alters translation initiation in a sequence-specific mannerOptimal modified 5' UTRs outperform those in the current class of mRNA vaccines.
Collapse
|