201
|
Gong C, Sun J, Xiao Y, Qu X, Lang M. Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2021; 10:e2101244. [PMID: 34410043 DOI: 10.1002/adhm.202101244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Antibacterial materials are highly demanded in treatment of bacterial infection, especially severe ones with multidrug-resistance. Herein, pH-responsive polypeptide, i.e., poly-L-lysine modified by 1-(propylthio)acetic acid-3-octylimidazolium and citraconic anhydride (PLL-POIM-CA), is synthesized by post-polymerization modification of poly-L-lysine (PLL) with 1-(propylthio)acetic acid-3-octylimidazolium (POIM) and citraconic anhydride (CA). It is observed that PLL-POIM-CA is stable under normal physiological condition, while CA cleaves rapidly at weakly acidic environment like bacterial infectious sites. The hydrolyzed PLL-POIM-CA exhibits excellent broad-spectrum antibacterial activities against Gram-negative bacteria of Escherichia coli and Gram-positive bacteria of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In particular, the minimum inhibitory concentration (MIC) against multidrug-resistant bacteria like MRSA is as low as 7.8 µg mL-1 . Moreover, PLL-POIM-CA exhibits good biocompatibility with mouse fibroblast cells (L929) in vitro and improved hemocompatibility with an HC50 exceeding 5000 µg mL-1 . Therefore, PLL-POIM-CA displays an excellent bacteria versus cells selectivity (HC50 /MIC) over 534, which is 53 times higher than natural antimicrobial peptide of indolicidin. It is further demonstrated in vivo that the antimicrobial polypeptide effectively accelerates MRSA-infected wound healing by relieving local inflammatory response. Therefore, this targeted antimicrobial polypeptide has broad application prospects for the treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Chenyu Gong
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Junjie Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xue Qu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
202
|
Shi Y, Wareham DW, Yuan Y, Deng X, Mata A, Azevedo HS. Polymyxin B-Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Adv Healthc Mater 2021; 10:e2101465. [PMID: 34523266 PMCID: PMC11469027 DOI: 10.1002/adhm.202101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Repurposing old antibiotics into more effective and safer formulations is an emergent approach to tackle the growing threat of antimicrobial resistance. Herein, a peptide hydrogel is reported for the localized and sustained release of polymyxin B (PMB), a decade-old antibiotic with increasing clinical utility for treating multidrug-resistant Gram-negative bacterial infections. The hydrogel is assembled by additing PMB solution into a rationally designed peptide amphiphile (PA) solution and its mechanical properties can be adjusted through the addition of counterions, envisioning its application in diverse infection scenarios. Sustained release of PMB from the hydrogel over a 5-day period and prolonged antimicrobial activities against Gram-negative bacteria are observed. The localized release of active PMB from the hydrogel is shown to be effective in vivo for treating Pseudomonas aeruginosa infection in the Galleria mellonella burn wound infection model, dramatically reducing the mortality from 93% to 13%. Complementary antimicrobial activity against Gram-positive Staphylococcus aureus and enhanced antimicrobial effect against the Gram-negative Acinetobacter baumannii are observed when an additional antibiotic fusidic acid is incorporated into the hydrogen network. These results demonstrate the potential of the PMB-triggered PA hydrogel as a versatile platform for the localized and sustained delivery of combined antimicrobial therapies.
Collapse
Affiliation(s)
- Yejiao Shi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - David W. Wareham
- Center for ImmunobiologyThe Blizard InstituteBarts and The LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonE1 2ATUK
- Barts Health NHS TrustLondonE1 2ATUK
| | - Yichen Yuan
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Xinru Deng
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2ATUK
- Biodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
203
|
Liu W, Yang C, Gao R, Zhang C, Ou‐Yang W, Feng Z, Zhang C, Pan X, Huang P, Kong D, Wang W. Polymer Composite Sponges with Inherent Antibacterial, Hemostatic, Inflammation-Modulating and Proregenerative Performances for Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing. Adv Healthc Mater 2021; 10:e2101247. [PMID: 34473428 DOI: 10.1002/adhm.202101247] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Indexed: 01/10/2023]
Abstract
Clinical wound management remains a major challenge due to massive bleeding, bacterial infection, and difficult wound healing after tissue trauma. To simultaneously address these issues, composite polymer sponges for accelerating drug-resistant bacterial infected wound healing are fabricated by facilely mixing sodium polyacrylate (PAAS), double quaternary ammonium salts-conjugated chitosan (QAS-CS), and collagen (COL) in aqueous solution, followed by lyophilization. Composite sponges (PAAS/QAS-CS/COL, PQC) show highly porous microstructures (porosity ≈90%) with moderate compress modulus (≈0.3 MPa), tensile strength (0.004 MPa), and high swelling ratio (≈3500%). Importantly, PQC sponge demonstrates superior hemostasis ability over commercially available CS sponge by inducing rapid hemagglutination, and exhibits significantly better antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli by destroying cell membrane and causing the leakage of bioactive components such as potassium ion and β-galactosidase from treated bacterial. Furthermore, PQC sponge can efficiently promote cell proliferation. Significantly, the sponge greatly expedites the regeneration of MRSA-infected full-thickness skin wound in rabbit by successfully eradicating bacterial infection, and reducing inflammation. PQC sponge also improves both early angiogenesis and blood vessel maturation at the wound site. Overall, this multifunctional sponge is a promising wound dressing for clinical use and holds great potential for rapid clinical translation.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
- Plastic Surgery Hospital and Institute Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100144 China
| | - Chunfang Yang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Wenbin Ou‐Yang
- Structural Heart Disease Center National Center for Cardiovascular Disease China and Fuwai Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Xiangbin Pan
- Structural Heart Disease Center National Center for Cardiovascular Disease China and Fuwai Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| | - Deling Kong
- College of Life Sciences Nankai University Tianjin 300071 China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China
| |
Collapse
|
204
|
Korinek M, Handoussa H, Tsai YH, Chen YY, Chen MH, Chiou ZW, Fang Y, Chang FR, Yen CH, Hsieh CF, Chen BH, El-Shazly M, Hwang TL. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front Pharmacol 2021; 12:674095. [PMID: 34707494 PMCID: PMC8545060 DOI: 10.3389/fphar.2021.674095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Neutrophilic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or psoriasis, exert a huge burden on the global health system due to the lack of safe and effective treatments. Volatile oils from terrestrial plants showed impressive therapeutic effects against disorders of the skin, digestive system, lungs, liver, metabolism, and nervous system. However, their effect on the immune system and neutrophil function is still elusive. Fennel, cumin, marjoram, lavender, caraway, and anise are the common nutraceuticals that are widely used in the Mediterranean diet. The volatile oils of these herbs were screened for various biological activities, including anti-inflammatory, anti-allergic, antimicrobial, and antiviral effects. Several oils showed anti-inflammatory and antimicrobial potential. Fennel (Foeniculum vulgare) and cumin (Cuminum cyminum) fruits' volatile oils significantly suppressed the activation of human neutrophils, including respiratory burst and the degranulation induced by formyl peptide receptor agonists fMLF/CB and MMK1 in the human neutrophils (IC50, 3.8–17.2 µg/ml). The cytotoxic effect and free-radical scavenging effects (ABTS, DPPH) of these oils did not account for the observed effects. Both fennel and cumin volatile oils significantly shortened calcium influx recovery time and inhibited phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK) expression. The gas chromatography–mass spectrometry analysis of these oils revealed the presence of estragole and cuminaldehyde as the major components of fennel and cumin volatile oils, respectively. Our findings suggested that cumin and fennel, common in the Mediterranean diet, hold the potential to be applied for the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Meng-Hua Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zan-Wei Chiou
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Fan Hsieh
- The Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
205
|
Tao J, Yan S, Zhou C, Liu Q, Zhu H, Wen Z. Total flavonoids from Potentilla kleiniana Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114383. [PMID: 34214645 DOI: 10.1016/j.jep.2021.114383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Potentilla kleiniana Wight et Arn is a wide-spread wild plant in the mountainous areas in southern China. The whole herb has been used as a traditional herbal medicine to treat fever, arthritis, malaria, insect and snake bites, hepatitis, and traumatic injury. In vitro studies have reported the antibacterial activity use of the plant in traditional medicinal systems. AIM OF THE STUDY The aim of this study was to investigate the inhibitory activity of total flavonoid from Potentilla kleiniana Wight et Arn (TFP) on methicillin-resistant Staphylococcus aureus (MRSA) in planktonic state and biofilm state. MATERIALS AND METHODS Antibacterial activities of TFP on planktonic MRSA were determined by agar diffusion method, microtiter plate assay and time-kill curve assay. Electrical conductivity, membrane permeability, membrane potential and autoaggregation were analyzed to study TFP effects on planktonic MRSA growth. Crystal violet (CV) staining and confocal laser scanning microscopy (CLSM) were analyzed to study TFP effects on aggregation and maturation of MRSA biofilm. After TFP treatment, extracellular polymeric substances (EPS) production were examined. Morphological changes in planktonic and MRSA biofilm following TFP treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, α-Toxin protein expression and adhesion-related gene expression were also determined. RESULTS The minimum inhibitory concentration (MIC) of TFP against MRSA was 20 μg/mL. The agar diffusion method and time-kill curve assay results indicated that TFP inhibited planktonic MRSA growth. TFP treatment significantly inhibited planktonic MRSA growth by inhibiting autoaggregation, α-hemolysin activity, α-Toxin protein expression, but increasing electrolyte leakage, membrane permeability and membrane potential and impacting cell structure. Moreover, TFP treatment significantly inhibited aggregation and maturation on MRSA biofilm by decreasing surface hydrophobicity, EPS production and adhesion-related gene expression. CONCLUSION The results of this trial provide scientific experimental data on the traditional use of Potentilla Kleiniana Wight et Arn for traumatic injury treatment and further demonstrate the potential of TFP to be developed as a novel anti-biofilm drug.
Collapse
Affiliation(s)
- Junyu Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Shilun Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Chuyue Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China.
| |
Collapse
|
206
|
Jiang Q, Yan X, Jiao D, Zhang J, Wu Y, Cheng Y. Polymyxin B-modified conjugated oligomer nanoparticle for targeted identification and enhanced photodynamic antimicrobial therapy. Chem Commun (Camb) 2021; 57:11244-11247. [PMID: 34633009 DOI: 10.1039/d1cc04389g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photosensitive polymyxin B-modified conjugated oligomer nanoparticle that integrates the targeted identification and synergistic photodynamic therapy in one treatment against resistant Gram-negative bacteria. The study expands the application of antibiotics and opens a new avenue for enhancing photodynamic antimicrobial therapy and fighting bacterial resistance.
Collapse
Affiliation(s)
- Qi Jiang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Xinrong Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Dan Jiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yonggang Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| |
Collapse
|
207
|
Zhong R, Li H, Li H, Fang S, Liu J, Chen Y, Liu S, Lin S. Development of Amphiphilic Coumarin Derivatives as Membrane-Active Antimicrobial Agents with Potent In Vivo Efficacy against Gram-Positive Pathogenic Bacteria. ACS Infect Dis 2021; 7:2864-2875. [PMID: 34505771 DOI: 10.1021/acsinfecdis.1c00246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increases in drug-resistant pathogens are becoming a serious detriment to human health. To combat pathogen infections, a new series of amphiphilic coumarin derivatives were designed and synthesized as antimicrobial agents with membrane-targeting action. We herein report a lead compound, 25, that displayed potent antibacterial activity against Gram-positive bacteria, including MRSA. Compound 25 exhibited weak hemolytic activity and low toxicity to mammalian cells and can kill Gram-positive bacteria quickly (within 0.5 h) by directly disrupting the bacterial cell membranes. Additionally, compound 25 demonstrated excellent efficacy in a murine corneal infection caused by Staphylococcus aureus. These results suggest that 25 has great potential to be a potent antimicrobial agent for treating drug-resistant Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
208
|
Christensen SB. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021; 26:6057. [PMID: 34641601 PMCID: PMC8512414 DOI: 10.3390/molecules26196057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
The appearance of antibiotic drugs revolutionized the possibilities for treatment of diseases with high mortality such as pneumonia, sepsis, plaque, diphtheria, tetanus, typhoid fever, and tuberculosis. Today fewer than 1% of mortalities in high income countries are caused by diseases caused by bacteria. However, it should be recalled that the antibiotics were introduced in parallel with sanitation including sewerage, piped drinking water, high standard of living and improved understanding of the connection between food and health. Development of salvarsan, sulfonamides, and β-lactams into efficient drugs is described. The effects on life expectancy and life quality of these new drugs are indicated.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
209
|
Residual Helicity at the Active Site of the Histidine Phosphocarrier, HPr, Modulates Binding Affinity to Its Natural Partners. Int J Mol Sci 2021; 22:ijms221910805. [PMID: 34639146 PMCID: PMC8509676 DOI: 10.3390/ijms221910805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.
Collapse
|
210
|
Eikemo V, Sydnes LK, Sydnes MO. Photodegradable antimicrobial agents - synthesis, photodegradation, and biological evaluation. RSC Adv 2021; 11:32339-32345. [PMID: 35495489 PMCID: PMC9042229 DOI: 10.1039/d1ra06324c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023] Open
Abstract
Multi-drug resistant (MDR) bacteria are already a significant health-care problem and are making the combat of infections quite challenging. Here we report the synthesis of several new compounds containing an ethanolamine moiety, of which two exhibit promising antimicrobial activity (at the 6 μM level). All the compounds are degraded when exposed to light and form inactive products.
Collapse
Affiliation(s)
- Vebjørn Eikemo
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger NO-4036 Stavanger Norway
| | - Leiv K Sydnes
- Department of Chemistry, University of Bergen NO-5007 Bergen Norway
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger NO-4036 Stavanger Norway
| |
Collapse
|
211
|
Jin J, Li L, Zhang L, Luan Z, Xin S, Song K. Progress in the Application of Carbon Dots-Based Nanozymes. Front Chem 2021; 9:748044. [PMID: 34631669 PMCID: PMC8497709 DOI: 10.3389/fchem.2021.748044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
As functional nanomaterials with simulating enzyme-like properties, nanozymes can not only overcome the inherent limitations of natural enzymes in terms of stability and preparation cost but also possess design, versatility, maneuverability, and applicability of nanomaterials. Therefore, they can be combined with other materials to form composite nanomaterials with superior performance, which has garnered considerable attention. Carbon dots (CDs) are an ideal choice for these composite materials due to their unique physical and chemical properties, such as excellent water dispersion, stable chemical inertness, high photobleaching resistance, and superior surface engineering. With the continuous emergence of various CDs-based nanozymes, it is vital to thoroughly understand their working principle, performance evaluation, and application scope. This review comprehensively discusses the recent advantages and disadvantages of CDs-based nanozymes in biomedicine, catalysis, sensing, detection aspects. It is expected to provide valuable insights into developing novel CDs-based nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
212
|
Tolpeznikaite E, Bartkevics V, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Zavistanaviciute P, Zokaityte E, Ruibys R, Bartkiene E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods 2021; 10:2226. [PMID: 34574335 PMCID: PMC8471643 DOI: 10.3390/foods10092226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = -0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes iela 3, Zemgales priekšpilsēta, LV-1076 Riga, Latvia;
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Renata Pilkaityte
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipėda, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Egle Zokaityte
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
213
|
Liu Y, Huo D, Zhu X, Chen X, Lin A, Jia Z, Liu J. A ruthenium nanoframe/enzyme composite system as a self-activating cascade agent for the treatment of bacterial infections. NANOSCALE 2021; 13:14900-14914. [PMID: 34533163 DOI: 10.1039/d1nr02439f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cascade catalytic strategy could effectively enhance the antibacterial activity by regulating the production of hydroxyl radicals (˙OH) in the sites of bacterial infection. In this work, a ruthenium metal nanoframe (Ru NF) was successfully synthesized via the palladium template method. The cascade catalysis in the bacterial infection microenvironment was achieved by physically adsorbed natural glucose oxidase (GOx), and hyaluronic acid (HA) was coated on the outer layer of the system for locating the infection sites accurately. Eventually, a composite nano-catalyst (HA-Ru NFs/GOx) based on the ruthenium nanoframe was constructed, which exhibited excellent cascade catalytic activity and good biocompatibility. The prepared HA-Ru NFs/GOx enhances the antibacterial activity and inhibits bacterial regeneration through the outbreak of reactive oxygen species (ROS) caused by self-activating cascade reactions. In addition, in vivo experiments indicate that HA-Ru NFs/GOx could efficiently cause bacterial death and significantly promote wound healing/skin regeneration. Accordingly, ruthenium metal framework nanozymes could be used as an effective cascade catalytic platform to inhibit bacterial regeneration and promote wound healing, and have great potential as new antibacterial agents against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Dongliang Huo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Xufeng Zhu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Xu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Ange Lin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
214
|
Xia Y, Cebrián R, Xu C, de Jong A, Wu W, Kuipers OP. Elucidating the mechanism by which synthetic helper peptides sensitize Pseudomonas aeruginosa to multiple antibiotics. PLoS Pathog 2021; 17:e1009909. [PMID: 34478485 PMCID: PMC8445441 DOI: 10.1371/journal.ppat.1009909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence and rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to the global healthcare. There is an urgent need for new antibacterial substances or new treatment strategies to deal with the infections by MDR bacterial pathogens, especially the Gram-negative pathogens. In this study, we show that a number of synthetic cationic peptides display strong synergistic antimicrobial effects with multiple antibiotics against the Gram-negative pathogen Pseudomonas aeruginosa. We found that an all-D amino acid containing peptide called D-11 increases membrane permeability by attaching to LPS and membrane phospholipids, thereby facilitating the uptake of antibiotics. Subsequently, the peptide can dissipate the proton motive force (PMF) (reducing ATP production and inhibiting the activity of efflux pumps), impairs the respiration chain, promotes the production of reactive oxygen species (ROS) in bacterial cells and induces intracellular antibiotics accumulation, ultimately resulting in cell death. By using a P. aeruginosa abscess infection model, we demonstrate enhanced therapeutic efficacies of the combination of D-11 with various antibiotics. In addition, we found that the combination of D-11 and azithromycin enhanced the inhibition of biofilm formation and the elimination of established biofilms. Our study provides a realistic treatment option for combining close-to-nature synthetic peptide adjuvants with existing antibiotics to combat infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yushan Xia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (WW); (OPK)
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- * E-mail: (WW); (OPK)
| |
Collapse
|
215
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
216
|
Morandini A, Spadati E, Leonetti B, Sole R, Gatto V, Rizzolio F, Beghetto V. Sustainable triazine-derived quaternary ammonium salts as antimicrobial agents. RSC Adv 2021; 11:28092-28096. [PMID: 35480717 PMCID: PMC9038131 DOI: 10.1039/d1ra03455c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
The first examples of highly efficient antimicrobial triazine-derived bis imidazolium quaternary ammonium salts (TQAS) are reported. TQAS have been prepared with an easy, atom efficient, economically sustainable strategy and tested as antimicrobial agents, reaching MIC values below 10 mg L-1. Distinctively, TQAS have low MIC and low cytotoxicity.
Collapse
Affiliation(s)
- Andrea Morandini
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Emanuele Spadati
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Benedetta Leonetti
- Brenta S.r.l. - Nine Trees Group. Viale Milano, 26 36075 Montecchio Maggiore Vicenza Italy
| | - Roberto Sole
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Consorzio Interuniversitario per le Reattività Chimiche e Catalisi (CIRCC) Via C. Ulpiani 27 70126 Bari Italy
| | - Vanessa Gatto
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| | - Flavio Rizzolio
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Valentina Beghetto
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| |
Collapse
|
217
|
Ajingi YS, Muhammad A, Khunrae P, Rattanarojpong T, Pattanapanyasat K, Sutthibutpong T, Jongruja N. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Curr Pharm Biotechnol 2021; 22:1216-1227. [PMID: 33081682 DOI: 10.2174/1389201021666201020161428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
218
|
Abriat C, Gazil O, Heuzey MC, Daigle F, Virgilio N. The Polymeric Matrix Composition of Vibrio cholerae Biofilms Modulate Resistance to Silver Nanoparticles Prepared by Hydrothermal Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35356-35364. [PMID: 34286588 DOI: 10.1021/acsami.1c07455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilms represent the dominant microbial lifestyle in nature. These complex microbial communities in which bacteria are embedded in a self-produced protective polymeric extracellular matrix, display an enhanced resistance to antimicrobials and thus represent a major health challenge. Although nanoparticles have proven to be effective against bacteria, the interactions between nanoparticles and the polymeric biofilm matrix are still unclear. In this work, silver nanoparticles (AgNPs) were used on mature biofilms formed by the pathogen Vibrio cholerae, and their effects on the biofilm microstructure were evaluated. Bacteria cells within mature biofilms showed an increased tolerance to AgNPs, with their elimination requiring a concentration nine times higher than planktonic cells. Mutant strains not able to form a pellicle biofilm were four times more susceptible to AgNPs than the wild-type strain forming a strong biofilm. Moreover, electron microscopy analysis revealed that AgNPs interacted with the extracellular matrix components and disrupted its microstructure. Finally, two major proteins, Bap1 and RbmA, appeared to mediate the biofilm bacterial resistance to AgNPs. This work highlights the role of the polymeric biofilm matrix composition in resistance to AgNPs. It underlines how crucial it is to understand and characterize the interactions between nanoparticles and the biofilm matrix, in order to design appropriate metallic nanoparticles efficient against bacterial biofilms.
Collapse
Affiliation(s)
- Clémence Abriat
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
- Department of Microbiology, Infection and Immunology, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Olivier Gazil
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| | - Marie-Claude Heuzey
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| | - France Daigle
- Department of Microbiology, Infection and Immunology, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
219
|
Verma D, Gupta V. New insights into the structure and function of an emerging drug target CysE. 3 Biotech 2021; 11:373. [PMID: 34367865 DOI: 10.1007/s13205-021-02891-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
The antimicrobial resistant strains of several pathogens are major culprits of hospital-acquired nosocomial infections. An active and urgent action is necessary against these pathogens for the development of unique therapeutics. The cysteine biosynthetic pathway or genes (that are absent in humans) involved in the production of L-cysteine appear to be an attractive target for developing novel antibiotics. CysE, a Serine Acetyltransferase (SAT), catalyzes the first step of cysteine synthesis and is reported to be essential for the survival of persistence in several microbes including Mycobacterium tuberculosis. Structure determination provides fundamental insight into structure and function of protein and aid in drug design/discovery efforts. This review focuses on the overview of current knowledge of structure function, regulatory mechanism, and potential inhibitors (active site as well as allosteric site) of CysE. Despite having conserved structure, slight modification in CysE structure lead to altered the regulatory mechanism and hence affects the cysteine production. Due to its possible role in virulence and vital metabolism of pathogens makes it a potential target in the quest to develop novel therapeutics to treat multi-drug-resistant bacteria.
Collapse
Affiliation(s)
- Deepali Verma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh 201309 India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh 201309 India
| |
Collapse
|
220
|
Ceftizoxime loaded ZnO/L-cysteine based an advanced nanocarrier drug for growth inhibition of Salmonella typhimurium. Sci Rep 2021; 11:15565. [PMID: 34330977 PMCID: PMC8324911 DOI: 10.1038/s41598-021-95195-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
l-Cysteine coated zinc oxide (ZnO) nano hollow spheres were prepared as a potent drug delivery agent to eradicate Salmonella enterica serovar Typhimurium (S. typhimurium). The ZnO nano hollow spheres were synthesized by following the environmentally-friendly trisodium citrate assisted method and l-cysteine (L-Cys) conjugate with its surface. ZnO/L-Cys@CFX nanocarrier drug has been fabricated by incorporating ceftizoxime with L-Cys coated ZnO nano hollow spheres and characterized using different techniques such as scanning electron microscope (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), and X-ray diffraction (XRD) etc. Furthermore, the drug-loading and encapsulation efficiency at different pH levels was measured using UV–vis spectrometer and optimized. A control and gradual manner of pH-sensitive release profile was found after investigating the release profile of CFX from the carrier drug. The antibacterial activity of ZnO/L-Cys@CFX and CFX were evaluated through the agar disc diffusion method and the broth dilution method, which indicate the antibacterial properties of antibiotics enhance after conjugating. Surprisingly, the ZnO/L-Cys@CFX exhibits a minimum inhibitory concentration (MIC) of 5 µg/ml against S. typhimurium is lower than CFX (20 µg/ml) itself. These results indicate the nanocarrier can reduce the amount of CFX dosed to eradicate S. typhimurium.
Collapse
|
221
|
Lin Z, Liu L, Wang W, Jia L, Shen Y, Zhang X, Ge D, Shi W, Sun Y. The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing. Biomater Sci 2021; 9:5951-5964. [PMID: 34318796 DOI: 10.1039/d1bm00622c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanin and its analogue polydopamine (PDA) have attracted considerable attention in biomedical science due to their surface-rich metal binding sites, excellent adhesion and good biocompatibility. Bacterial infections at the wound site and uncontrolled bleeding are associated with a high risk of death, and the prevention of wound infections remains a major challenge. On this basis, the four nanoparticles (NPs) of melanin, PDA, copper ion-loaded melanin (Cu(ii) loaded melanin) and copper ion-loaded PDA (Cu(ii) loaded PDA) were studied in terms of antibacterial and wound healing capabilities. The in vitro experiments showed that Cu(ii) loaded PDA NPs had good blood compatibility and low cytotoxicity, showing the best antibacterial effect in comparison with other samples. Not only could the slow release of copper ions from the nanoparticles kill bacteria, but also the phenolic hydroxyl group and amine groups of PDA NPs played a synergistic role in bacterial death. In wound healing experiments, the Cu(ii) loaded PDA NPs could easily and tightly bind with biological tissue, demonstrating excellent hemostasis, antibacterial and wound healing capabilities. In summary, the excellent properties of Cu(ii) loaded PDA NPs made them a safe and effective drug for preventing wound infection and promoting healing.
Collapse
Affiliation(s)
- Zhenjie Lin
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Li W, Hu Y, Zhang Q, Hua L, Yang Z, Ren Z, Zheng X, Huang W, Ma Y. Development of Drug-Resistant Klebsiella pneumoniae Vaccine via Novel Vesicle Production Technology. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32703-32715. [PMID: 34251169 DOI: 10.1021/acsami.1c06701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug resistance of Klebsiella pneumoniae severely threatens human health. Overcoming the mechanisms of K. pneumoniae resistance to develop novel vaccines against drug-resistant K. pneumoniae is highly desired. Here, we report a technology platform that uses high pressure to drive drug-resistant K. pneumoniae to pass through a gap, inducing the formation of stable artificial bacterial biomimetic vesicles (BBVs). These BBVs had little to no bacterial intracellular protein or nucleic acid and had high yields. BBVs were efficiently taken up by dendritic cells to stimulate their maturation. BBVs as K. pneumoniae vaccines had the dual functions of inducing bacteria-specific humoral and cellular immune responses to increase animals' survival rate and reduce pulmonary inflammation and bacterial loads. We believe that BBVs are new-generation technology for bacterial vesicle preparation. Establishment of this BBV vaccine platform can maximally expand preparation technology for vaccines against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
| | - Ying Hu
- The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming 650101, China
| | - Qishu Zhang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
- Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
| | - Zhaoling Ren
- The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming 650101, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
- Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935 Jiaoling Road, Kunming 650118, China
| |
Collapse
|
223
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
224
|
Wang S, Yuan L, Xu Z, Lin X, Ge L, Li D, Mu C. Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite. ACS APPLIED BIO MATERIALS 2021; 4:5797-5808. [PMID: 35006754 DOI: 10.1021/acsabm.1c00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogels are considered a promising wound dressing owing to their ability to absorb wound exudates and their moist network structure for skin regeneration. It is of great significance to give added multiple functions to hydrogels for wound healing. In this paper, we present a gelatin-based hydrogel with self-healing ability, conductivity, and antibacterial and antioxidant activities. Dopamine was added into an alkaline solution to polymerize into polydopamine (PDA), which was used to reduce AgNO3 into Ag nanoparticles (AgNPs) to gain a PDA@AgNP composite. Polypyrrole-grafted gelatin (PPyGel) was dissolved in a PDA@AgNP solution and ferric ions were used as a cross-linking agent to form PDA@AgNPs-PPyGel-Fe hydrogels. The as-prepared hydrogels are soft and ductile and exhibit porous structures with pore sizes from 20 to 50 μm. The hydrogels have high water absorption ability, indicating the potential to absorb wound exudates. PPy and Fe3+ endow the hydrogels with slightly higher conductivity than that of skin tissue, indicating the ability to effectively transmit bioelectric signals for skin regeneration. The ionic interactions and hydrogen bonding in hydrogels make them possess self-healing ability, and the self-healing process can be completed in 30 min. PDA confers hydrogels with effective antioxidant activities, while AgNPs endow hydrogels with good antibacterial activities. Moreover, the hydrogels possess good blood compatibility and cytocompatibility. In sum, the developed hydrogel has potential applications as wound dressings.
Collapse
Affiliation(s)
- Shen Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xianyu Lin
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
225
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
226
|
Yu JH, Xu XF, Hou W, Meng Y, Huang MY, Lin J, Chen WM. Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms. Eur J Med Chem 2021; 224:113691. [PMID: 34274830 DOI: 10.1016/j.ejmech.2021.113691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
The Staphylococcus aureus can switch to a transient genotype-invariant dormancy, known as a persister, to survive treatment with high doses of antibiotics. This transient persister is an important reason underlying its resistance. There is an urgent need to find new antibacterial agents capable of eradicating methicillin-resistant S. aureus (MRSA) persisters. In this study, 37 new derivatives of cajaninstilbene acid (CSA) were designed and synthesized, and their biological activity against MRSA persisters was evaluated. Most of the newly synthesized derivatives exhibit more potent antimicrobial properties against S. aureus and MRSA than CSA itself, and 23 of the 37 derivatives show a tendency to eradicate MRSA persisters. A representative compound (A6) was demonstrated to target bacterial cell membranes. It eradicated the adherent biofilm of MRSA in a concentration dependent manner, and showed a synergistic antibacterial effect with piperacilin. In a model mouse abscess caused by MRSA persisters, A6 effectively reduced the bacterial load in vivo. These results indicate that A6 is a potential candidate for treatment of MRSA persister infections.
Collapse
Affiliation(s)
- Jia-Hui Yu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Fang Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen Hou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Mei-Yan Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
227
|
Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics (Basel) 2021; 10:antibiotics10070804. [PMID: 34356726 PMCID: PMC8300616 DOI: 10.3390/antibiotics10070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.
Collapse
|
228
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
229
|
Yele V, Sanapalli BKR, Wadhwani AD, Mohammed AA. Benzohydrazide and Phenylacetamide Scaffolds: New Putative ParE Inhibitors. Front Bioeng Biotechnol 2021; 9:669728. [PMID: 34222214 PMCID: PMC8247773 DOI: 10.3389/fbioe.2021.669728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibacterial resistance (ABR) is a major life-threatening problem worldwide. Rampant dissemination of ABR always exemplified the need for the discovery of novel compounds. However, to circumvent the disease, a molecular target is required, which will lead to the death of the bacteria when acted upon by a compound. One group of enzymes that have proved to be an effective target for druggable candidates is bacterial DNA topoisomerases (DNA gyrase and ParE). In our present work, phenylacetamide and benzohydrazides derivatives were screened for their antibacterial activity against a selected panel of pathogens. The tested compounds displayed significant antibacterial activity with MIC values ranging from 0.64 to 5.65 μg/mL. Amongst 29 title compounds, compounds 5 and 21 exhibited more potent and selective inhibitory activity against Escherichia coli with MIC values at 0.64 and 0.67 μg/mL, respectively, and MBC at onefold MIC. Furthermore, compounds exhibited a post-antibiotic effect of 2 h at 1× MIC in comparison to ciprofloxacin and gentamicin. These compounds also demonstrated the concentration-dependent bactericidal activity against E. coli and synergized with FDA-approved drugs. The compounds are screened for their enzyme inhibitory activity against E. coli ParE, whose IC50 values range from 0.27 to 2.80 μg/mL. Gratifyingly, compounds, namely 8 and 25 belonging to the phenylacetamide series, were found to inhibit ParE enzyme with IC50 values of 0.27 and 0.28 μg/mL, respectively. In addition, compounds were benign to Vero cells and displayed a promising selectivity index (169.0629-951.7240). Moreover, compounds 1, 7, 8, 21, 24, and 25 (IC50: <1 and Selectivity index: >200) exhibited potent activity in reducing the E. coli biofilm in comparison with ciprofloxacin, erythromycin, and ampicillin. These astonishing results suggest the potential utilization of phenylacetamide and benzohydrazides derivatives as promising ParE inhibitors for treating bacterial infections.
Collapse
Affiliation(s)
- Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | | | - Ashish D Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Afzal Azam Mohammed
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| |
Collapse
|
230
|
Yuwen L, Qiu Q, Xiu W, Yang K, Li Y, Xiao H, Yang W, Yang D, Wang L. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomater Sci 2021; 9:4484-4495. [PMID: 34002742 DOI: 10.1039/d1bm00406a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious diseases associated with antibiotic-resistant bacteria are ever-growing threats to public health. Effective treatment and detection methods of bacterial infections are in urgent demand. Herein, novel phototheranostic nanoagents (MoS2@HA-Ce6 nanosheets, MHC NSs) with hyaluronidase (HAase)-responsive fluorescence imaging (FLI) and photothermal/photodynamic therapy (PTT/PDT) functions were prepared. In this design, Ce6 is used as both a photosensitizer and a fluorescent probe, while MoS2 nanosheets (MoS2 NSs) serve as both a fluorescence quencher and a photothermal agent. Hyaluronic acid conjugated with Ce6 (HA-Ce6) was assembled on the surface of MoS2 NSs to form MHC NSs. Without the HAase secreted by methicillin-resistant Staphylococcus aureus (MRSA), the fluorescence of Ce6 is quenched by MoS2 NSs, while in the presence of MRSA, HAase can degrade the HA and release Ce6, which restores the fluorescence and photodynamic activity of Ce6. The experimental results show that MHC NSs can fluorescently image the MRSA both in vitro and in vivo by HAase activation. Meanwhile, MHC NSs can serve as PTT/PDT dual-mode antibacterial agents for MRSA. In vitro antibacterial results show that MHC NSs can kill 99.97% MRSA under 635 nm and 785 nm laser irradiation. In vivo study further shows that MHC NSs can kill 99.9% of the bacteria in MRSA infected tissues in mice and prompt wound healing by combined PTT/PDT. This work provides novel HAase-responsive phototheranostic nanoagents for effective detection and treatment of bacterial infections.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Qiu Qiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yuqing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Hang Xiao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wenjing Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
231
|
Abbas M, Atiq A, Xing R, Yan X. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. J Mater Chem B 2021; 9:4444-4458. [PMID: 33978051 DOI: 10.1039/d1tb00025j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The natural biomolecules of peptides and proteins are able to form elegant metal incorporating supramolecular nanomaterials through multiple weak non-covalent interactions. The use of toxic chemical reagents to fabricate silver nanoparticles poses a danger to apply them in various biomedical applications. Peptide and protein biomolecules have the potential to overcome this barrier by the supramolecular chemistry approach. In this review, we focus on the self-assembly of peptides and proteins to synthesize silver incorporating supramolecular nanoarchitectures, which in turn enhance the biological properties of these silver nanomaterials being used in nanomedicine. This review aims to illustrate the recent developments in amphiphilic peptides, oligopeptides, collagen, bovine serum albumin (BSA), and human serum albumin (HSA) as capping, stabilizing, and reducing agents to form silver incorporating supramolecular nanostructures. Finally, we provide some biomedical applications of silver-incorporating supramolecular nanomaterials along with future perspectives.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Atia Atiq
- Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
232
|
Xie YP, Ansari MF, Zhang SL, Zhou CH. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104849. [PMID: 33993967 DOI: 10.1016/j.pestbp.2021.104849] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Staphylococcus aureus resistance poses nonnegligible threats to the livestock industry. In light of this, carbazole-oxadiazoles were designed and synthesized for treating S. aureus infection. Bioassay discovered that 3,6-dibromocarbazole derivative 13a had effective inhibitory activities to several Gram-positive bacteria, in particular to S. aureus, S. aureus ATCC 29213, MRSA and S. aureus ATCC 25923 (MICs = 0.6-4.6 nmol/mL), which was more active than norfloxacin (MICs = 6-40 nmol/mL). Subsequent studies showed that 3,6-dibromocarbazole derivative 13a acted rapidly on S. aureus ATCC 29213 and possessed no obvious tendency to induce bacterial resistance. Further evaluations indicated that 3,6-dibromocarbazole derivative 13a showed strong abilities to disrupt bacterial biofilm and interfere with DNA, which might be the power sources of antibacterial performances. Moreover, 3,6-dibromocarbazole derivative 13a also exhibited slight cell lethality toward Hek 293 T and LO2 cells and low hemolytic toxicity to red blood cells. The above results implied that the active molecule 13a could be studied in the future development of agricultural available antibiotics.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
233
|
Purification, De Novo Characterization and Antibacterial Properties of a Novel, Narrow-Spectrum Bacteriostatic Tripeptide from Geotrichum candidum OMON-1. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
234
|
The Influence of Permeability through Bacterial Porins in Whole-Cell Compound Accumulation. Antibiotics (Basel) 2021; 10:antibiotics10060635. [PMID: 34073313 PMCID: PMC8226570 DOI: 10.3390/antibiotics10060635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to their targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (74%) between the two, confirming porins key in compound uptake in Gram-negative bacteria. The analysis of this unique dataset aids to better understand the molecular descriptors behind whole-cell accumulation and molecular uptake in Gram-negative bacteria.
Collapse
|
235
|
Vaca J, Ortiz A, Sansinenea E. Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Curr Med Chem 2021; 29:2093-2108. [PMID: 34047258 DOI: 10.2174/0929867328666210527093041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, antibiotic-resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, which have shown antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors. OBJECTIVE We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and the older bacteriocins. RESULTS In this review, we have revised some works about the improvements carried out in the production of bacteriocins. CONCLUSION These applications make bacteriocins very promising compounds that need to study for industrial production.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| |
Collapse
|
236
|
Junita D, Prasetyo AA, Muniroh M, Kristina TN, Mahati E. The effect of glutathione as adjuvant therapy on levels of TNF-α and IL-10 in wistar rat peritonitis model. Ann Med Surg (Lond) 2021; 66:102406. [PMID: 34136205 PMCID: PMC8178079 DOI: 10.1016/j.amsu.2021.102406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Peritonitis is the second most common cause of severe sepsis that associated with a significant mortality rate. Due to a large gap of newer antibiotics innovation and antibiotic resistance emergence, the use of antioxidant has a possible alternative as adjuvant therapy in peritonitis management. It has been studied that glutathione as an alternative in the development of new anti-inflammatory effect. Thus, the aim of this study was to evaluate the levels of TNF-α and IL-10 after glutathione administration as adjuvant therapy in rat peritonitis model. Materials and methods Male wistar rats were divided into four groups (n = 6 per group), Group 1: control group (C), Group 2: peritonitis group (P), Group 3: peritonitis + Ceftriaxone group (P + Cef), Group 4: peritonitis + Ceftriaxone + Glutathione group (P + Cef + Glu). Twenty-four hours after peritonitis induction, the blood samples were taken to evaluate TNF-α and IL-10 levels. Results There was a significantly increase of mean TNF-α level in group 2 (P) 473,86 ± 388,99 pg/ml (p value 0,00) and significantly decrease of mean TNF-α level after glutathione injection in group 4 (P + Cef + Glu) (p value 0,02). No significant changes in IL-10 levels in rats peritonitis model. Conclusions Glutathione supplementation is significantly decrease the mean level of TNF-α in rats induced peritonitis, however there is no difference compare to antibiotic only. Moreover, there no significant changes level of IL-10 in rats induced peritonitis after glutathione injection.
Collapse
Affiliation(s)
- Dila Junita
- General Surgery Department, Diponegoro University / Dr. Kariadi Central Hospital Semarang, 50244, Indonesia
| | - Agung Aji Prasetyo
- Pediatric Surgery Department, Diponegoro University / Dr. Kariadi Central Hospital Semarang, 50244, Indonesia
| | - Muflihatul Muniroh
- Physiology Department, Faculty of Medicine, Diponegoro University, Semarang, 50275, Indonesia
| | - Tri Nur Kristina
- Clinical Microbiology Department, Faculty of Medicine, Diponegoro University, Semarang, 50275, Indonesia
| | - Endang Mahati
- Pharmacology Department, Faculty of Medicine, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
237
|
Boyd NK, Teng C, Frei CR. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front Cell Infect Microbiol 2021; 11:684515. [PMID: 34079770 PMCID: PMC8165386 DOI: 10.3389/fcimb.2021.684515] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Drug repurposing, or identifying new uses for existing drugs, has emerged as an alternative to traditional drug discovery processes involving de novo synthesis. Drugs that are currently approved or under development for non-antibiotic indications may possess antibiotic properties, and therefore may have repurposing potential, either alone or in combination with an antibiotic. They might also serve as "antibiotic adjuvants" to enhance the activity of certain antibiotics.
Collapse
Affiliation(s)
- Natalie K Boyd
- College of Pharmacy, The University of Texas at Austin, San Antonio, TX, United States.,Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chengwen Teng
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, The University of South Carolina, Columbia, SC, United States
| | - Christopher R Frei
- College of Pharmacy, The University of Texas at Austin, San Antonio, TX, United States.,Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States.,Research Department, South Texas Veterans Health Care System, San Antonio, TX, United States.,Pharmacy Department, University Health System, San Antonio, TX, United States
| |
Collapse
|
238
|
Moosmann P, Taniguchi T, Furihata K, Utsumi H, Ise Y, Morii Y, Yamawaki N, Takatani T, Arakawa O, Okada S, Matsunaga S. Myrindole A, an Antimicrobial Bis-indole from a Marine Sponge Myrmekioderma sp. Org Lett 2021; 23:3477-3480. [PMID: 33885313 DOI: 10.1021/acs.orglett.1c00922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myrindole A, a bis-indole alkaloid, was isolated from the deep-sea sponge Myrmekioderma sp. The high degree of unsaturation of the molecule complicated the assignment of its structure by standard 2D-NMR experiments but was ultimately achieved by a combination of 1H-15N-HMBC and 1,n-ADEQUATE experiments as well as the comparison of measured and calculated CD spectra. Myrindole A showed antimicrobial activity against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Philipp Moosmann
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Kazuo Furihata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroaki Utsumi
- JEOL RESONANCE, Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yuji Ise
- Sesoko Station, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Yasuhiro Morii
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Nobuhiro Yamawaki
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
239
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
240
|
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog 2021; 155:104930. [PMID: 33933603 PMCID: PMC8084285 DOI: 10.1016/j.micpath.2021.104930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitously present small peptides, which play a critical function in the innate immune system. The defensin class of AMPs represented an evolutionarily ancient family containing cationic cysteine residue and frequently expressed in epithelial or neutrophils cells. It plays myriad functions in host innate immune responses against various infection. Defensin has a broad spectrum of antimicrobial activities, including anti-bacteria, anti-viruses (AVPs), anti-fungi, anti-cancers, and also overcoming bacterial drug resistance. In this review, we compiled the progress on defensin, particularly incorporating the mechanism of action, their application as an antiviral agent, prospects in different areas, and limitations to be solved as an antiviral peptide. Defensins were explored, in particular, their capacity to stimulate innate and adaptive immunity by trigging as anti-coronavirus (COVID-19) peptides. The present review summarised its immunomodulatory and immunoenhancing properties and predominantly focused on its promising therapeutic adjuvant choices for combat against viral infection.
Collapse
Affiliation(s)
| | - Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
241
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
242
|
Wang C, Hu R, Strong PJ, Zhuang W, Huang W, Luo Z, Yan Q, He Z, Shu L. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124985. [PMID: 33421848 DOI: 10.1016/j.jhazmat.2020.124985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Plants roots are colonised by soil bacteria that are known to be the reservoir of antibiotic resistance genes (ARGs). ARGs can transfer between these microorganisms and pathogens, but to what extent these ARGs and pathogens disseminate from soil into plant is poorly understood. Here, we examined a high-resolution resistome profile along the soil-root continuum of mangrove saplings using amplicon and metagenomic sequencing. Data revealed that 91.4% of total ARGs were shared across four root-associated compartments (endosphere, episphere, rhizosphere and unplanted soil). Rather than compartment-selective dynamics of microbiota, the resistome was disseminated in a continuous fashion along the soil-root continuum. Such dissemination was independent of underlying root-associated bacterial and fungal microbiota, but might be facilitated by a multiplicity of mobile genetic elements. As the multiple-drug resistant pathogens, Vibrio vulnificus, pathogenic Escherichia coli and Klebsiella pneumoniae consistently predominated across four compartments, indicating the potential dissemination of antibiotic pathogens along the soil-root continuum. Through deciphering the profile and dynamics of the root-associated resistome and pathogens, our study identified the soil-root continuum as an interconnected sink through which certain ARGs and pathogens can flow from soil into the plant.
Collapse
Affiliation(s)
- Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane QLD 4001, Australia
| | - Wei Zhuang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Weiming Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
243
|
Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021; 125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infections are serious threats to public health due to lack of advanced techniques to rapidly and accurately diagnose these infections in clinics. Although bacterial infections can be treated with broad-spectrum antibiotics based on empirical judgment, the emergence of antimicrobial resistance has attracted global attention due to long-term misuse and abuse of antibiotics by humans in recent decades. Therefore, it is imperative to selectively discriminate and precisely eliminate pathogenic bacteria. Herein, in addition to the conventional methods for bacterial identification, we comprehensively reviewed the recently developed theranostic platforms for specific discrimination and selective killing of bacteria according to their different interactions with the target bacteria, such as electrostatic and hydrophobic interactions, molecular recognition, microenvironment response, metabolic labeling, bacteriophage targeting, and others. These theranostic agents not only benefit from improved therapeutic efficiency but also present limited susceptibility to induce bacterial resistance. The strategies summarized in this review will open up new avenues in developing effective antimicrobial materials to accurately diagnose and treat bacterial infections in the post-antibiotic era. STATEMENT OF SIGNIFICANCE: Bacterial infections are difficult to be rapidly and accurately diagnosed, and are generally treated with broad-spectrum antibiotics, which leads to the development of drug resistance. By integrating imaging modalities and therapeutic methods in a single treatment, various theranostic agents have been developed to address the abovementioned issues. Therefore, the emerging theranostic platforms for selective identification and elimination of bacteria based on the distinct interactions of the theranostic agents with the target bacteria are summarized in this review. We believe that the information provided in this review will guide researchers in designing advanced antibacterial theranostics for practical applications in the post-antibiotic era.
Collapse
Affiliation(s)
- Xiaoting Ye
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Chongqing 401120, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
244
|
Fan C, Zhou G, Wang W, Zhang G, Zhu T, Che Q, Li D. Tetralone Derivatives From a Deep-Sea-Derived Fungus Cladosporium Sp. HDN17-58. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211008322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One new tetralone derivative, named aladothalen (1), and one known biogenetically related compound, (3 S,4 S)−3,4,8-trihydroxy-3,4-dihydronaphthalen-1(2 hours)-one (2), were isolated from a deep-sea-derived-fungal Cladosporium sp. HDN17-58. Their structures, including absolute configurations, were elucidated by extensive NMR, MS, and ECD analyses. Compound 1 exhibited potent bacteriostatic activity against Bacillus cereus, Mycobacterium phlei and methicillin-resistant coagulase-negative Staphylococci, with a MIC value of 25 µM.
Collapse
Affiliation(s)
- Cheng Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
| | - Guoliang Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| |
Collapse
|
245
|
Preparation of blackberry-shape cationic copolymer particles for highly effective antibacterial coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
246
|
Cui PL, Zhang D, Guo XM, Ji SJ, Jiang QM. Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1904990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng-Lei Cui
- College of Science, Hebei Agricultural University, Baoding, China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiu-Min Guo
- College of Science, Hebei Agricultural University, Baoding, China
| | - Shu-Jing Ji
- College of Science, Hebei Agricultural University, Baoding, China
| | - Qing-Mei Jiang
- College of Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
247
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
248
|
Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents. J Antibiot (Tokyo) 2021; 74:480-483. [PMID: 33767455 DOI: 10.1038/s41429-021-00419-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/08/2022]
Abstract
The present work describes the synthesis of hybrid dipeptides H-Lys-Gpn-PEA, C1; H-Lys-β3,3AC6C-PEA, C2, and THPA conjugated dipeptides, THPA-Lys-Gpn-PEA, C3, and THPA-Lys-β3,3AC6C-PEA, C4. All the peptides were evaluated against both Gram-negative and Gram-positive bacterial strains. Among all, peptide C4 exhibited the most potent activity with MIC 1.56 μM against P. aeruginosa (MTCC 424) and S. aureus (MTCC 737). Further, time-kill kinetics, fluorescence assays, and scanning electron microscopy (SEM) studies were performed in order to understand the mechanism of action and efficacy of peptide C4, The fluorescence assays and SEM images demonstrated the bacterial killing through membrane disruption. The peptide C4 exhibited very low hemolytic activity with negligible cytotoxicity against normal human breast cell line FR2.
Collapse
|
249
|
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress. Antimicrob Agents Chemother 2021; 65:AAC.02004-20. [PMID: 33526493 DOI: 10.1128/aac.02004-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown. We generated Escherichia coli mutants that exhibited a suppressed ΔrecA gene in combination with inactivated ROS detoxification system genes (ΔsodA, ΔsodB, ΔkatG, ΔkatE, and ΔahpC) or inactivated oxidative stress regulator genes (ΔoxyR and ΔrpoS) to evaluate the interplay of both DNA repair and detoxification systems in drug response. Synergistic sensitization effects, ranging from 7.5- to 30-fold relative to the wild type, were observed with ciprofloxacin in double knockouts of recA and inactivated detoxification system genes. Compared to recA knockout, inactivation of an additional detoxification system gene reduced MIC values up to 8-fold. In growth curves, no growth was evident in mutants doubly deficient for recA gene and oxidative detoxification systems at subinhibitory concentrations of ciprofloxacin, in contrast to the recA-deficient strain. There was a marked reduction of viable bacteria in a short period of time when the recA gene and other detoxification system genes (katG, sodA, or ahpC) were inactivated (using absolute ciprofloxacin concentrations). At 4 h, a bactericidal effect of ciprofloxacin was observed for ΔkatG ΔrecA and ΔahpC ΔrecA double mutants compared to the single ΔrecA mutant (Δ3.4 log10 CFU/ml). Synergistic quinolone sensitization, by targeting the recA gene and oxidative detoxification stress systems, reinforces the role of both DNA repair systems and ROS in antibiotic-induced bacterial cell death, opening up a new pathway for antimicrobial sensitization.
Collapse
|
250
|
Podoll J, Olson J, Wang W, Wang X. A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant. Antibiotics (Basel) 2021; 10:315. [PMID: 33803571 PMCID: PMC8002938 DOI: 10.3390/antibiotics10030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Antibacterial discovery efforts have lagged far behind the need for new antibiotics. An approach that has gained popularity recently is targeting bacterial phospholipid membranes. We leveraged the differences between bacterial and mammalian phospholipid compositions to develop a high-throughput screen that identifies agents that selectively disrupt bacterial membranes while leaving mammalian membranes intact. This approach was used to screen 4480 compounds representing a subset of the Maybridge HitFinderTM V.11 Collection and the Prestwick Chemical Drug Library®. The screen identified 35 "positives" (0.8% hit rate) that preferentially damage bacterial model membranes. Among these, an antimalarial compound, mefloquine, and an aminoglycoside, neomycin, were identified. Further investigation of mefloquine's activity against Staphylococcus aureus showed that it has little antibiotic activity on its own but can alter membrane fluidity, thereby potentiating a β-lactam antibiotic, oxacillin, against both methicillin-susceptible and methicillin-resistant S. aureus. This study indicates that our cell-free screening approach is a promising platform for discovering bacterial membrane disruptors as antibacterials antibiotic adjuvants.
Collapse
Affiliation(s)
| | | | | | - Xiang Wang
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA; (J.P.); (J.O.); (W.W.)
| |
Collapse
|